Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of Strategies in Finding the Optimal Cooling of Systems of Integrated Circuits

    Thumbnail
    View/Open
    thesis_Dion_L_Minter.pdf (2.907Mb)
    Downloads: 490
    Date
    2004-05-05
    Author
    Minter, Dion Len
    Metadata
    Show full item record
    Abstract
    The task of thermal management in electrical systems has never been simple and has only become more difficult in recent years as the power electronics industry pushes towards devices with higher power densities. At the Center for Power Electronic Systems (CPES), a new approach to power electronic design is being implemented with the Integrated Power Electronic Module (IPEM). It is believed that an IPEM-based design approach will significantly enhance the competitiveness of the U.S. electronics industry, revolutionize the power electronics industry, and overcome many of the technology limits in today's industry by driving down the cost of manufacturing and design turnaround time. But with increased component integration comes the increased risk of component failure due to overheating. This thesis addresses the issues associated with the thermal management of integrated power electronic devices. Two studies are presented in this thesis. The focus of these studies is on the thermal design of a DC-DC front-end power converter developed at CPES with an IPEM-based approach. The first study investigates how the system would respond when the fan location and heat sink fin arrangement are varied in order to optimize the effects of conduction and forced-convection heat transfer to cool the system. The set-up of an experimental test is presented, and the results are compared to the thermal model. The second study presents an improved methodology for the thermal modeling of large-scale electrical systems and their many subsystems. A zoom-in/zoom-out approach is used to overcome the computational limitations associated with modeling large systems. The analysis performed in this paper was completed using I-DEAS©,, a three-dimensional finite element analysis (FEA) program which allows the thermal designer to simulate the affects of conduction and convection heat transfer in a forced-air cooling environment.
    URI
    http://hdl.handle.net/10919/9961
    Collections
    • Masters Theses [21540]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us