Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    New constraints on the late Cenozoic incision history of the New River, Virginia

    Thumbnail
    View/Open
    Ward_2004-New_River.pdf (218.1Mb)
    Downloads: 8724
    Date
    2004-06-17
    Author
    Ward, Dylan J.
    Metadata
    Show full item record
    Abstract
    The New River crosses the core of the ancient, tectonically quiescent Appalachian orogen as it follows its course through North Carolina, Virginia, and West Virginia. It is ideally situated to record the changes in geomorphic process rates that occur in the Appalachians as a response to late Cenozoic climate variations. Active erosion features on resistant bedrock that floors the river at prominent knickpoints demonstrate that the river is currently incising toward base level. However, large packages of alluvial fill and fluvial terraces cut into this fill record an incision history for the river that includes several periods of stalled downcutting and aggradation. Cosmogenic 10-Be exposure dating, aided by mapping and sedimentological examination of terrace deposits, is used to constrain the timing of events in this history. Fill-cut and strath terraces at elevations 10, 20, and 50 m above the modern river yield cosmogenic exposure ages of approximately 130, 610, and 955 ka, respectively, but uncertainties on these ages are not well-constrained. This translates to a long-term average incision rate of 43 m/my, which is comparable to rates measured elsewhere in the Appalachians. During specific intervals over the last 1 Ma, however, the New River's incision rate reached 97 m/my. Fluctuations between aggradation and rapid incision appear to be related to late Cenozoic climate variations, though uncertainties in modeled ages preclude direct correlation of these fluctuations to specific climate change events. Erosion rates on higher alluvial deposits adjacent to the river are estimated from 10-Be concentrations; these rates are very low, about 2 m/my or less. This demonstrates a disequilibrium in the modern landscape, with river incision greatly outpacing erosion from nearby landforms.
    URI
    http://hdl.handle.net/10919/9993
    Collections
    • New River research [66]
    • Masters Theses [18655]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us