Enhancing AI-Clinician Interaction: Building Trust to Improve Patient Outcomes
| dc.contributor.author | Nassarian, Elham | en |
| dc.contributor.department | Industrial and Systems Engineering | en |
| dc.date.accessioned | 2025-07-25T17:19:29Z | en |
| dc.date.available | 2025-07-25T17:19:29Z | en |
| dc.date.issued | 2025-04-14 | en |
| dc.description.abstract | This research systematically reviews interpretable machine learning (IML) and explainable AI (XAI) in healthcare, proposing a Responsible Clinician-AI Collaboration Framework. It introduces a novel three-level interpretability process and step-by-step roadmap to enhance AI-clinician communication, fostering trust and improving decision-making in clinical decision support systems (CDSS). | en |
| dc.description.sponsorship | College of Engineering | en |
| dc.format.extent | Dimensions: 1920 × 1080 | en |
| dc.format.extent | Duration: 00:04:55 | en |
| dc.format.extent | Size: 11.5 MB | en |
| dc.format.mimetype | video/mp4 | en |
| dc.format.mimetype | text/vtt | en |
| dc.identifier.uri | https://hdl.handle.net/10919/136912 | en |
| dc.language.iso | en | en |
| dc.publisher | Virginia Tech | en |
| dc.relation.ispartofseries | 2025 Paul E. Torgersen Award Winners | en |
| dc.rights | In Copyright | en |
| dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
| dc.subject | Industrial and Systems Engineering | en |
| dc.title | Enhancing AI-Clinician Interaction: Building Trust to Improve Patient Outcomes | en |
| dc.type | Video | en |
| dc.type | Presentation | en |
| dc.type.dcmitype | MovingImage | en |