Universal Localization and Group Cohomology

dc.contributor.authorGrinshpon, Mark S.en
dc.contributor.committeechairLinnell, Peter A.en
dc.contributor.committeememberParry, Charles J.en
dc.contributor.committeememberHaskell, Peter E.en
dc.contributor.committeememberKlaus, Martinen
dc.contributor.committeememberFloyd, William J.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T20:15:12Zen
dc.date.adate2006-10-06en
dc.date.available2014-03-14T20:15:12Zen
dc.date.issued2006-08-10en
dc.date.rdate2006-10-06en
dc.date.sdate2006-08-14en
dc.description.abstractTwo results are obtained in this work. First, we prove that for a commutative ring embedded in a larger ring, which is not necessarily commutative, its division and rational closures coincide. Second, for an infinite discrete group G, we investigate group cohomology and homology with coefficients in lp(G). We prove that if G is of type FPn, then all its homology and cohomology groups up to n are either zero or infinite dimensional. This generalizes one of the results obtained by Bekka and Valetteen
dc.description.degreePh. D.en
dc.identifier.otheretd-08142006-003016en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-08142006-003016/en
dc.identifier.urihttp://hdl.handle.net/10919/28655en
dc.publisherVirginia Techen
dc.relation.haspartthesis.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectRational Closureen
dc.subjectDivision Closureen
dc.subjectGroup Cohomologyen
dc.subjectUniversal Localizationen
dc.titleUniversal Localization and Group Cohomologyen
dc.typeDissertationen
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
241.21 KB
Format:
Adobe Portable Document Format