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(ABSTRACT)

A series of experiments was conducted to evaluate the aerodynamic and acoustic
performance of a supersonic inlet with a modified auxiliary door geometry. A 1/14 scale
model of an axisymmetric, mixed-compression, supersonic inlet designed for civil
transportation was used in conjunction with a 10.4cm (4.1 in.) turbofan engine simulator
to test a new inlet door geometry designed to reduce flow distortion and noise radiation.
The new door geometry uses door passages with increased circumferential span to
improve the distribution of the flow entering through the doors. In addition, the new
design employs sonic flow velocity at the inlet throat and a converging flow passage in the
auxiliary doors to attenuate propagating fan noise through the choking effect. To provide
a basis for comparison, a baseline door geometry representative of current designs was
also tested. The experiments were conducted at simulated aircraft takeoff engine speeds
under static conditions. Steady-state measurements of the inlet flow field were made along
with far field acoustic measurements of the fan noise. The results show the new door
geometry is successful in reducing circumferential flow distortion at the fan entrance by a
factor of 2.3 compared to the baseline configuration. In addition, far field radiation of the
blade passing frequency tone and overall noise is reduced by an average of 4dB(SPL) in
the forward and aft sectors (0° to 110° from the inlet axis). As a compromise for the
distortion and acoustic improvements, the overall inlet total pressure recovery is reduced

by approximately 2% with the new auxiliary doors.
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Nomenclature

BPF blade passing frequency

dB decibel, sound pressure level, reference pressure 20 x 10° Pascals
Hz hertz, frequency

FFT fast Fourier Transform

M Mach number

Rc Radius of the cowl lip

rpm  revolutions per minute

x/Rc  normalized axial position
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1.0 Introduction

Although steady advancements in military aviation have made the technology for
high speed flight available, most patrons of commercial air transportation have enjoyed
only subsonic flight. Currently, however, there is growing interest in the development of a
supersonic cruise aircraft for commercial transportation as globalized markets create a
demand for faster long-distance transportation. A supersonic aircraft will significantly
reduce the time required for long distance flights, an increasingly attractive feature to
businesses with divisions throughout the world. Through the High Speed Civil Transport
research program, NASA is developing designs for a supersonic-cruise passenger aircraft

and is investigating the feasibility of using such an aircraft for commercial transportation.

Environmental impact constraints are an increasingly important consideration in
the design of commercial transports, and are particularly challenging for the development
of SST (supersonic transport) type aircraft. For a supersonic transport to be successful,
its environmental impact must be minimized. The environmental issues surrounding a

supersonic transport involve upper atmosphere emissions, airport community noise, and
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the sonic boom. These topics are currently being researched to determine how their

impact on the environment can be reduced.

Considerable effort is being invested to ensure that a supersonic transport will be
able to meet the restrictions on airport community noise levels. Evaluations of an aircraft's
impact on airport community noise levels focus primarily on noise generated while the
aircraft is undergoing landing approach and takeoff. Although jet noise is expected to be
the predominant noise source for SST aircraft, previous analysis by Trefny et al.[1]
indicate that "forward propagated fan noise is a significant component during take off and
approach." Many of the properties of the forward propagated fan noise are determined by
the design of the engine inlet, in the case of an SST aircraft, a supersonic inlet. Unlike
conventional subsonic inlets, supersonic inlets require many complex, variable features to
perform at both subsonic and supersonic flight speeds. The features typically include a
translating centerbody, boundary-layer bleed systems, and auxiliary inlet doors which
compensate for the small capture area of the inlet during subsonic flight. The effects of

these features on the radiated engine noise are currently being investigated.

Under the Supersonic Cruise Aircraft Research program in 1983, NASA Lewis
conducted a program to determine experimentally the low speed aerodynamic and acoustic
performance of a representative supersonic inlet. A 1/3 scale model of an axisymmetric,
mixed-compression supersonic inlet was coupled to a 0.4 scale JT8D refan simulator and
tested in the NASA Lewis 9x15 foot anechoic wind tunnel. The tests were conducted at

windtunnel airspeeds of Mach 0 to 0.2 to simulate low speed flight. The results of the
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research are detailed in references 1 through 8. The acoustic research, references 7 and 8,
concentrated on the far-field radiation of the fundamental blade-passing-frequency tone
and the broadband noise. One of the principal findings was that opening the auxiliary inlet
doors significantly increases the fundamental blade-passing-frequency tone. It was
suspected that the increase in tone was caused by the auxiliary doors increasing the flow

distortion at the fan entrance.

Recently, an experimental test program was initiated at Virginia Polytechnic
Institute and State University to reduce the impact of a supersonic transport on airport
community noise. The program, focusing on the radiation of turbomachinery noise from a
supersonic inlet, involves the testing of a 1/14 scale supersonic inlet coupled to a 10.4
cm(4.1in) turbofan engine simulator. The small scale of the inlet and simulator was
selected to provide a lower experiment cost, simplifying the investigation of design
modifications. Due to the number of variable features associated with a supersonic inlet,
the experimental test matrix can be large. The small-scale inlet and simulator provide
initial results and trends before a design is considered for testing in a more costly, large-

scale test program.

Under the VPI test program, Nuckolls and Ng[17] developed a modified auxiliary
inlet door geometry designed to reduce the radiated fan noise from a supersonic inlet. The
new auxiliary doors were designed to include two noise attenuating features: an increased
circumferential span to provide more uniform air distribution to the engine, and a

converging door passage area to employ the choking effect in the auxiliary doors. When
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tested at simulated landing-approach conditions and compared with results from the
original-geometry doors, the modified doors reduced flow distortion by a factor of two
and lowered forward radiated fan noise by 6dB. The objective to reduce noise by
modifying the auxiliary door is believed to be unique to the VPI test program because

there is no known previous research with this goal.

The current research focuses on evaluating the acoustic and aerodynamic
performance of the modified auxiliary door geometry at simulated aircraft takeoff
conditions. During landing approach (the conditions simulated by Nuckolls and Ng[17]),
the aircraft's engines are typically throttled back to a lower speed and the fan noise is
dominated by the blade-passing-frequency tone. For aircraft takeoff, the engines are
operated at design speed and the fan noise is comprised of a series of distinct tones called
combination tones. The objective is to determine how the modified auxiliary doors
perform with the higher level of inlet airflow and combination tone fan noise

representative of aircraft takeoff conditions.

The supersonic test inlets and basic test procedures developed by Nuckolls and
Ng[17] are used in the current research. The acoustic results are extended to include the
radiation of overall noise in addition to the blade-passing-frequency tone; overall noise is
useful because it includes the contributions of the combination tones generated at the

higher fan speeds.

This thesis is organized into four chapters. The next chapter outlines the

experimental setup and procedures for the test program, the detailed modifications to the
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auxiliary door geometry, and the physical dimensions and acoustic properties of the
turbofan engine simulator. Chapter 3 presents the aerodynamic and acoustic results of the
test program. A summary of the conclusions and a discussion of potential areas of future
research are presented in Chapter 4. Finally, the results from tests with the auxiliary doors
closed and an experiment involving an acoustic baffle are presented in Appendices A and

B respectively.
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2.0 The Experiment

This chapter describes the setup of the experiment. Section one outlines the
specifications and acoustic properties of the turbofan simulator. The second section
describes the supersonic test inlets and auxiliary inlet door geometries. The
instrumentation and procedures for the aerodynamic and acoustic tests are discussed in the

final two sections.

2.1 Turbofan Simulator

The supersonic inlets were tested in conjunction with a Tech Development, Model
460 turbofan engine simulator which was used to drive the inlet airflow and to provide the
characteristic engine noise signal. The Model 460, used in previous aerodynamic test
programs to simulate a Pratt and Whitney JT9D turbofan engine, is similar to the model
used by Pratt and Whitney to perform acoustic research [11,12]. Figure 1 shows the
turbofan simulator and its rotating components. The Model 460 has a single-stage fan
section consisting of 18 fan blades (tip radius 2.05 in.) and 26 stators. A single-stage
turbine, driven by compressed air, supplies power for the fan. The simulator, instrumented
with a magnetic-pickup tachometer and bearing thermocouples, has a design speed of

80,000 RPM.
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Figure 1. Turbofan Engine Simulator
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The simulator was considered appropriate for this acoustic investigation because it
generates a fan noise signal representative of full-size aircraft engines. During takeoff, the
engines under consideration for use in an SST aircraft are expected to generate noise with
a "combination tone" spectrum. A review of the noise characteristics of aircraft engines,
including an explanation of combination tones, is given by Cumpsty [16]. The noise from
a high-speed fan is typically divided into two types: pure tone and combination tone (or
multiple pure tone). Examples of these noise spectra are shown in Figure 2. Pure tone fan
noise is characterized by a prominent tone at a frequency equal to BN, where B is the
number of fan blades and N is the rotational speed of the fan. This frequency, referred to
as the Blade Passing Frequency or BPF tone, is created by the interaction of the fan blade
wakes with the stator row and by the passage of distorted flow into the fan. Combination
tone fan noise is characterized by a series of tones located at integer multiples of the fan
rotational speed (or fi, = kN, k=123 ...). The tones are created when the fan tip
velocity becomes supersonic relative to the flow entering the fan. The fan blades shed
shock waves in the upstream direction that vary in strength due to small differences in the
blade profiles. The shock waves coaless and cancel as they propagate the length of the
inlet to form the combination tone frequency spectrum illustrated in Figure 2.
Combination tones typically occur in addition to the BPF tone generated by the subsonic

portion of the fan.
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The Model 460 simulator attains supersonic fan tip velocity at a rotational speed of
approximately 65,000 RPM, or 80 PNC (percent corrected design speed). At rotational
speeds of 80 PNC and above, the simulator generates fan noise with a combination tone
spectrum. For the simulated aircraft takeoff tests conducted in this experiment, the
simulator was operated at 88 PNC. This engine speed was selected due to limitations on
the compressed-air supply (used to power the simulator) at the test facility. Although the
simulator was not operated at design speed, the test speed (88 PNC) did provide the

combination tone spectra representative of full-size engines during aircraft takeoff.

Another important acoustic characteristic of the simulator, the propagation
behavior of the rotor-stator interaction noise in the inlet passage, is determined by the
relative number of fan blades to stator blades. Tyler and Sofrin[18] developed a theory,
based on interaction kinematics and a superposition of rotating pressure modes, which
predicts that all modes of the rotor-stator interaction noise will decay rapidly in the inlet
passage if the number of stators is at least twice the number of rotors; in this condition,
the rotor-stator noise is commonly refered to as being "cut-off". In the case of the Model
460 simulator, the number of stators is less than twice the number of rotors (18 blades, 26
stators), so that some noise modes from the rotor-stator interaction are expected to
propagate in the inlet. Thus, the simulator is classified as having a "cut-on" rotor-stator

interaction noise.
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2.2 Supersonic Test Inlet

The test inlet used in this experiment is based on the axisymmetric, mixed
compression "P-inlet" model developed by NASA. In 1983 the inlet model was used by
researchers at NASA Lewis to determine the aerodynamic and acoustic performance of a
representative supersonic cruise inlet. A cutaway drawing showing the configuration of
the NASA P-inlet is shown in Figure 3. Designed for an aircraft cruise speed of Mach
2.65, the NASA P-inlet incorporates several variable features, including: a translating
centerbody, boundary layer bleed systems, and auxiliary inlet doors. The translating
centerbody is designed to permit control of the inlet throat area to maintain the desired
shock structure inside the inlet at supersonic cruise speeds. The cowl and centerbody
bleed systems are used to prevent boundary layer buildup on the inlet walls. The boundary
layer is minimized to avoid shock-boundary layer interaction problems at aircraft cruise
speeds. The auxiliary inlet doors are required to provide sufficient mass flow to the engine
at low flight speed conditions. During aircraft takeoff and approach, the capture area of
the P-inlet is too small to meet the airflow requirements of the engine; therefore, the

auxiliary doors are opened to increase the capture area of the inlet.
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