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Adaptive Least Mean Square (LMS) equalizers are widely used in digital 

communication systems primarily for their ease of implementation and lack of 

dependence on a priori knowledge of input signal statistics. LMS equalizers exhibit non-

Wiener characteristics in the presence of a strong narrowband interference and can 

outperform the optimal Wiener equalizer in terms of both mean square error (MSE) and 

bit error rate (BER). There has been significant work in the past related to the analysis of 

the non-Wiener characteristics of the LMS equalizer, which includes the discovery of the 

shift in the mean of the LMS weights from the corresponding Wiener weights and the 

modeling of steady state MSE performance. BER performance is ultimately a more 

practically relevant metric than MSE for characterizing system performance. The present 

work focuses on modeling the steady state BER performance of the normalized LMS 

(NLMS) equalizer operating in the presence of a strong narrowband interference. 

 Initial observations showed that a 2 dB improvement in MSE may result in two orders 

of magnitude improvement in BER. However, some differences in the MSE and BER 

behavior of the NLMS equalizer were also seen, most notably the significant dependence 

(one order of magnitude variation) of the BER behavior on the interference frequency, a 

dependence not seen in MSE. Thus, MSE cannot be used as a predictor for the BER 

performance; the latter further motivates the pursuit of a separate BER model. 

 The primary contribution of this work is the derivation of the probability density of the 

output of the NLMS equalizer conditioned on a particular symbol having been 

transmitted, which can then be leveraged to predict its BER performance. The analysis of 

the NLMS equalizer, operating in a strong narrowband interference environment, resulted 

in a conditional probability density function in the form of a Gaussian Sum Mixture 



 

(GSM). Simulation results verify the efficacy of the GSM expression for a wide range of 

system parameters, such as signal-to-noise ratio (SNR), interference-to-signal (ISR) ratio, 

interference frequency, and step-sizes over the range of mean-square stable operation of 

NLMS. Additionally, a low complexity approximate version of the GSM model is also 

derived and can be used to give a conservative lower bound on BER performance. 

 A thorough analysis of the MSE and BER behavior of the Bi-scale NLMS equalizer 

(BNLMS), a variant of the NLMS equalizer, constitutes another important contribution of 

this work. Prior results indicated a 2 dB MSE improvement of BNLMS over NLMS in 

the presence of a strong narrowband interference. A closed form MSE model is derived 

for the BLMS algorithm. Additionally, BNLMS BER behavior was studied and showed 

the potential of two orders of magnitude improvement over NLMS. Analysis led to a 

BER model in the form of a GSM similar to the NLMS case but with different 

parameters. Simulation results verified that both models for MSE and BER provided 

accurate prediction of system performance for different combinations of SNR, ISR, 

interference frequency, and step-size. 

 An enhanced GSM (EGSM) model to predict the BER performance for the NLMS 

equalizer is also introduced, specifically to address certain cases (low ISR cases) where 

the original GSM expression (derived for high ISR) was less accurate. Simulation results 

show that the EGSM model is more accurate in the low ISR region than the GSM 

expression. For the situations where the derived GSM expression was accurate, the BER 

estimates provided by the heuristic EGSM model coincided with those computed from 

the GSM expression. 

 Finally, the two-interferer problem is introduced, where NLMS equalizer performance 

is studied in the presence of two narrowband interferers. Initial results show the presence 

of non-Wiener characteristics for the two-interferer case. Additionally, experimental 

results indicate that the BER performance of the NLMS equalizer operating in the 

presence of a single narrowband interferer may be improved by purposeful injection of a 

second narrowband interferer. 
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 Every practical communication system requires effective interference mitigation 

schemes that are able to nullify unwanted signals without distorting the desired signal. 

Adaptive equalizers are among the prevalent systems used to cancel interfering signals. 

In particular, for narrowband interference (a particular class of interference) mitigation 

with (normalized) least mean square type (NLMS) equalizers has been found to be 

extremely effective. In fact, in the narrowband interference-dominated environment, 

NLMS equalizers have been found to work better than the solution with the same 

structure that is optimal according to linear filtering theory. This departure from the linear 

filtering theory is a result of the non-Wiener characteristics of NLMS type equalizers. 

 This work investigates the bit error rate (BER) behavior, a common metric used to 

characterize the performance of wireless communication systems, of the NLMS equalizer 

in the presence of a strong narrowband interference. The major contribution of this 

dissertation is the derivation of an accurate expression that links the BER performance of 

the NLMS equalizer with the system parameters and signal statistics. Another variant of 

the NLMS equalizer known as the Bi-scale LMS (BLMS) equalizer was also studied. 

Similar to the NLMS case, an accurate BER expression for the BLMS equalizer was also 

derived. Additionally, situations were investigated where the non-Wiener characteristics 

of the NLMS equalizers can be leveraged. Overall, this dissertation hopes to add to the 

existing body of work that pertains to the analysis of non-Wiener effects of NLMS 

equalizers and thus, in general, to the work related to analysis of adaptive equalizers. 
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This chapter provides the necessary background for this work and motivates the 

research problem. A brief background regarding adaptive equalization and narrowband 

interference is presented first, followed by a literature review highlighting the relevant 

works that dealt with the non-Wiener characteristics of the adaptive LMS class of 

equalizers. The contribution of this work to the domain of the problem is summarized in 

Section 1.3. Lastly, Section 1.4 contains the mapping for the remainder of the document.  

1.1 Background  

Continuous Wave (CW) interferers and their mitigation techniques have been an 

active area of research for decades. One of the earliest works addressing the issue of CW 

interference dates back to 1941 [1]. For modern digital communication systems, 

unmodulated carrier signals caused by either malfunctioning devices or accidental and 

deliberate (tone jamming) transmissions are a common type of CW interference. For 

example, recent literature shows the vulnerability of GPS receivers to CW interferers [2-

6]. The expected proliferation of Internet-of-things (IoT) devices will exacerbate the 

problem of CW interference due to unmodulated carrier signals. 

Adaptive least mean square (LMS) equalizers have been widely used in various 

communications systems [7-11]. The popularity of LMS equalizers can be attributed to 

their ease of implementation and lack of dependence on the a priori knowledge of signal 

statistics. Prior work has already shown that in the presence of a strong CW interferer, 

LMS equalizers exhibit non-Wiener characteristics such as outperforming the 

corresponding Wiener equalizer ï the optimal solution as per linear filtering theory ï in 

terms of mean square error (MSE). However, there is very little work in the existing 

literature that deals with the analysis of the bit error rate (BER) ï a more practical metric 

for characterizing the performance of a digital communication system than MSE ï of 

LMS equalizers operating in the presence of a CW interferer.  
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The primary focus of this dissertation is to model the BER behavior of the LMS class 

of equalizers in the presence of a strong CW interferer ï a situation where LMS 

equalizers exhibit non-Wiener characteristics. 

1.2 Related Work  

To our best knowledge, adaptive equalization for digital communication systems was 

first proposed by Lucky [12]. His work was based on minimizing the peak distortion 

criterion. Concurrently, Widrow et al. [13] devised the (LMS) algorithm which was 

computationally simple and converged to the optimal Wiener solution. Proakis and Miller 

[14] showed an adaptive receiver based on the LMS algorithm which was capable of 

adjusting to unknown slowly time-varying channel conditions. An excellent summary of 

adaptive equalization techniques is presented by Qureshi [15]. 

The primary objective of an equalization technique is to undo the unwanted effect of 

the channel characteristic ï inter-symbol interference on the received communication 

signal. Although Qureshi [15] mentions that any technique employed to reduce inter-

symbol interference can be considered an equalization technique, equalization can be 

viewed in general as a mitigation technique. In this work, our focal point will be 

modeling the performance of digital communication systems where narrowband 

interference has been suppressed by adaptive equalizers, more specifically by adaptive 

LMS or NLMS equalizers. 

There has been a substantial amount of work regarding suppression of narrowband 

interference. Milstein [16] in his work gives a brief summary of methods for rejecting 

interference in spread spectrum communication systems, emphasizing primarily two 

schemes: 1. LMS based and 2. Transform domain processing structure based. Laster and 

Reed [17] provide a comprehensive survey of interference rejection methods for both 

spread spectrum and non-spread spectrum communication systems. Poor [18] gives a 

detailed account of various interference mitigation schemes based on different 

techniques, such as linear predictive methods, non-linear predictive methods, linear code 

aided methods, etc. Batra [19] examines the effect of severe narrowband interference on a 
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wireless communication system and proposes two novel methods: 1. Data-aided 

Initialization (DAI) and 2. Two stage filtering, which utilizes a prediction error filter 

(PEF) as a pre-filter to the equalizer, for faster convergence of the adaptive equalizer 

weights.  

Adaptive LMS equalizers were seen to behave óunconventionallyô in the presence of a 

narrowband interference, as was first observed by North, Axford, and Zeidler [20]. The 

term óunconventionalô demands special attention.  

Conventional adaptive filtering suggests the Wiener filter as the appropriate 

benchmark against which the performance of the adaptive filter is measured [21]. In this 

work, we are interested in LMS equalizers for which the Wiener equalizer is considered 

to provide the lower bound on performance (in terms of mean square error) for a LMS 

equalizer since the LMS algorithm is subject to misadjustment error due to weight 

adaptation. For this reason, traditionally LMS equalizers are implemented with small 

step-sizes. North, Axford, and Zeidler [20] observed that the performance of LMS 

equalizers was superior in terms of probability of error to the corresponding Wiener 

equalizer with the same structure in an environment dominated by narrowband 

interference. This effect will be referred to as a non-Wiener characteristic of adaptive 

LMS equalizers.  

The topic of this dissertation is to analyze the bit error rate (BER) behavior of the 

(N)LMS equalizer in the presence of a strong narrowband interference, i.e. a scenario 

when the LMS equalizer is exhibiting non-Wiener behavior. Thus, it makes intuitive 

sense to review the literature that pertains to the analysis of the non-Wiener behavior. 

Reuter and Zeidler [22] demonstrated that the steady state Mean Square Error (MSE) of 

LMS equalizers can better the corresponding Wiener equalizer of the same structure. In 

this work [22] an attempt to model the non-linear nature of the LMS algorithm and to 

quantify the MSE performance of the LMS algorithm was made. However, the 

experimental results and the theoretical results did not coincide, pointing to limitations in 

the model. In subsequent works [23-25] was shown that LMS may outperform the 

corresponding Wiener filter and that the performance is dependent on system parameters 
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such as Signal to Noise Ratio (SNR), Signal to Interference Ratio (SIR), length of the 

equalizer, and the adaptation step-size. 

Beex and Zeidler [26] modeled the interference canceller as a two channel Wiener 

filter with the interference signal as the input to the second channel. This work [26] 

showed that the adaptive NLMS filter is trying to track a time-varying target solution. 

Hence, the second characterization of non-Wiener effects is the time-varying nature of 

the filter weights. This two-channel model explanation was shown to apply to Recursive 

Least Squares (RLS) adaptation as well [27] and to adaptive noise cancellation [28]. 

Conventional adaptive filtering theory posits that the steady state weights for LMS 

equalizers converge to the corresponding Wiener weights. Ikuma, Beex, and Zeidler [29] 

derived a closed form expression for the mean of the LMS weight vectors in steady state. 

The expression was derived from the Butterweck expansion of the weight update 

equation [30]. Simulation results were in conformity with the analytical results for all 

step-sizes where the expansion converges. In a subsequent work [31] it was shown that 

the analytical solution holds true over a wide range of ISR. 

Reuter and Zeidler [22] first proposed a transfer function based approach to quantify 

the MSE performance of LMS equalizers. The results were inaccurate since the model 

assumed that the mean of the LMS weights in steady state converged to the 

corresponding Wiener weights which, as shown in [29, 31], is not the case. Hence, the 

Reuter-Zeidler model for the MSE was not an accurate one. Ikuma and Beex [32] 

incorporate the shift in the mean of the steady state weights and proposed a new model 

for MSE. Simulation results illustrate the improvement of the new model over the 

previous Reuter-Zeidler model. The derivations for the mean LMS weights in steady state 

and the improved MSE model have been excellently documented [33]. 

Although there has been substantial past work on analyzing the dynamic weight 

behavior and the mean square error performance of the (N)LMS equalizer there is scant 

coverage in the literature that deals with BER modeling in a non-Gaussian environment. 

North, Axford, and Zeidler [20] compared the performances of different adaptive 
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equalizers in terms of probability of error. However, the error probability was computed 

via simulation and no model was proposed.  

Prior to [20], Iltis and Milstein [34] provided a statistical analysis of the LMS 

algorithm where the adaptive filter was used to suppress a fading tone jammer. Their 

work provided a BER model while inherently assuming slow convergence (i.e. a near 

Wiener case) and a large equalizer length. In this thesis, we are primarily interested in 

large step-sizes where the non-Wiener characteristics are predominant. A Gaussian BER 

approach was also adopted [35]. However, no simulation results were provided to support 

the claims. 

Coulson [36] investigates the effect of narrowband interference on OFDM systems. 

An analytical Gaussian model is provided to gauge the effect of the narrowband 

interference on receiver post detection BER performance. However, no analytical model 

is put forward to estimate the post interference suppression BER. Instead, a heuristic 

method to estimate the BER is provided where the latter is simply the ensemble median 

of the simulation results. 

The BER for a fixed (time-invariant) Wiener filter equalizer under a strong 

narrowband interference was shown to be accurately predictable using the expression for 

the probability density function of the symbol-conditioned equalizer output, which took 

the form of a sum of Gaussians [37]. However, when the same model was extended for 

the adaptive NLMS case [38], the performance was reasonable for low step-sizes only. 

With the increase in step-size (which is the area of interest here, since it produces better 

BER performance), the BER obtained from the model deviated from the simulation result 

by an order of magnitude. 

Scant coverage of modeling the BER behavior of (N)LMS equalizers in the existing 

literature, coupled with the fact that BER serves as a more practical metric for measuring 

the performance of a digital communication system than MSE, is the primary motivation 

for this dissertation. From a broader perspective this dissertation adds to the existing body 

of work related to analysis of adaptive equalizers such as, analysis for sinusoidal 

interference mitigation [39], arbitrary step-sizes [40], non-negative LMS [41], presence 
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of non-Gaussian noise [42-44], combination of LMS filters [45], and so on. There also 

has been a significant amount of work in analyzing other adaptive algorithms [46-49]. 

With a brief overview of related work in place, the next section highlights the 

contribution of this dissertation. 

1.3 Contributions   

The primary contribution of this work is to come up with a model for the BER 

behavior of the NLMS equalizer operating in the presence of a strong narrowband CW 

interference. Simulation results show that the model is accurate over a wide range of 

SNR, ISR, and interference frequency. The model also gives insight into the non-Wiener 

behavior of the equalizer and quantifies the superior BER performance at higher step-

sizes in the presence of a strong narrowband interference.  

The second contribution of this work is the in-depth analysis of the Bi-scale NLMS 

(BNLMS) equalizer, which also exhibits non-Wiener characteristics in the presence of a 

strong narrowband interference. In fact, in terms of MSE and BER performance, the Bi-

scale NLMS equalizer outperforms NLMS. The performance gain, both in terms of MSE 

and in terms of BER, is analyzed and a closed form model for each is derived. Similar to 

the NLMS case, the models developed to assess the BNLMS equalizer performance 

provided accurate estimates for both MSE and BER for a wide range of system 

parameters. 

1.4 Organization  

This document has five chapters excluding Chapter 1. In Chapter 2 a description is 

provided of the system under consideration along with a description of the signals 

involved. In Chapter 3, the BER models for NLMS equalizers are derived and compared 

with simulation results. Chapter 4 contains an in-depth analysis of the Bi-scale LMS 

equalizer where both a steady state Mean Square Error (MSE) model and a BER model 

are derived and compared with simulation results. Situations where the proposed BER 
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models in Chapters 3 and Chapter 4 fail are analyzed in Chapter 5 along with the 

formulation of a corrected model. Chapter 6 introduces the two-interferer problem where 

the case studies show that similar to the single interferer case the non-Wiener 

characteristics of NLMS equalizers are present. Finally, concluding remarks ï along with 

directions for future research ï are presented in Chapter 7. 
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This chapter lays the foundation for the analysis by formally defining the problem and 

introducing the important notations, assumptions, and expressions, which will be used 

extensively throughout this work. 

Section 2.1 introduces the adaptive equalization problem and gives an overview of the 

system with the input signals and assumptions, followed by Section 2.2 where the 

stochastic properties of the input signals are discussed. Section 2.3 contains the 

expressions for the optimal Wiener weights and the Wiener MSE. Sections 2.4 and 2.5 

describe steady state weight and steady state MSE respectively for NLMS equalizers. 

Finally, Section 2.6 motivates the importance of the problem at hand ï developing a 

BER model when the NLMS equalizer is operating in a narrowband interference 

dominated environment. Simulation examples are provided specifically to distinguish 

between the MSE and the BER behavior of the NLMS equalizer. 

2.1 Adaptive equalization problem  

Figure 2.1 shows the system under consideration. The desired signal ( )nd  is 

transmitted through the channel and corrupted by additive Gaussian white noise ( )nv  and 

a narrowband interference ()ni , which is also additive in nature. Thus, at the n-th time 

instant the input to the adaptive equalizer ( )nu can be written as the sum of three 

independent random processes as shown in (2-1). 

 n n n nu d v i= + +  (2-1) 

where nd  is defined as: 
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 n n nd h d= *   (2-2) 

with nh  being the channel impulse response.  

 

Figure 2-1: Block diagram of an adaptive equalizer. 

The focus of this work is to study the system behavior in the presence of a narrowband 

interference. Since decision-direction equalization (DDE) assumes that the BER is ñsmall 

enoughò (e.g. <0.01), for our purposes of analysis the equalizer will operate in training 

mode. The channel nh  is considered ideal, i.e. n nd d= . This simplified system is similar 

to the one used in [20, 31-33, 37]. For non-ideal channel conditions, the assumption is 

that channel compensation has already been achieved (for example, based on the channel 

estimate derived from a/the previous packet transmission). Even when the channel is 

compensated, the problem of a narrowband interferer can arise which necessitates the 

need for an adaptive equalizer to realize interference mitigation. For example, if a 

narrowband IoT (NBIoT) device is malfunctioning (it is only transmitting the carrier) this 

may give rise to a narrowband interference at the receiver and ï since the power and the 

frequency of the interference is unknown ï an adaptive filter is required. With these 

assumptions in place, Figure 2-2 shows the corresponding simplified block diagram for 

the problem under consideration. Thus, the input to the adaptive equalizer given in (2-1) 

can be modified to: 
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 n n n nu d v i= + +  (2-3) 

 

Figure 2-2: Simplified block diagram of an adaptive equalizer. 

The tapped delay line adaptive equalizer is characterized by its weight vector 

0, 1, 1,

T

n n L nw w w-
è ø=ê únw , ().

T
 being the transpose operator, and has L tunable taps. 

The equalizer output ny  is given by (2-4),  

 ny = H

n n
w u   (2-4) 

where ().
H

 denotes the Hermitian transpose operator and [ ]1 1

T

n n n Lu u u- - +=nu  is 

the input vector containing the current input ( )nu  along with the previous 1L-  inputs. 

For this work, the desired signal ( )nd  is considered a complex baseband signal that 

assumes a value drawn from a finite set of constellation values. The finite set is 

completely defined by the modulation scheme used. Since the analysis is done at 

baseband, the Gaussian noise ( )nv  is modeled by a complex Gaussian distribution. 

 ( )2~ 0,n vv CN s   (2-5) 
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where 
2~ ( ,2 )CN m sc  indicates that c is a complex normal random variable, or a real 

vector random variable with mean 
(){ }
(){ }

Re

Im

E
m

E

c

c

è ø
=é ù
é ùê ú

 and covariance 
2

2

0

0

s

s

è ø
é ù
ê ú

 .  

Similar to the work done in [33] the narrowband interference is modeled by a complex 

sinusoid with a random phase as indicated in (2-6). 

 
( )2 ij f n

n ii e
p q

s
+

=   (2-6) 

where 1j = - , if  is the fractional frequency, and q is a random phase drawn from a 

uniform distribution [ )0,2p . The stochastic properties of these inputs are discussed in 

detail in the next section. 

As mentioned earlier, the adaptive equalizer has L tunable taps which are updated 

according to the NLMS update equation as given by (2-7). 

 *

2 ne
a

m
= +

+
n+1 n n

n

w w u
u

  (2-7) 

where m is the step-size, . is the Euclidean norm, a  is the regularization parameter, ()
*

.  

denotes the complex conjugate operator, and ne  is the instantaneous error described by 

(2-8). 

 n n ne d y-D= -   (2-8) 

For stable operation of the equalizer the value of m should be selected from ( )0,2 .  

The regularization parameter is present to prevent division by zero (or a very small 

number) during practical implementation. For analysis purposes, the regularization 

parameter can be set to 0. D is the point of equalization and usually taken to be in the 

middle of the tapped delay line, i.e. 
1

2

L+
D= , but any value in the range 0 to L-1 is 

permissible. 
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2.1.1  BER problem s tatement  

With these definitions and notations in place, the problem of interest can now be 

defined. Let { }
1

M

m m
f

=
 be the set of M distinct symbols of the modulation scheme chosen, 

then obtaining an expression for the conditional distribution of |n n my d f-D=  and 

specifying the regions of interest that contribute bit error will be sufficient to compute the 

BER of the system. Note that the aforementioned ñregions of interestò are determined by 

the decision device (Figure 2-2). For example, if the modulation scheme chosen is QPSK 

and mf  is the first quadrant symbol then for this case the entire 
2Á  except for the first 

quadrant constitutes regions that will contribute to a single (second or fourth quadrant) or 

multiple (third quadrant) bit errors. 

2.2 Stochastic properties of the input s ignals  

One of the primary goals of this work is to find a conditional probability distribution. 

So it is essential to know the stochastic properties of the input signals. Since the analysis 

is done at baseband all the input signals are modeled as complex random processes that 

are zero-mean, wide sense stationary (WSS), mean ergodic, and proper [50]. 

The desired signal nd  is assumed to be a white process, i.e. there is no inter-symbol 

interference. The transmit power is denoted by 2

ds . As stated earlier, nd  takes on one of 

the equally likely M symbols from the alphabet { }
1

M

m m
f

=
 of the chosen modulation 

scheme. Thus, nd  follows a discrete uniform distribution with the auto-correlation 

function shown in (2-9). 

 
2

,d l d lr s d=   (2-9) 

where l is the lag and ld is the Kronecker delta function, which equals 0 except for at 

0l = , where it equals 1. The noise nv  is also white, with power 2

vs  and the auto-

correlation function given in (2-10). 
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2

,v l v lr s d=   (2-10) 

The narrowband interference as defined by (2-6) has a power of 2

is . The interference 

auto-correlation function is given in (2-11). 

 
2

,
ij l

i l ir e
ws=   (2-11) 

where 2i ifw p=  is the angular interferer frequency. Combining (2-9), (2-10) and (2-11), 

the auto-correlation function of the input nu  to the equalizer is given in (2-12). 

 ( )2 2 2

,
ij l

u l d v l ir e
ws s d s= + +   (2-12) 

This result directly follows from the fact that the input signals nd , nv , and ni  are 

independent and zero-mean. 

2.3 Wiener Equalizer  

The optimal weight vector w
w  is obtained by solving the Wiener-Hopf equation given 

in (2-13): 

 
*

nd -D
è ø è ø=ê ú ê ú

H

n n w n
E u u w E u   (2-13) 

The resulting Wiener filter is [33]: 

 ( )w wh= -ȹw p w   (2-14) 

where 

 

2

2 2

d

d v

s
h
s s+

  (2-15) 
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 0 0 1 0 0

T

L

D

è ø
é ù
é ù=
é ù
é ùê ú

ȹ
p   (2-16) 

 

2

max

i
w

s

l
=w e  (2-17) 

and 

 ( 1)
1 ...i i i

T
j j j L

e e e
w w wD - - -è ø
ê úe   (2-18) 

 
2 2 2

max i v dLl s s s+ +   (2-19) 

The Wiener MSE is given by: 

 
2

2 2

max

i
W v dJ

s
h s s

l

å õ
= +æ ö
ç ÷

  (2-20) 

2.4 Steady state NLMS weights  

For most applications, using small step-sizes, the LMS algorithm converges to 

approach the performance of the corresponding optimal Wiener filter [51]. However, in a 

narrowband interference dominated environment the LMS equalizer can outperform the 

optimal Wiener filter of the same FIR structure as the adaptive filter. It is non-intuitive 

that in a narrowband interference-dominated environment the weight vector will 

converge to something other than the Wiener weights given in (2-14). An expression for 

the steady state (N)LMS weights in a narrowband interference dominated environment 

has been derived [31, 33]. 

The steady state NLMS weight vector w can be expressed [33] as: 

 ( )h D= -w p w   (2-21) 
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where w is given by (2-22): 

 

1

2 2 2( )
L w

v i dL

m

s s s

-

å õ
= -æ ö

+ +ç ÷

-1

uw I R Q w   (2-22) 

where LI  denotes the  L L³   unit matrix, and { }E H

u n n
R u u  is the input auto-

correlation matrix given in (2-23).  

 ( )2 2 2

d v L is s s= + + H

u
R I ee   (2-23) 

The expression for Q  in (2-22) is given by (2-24): 

 
1

2 2 1

1

i

L
j pp p

v i

p

L e
ws s g

-
- -

=

äQ Z   (2-24) 

where 

 max1g ml-   (2-25) 

and Z  is a unit lower triangular Toeplitz matrix: 

 
0è ø

=é ù
ê ú

L-1

T

L-1 L-1

0
Z

I 0
  (2-26) 

with [ ]0 0 ... 0=L-10  a row vector containing ( )1L-  zeros. 

2.5 Steady state Mean Square Error  

In previous work, such as [24, 32, 33], different expressions for the steady state Mean 

Square Error (MSE) estimate have been proposed. Although the focus of this work is on 

BER, it is important to refer to the MSE estimate for a couple of reasons. Firstly, the 

MSE analysis encompasses the previous endeavors regarding explaining the non-Wiener 

characteristics of the NLMS filter.  
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Secondly, the expressions for the MSE provide the necessary background for the 

analysis done in Section 2.6, which highlights the differences between the MSE and BER 

performances of the equalizer and factor(s) that affect these metrics.  As shown [32], the 

Ikuma model MSE estimate is more accurate for a narrowband interference-dominated 

environment than the Reuter-Zeidler model MSE estimate [24]. The Ikuma model 

estimate for steady state MSE for a NLMS equalizer, NJ , is given by: 

 { }22 22
(1 )

1

T

N v dJ
h
s s a

a
è ø= + - -
ê ú+

w w A w   (2-27) 

where  

 

2

2 2 2
1 i

i v d

s
a m

s s s
-

+ +
  (2-28) 

2
.  is the Euclidian Norm, .  denotes the absolute value, andA is given by (2-29). 

 

2

0 ... 0

1 0

1

0

... 1 0L

a

a a-

è ø
é ù
é ù
é ù
é ù
é ù
é ùê ú

A   (2-29) 

2.6 Comparison betwee n MSE and BER behavior of NLMS 
equalizer  

The non-Wiener characteristics exhibited by the NLMS equalizer operating in a 

narrowband interference dominated environment have been studied in depth. Prior work 

explains the phenomenon for different situations and, as described in Sections 2.4 and 

2.5, there is a closed form expression for the steady state NLMS weights and steady state 

MSE. However, despite having all these efforts already in place, there has been no 

reported work on the performance of the equalizer in terms of BER. In this section, 

differences between the MSE and BER behavior of the equalizer are highlighted.  
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Figure 2-3 shows the MSE performance of a NLMS equalizer as a function of step-

size m. An equalizer length of 5L=  was chosen and the equalization point set as 0D=. 

The signal to noise ratio (SNR) was set to 25 dB and the interference to signal ratio (ISR) 

was set to 20 dB, for an interference frequency 1
if e
= . 100,000 independent QPSK 

symbols were chosen from { }
3 5 7

4 4 4 4, , ,e e e e
p p p p

f=  as the desired signal of 

interest nd . 100 independent realizations were run for each of the step-sizes and the 

ensemble average of the MSE is shown in Figure 2-3. The performance for the 

corresponding Wiener Filter of the same structure is shown in red. 

 

Figure 2-3: MSE performance for NLMS equalizer with L = 5, ISR = 20 dB, and SNR = 25 dB. 

Figure 2-3 shows an improvement of ~1.75 dB for a step-size of 0.7m= . Note that 

the step-size m was increased in increments of 0.1. It might be possible that the optimal 

MSE behavior occurs between 0.7m=  and 0.8m= . For this discussion the performance 

at 0.7m=  is taken to be the optimal MSE performance of the equalizer. Figure 2-4 
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shows the BER behavior of the same equalizer. All the parameters were kept the same as 

the ones used to generate Figure 2-3. 

 

Figure 2-4: BER performance for NLMS equalizer with L = 5, ISR = 20 dB, and SNR = 25 dB. 

Figure 2-4 shows that the non-Wiener effect is also reflected in the BER performance 

of the equalizer. An improvement of 2 orders of magnitude is seen for a step-size 1m=  

compared to the fixed Wiener filter of the same structure. Note that the optimal BER 

performance takes place at a different step-size, 1m= , than the optimal MSE 

performance, which was for step-size 0.7m= . At 0.7m=  the BER is 
411 10-³  

( )2.94910-= , which translates to 11 errors out of 10,000 bits. At 1m=  the BER is 

41.97 10-³  ( )3.70610-= ,  which is the optimal performance of the equalizer in terms of 

BER. This implies 2 errors out of 10,000 bits or an approximately 5 times better 

performance than for the equalizer operating with 0.7m= . 



 

19 

The above example shows that although the non-Wiener effect can be observed both 

in MSE and BER performance of the equalizer, the optimal performance for each metric 

occurs at different step-sizes. Thus, there is a need for modeling the BER behavior 

explicitly instead of using the step-size for which MSE is minimized. 

In Figure 2-5 the MSE performance of the NLMS equalizer is shown as a function of 

interference frequency if  for six different step-sizes. The equalizer length is set to 5L=  

and the equalization center to 0D=. The SNR and ISR are set to 25 dB and 20 dB 

respectively. Similar to the simulation setup used to generate Figures 2-3 and 2-4, 

100,000 independent QPSK symbols were chosen as the desired signal and the ensemble 

average of 100 realizations for each step-size and interference frequency combination is 

shown in Figure 2-5. 

 

Figure 2-5: MSE vs fractional interference frequency for L = 5, ISR = 20 dB, and SNR = 25 dB. 

From Figure 2-5, it is clear that MSE is not a function of interference frequency. This 

behavior is consistent with (2-27), where there is no frequency dependent term, and was 
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also observed in [33]. Figure 2-6 shows the BER as a function of interference frequency 

using the same simulation environment used to generate Figure 2-5. 

 

Figure 2-6: BER vs fractional interference frequency for L = 5, ISR = 20 dB,  and SNR = 25 dB. 

Figure 2-6 shows the dependence of BER performance of the NLMS equalizer on the 

interference frequency. For certain fractional frequencies (e.g. 0.25if º ) changing the 

step-size from 0.01m=  to 1m=  can result in a BER improvement by 3 orders of 

magnitude. Moreover, Figure 2-5 shows that 0.75m=  is the MSE-optimal step-size for 

all frequencies, whereas Figure 2-6 shows that 1m=  is the optimal choice if BER is the 

metric. This result is also consistent with the previous example, shown in Figures 2-3 and 

2-4.  Thus, Figures 2-5 and 2-6 highlight a major difference between the MSE and BER 

behavior of the NLMS equalizer; while MSE is independent of the interference 

frequency, BER depends on interference frequency, which further necessitates the need 

for a BER model for NLMS equalizers. 
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2.7 Summary  

In this chapter the adaptive equalization problem was formally introduced followed by 

the stochastic properties of the signals involved. Relevant previous work, such as that 

related to steady state NLMS weights and steady state MSE, is also reported. Section 2.5 

provided examples to highlight the differences between the BER and MSE behaviors of 

the NLMS equalizer, thereby motivating the need for a separate BER model, which is the 

focus of the next chapter. 
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With the problem statement defined, and the necessary information and assumptions 

regarding the system to be studied in place, a model is derived in this chapter for the 

description of the BER behavior of an NLMS equalizer operating in a narrowband 

interference dominated environment.  

In Section 3.1 some simulation results are presented which distinguish between the 

output constellation ( )|n n my d f-D=  for a fixed filter ( )0m= , i.e. the Wiener case, and 

the adaptive case with a very high step-size ( )1mº . In Section 3.2 the BER model 

expression for the NLMS equalizer is derived. The derived model takes on the form of a 

Gaussian Sum Mixture (GSM). In Section 3.3 an approximate version of the GSM model 

is introduced, followed by Section 3.4 in which the performances of the proposed models 

are compared based on simulation results.  

3.1 Behavior of the output constell ation as a function of s tep-size 

In the following case study the objective is to visualize the effect of the step-size m 

on the output constellation ny . For illustrative purposes, a communication system with 

QPSK modulation is chosen and the QPSK symbols are the signal of interest corrupted 

by AWGN with a SNR of 40 dB and a narrowband interference, with ISR 20 dB and 

interference frequency 1
if e
=  . The narrowband interference is modeled by a complex 

sinusoid, as in (2-6).  

The equalizer length and the equalization point were set to 5L=  and 0D= 

respectively. Figures 3-1 a-f show the conditional output constellation ( )/4j

n ny d ep-D=  

for different step-sizes along with the symbol conditioned on /4j

m epf= , i.e. the first 
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quadrant symbol for the QPSK modulation scheme, and the centroid (mean) of the 

conditioned constellation. 
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(a) µ = 0.01 

 

(b) µ = 0.1 

 

(c) µ = 0.25 

 

(d) µ = 0.5 

 

(e) µ = 0.75 

 

(f) µ = 1 

Figure 3-1: Conditioned output constellation for different step-sizes with L = 5. 
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Figure 3-1a shows the output constellation for a step-size 0.01m= . The behavior of 

the output constellation is very similar to that in the non-adaptive FIR case [37]. This 

constellation was modeled accurately by a Gaussian Sum Mixture and for computational 

efficiency well approximated by a single Gaussian model.  

Observe that with an increase in step-size the output constellation attains a circular 

shape in Figures 3-1b and 3-1c, i.e. for 0.1m=  to 0.25m= . This observation suggests 

that at these step-sizes modeling with a Gaussian distribution might be an appropriate 

choice as well, provided again that the mean and the covariance matrix are accurately 

estimated from known parameters. Further increases in step-size show another interesting 

phenomenon. Figures 3-1d through 3-1f show that the single Gaussian perceived in 

Figures 3-1b and 3-1c is morphing into four nearly circular overlapping blobs. 

Figure 3-1 highlights several interesting points. Firstly, the dashed lines represent the 

decision boundaries. The points of the output constellation that fall in the top right 

quadrant will be correctly classified, whereas the other output constellation points will 

contribute towards bit errors. 

Thus, with an increase in step-size the constellation is observed to be contracting, 

which results in better BER performance. This behavior suggests moving away from 

conventional practice where low step-sizes are used for (N)LMS equalizers. In fact, in the 

presence of a narrowband interference the equalizer shows the best BER performance for 

1m= , in Figure 3-1f. In actuality, the optimal BER performance is achieved for 0.9m= ; 

however, to facilitate a compact representation of behavior in the composite figure, that 

particular step-size is not shown in Figure 3-1. 

Secondly, observe that the output constellation is not centered on the conditioned 

symbol. The centroid is shifted. Moreover, at higher step-sizes such as exemplified by 

Figure 3-1e-f, the constellation not only has a shifted mean but almost none of the mass is 

actually at that shifted mean. Instead, it appears that the mass is divided into four sub-

clusters. This observation indicates that modeling the BER phenomenon at higher step-

sizes with a single Gaussian [38] is not appropriate. 
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As observed earlier, in Figure 3-1f four nearly distinct blobs are seen. In order to 

investigate this behavior further, a BPSK system ( )2M =   is simulated under the same 

simulation environment used to generate Figure 3-1, with /4 3 /4{ , }j j

m e ep pf=  and 1m= . 

Figure 3-2 shows the output constellation conditioned on /4j

m epf= . 

 

Figure 3-2: Conditional output constellation of BPSK system for µ = 1. 

Figure 3-2 shows two distinct blobs, a number that corresponds to the alphabet size of 

2M = . Figure 3-1f also follows the same trend with four distinct blobs for an alphabet 

size of 4M = . For higher step-sizes, where the output constellation morphs into separate 

blobs, the number of these blobs appears to be equal to the alphabet size of the 

modulation scheme of the communication system.  

This behavior of the conditioned output constellation morphing into M  blobs is the 

key difference between low step-sizes (e.g. 0.01m= ) and high step-sizes (e.g. 1m= ). 

Figure 3-3 compares the conditional output constellation for a QPSK modulation 

conditioned on ( )/4j

n ny d ep-D=  for the two step-sizes 0.01m=  (Figure 3-3a) and 1m=  
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(Figure 3-3b).  All the simulation parameters, that were used to generate Figure 3-1, are 

kept the same (SNR = 40 dB, ISR = 20 dB, 1
if e
=  , 0D= ) except for the equalizer 

length L which is set to L = 3 instead of L = 5. 

 

(a) µ = 0.01 

 

(b) µ = 1 

Figure 3-3: Conditioned output constellation for different step-sizes with L = 3. 

Figure 3-3a has 
1 16LM -=  blobs, with 4M =  and 3L= . This result is consistent with 

the fact that for small step-sizes the conditional output constellation can be modeled by a 

Gaussian Sum Mixture [38]. This phenomenon is also present in Figure 3-1a, but because 

of the larger equalizer length 5L=  is not as readily observable.  

For a large step-size 1m=  as shown in Figure 3-3b, it is observed that the conditioned 

output constellation is comprised of M blobs, similar to the phenomenon observed in 

Figures 3-1f and 3-2. What is interesting to note is that each of these M blobs appear to 

be rotated and shifted versions of the constellation for low step-size, as observed in 

Figure 3-3a. Thus, if an expression for the factors that cause this shift and rotation is 

obtained in terms of the system parameters then the conditioned output constellation for 

higher step-sizes can be modeled by a sum of M Gaussian Sum Mixtures, i.e. still a 

Gaussian Sum Mixture model. To summarize, the following are the key observations 

obtained from the simulations discussed in this section:  
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i. With an increase in step-size, the output constellation shows contraction, 

thereby resulting in better BER performance. 

ii.  For high step-sizes (e.g. 1m= ), the constellation appears to be composed 

of M  blobs, where M  is the alphabet size of the modulation scheme used. 

iii.  Moreover, each of the M blobs appears to be a rotated and shifted version 

of the constellation obtained for low step-sizes. 

3.2 BER model for NLMS equalizers  

After the previous observations, we now derive the conditional PDF of interest by 

analysis. Using the update equation for NLMS weights in (2-7), the output of the NLMS 

equalizer in (2-4) can be re-written as:  

 

( )

*

1 1 12

1

1 1 1

1 1

H

n n n n n

n

n n n n n

n n

y e

e

m

m

- - -

-

- - -

- -

å õ
=æ + ö
æ ö
ç ÷

= +H H

H

w u u
u

w u u u
u u

  (3-1) 

The regularization parameter a plays an important role in the practical implementation of 

NLMS equalizers; a small, non-zero regularization parameter prevents division by zero 

when the energy ( )2

nu   of the signal in the input delay line is insignificant. Since this 

analysis is focused towards the analytical aspects of the NLMS equalizer, the 

regularization parameter is set to 0. 

As discussed in Section 2.2, all the input processes involved are ergodic. Under this 

assumption, Clarkson and White [52] asserted that the auto-correlation function in (2-12) 

serves as a good time-invariant approximation for the dot-product of the form n k n-

H
u u  for 

0k> . 

 ( )2 2 2

,
ij k

n k n uu k d v k iLr L e
ws s d s-

è øº = + +
ê ú

H
u u   (3-2) 
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Substituting for the dot-products in (3-1), using (3-2), the former can be further 

simplified as: 
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where 
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  (3-4) 

Substituting for 1ne -  in (3-3), using (2-8), and re-arranging terms yields: 
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  (3-5) 

Since the goal of this work is to obtain a steady state BER model, the time varying 

weights in (3-5) will  be replaced by the steady state NLMS weights given in (2-21). We 

note that the time-varying aspects of the weight vector are very small when the 

interference power is high (high ISR). Thus, (3-5) is re-written as: 

 ( )1 1
i ij j

n n n ny e e d
w wmb mb- - -D= - +H

w u u   (3-6) 

The only time-varying component in (3-6) is the input vector nu , which can be further 

split into three constituent signals, the desired symbols, the Gaussian noise, and the 

narrowband interference, as given in (2-3). Writing (3-6) in a more compact form: 

 , , ,n d n i n v ny y y y= + +   (3-7) 



 

30 

where 
,d ny , 

,i ny , and 
,v ny  are contributions from the desired symbols, the Gaussian noise, 

and the narrowband interference respectively. The expressions for 
,d ny , ,i ny , and 

,v ny  are 

given by the following equations. 

 ( ), 1 1
i ij j

d n n n ny e e d
w wmb mb- - -D= - +H

w d d   (3-8) 

 ( ), 1
ij

i n n ny e
wmb -= -H

w i i   (3-9) 

 ( ),
ij

v ny e
wmb= -H

n n-1
w v v   (3-10) 

Note that the three terms in (3-7) are mutually independent since nd , nv  and ni  are 

independent (Section 2.2). Thus, the conditional PDF ( )|n n my d f-D=  can be computed 

by convolving the individual conditional PDFs of the three components ,d ny , ,i ny , and 

,v ny . 

3.2.1  Conditional PDF of the noise component ,v ny   

As discussed in Section 2.2, the additive Gaussian Noise is independent of the 

symbols transmitted, which implies that the conditional PDF ( ), |v n n my d f-D=  is 

equivalent to the unconditional PDF. Writing (3-10) in summation form, where 

[ ]0 1 1

T

Lw w w-=w , yields: 
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Note that 
,v ny  is expressed as a linear combination of ( )1L+  independent Gaussian 

random variables. Thus 
,v ny  also follows a Gaussian distribution [53]. Using the fact that 

the input AWGN is zero mean, the mean of  
,v ny  can be expressed as: 
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  (3-12) 

Similarly, using the auto-correlation function of nv  in (2-10), the variance of ,v ny  can 

be derived as: 
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where 
1

22 2* * 2 2

0 1 1

1

i

L
j

v k k L

k

w w w e w
wx mb m b

-

- -

=

+ - +ä . Thus, in the equalizer output the 

input noise power is scaled by the factor vx. The second term of the scaling factor vx can 

be further simplified as: 
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where []Re C X  if C  is a complex number of the form X jY+ , where X and Y are real 

numbers. Using the expression obtained in (3-14), vx can be written as: 
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  (3-15) 

Note that for 0m= , 
2

vx=w , which coincides with the result obtained previously for 

the (time-invariant) Wiener case [37]. Combining the results obtained in (3-12) and 

(3-13) along with the fact that ,v ny  is the sum of 1L+  independent Gaussian random 

variables (3-11), it follows that ,v ny  follows a complex normal distribution as described 

in (3-16). 

 ( )2, ~ 0,v n v vy CN xs   (3-16) 

3.2.2  Conditional PDF of the interference component ,i ny   

The narrowband interference modeled by the complex exponential in (2-6) is also 

independent of the transmitted signal. So, similar to the noise component, the conditional 

PDF of ( ), |i n n my d f-D=  is equivalent to the unconditional PDF. Re-arranging the 

complex exponential in (2-6) yields a recursive expression for ni : 
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With the recursive relation obtained in (3-17), ,i ny   can be written as:  



 

33 

 

( )
( )

( )

,

1

ij

i ny e
wmb

mb

mb

= -

= -

= -

H

n n-1

H

n n

H

n

w i i

w i i

w i

  (3-18) 

The expression obtained in (3-18) highlights a couple of interesting facts. Firstly, at high 

ISR conditions 

2

2 2 2
1i

d v i

s
b
s s s
= º

+ +
. Thus, setting a high step-size (e.g. 1m= ) can 

virtually nullify the interference component in the equalizer output. This is consistent 

with the simulations shown in Section 2.6, where step-sizes close to 1m=  were shown to 

lead to the optimal BER performance. 

Secondly, the expression for i

ny  is identical to the interference component at the 

output of the fixed (time-invariant) Wiener filter except for the scalar multiplier ( )1 mb- . 

The Wiener case has been discussed in detail in [38] where the interference component at 

the output, i.e. i

ny , was modeled by a Gaussian distribution. Identical to the analysis done 

in [38], the mean and the variance of the distribution are given in (3-19) and (3-20) 

respectively. 
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where 2

is
H

i
R ee  is the auto-correlation function for the narrowband interference 

signal. The variance of the variable 
i

ny  decreases as 1 0mb-   which, as discussed 

earlier, takes place under high ISR conditions with a large step-size. Combining the 

results obtained in (3-19) and (3-20), the PDF for i

ny  is given by: 

 ( )20,i

n i iy CN xs   (3-21) 

where 

 ( )
2

1ix mb- H H
w ee w  (3-22)  

Note that modeling the interference component with a Gaussian distribution is an 

approximation and its effects will be discussed in Section 3.4. 

3.2.3  Conditional PDF of the desired symbol component ,d ny   

From (3-8), it is clear that the conditional PDF of ( ), |d n n my d f-D=  is dependent on the 

transmitted symbols, unlike the noise and the interference component. Similar to (3-11), 

,d ny  can also be written in summation form: 

 

( )

( )

, 1 1

1
* * * *

0 1 1 1

1

i i

i i i

j j

d n n n n

L
j j j

n k k n k L n L n

k

y e e d

w d w w e d w e d e d

w w

w w w

mb mb

mb mb mb

- - -D

-

- - - - - -D

=

= - +

= + - - +ä

H
w d d

  (3-23) 



 

35 

From (3-23), observe that there is a total of 2L+  terms. Depending on the value of D, 

the coefficients contributing to 1nd - -D can be combined and thus, effectively, 
,d ny  can be 

expressed as a sum of 1L+  terms. Figure 3-4 provides a visualization of the vectors 1n-d  

and nd  for all the possible values of D. Note that D is assumed to only take integer 

values between 0 and 1L- , including the boundary values of 0 and 1L- .  

n-1
d  n

d  

 

(a): D  = 0 

 

(b): 0 < D < L-1 

 

(c): D  = L-1 

Figure 3-4: Comparison of 1n-d  and nd for different values of D. 

From Figure 3-4a, for 0D=, n md f= . Substituting them in (3-23) yields: 
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where 
0

dn mf

k
D=
=

and 
0

dn mf
D=
=

  are given by: 
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where 
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D+ D= - +  is the coefficient for 1nd - -D.  

From Figure 3-4b, for 0 1L<D< -, substituting the value of n md f-D=  in (3-23), 

yields: 
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where 0 1

n m

L
d f
k
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and 0 1
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D+ D= - +  is the coefficient for 1nd - -D. 

Finally, from Figure 3-4c, for 1LD= -, substituting the values of 1n L md f- +=  in 

(3-23):  
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where 
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and 
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  are given by:  
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where 
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D=- +  is the coefficient for 1nd - -D. Note that  is a sum 

of L random variables for all the values of 0 1L¢D¢ -. 
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Table 3-1 summarizes the results obtained in (3-24) through (3-33).  

Table 3-1: Deterministic and Stochastic Components of ,d ny  for NLMS equalizer.  
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Each of the terms in the summation in (3-33) represents a scaled and rotated version of 

the input constellation { }
1

M

m m
f

=
  with the complex constant scaling factor kc . The scaling 

factors are a function of the steady state NLMS weight vector , ,m bw , and iw as shown 

in Table 3-1. Each term in (3-33) can be represented by a probability mass function 

(PMF) that takes M equally likely values, since the symbols are equally likely.  

 ( )
1

1
~

M

k n k k l

l

c d x c
M

d f-

=

-ä   (3-34) 

,d ny  comprises of L random variables which are of the form of (3-34). The weighted 

linear combination of these L random variables can be represented by a probability mass 

function (PMF) which can take on 
LM  values. Since the symbols of the input 

constellation are equally likely then the PMF at each of the 
LM  values will have a 

probability of 1 LM
.  Thus, the conditional PMF ,d ny  is of the form: 
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d k f
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where fis defined as: 
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cf f
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ä   (3-36) 

3.2.4  Conditional PDF of output ny  

The approximate conditional output ( )n n my d f-D=  was expressed as a sum of three 

mutually independent terms in (3-7). Thus, the overall PDF will be a convolution of the 

densities shown in (3-16), (3-21), and (3-35). Note that the first two are Gaussian 

distributions while the last one is a discrete uniform distributions. Summation of two 

independent Gaussian variable leads to another Gaussian variable. Convolving the 
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resultant Gaussian with the discrete uniform distribution (which is represented by a  

dirac-delta function (3-35)) will cause a shift in the mean of the Gaussian to the location 

where there the dirac-delta function is non-zero i.e., where the PMF has a non-zero 

probability. From (3-35), observe that there are a total of  
LM  points where the PMF is 

non-zero. So the overall PDF can be expressed as a Gaussian Sum Mixture containing 

LM  terms : 

 ( ) ( )
0 1

2 2

1 1 1

1
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L

l

M M M

n n m i i v vL
k k k

k

f y d CN
M

f k f xs xs-D

= = =
¸D

= = + +ä ä ä   (3-37) 

Figure 3-5 shows an example of the conditional PDF of /4j

n ny d ep-D=  computed 

using (3-37). The simulation parameters are identical to the ones used to generate Figure 

3-3b (SNR = 40 dB, ISR = 20 dB, 1
if e
=  , 3L= , and 0D=).  
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(a) 0D=  

  

(b) 1D= 

Figure 3-5: ny  with the estimated ,d ny  centers for different values of D for 3L= . 

The only differentiating factor between Figure 3-5a and Figure 3-5b is the value of D. 

The conditional output is shown highlighting the centers of the Gaussians along with the 

conditional means - both estimated and simulated - and the conditioned symbol 

/4.j

m epf=  Note that the estimated and the conditional means coincide. In Fig. 3-5b the 
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effect of changing the equalization point can be observed; there is less probability mass 

outside the first quadrant and therefore a smaller contribution to bit error when the 

equalization point is towards the center of the tapped delay line.  

The modeled probability of error ĔeP  is computed using the Gaussian Sum Mixture in 

(3-37) and given by: 
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P f y d dAf-D= =ññ   (3-38) 

where A is the region which corresponds to a Bit Error. For example, if a QPSK 

modulation scheme is used (as shown in Figure 3-5) and mf  is chosen as the first 

quadrant symbol, then A will be the entire 
2Á  excluding the first quadrant, with the third 

quadrant contributing two bit errors while the second and fourth quadrant each contribute 

single bit errors. Thus, (3-38) for this particular case can be written as: 
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where Iy  and Qy  represent the in-phase and quadrature components of ny  respectively. 

3.3 Approximate BER m odel for NLMS equalization  

The examples shown in Figures 3-1 and 3-3, where the equalizer length is 5L=  and 

3L=  respectively, serve more as an illustrative example. In practice, it is more likely 

that equalizers of larger lengths are used. Keeping the modulation scheme the same, the 

number of components in the Gaussian Sum Mixture in (3-37) increases exponentially 

with an increase in equalizer length. For example, if QPSK modulation is used then an 
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equalizer length of 10L=  results in more than a million components in (3-37). It is 

obvious that if a more sophisticated modulation scheme is used, with a higher value of M, 

computing the BER using (3-38) can become cumbersome. To address this issue, in this 

section an approximate version of the Gaussian Sum Mixture in (3-37) is introduced. 

Figure 3-1 shows that with an increase in step-size the shape of the conditional output 

constellation changes. Figure 3-3 further shows that at higher step-sizes the output 

constellation is composed of M constellations, each of which is a rotated and scaled 

version of the corresponding constellation at low step-size. From (3-23), we observe that 

the coefficient of n Ld -  is dependent on m. For 0m=  that coefficient becomes zero 

irrespective of other parameters. An approximate version of the Gaussian Sum Mixture is 

thus proposed where each of the M constellations is modeled by a Single Gaussian. Thus, 

instead of a total of 
LM  components, the approximating Gaussian Sum Mixture model 

contains M  terms. 

Taking the last term, i.e. the coefficient of n Ld - , outside the summation in (3-35): 
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The term 
1

M

L m

l

ck f
=

+ ä  represents the center of the M Gaussians. The variability in 

1

0

L

k n k

k
k

c d
-

-

=
¸D

ä  is modeled by the variance of the summation. Note that the n kd -  are 

independent symbols. 
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where  
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The overall variance of each of the M  Gaussians is a summation of the variances 

derived for the noise in (3-13), the interference in (3-20), and finally the óvarianceô from 

the desired symbol component derived in (3-41). The Approximate Gaussian Sum 

Mixture (AGSM) model is given by: 

 ( ) ( )2 2 2

1

1
,

l

M

n n m L k v v d d i i

l

g y d CN c
M

f k f xs x s xs-D

=

= = + + +ä   (3-43) 

Similar to (3-38), the probability of error computed using (3-43) is given by: 

 ( )Ĕ
e n n m

A

P g y d dAf-D= =ññ   (3-44) 

Figure 3-6 shows an example of the conditional PDF of /4j

n ny d ep-D=  computed 

using (3-43). The simulation parameters are identical to the ones used to generate Figure 

3-5, i.e. SNR = 40 dB, ISR = 20 dB, 1
if e
=  , 3L= , and 0D=. 
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(a) D = 0 

 

(b) D = 1 

Figure 3-6: ny with the estimated AGSM centers for different values of D and L = 3. 

From visual inspection it appears that the estimated centers obtained using the AGSM 

model for each of the M constellations are accurate. A quantitative comparison between 

the two models and the simulation results is presented in the next section. 
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3.4 Results  

For simulation purposes, the desired signal is represented by two digital modulation 

schemes: 

i. QPSK symbols, which makes the alphabet size 4M = ; 

ii.  16-QAM symbols, which makes the alphabet size 16M = . 

The observed value of BER is calculated using a Monte Carlo simulation technique by 

ensemble averaging of independent runs. Unless specified otherwise, the ensemble size is 

100 for all of the subsequent simulations. A single run consists of 100,000 independent 

symbols generated randomly, which are then corrupted by AWGN and the narrowband 

interference. Note that with an ensemble size of 100 and 100,000 independent symbols 

per run, BER up to a magnitude of 
610-  can be estimated relatively accurately. If the 

BER is less than 
610-  either the ensemble size or the number of independent symbols per 

run, or both, should be increased appropriately. 

When the desired signal is represented by QPSK symbols (Figures 3-7 through 3-10), 

the BER estimate using the GSM and AGSM model is computed using (3-39).  

Figure 3-7 shows the comparison between the BER ( ĔeP ) calculated using the GSM 

expression in (3-38) and the AGSM model in (3-43), together with the observed BER, as 

a function of step-size for an equalizer of length 7L=  and 0D= for a QPSK system. 

ISR was set to 20 dB with the fractional interference frequency0.368if =  and SNR was 

set to 20 dB.  
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Figure 3-7: BER calculated by GSM (-), AGSM (--) and observed BER (o)  for a QPSK system as a 

function of step-size µ for L = 7, SNR = 20 dB and ISR = 20 dB. 

Figure 3-7 shows that the BER predicted by the GSM expression is accurate for the 

entire range of step-sizes from [ ]0,1.5 . The maximum deviation between the observed 

value and the BER predicted by the GSM expression is observed at 1.1m=  where the 

derived GSM expression prediction over-estimates the equalizer BER performance by a 

factor of 1 5
th

 of an order of magnitude. The AGSM model underestimates the equalizer 

performance for 0 1m¢ <. The amount of deviation between the observed BER and the 

predicted BER by AGSM increases as m increases from 0 to 0.6. For 0.6m>  the 

difference between the predicted BER and the observed BER decreases and finally, for 

1m² , both of the predictions coincide.  

Figure 3-8 shows the comparison between the ĔeP  calculated using the GSM 

expression in (3-38) and the AGSM model (3-43) as well as the observed BER as a 

function of SNR for a QPSK system. For Figure 3-8, the simulation parameters used are 

7L= , 0D=, 1m= , ISR = 20 dB, and 0.368if = .  
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Figure 3-8: BER calculated by GSM (-), AGSM (--) and observed BER (o) for a QPSK system as a 

function of SNR for L = 7, µ = 1 and ISR = 20 dB. 

Note that for SNR > 20 dB, in order to obtain the observed values, the ensemble size 

was increased from 100 to 1000. Figure 3-8 shows that both predictions are identical for 

SNR ¢ 20 dB. For larger SNR there is a slight deviation. The predicted BER 

performance of the NLMS equalizer by both models is consistent with the simulation 

results.  

In Figure 3-9 both predictions are compared with the observed BER as a function of 

ISR. Similar to the previous cases, an equalizer of length 7L=  and 0D= was chosen. 

Although the interference power varied, its frequency was kept the same, at 0.368if = . 

SNR was set to 20 dB.  
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Figure 3-9: BER calculated by GSM (-), AGSM (--) and observed BER (o) for a QPSK system as a 

function of ISR for L = 7, µ = 1, SNR = 20 dB and ISR = 20 dB. 

In Figure 3-9, for ISR values less than 15 dB, the deviation of the observed BER from 

the predicted values is significant. For example, at ISR = 0 dB, i.e. when the interference 

power 
2

is  is equal to the signal power 
2

ds , both models over-estimate equalizer 

performance by almost 2 orders of magnitude. The deviation reduces to 1 order of 

magnitude for ISR = 10 dB with both models still over-estimating. Finally, for ISR > 15 

dB, the model predictions are consistent with the observed values. Note that similar 

behavior was observed in [33] where the Ikuma model for steady state MSE, given as NJ  

in (2-27), was accurate for ISR > 10 dB. 

Finally, in Figure 3-10 the comparison is shown between the GSM and AGSM 

predicted BER performance and the observed BER performance as a function of the 

fractional interference frequency if . The SNR and ISR are both set to 20 dB. Similar to 

the previous cases, the equalizer length 7L=  and 0D=.  
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Figure 3-10: BER predictions by GSM (-), AGSM (--) and BER observed (o) for a QPSK system as a 

function of if  for  L = 7, µ = 1, SNR = 20 dB, ISR = 20 dB. 

Note that Figure 3-10 once again shows the frequency dependence of the BER 

performance of the NLMS equalizer similar to what was observed in Figure 2-6. Both the 

GSM and AGSM expressions are able to capture the frequency dependence of the BER 

performance and the difference between the observed and predicted values never exceeds 

0.210-  for the entire range of fractional frequency [ )0,0.5 .  

Figures 3-6 through 3-10 show that the derived GSM expression as well as its more 

readily computable approximate version (AGSM) are able to predict the BER 

performance of the equalizer accurately for a wide range of system parameters for a 

communication system using the QPSK modulation scheme. In fact, the derived GSM 

expression provides an accurate estimate for the BER performance of the NLMS 

equalizer for all the cases other than ISR < 15 dB. The AGSM model on the other hand 

under-estimates the performance for 0 1m¢ < (as seen in Figure 3-7) and thus can be 

utilized to ascertain a conservative upper bound for the BER performance.  
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Higher order modulation schemes are gaining popularity in modern communication 

systems due to their better throughput. Figure 3-11 shows a grey coded 16-QAM 

constellation, which is a popular choice of digital modulation for modern communication 

systems such as LTE. 

 

Figure 3-11: 16-QAM constellation (grey coded). 

With higher order modulations, the computation of a BER estimate using the GSM 

and AGSM expressions is slightly different from what is shown in (3-39). We first 

compute the symbol error rate ( )ES  by integrating our PDF expressions over the 

appropriate regions of interest ï denoted by dotted lines in Figure 3-11. 

 ( )E n n m I QS f y d dy dyf-D= =ññ   (3-45) 

Since the input constellation is grey-coded, ĔeP  can be approximated using the following 

relation: 

 
2

Ĕ
log

E
e

S
P

M
=   (3-46) 
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Figure 3-12 shows the comparison between the BER (Ĕ
eP ) calculated using the AGSM 

model in (3-43) and the observed BER as a function of step-size for an equalizer of 

length 7L=  and 0D= for a 16-QAM system. ISR was set to 20 dB with the fractional 

interference frequency 0.368if =  and SNR was set to 20 dB.  

 

Figure 3-12: BER calculated by AGSM (--) and observed BER (o)  for a 16-QAM system as a 

function of step-size µ for L = 7, SNR = 20 dB, ISR = 20 dB. 

With 16M = , computing the BER estimate using the GSM expression becomes 

cumbersome as there are ( )7 916 10º  Gaussian components for each mf . Thus, for the 16-

QAM case, only BER estimates using the AGSM model are shown in Figure 3-12 (and in 

the subsequent Figures 3-13 through 3-16). Note that for the 16-QAM case with 7L=  

the BER performance improvement is less than one order of magnitude as the step-size is 

increased, with the maximum improvement observed at 0.7m= .  

Figure 3-13 shows the BER performance (both observed and predicted by the AGSM 

model) of a NLMS equalizer for the 16-QAM case with 21L=  and 0D= as a function 

of step-size. ISR was set to 20 dB with the fractional interference frequency0.368if =  

and SNR was set to 22 dB. 
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Figure 3-13: BER predicted from AGSM (--) and observed BER (o) for a 16-QAM system as a 

function of step-size µ for L = 21, SNR = 22 dB and ISR = 20 dB. 

 In Figure 3-13, observe that the BER performance improves by 2 orders of magnitude 

when step-size is changed from 0m=  to 0.6m= , thus showing that the non-Wiener 

characteristic of NLMS equalizers is present for higher order modulations. The AGSM 

model under-estimates the BER performance for 0 0.8m< < . However, the AGSM 

model suggests the BER-optimal step-size to be 0.9m=  and the corresponding BER 

performance is very close (~1/5th order of magnitude) to the observed BER-optimal step-

size of 0.6m= . Thus, in terms of BER performance, the optimal step-size predicted by 

AGSM model is close to the actual optimal step-size. 

Figure 3-14 shows the comparison between the ĔeP  calculated using the AGSM model 

(3-43) and the observed BER as a function of SNR for a 16-QAM system. For Figure 3-

14, the simulation parameters used are 21L= , 0D=, 1m= , ISR = 20 dB, and

0.368.if =  
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Figure 3-14: BER calculated by AGSM (--) and observed BER (o) for a 16-QAM system as a function 

of SNR for L = 21, µ = 1 and ISR = 20 dB.  

For the given scenario, the AGSM model accurately predicts the BER performance for 

the entire range of SNR shown.  

Figure 3-15 shows the comparison between the ĔeP  calculated using the AGSM model 

(3-43) and the observed BER as a function of SNR for a 16-QAM system. For Figure 3-

14, the simulation parameters used are 21L= , 0D=, 1m= , SNR = 22 dB, and

0.368.if =  
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Figure 3-15: BER calculated by AGSM (--) and observed BER (o)  for a 16-QAM system as a 

function of ISR for L = 21, µ = 1 and SNR = 22 dB.  

 Similar to Figure 3-9, the AGSM model over-estimates the system performance for 

ISR < 15 dB. Note that the over-estimation in this case is less than an order of magnitude 

and thus is not as severe as seen in Figure 3-9, where it was as high as 2 orders of 

magnitude. 

Finally, in Figure 3-16 the comparison is shown between the AGSM model predicted 

BER performance and the observed BER performance as a function of the fractional 

interference frequency if . The SNR and ISR are set to 22 dB and 20 dB respectively. 

The equalizer parameters were set to  21L= , 0D=, and 1.m=   




























































































































