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Adaptive Least Mean Square (LMS) equalizers are widely used in digital
communication systems primarily for their ease of implementation and lack of
dependence on a priori knowledge of input signal statistics. LMS equalizers exhibit non
Wiener characterists in the presence of a strong narrowband interference and can
outperform the optimal Wiener equalizer in terms of both mean square error (MSE) and
bit error rate (BER). There has been significant work in the past related to the analysis of
the nonWienercharacteristics of the LMS equalizer, which includes the discovery of the
shift in the mean of the LMS weights from the corresponding Wiener weights and the
modeling of steady state MSE performanB&R performance isiltimately a more
practicaly relevantmetric than MSE for characterizirgystem performancé&he present
work focuses on modeling the steady state BER performance of the normalized LMS

(NLMS) equalizeoperatingn the presence of a strong narrowbartdrference.

Initial observations showelthiata 2 dB improvement in MSE may resulttwo orders
of magnitudeimprovementin BER. However, some differences in the MSE and BER
behavior of the NLMS equalizer were also seen, most notably the significant dependence
(oneorder of magnitudeariatior) of the BER behavior on the interference frequency, a
dependence not seen in MSEhus, MSE cannot be used as a predictor for the BER

performancethe latterfurther motivates the pursuit of a separate BER model.

The primary contribution of this work ibé derivation of the probabilitgensityof the
output of the NLMS equalizeconditioned on a particular symbol having been
transmitted which can then be leveraged to predict its BER performance. The analysis of
the NLMS equalizer, operating in a stroreynowband interference environment, resulted

in a conditional probability density function ithe form of aGaussian Sum Mixture



(GSM). Simulation results verify the efficacy of t8&M expressioffior a wide range of
system parameters, such as sigoaioise ratio (SNR), interferende-signal (ISR) ratio,
interference frequency, and stsiges over the range of mesguare stable operation of
NLMS. Additionally, a low complexity approximate version of the GSM model is also

derived and can be used to gaveonservative lower bound on BER performance.

A thorough analysis of the MSE and BER behavior of theddie NLMS equalizer
(BNLMS), a variant of the NLMS equalizer, constitutes another important contribution of
this work. Prior results indicateal2 dB MSE improvement of BNLMS over NLMS in
the presence of a strong narrowband interference. A closed form MSE model is derived
for the BLMS algorithm Additionally, BNLMS BER behavior was studied and showed
the potential oftwo orders of magnitude improvemeaver NLMS. Analysis led to a
BER model in the form of aGSM similar to the NLMS case but with different
parametersSimulation results verified that both moddts MSE and BERprovided
accurate pediction of system performander different combinationsof SNR, ISR,

interference frequency, and steige.

An enhancedcSM (EGSM) model to predict the BER performanfoe the NLMS
equalizeris alsointroduced specifically to address certain cagksv ISR casesyvhere
the original GSMexpression (derived fdrigh ISR)was less accurate. Simulation results
show that theEGSM model is more accurate in the low ISR region than the GSM
expressionFor the situations where tlderivedGSM expressiorwas accurate, the BER
estimates provided by the heurisB6&SM model coincided with those computdbm

the GSMexpression

Finally, the tweinterferer problem is introduced, where NLMS equalizer performance
is studied in the presence of two narrowband interferers. Initial results show the presence
of nonWiener charaeristics for the tweanterferer case. Additionally, eepmental
results indicate thathe BER performance of the NLMS equalizeperating inthe
presence of a single narrowband interferer may be improy@dirposéul injection of a

secondharowbandinterferer.



Non-Wiener Characteristics of LMS Adaptive Equalizers:
A Bit Error Rate Perspective

Tamoghna Roy

" %. %21, I 588! #% ! " 3

Every practical communication system requires effective interference mitigation
schemes that are able to nullify unweuh signals whout distorting the desired signal
Adaptive equalizers aramong the prevalerstystemsused to cancel interfering signals.

In particular, for narrowband interference (a particular class of interference) mitigation
with (normalized) least nam square type (NLMS) equalizers has been found to be
extremely effective. In fact, in the narrowband interferetaminated environment
NLMS equalizers have been found to work better than the solution with the same
structure that is optimal accordinglioear filtering theory. This departure from the linear
filtering theory is a result of the néNiener characteristics of NLMS type equalizers.

This work investigates the bit error rg8ER) behavior, a common metric used to
characterize the performancewireless communication systems, of the NLMS equalizer
in the presence of a strong narrowband interference. The major contribution of this
dissertation is the derivation of an accumteressiorthat links the BER performance of
the NLMS equalizer withhe system parameters and signal statistics. Another variant of
the NLMS equalizer known as the-Btale LMS (BLMS) equalizer was also studied.
Similar to the NLMS case, an accurate B&ressiorfor the BLMS equalizer was also
derived. Additionally, sitations were investigated where the fWiiener characteristics
of the NLMS equalizers can be leveraged. Overall, this dissertation hopes to add to the
existing body of work that pertains to the analysis of-Wianer effects of NLMS

equalizers and thus, general, to the work related to analysis of adaptive equalizers.
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This chapter provides the necessary background for this work and motivates the
research problem. A brief background regarding adaptive equalization and narrowband
interference is presented first, followed by a literature review highlighting the relevant
works that dealt with the neWiener characteristics of the adaptive LMS class of
equalizers. The contribution of this work to the domain of the problem is summarized in

Section 1.3. Lastly, Section 1.4 contains the mapping for the remainder of the document.

1.1 Background

Continuous Wave (CW) interfer®e andtheir mitigation techniques haveeen an
active area of research for decad@se of the earliest woskaddressing the issue of CW
interference dates back to 1941]. For modern digital communication systems,
unmodulated carrier signals caudageither malfunctioning devices or accidental and
deliberate (tone jamming) transmissioa® a commontype of CW interferenceFor
examplerecent literature shows the vulnerability of GPS reasive CW interferer$2-

6]. The expected proliferationf Internetof-things (0T) devices will exacerbatehe

problem of CW interference due to unmodulatedieasignals.

Adaptive least mean squafeMS) equalizershave been widely used in various
communications systenj3-11]. The popularity of LMS equalizers can be attributed to
their ease of implementation afatk of dependencen the apriori knowledge of signal
statistics. Prior work has already shown thathie presence of a strong CW interferer,
LMS equalizers exhibit noekMViener characteristicssuch as outperbrming the
corresponding Wiener equalizerthe optimal solutionas per linear filtering theorly in
terms of mean square error (MSE). However, there is very little wotkemxisting
literature thatdeals with the analysis of the bit error rate (BER)more practical metric
for characterizing theerformance of aidital communication system than MSEof

LMS equalizeroperatingn thepresence of a CW interferer.

1



The pimary focus of this dissertation is toodel the BER behavior die LMS class
of equalizers inthe presence of a strong CW arnfereri a situaton where LMS

equalizers exhibit nehViener characteristics.

1.2 Related Work

To our best knowledge, adaptivgualization for digital communication systems was
first proposed by Lucky12). His work was based on minimizing the peak distortion
criterion. Concurrently, Widrow et a[13] devised the (LMS) algorithm which was
computationally simple and converged to the optimal Wiener solution. Proakis and Miller
[14] showed an adaptive geiver based on the LMS algorithm whialas capable of
adjusting to unknown slowly timearying channel conditions. An excellent summary of

adaptive equalization techniques is presented by QUrEShi

The primary objective of an equalization technique is to undo the unwanted effect of
the channel characteristic inter-symbol interference on the received communication
signal. Although Qureshil5 mentions that any technique employed to reduce-inter
symbol interference can be considered an equalization technique, equalization can be
viewed in general as a mitigation teajure. In this work, our focal point will be
modeling the performance of digital communication systems where narrowband
interference has been suppressed tgpéive eqalizers more specifically by adaptive
LMS or NLMS gualizers.

There has been a substahtamount of work regarding suppression of narrowband
interference. Milsteif16] in his work gives a brief summary of methods f@jecting
interference in spread spectrucommunication systemsemphasizing primarily two
schemesl. LMS based and 2. Transform domain processing structure based. Laster and
Reed[17] provide a comprehensive survey of interference rejection methods for both
spread spectrum and nspread spectrum communication systems. RBa8f gives a
detailed account of various interference mitigation schemes based on different
techniques, such as linear predictive methods;linear predictive methods, linear code
aided methods, etc. Batfa9] examines the effect of severarrowband interference on a



wireless communication system and proposes two novel methHodPataaided
Initialization (DAI) and 2. Two stage filtering, which utilizes a prediction error filter
(PEF) as a prélter to the equalizer, for faster convergermfethe adaptive equalizer
weights.

Adaptive LMS equalizers were seen to behavi
narrowband interference, as was first observed by North, Axford, and Zgi@leMhe

term O6unconventional &6 demands special attent

Conventioal adaptive filtering suggests the Wiener filter as the appropriate
benchmark against which the performance of the adaptive filter is meg&d}feth this
work, we are interested in LMS equalizers for which the Wiener equalizer is considered
to provide the lower bound on performance (in terms of mean squareferrar. MS
equalizer since the LMS algorithm is subject to misadjustment error dueeight
adaptation. For this reason, traditionally LMS equalizers are implemented with small
stepsizes. North, Axford, and Zeidlef20] observed that the performance of LMS
equalizers was superior iertns of probability of error tahe corresponding Wiener
equalizer with the same structure in an environment daedh by narrowband
interference. This effect will be referred to as a-Ndiener characteristic of adaptive

LMS equalizers.

The topic of this dissertation is to analyze the bit error rate (BER) behavtbe of
(N)LMS equalizer inthe presence of a strongarrowband interferencée. a scenario
when the LMS equalizer is exhibiting nddiener behavior. Thus, it makes intuitive
sense to review thkterature thatpertains to the analysis of the R@fiener behavior.
Reuter and Zeidlgj22] demonstrated that the steady state Mean Square Errdg)(MS
LMS equalizers can better the corresponding Wiener equalizer of the same structure. In
this work[22] an attempt to model the ndinear nature of the LMS algorithm and
quantify the MSE performance of the LMS algorithm was made. However, the
experimental results and the theoretieaults did not coincide, pointing to limitations in
the model. In subsequent work®3-25] was shown that LMS magputperform the

corresponding Wiener filter and that the performance is dependent on system parameters



such as Signal to Noise Ratio (SNR), Signal to Interference Ratio (SIR), length of the

equalizer, and the adaptatistepsize

Beex and Zeidlef26] modeled the interference canceller as a two channel Wiener
filter with the irterference signal as the input to the second channel. This [@6fk
showal that the adaptive NLMS filter is trying to track a thverying target solution.
Hence, the second characterization of-Wéiener effects is the timearying nature of
the filter weightsThis two-channel modeéxplanationwasshown to applyto Recursive
Least Squares (RLS) adaptatesmwell[27] andto adaptive noise cancellati¢ag].

Conventional adaptive filtering theory posits that the steady state weights for LMS
equalizers converge to the corresponding Wiener weights. Ikuma, Beex, and [28dler
derived a closed form expression for the mean of the LMS weight vectors in steady state.
The expression was derived from the Butterweck expansion eofwiight update
equation[30]. Simulation results were in conformity with the analgticesults for all
stepsizes where the expansion converges. In a subsequen{3iprik was shown that

the analytical solution holds true over a wide range of ISR.

Reuter and Zeidlef22] first proposed a transfer function based approach to quantify
the MSE performance of LMS equalizers. The results were inaccurate since the model
assumed that the mean of the LMS weights in steady state converged to the
corresponding Wiener weights which, as showii2g 31], is not the case. Hence, the
ReuterZeidler model for the MSE was not an accurate one. Ikuma and B&#x
incomorate the shift in the mean of the steady state weights and proposed a new model
for MSE. Simulation results illustrate the improvement of the new model over the
previous ReuteZeidler model. The derivations for the mean LMS weights in steady state
and the improved MSE model have been excellently documdad

Although there has been substantial past work on analyzing the dynamic weight
behavior and the mean square error performantleeofN)LMS equalizer there is scant
coverage in the literature that deals with BER modeling in aGeumssian environment.
North, Axford, and Zeidler[20] compared the performances of different adaptive



equalizers in terms of probability of error. However, the errobability was computed

via simulation and no model was proposed.

Prior to [20], litis and Milstein [34] provided a statistical analysis of the LMS
algorithm where the adaptive filter was used to suppress a fading tone jammer. Their
work provided a BER model while inherently assuming slow convergence (i.e. a near
Wiener case) and a large equalizer lengththla thesis, we are primarily interested in
large stepsizes where the nofViener characteristics are predominant. A Gaussian BER
approach was also adoptgdb]. However, no simulation results were provided to support

the claims.

Coulson[3€] investigates the effect of narrowband interference on OFDM systems.
An analytical Gaussian model is providéo gauge the effect of the narrowband
interference on receiver post detection BER performance. However, no analytical model
is put forward to estimate thpost interference suppressi®ER. Instead,a heuristic
method to estimate the BER is provided vehtre latter is simply the ensemble median

of the simulation results.

The BER for a fixed (timenvariant) Wiener filter equalizer under a strong
narrowband interference walhown to be accurately predictabigingthe expression for
the probability densyt function of the symbetonditioned equalizer output, which took
the form of a sum of Gaussiaf37]. However, when the same model was extended for
the adaptive NLMS casi38], the performance was reasonable for ktepsizes only.
With the increase in stegize (which is the area of interest here, since it produces better
BER performance)the BER obtained from the model deviated from the simulation result

by an oreér of magnitude.

Scant coverage of modeling the BER behavior of (N)LMS equalinethe existing
literature coupled with the fact that BER serves as a more practical metric for measuring
the performance of a digital communication system than N&Ste primary motivation
for this dissertation. From a broader perspective this dissertation adds to the existing body
of work related to analysis of adaptive equabkzeuch as, analysis for sinusoidal

interference mitigatio39], arbitrary stegsizes[40], nonnegative LMS[41], presence



of nonGaussian noisf42-44], combination of LMS filterd45], and so on. There also
has been a sigitant amount of work in analyzing other adaptive algoritiAg49].
With a brief overview of related work implace, the next section highlights the
contribution of this dissertation.

1.3 Contributions

The primary contribution of this wkris to come up with a model for the BER
behavior of the NLMS equalizaperating inthe presence of a strong narrowband CW
interference Simulation results show that the model is accurate over a wide range of
SNR, ISR, and interference frequency. The nhado gives insight into the néiener
behavior of the equalizer and quantifies the superior BER performance at higher step

sizes in the presence of a strong narrowband interference.

The second contribution of this work is thedapth analysis of theiB&cale NLMS
(BNLMS) equalizer, which also exhibits naMiener characteristics in the presence of a
strong narrowband interference. In fact, in terms of MSE and BER performance; the Bi
scale NLMS equalizer outperforms NLMS. The performance, ¢aith in tems of MSE
and in terms of BERs analyzed and a closed form model for each is derived. Similar to
the NLMS case, the models developed to assess the BNLMS equalizer performance
provided accurate estimates for both MSE and BER for a wide range of system
paameters.

1.4 Organization

This document has five chapters excluding Chaptdén Thapter 2 a descriptiols
provided of the system under consideration along wattdescrption of the signals
involved. In Chapter 3, the BER models for NLMS equalizerdarered and compared
with simulation reults. Chapter 4 contains an-depth analysis of the Bicale LMS
equalizer where both a steady state Mean Square Error (M8&gland a BER model

are derived and compatevith simulation results. iiations wherehe proposed BER



models in Chapters 3 and Chapter 4 fail are analyzed in Chapter 5 alonghe&vith
formulation ofa corrected modeChapter 6 introduces the twaterfererproblem vhere
the case studies showhat similar to the single interferer cas#he nonWiener
characteristicef NLMS equalizersare presentFinally, concluding remark$é along with

directions for future resear¢hare presented in Chaptér
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This chapter lays the foundation fitve analysis by formally defining the problem and
introducingthe importantnotations, assumptionand expressionsvhich will be used

extensively throughout this work.

Section 2.lintroduces the adaptive equalization probkemad gives an overview of the
system with the input signals and assumptidoowed by Section 2.2 where the
stochastic properties of the input signals are discusSetttion 2.3 contains the
expressions for the optimal Wieneeights and the Wiener MSEections 2.4 and 2.5

describesteady state weight and stgasdate MSE respectivefpr NLMS equalizers

Finally, Section 2.6motivates the importance of the problem at hardkveloping a
BER model when the NLMS equalizer gperating in a narrowband interference
dominated environment. Simulation examples are provided specifically to distinguish
between the MSE arttie BER behavior of the NLMS equalizer.

2.1 Adaptive equalization problem

Figure 2.1 shows the system under consideratiime desired signal(d,) is
transmitted through the channel and corrupted by additive Gaussian Whité\!g()ismd
a narrowband interferenci, ), which is also additive in nature. Thus, at thth time

instant the input to the adaptive equaliz(el;)can be written as the sum of three

independenrandom processes as showi(2-1).
u, = an +Vn rr'w- (2_1)

whered_ is defined as



d =h *d (2-2)

n

with h, beingthe channeimpulse response.
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Figure 2-1: Block diagram of an adaptive gualizer.

The focus of this work is to study the system behavior in the presence of a narrowband
interferenceSince decisiofdirection equalization (DDE) assumtbattheBER i s A s mal |

enougho (e. g. <0.01), for our purtrpmnges of a
mode.The channeh, is considered ideal, i.al_ = d_. This simplified system is similar

to the one useth [20, 31-33, 37]. For nonideal channel conditionshe assunption is

that channel compensatitiasalreadybeenachievedfor example, based on the channel
esimate derived from a/the previous packet transmissiBugn when the channel is
compensated, the problem of a narrowband interferer can arise which necessitates the
need for an adaptive equalizery realize interference mitigatiorFor example, if a
narravband l1oT (NBIoT) device is malfunctioning (it is only transmitting the carties)

may give rise to a narrowband interference at the receivei amgce the power and the
frequency of the interference is unknownan adaptive filter is requiredVith these
assumptions in place, Figure22shows the corresponding simplified block diagram for

the problemunder consideratiorThus, the input to the adaptive equaligemen in(2-1)

can be modified to:



u,=d, v it (2-3)

L}
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Device
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W, >0
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Kaaptive Algorithm

Figure 2-2: Simplified block diagram of an adaptive equalizer.

The tapped delay lineadaptive equalizelis characterized by its weight vector

W, =80, W, o W, Tg, ()T being the transpose operatandhasL tunable taps

The equalizer oput y, is given by(2-4),
Yo = W:un (2-4)

Where(.)H denoteshe Hermitian tanspose operat@andu, =[u, U,, - U, 1JT is

the input vector containing the current infuf) along with the previous - 1 inputs.

For this work, the desired signé\dlln) is considerech complex baseband signtidat

assumse a value drawn from a finite set afonstellationvalues. The finite set is

completely defined by the modulation scheme used. Since the analysis isatdone

basebanghe Gaussianoise (v,) is modeled by a complex Gaussian distribution.

v, ~CN(0,52) (2-5)

1C



where ¢ ~CN(m2$) indicates thatc is a complex normal random variabte, a real

| | _eRe[E(c)} e 0
vector random variable with mean=¢é and covariances
é

gm{E(c)}

S2

Similar to the work done if33] the narrowband interferencemodeled by a complex

sinusoid with a random phaas indicated irf2-6).
i =sgl®intg (2-6)

where j=+ 1, f. is the fractional frequen¢yand g is a random phase drawn from a

uniform distribution[O,Za). The stochastic properties of these inputs are discussed in

detail in the next section.

As mentioned earlierthe adaptive equalizer hastunable tap which are updated

accordng to he NLMS update equatias given by(2-7).

ne1 — W -Iizunqz (2'7)
a+|u,|

where m is the stegsize, ||| is the Euclidean norma is the regularization parametér)

denoteshe complex conjugate operat@nd €, is the instantaneous error described by

(2-8).
€& = dn— p "W (2'8)

For stable operation of the equalizer the valuemthould beselectedirom (0,2).

The regularization parameter is present to prevent division by zero (or a very small
number) during practical implementatiofor analysispurposes,the regularization

parameter can be set to D. is thepoint of equalizationand usually taken to be in the
middle of the tapped delay linee. D ___LT+1 but any valuen the range0 to L-1 is

permissible.

11



2.1.1 BERproblem s tatement

With these definitions and notations in place, the problem of interest can now be

defined. Let{fm}x:1 be the set oM distinct symbols of the modulation scheme chosen,

then obtaining an expression for theonditional distribution ofy, |d, ,=7, and

specifying theregions ofinterest that contribute bit erraiill be sufficient to compute the
BER of the system. Note that atedeterminéddoy e ment i c
the decision dvice (Figire 22). For example, if the modulation scheme chosen is QPSK

and f,_ is the first quadrant symbol then for this case the edtireexcept for the first

guadrant constitutes regions that will cooiite to a single (second or fourth quadrant) or

multiple (third quadrant) bit errors.

2.2 Stochastic properties of the input s ignals

One of the primary goals of this work is to find a conditional probability distribution.
So it is essential to know the stastic properties of the input signals. Since the analysis
is doneat baseband all the input signals are modeled as complex random processes that

are zeremean, wide sense stationary (WSS), mean ergaddpropef50].

The desired signatl, is assumed to be a white progdss. there is no intesymbol

interference. The transmit power is denotedstjy As stateckarlier, d, takeson one of

the equally likelyM symbols from the alphabet{7,}

M
m

_, of the chosen modulation

scheme. Thus,d, follows a discrete uniform distributiowith the autecorrelation

function shown in(2-9).
.1 =si ¢ (2-9)

wherel is the lag andd is the Kronecker delta functignwhich equalsO except forat

| =0, where it equals .1The noisev, is also white with power s? and the auto

correlation functiorgiven in(2-10).

12



r,=S2¢ (2-10

v,|

The narrowband interferenes defined by(2-6) has a power of?. Theinterference

autocorrelation function is given i(2-11).
r, =s’™ (2-11)

where w =2 pf. is the angulamterfererfrequency.Combining(2-9), (2-10) and(2-11),

the autecorrelation function othe inputu, to the equalizeis given in(2-12).
o =(ss +) d He (2-12)

This result directly follows from the fact that theput signalsd,, v,, and i, are

independent and zeraean.

2.3 Wiener Equalizer

The optimal weight vectow,, is obtained by solving the Wiengfopf equatiorgiven

in (2-13):
Eg‘]nu:' WW =E ung:;- D (2'13)

The resulting Wienéifilter is [33]:

w, =h(p, W,) (2-14)
where
52
h=——¢ 2-1
i+ e
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(2-16)
- D
) 1
2
W, = /s—ie (2-17)
and
e2e®@ el* .. ef ¥ TE (2-18)
/maxéL‘§+ \S-I-d2 (2'19)
The Wiener MSE is given by:
a s2
J, =hxs$ + $/—' (2-20)
C max

2.4 Steady state NLMS weights

For most applications, using smatepsizes, the LMS algorithm converges to
approach the performance of the corresjpiog optimal Wener flter [51]. However, in a
narrowband interference dominated environment the LMS equalizesutparform the
optimal Wiener ifiter of the same FIR structure as the adaptive filter. It isintuitive
that in a narrowband interferendeminated environment the weight vector will
converge to something other than the Wiemeightsgiven in(2-14). An expression for
the steady state (N)LMS weights in a narrowband interference doschieatéronment
has been derive1, 33).

The steady state NLMS weight vectorcan be expressd@3] as:

w=h(p, W) (2-21)

14



whereW is given by(2-22):

-1
0
R.Q oW, (2-22)

W= m
gL Lsi+ &+

where || denotes the L3 L unit matrix, and R, éE{unu,'j} is the input auto

correlation matrixgiven in(2-23).
R,=(si +g)I, +&e" (2-23)

The expression fo@ in (2-22) is given by(2-24):

L-1
Qzs2 Ly zre' o (2-24)
p=1
where
9%1- my, (2-25)

and Z is aunit lower triangulaiT oeplitz matrix:

: 0
Z= 20” T (2-26)
| 0
(S L1
with 0, =[0 0 ... d arow vector containingL - 1) zeros.

2.5 Steady gate Mean Square Error

In previous worksuch ag24, 32, 33], different expressions fohé steady state Me
Square Error (MSE) estimatevebeen proposed. Although the focus of this work is on
BER, it is importantto referto the MSE estimate for eouple of reasa Firstly, the
MSE analysis encompasses the previous endeavors regarding explaining-tNieenen

characteristics of the NLMS filter.
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Secondly, the expressions for the M$Evide the necessary backgroufut the
analysis done in Sectidgh6, which highlights the differences between the MSE and BER
performances of the equalizand factor(s) that affect these metrigss shown[32], the
Ikuma model MSE estimate is more accurate for a narrowband interferdanenated

environmeit than the Reet-Zeidler model MSE estimat§24]. The Ikuma model

estimate for steady state M&& a NLMS equalizerd,, is given by:

=gl (Wl @l Aw] (2-27)
where
A h
a=1' W (2'28)

denoteghe absolute valyandA is given by(2-29).

"

||||2 is the Euclidian Norm

>
11>
- R O

1 - (2-29)

(g? (D~ (D~ (D~ (D~ (D~ (D
-
Ny

2.6 Comparison between MSE and BER behavior of NLMS
equalizer

The ron-Wiener characteristics exhibited by the NLMS equaligperating in a
narrowband interference dominated environnteme been studied in depth. Prior work
explains the phenomenon forffédrent situationsand as described in Sections 2.4 and
2.5, there is a closed form expression for the steady state NLMS weights and steady state
MSE. However, despite having all thes#orts already in place, there has been no
reported work on the performance of the equalireterms of BER. In this section,
differences between the MSE and BER behavior of the equaktedrighlighted.

16



Figure 23 shows the MSE performance of a NLMS equalizer as a function of step
size m. An equalizer lengtlof L =5 was chosemnd the equalization point set Bs 0.

The signal to noise ratio (SNR) was set to 25 dB and the interference to signal ratio (ISR)

was set to 20 dBfor an interferencefrequency f, :}/e. 100,000 independent QPSK

symbols werechosen from f:{e%, e%, e%J, é/‘? as the desired signal of

interest d,. 100 independent realizati®rmvere run for each of the stejzes and the

ensemble average of the MSE is shown in Figth& The performance for the

corresponding Wiener Filtexf the same structure is shown in red.

6.5 w :
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®
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o
_75F @ R
m
]
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o
o
"("'O. _,so ----- O NLMS
-85 G O Wiener | ]|
e g O (6)
X: 0.7
9 : Y:-8.745 —
0 0.5 1 1.5

Normalized step-size u

Figure 2-3: MSE performance for NLMS equalizer with L =5, ISR = 20 dB and SNR = 25 dB.

Figure 23 shows an improvement of ~1.75 dB for a s&pe of m=0.7. Note that
the stepsize m was increaseth incremens of 0.1. It might be possible that the optimal
MSE behavior occurs betweemn=0.7 and /m=0.8. For this discussion the performance

at m=0.7 is taken to be the optimal MSE performance of the equalzigure 24
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shows the BER behavior of the same equalizer. All the parameters were kept the same as

theones used to generate Figurd.2
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Normalized step-size

Figure 2-4: BER performance for NLMS equalizer withL = 5, ISR = 20 dB, and SNR = 25 dB.

Figure 24 shows that the neWiener efect is also reflected in the BER performance
of the equalizer. An improvement of 2 orders of magnitude is seen for-aiztep=1
compared to the fixed Wiener filter ¢fe same structure. Note that the optimal BER

performance takegplace at a different stefize m=1, than the optimal MSE
performance which was forstepsize m=0.7. At m=0.7 the BER is 112 10*

(=10‘2'949), which translates to 11 errout of 10,000 bits. At m=1 the BER is

1.973 10* (:103'706), which is the optimal performance of the atizer in terms of

BER. This implies 2 errors out of 10,000 bits an approximately 5 times better

performance thafor the equalizer operating witlm=0.7.
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The above example shows that although the\Wioener effect can be observed both
in MSE and BER performance of the equaljzbe optimal perfeamance for each metric
occus at different stegsizes. Thus, there is a need for modeling the BER behavior

explicitly instead of usinghe stepsizefor which MSEis minimized

In Figure 25 the MSE performance of the NLMS equalizesi®wnas a function of

interference frequency; for six different stegsizes. The equalizer length is setlta 5

and the equalization center t& =0. The SNR and ISR are set to 25 dB and 20 dB
respectively. Similar to the simulationtsp used to generate Figures3Zand 24,
100,000 independent QPSK symbols were chosen as the desired sigtied emmskbmble
average of 100 realizatistior each steysize and interference frequency combinat®n i

shown in Figure 5.

MSE (dB)

—O6— 1 =0.01
95 F —S— 1 =01 _
n=0.5
—O— 1 =0.75 4
—e—p=1
n=125

-10.5 -
—o— ;=15

_11 Il 1 1 1 1 1 1 1 1
0 005 01 015 02 025 03 035 04 045 05

Fractional interference frequency fl.

-10

Figure 2-5: MSE vs fractional interference frequency forL = 5, ISR = 20 dBand SNR = 25 dB.

From Figure 25, it is clear thaMSE is not a function of interference frequency. This

behavior is consistent witf2-27), where there is no frequendgpendenterm and was
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also observed if33]. Figure 26 showsthe BER as a function of interference frequency

using the same simulati@mvironment used to generate Figusg.2

7l a*@ f“c § (p"’% AY a¥aYatal
.». .e‘ A A ;_ ¢
‘l X S & g % 5 )

log ,(BER)

7h uw=125 4
—O— =15
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0 005 01 015 02 025 03 035 04 045 05
Fractional interference frequency f/

Figure 2-6: BER vs fractional interference frequency forL = 5, ISR = 20 dB,and SNR = 25 dB

Figure 26 shows the dependenceRER performance of the NLMS equalizer on the
interference frequency. For certain fractional frequencies (£.90.25) changing the
stepsize from m=0.01 to m=1 can result ina BER improvemenby 3 orders of
magnitude Moreover, Figure 5 shows thatn=0.75 is the MSE-optimal stegsize for
all frequencies, whereas FigurééZhows thatn=1 is the optimal choice if BER is the

metric. This result is alsconsistent with the previous example, shown in Figurdsad

2-4. Thus, Figures -5 and2-6 highlighta major difference between the MSE and BER
behavior of the NLMS equalizer; while MSE is independent of the interference
frequency, BER depends amterferencefrequency, whichHurther necessitatei¢ need

for a BER model foNLMS equalizers.
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2.7 Summary

In this chapter the adaptive equalization problem was formally introduced followed by
the stochastic properties of the signals involMedlevant previos work such asthat
related tosteady state NLMS weights and steady state MsSEIso reported. Section 2.5
provided examples to highlight the differences between the BER and MSE bsludivior
the NLMS equalizerthereby motivating the need for a separate B&delel, whichis the

focusof the next chapter.
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With the problem statement defineahd the necessary information and assumptions
regarding the system to be studied in place, a misdgérivedin this chapteifor the
descrption of the BER behavior ofan NLMS equalizeroperating in a narrowband

interference dominated environment

In Section 3.1 some simulation resuttse presenteavhich distinguish between the

output constellatior(y, | d, ,=f,,) for a fixed filter (/m=0), i.e. the Wiener caseand

the adaptive case with a very higtepsize (7° 1). In Section 3.2the BER model

expressiorfor the NLMS equalizer is derived. The derived maadékes orthe fom of a
GaussiarBumMixture (GSM) In Section 3.3n approximate version of tii&SM model
is introducedfollowed by Section 3.4h which the performances of the proposed models

are comparetiased orsimulation results.

3.1 Behavior of the output constell ation as a function of s tep-size

In the following case study the objective is to visualize the effect of thesgtepn
on the output constellatioty, . For illustrative purposes, a communication system with

QPSK modulation is chosen and the QPSK symbols are the signal of interest corrupted
by AWGN with a SNR of 40 dB and a narrowband interferemgth ISR 20 dB and

interference frequency, :% . The narrowband interference is modeledabgomplex

sinusoid as in(2-6).

The equalizer length and the equalization point were sel ®5 and D 0

respetively. Figures 3l af show the conditional output constellati(élyn d, ;= e“”“)

for different stepsizes along with the symbol conditioned ofy =€, i.e. thefirst
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guadrant symbol for the QPSK modulation schemsd the centroid (mean) of the

conditioned constellation.
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Figure 3-1: Conditioned output constellation for different gep-sizeswith L = 5.
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Figure 31a shows the output constellation fostapsize /m=0.01. The behavior of

the output constellation is very similar to that in the-adaptive FIR casg37]. This
constellation was modeled accurately by a Gaussian Suaareland for computational

efficiency well approximat by a single Gaussian model.

Observe that withan increasein stepsize the output constellation attains a circular

shape in Figures-3b and 3lc, i.e.for m=0.1to m=0.25. This observation suggests

that at thesestepsizes modeling with a Gaussian distribution might be an appropriate
choice as well, provided again that the mean and the covariance matrix are accurately
estimated from known parametesirther increases in stegize show anothenieresting
phenomenon. Figures-B through 31f show that the singl€&saussian perceived in
Figures 31b and 31c is morphing into four nearly circular overlapping blobs.

Figure 31 highlights several interesting points. Firstly, the dashed lines represent the
decisbn boundaries. The points of the outmanstellation that fall in the top right
guadrantwill be correctly classifiedwhereas the othesutput constellation poiatwill

contribute towardsbit errors.

Thus, with an increase in stspze the constellatiors observed to be contracting
which results in better BER performance. This behavior suggests moving away from
conventional practice where low stejzes are used for (N)LMS equalizers. In fact, in the
presence of a narrowband interference the equalimevsthe best BER performance for

m=1, in Figure 31f. In actuality, the optimal BER performance is achieved/fsr0.9;

however, to facilitate a compact representation of behavior in the composite fiire,

paticular sep-size is not shown in Figure B

Secondly,observe thathe output constellation is not centered on the conditioned
symbol. The centroid is shiftedloreover, at highestepsizes such as exemplified by
Figure 31ef, the constellation not dynhas a shifted mean but almost none of the mass is
actually at tlat shifted meaninstead,it appears that the mass is divided into four-sub
clusters This observation indicates that modeling the BER phenomenon at Bigiper

sizes with a single GaussidA8] is not appropriate.
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As observed earlier, in Figure13 four nealy distinct blobs are seen. In order to

investigate this behavior further, a BPSK systfvh=2) is simulated under the same
simulation environment used to generate Figute ®ith 7, ={e"""*, %% and m=1.

Figure 32 shows the output constellation conditionedfgn-= '*'*.

+ '_l,l'n
#  Conditioned Symhbal
151 Mean: Output Constellation 4

Imaginary

=
i

0.5

Real

Figure 3-2: Conditional output constellation of BPSK system foiu = 1.

Figure 32 showstwo distinct blobsa number thatorresponds to the alphabet size of
M =2. Figure 31f also follows the same trend with four distinct blobs for an alphabet
size ofM =4. For higher stegizes where the output constellation morphs into separate
blobs, the number of these blobs appeto be equal to the alphabet size of the

modulation scheme of the communication system.

This behavior of the conditioned output constellation morphing Mhtdlobs is the
key difference betweetow stepsizes (e.g. m=0.01) and highstepsizes (e.g m=1).
Figure 33 compares the conditional output constellation for a QPSK modulation

conditioned on(yn d, .= e‘”"‘) for the two stegsizes m=0.01 (Figure 33a) andm=1
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(Figure 33b). All the simulation parameteithat wereused to generate Figurel3are

kept the samgSNR = 40 dB, ISR = 20 dBf, :}é , D =0 ) except for the equalizer

lengthL which is set td_ = 3 instead ot = 5.
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Figure 3-3: Conditioned output constellation for different gep-sizeswith L = 3.

Figure 33a hasM “* =16 blobs, withM =4 and L =3. This result isonsistent with
the fact that for small stefizes the conditional output constellation can be modeled by

Gaussian Surilixture [38]. This phenomenon is also present in Figuea3dut because

of thelarger equalizer length =5 is not as readily observable.

For a large stegize m=1 as shown in Figure-3b, it is observed that the conditioned

output constellations comprisé of M blobs similar to the phenomenon observed in
Figures 31f and 32. What is interesting to note tkateach of thes® blobs appear to

be rotated and shifteversions of the constellatidior low stepsize as observed in
Figure 33a. Thus, if an expression for the factors that cause this shift and rotation is
obtained in terms of the system parameters then the conditioned output constellation for
higher stepsizes can be modeled by sum ofM Gaussian SunMixtures, i.e. still a
Gaussian Sum Mixture modelo summarizethe following are the key observations

obtained from the simulations discussed in this section
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I. With an increase in stegize, the output catellation shows contraction
thereby resulting in better BER performance.

il. For high stepsizes (e.g.m=1), the constellation appears to be composed
of M blobs, whereM is the alphabet size of the modulation scheme used.

iii. Moreover, each of th®l blobs appearto bearotated and shifted version

of the constellation obtained for low stsjzes.

3.2 BER model for NLMS equalizers

After the previous observations, we nal&rive the conditional PDF of interedty
analysis Usingthe update equation for NLMS weights(2-7), the output of the NLMS
equalizelin (2-4) can be rewritten as:

4 m . 6
yn:$wn—l 4_2un—1en} OLQ1
¢ Juni| + (3-1)
— . H I m H
_Wn-lun H (un-lun)enL
un—lun—l

Theregularization parameterplays an importantole in the practical implementation of

NLMS equalizersa small, norzero regularization parametprevents division by zero

whenthe energy(||un||2) of the signal in the input delay lineiissignificant. Since this

analysis is focused towards the analytical aspects of the NLMS equalizer, the

regularization parametés set to O.

As discussed in Section 2.2ll the input processes involved are ergodic. Under this

assumption, Clarkson and \W#[52] asserted that the autorrelation functionn (2-12)
serves as a good tinmevariant approximation fothe dotproduct of the formu ,u  for

k>0.

v

ufl u, © Lry, . igs"; 152) g e (3-2)
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Substitutingfor the dotproductsin (3-1), using (3-2), the forme can be further
simplified as:

oWt u T (g2
yn n-1"n 5§+ § + Ig( I )e'l-l (3-3)
:W:-lun W&W%—l
where
s?
[ — 34
STv g 6 4

Substituting fore, ; in (3-3), using(2-8), and rearranging termgields

yn :W:-lun -lmlejm(dn-l - D -ynl)-
=wiu, me(d,, owiu,) (35)

=w§_1(un -m&i”"un_l) +mbd ,

Since the goal of this work is to obtain a steady €B&R model,the time varying
weights in(3-5) will be repaced by the steady state NLMéightsgiven in(2-21). We
note that the tim@arying aspects of the weight vector are very small when the

interference powesihigh (high ISR)Thus,(3-5) is re-written as:
g =w" (un -mle"”‘uﬁl) +mlfd, (3-6)

The only timevarying component i(3-6) is the input vectou ,, which can bdurther

split into three constituent signalthe desired symbolsthe Gaussian noiseand the

narrowband interferencas given in2-3). Writing (3-6) in a more compact form:

yn = yd,n +’yi,n :yv,n (3_7)
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wherey, ., ¥ .,and ¥, are contributions from the desired symbth& Gaussian noise
and the arrowband interference resppeely. The expressions foy, ., ¥, andy, , are

given by the following equations.

yd,n =w" (dn 'm@jmdnl) +/7d”q1-1 - (3-8)
Yo =W (i, -me*i, ) (3-9)
Yy =W" (vn -mlej”"vn_l) (3-10)

Note that the three terms {8-7) are mutually independesinced,, v, and i, are
independent (Section 2.2Jhus, the conditional PDEY, | d, ,=7,,) can be computed

by convolving the individual conditional PDFs of the three compongpfs ¥, and

yv,n .

3.2.1 Conditional PDF of the noise component §, .

As discussed in Section 2.2, the additive Gaussian Noise is independent of the
symbols transmittedwhich implies that the conditional PDFEVVMdn D:fm) is

equivalent tothe unconditionalPDF. Writing (3-10) in summation form where

w=[®, W .. w.,,yields

yv,n:a.. \T\I;(Vnk _mb;]""{ Via k)
R (3-12)
=y, B (W WomeE)y, W, oy,
k=1
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Note that §, , is expressed as a linear combination(bf+1) independent Gaussian
random variables. Thug, , also follows a Gaussian distributiphd]. Using the fact that

the input AWGN is zero mean, the mean f  can be expressed as:

- L1 » g :
By gE (W W) vy g B M v gy

Similarly, using the autaorrelation functiorof v, in (2-10), thevariance ofy, , can
be derived as:
- - et . : g ., -
Vargy,, gVargwy, ngVarga(vy -vy_lmbéf”') ' H Vag W, mé v ]
k=1

L-1 )

=|w*var[y] & |w w.me*| vaf y,] W |ow,| Ve y] (313
k=1

=X §

L-1
where x, £|w,[* + 3 |W, -, me!'f”"z # AW |’. Thus, in the egalizer output the
k=1

input noise power is scaled Hyefactor x,. The second term of the scaling fackgrcan

befurther simplified as:

W - wme v W, ) (W w, e
=(w, -W,me")(W W, mY)
=W -mAw e MW W, &) |
=\W[* -2mtRegW W, & g |ty

(3-14)
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where Re[C] 2 X if C is a complex number of the forX + jY , whereX andY are real

numbers. Using the expression obtaine(Bi4), x, can be written as

x =" A (W 2 mBegw v e g AW e g’
k=1
L-1 L1 _
=(1 47 B)A W] 2 mARegW W, " g (3-15)
k=0 k 2

Note that form=0, x, = ||v‘v||2 which coincides withthe result obtained previously for

the (time-invariant) Wiener casg37]. Combining the results obtained {8-12) and

(3-13) along with the fact thaty, , is the sum ofL +1 independent Gaussian random
variables(3-11), it follows that §, , follows a complex normal distribution as described

in (3-16).

¥, ~ CN(0.x, $) (3-16)

3.2.2 Conditional PDF of the interference component  §,

The narrowlknd interference modeled by the complex exponeigR-6) is also

independent of the transmitted signal, Similar to the noise component, the conditional

PDF of (3”4'n |d.. D:fm) is equivalent to the uncondition&®DF. Rearranging the

complex exponentiah (2-6) yieldsa recursive expression fgr.

i =sglkd
=5 ety (3-17)

— ¥
=el

With the recursive relation obtaingd(3-17), ¥, can be written as:
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=w"(i, -mb,) (3-18)

The expression obtained (8-18) highlightsa couple of interesting facts. Firstly, at high

2

ISR (:onditionsbzzs—i %. Thus, setting a higlstepsize (e.g. m=1) can
Sit g +§

virtually nullify the interference component in the equalizer output. This is consistent

with thesimulations shown in Section 2¥here stegsizes close tor=1 were show to

lead tothe optimal BER performance.

Secondly, theexpression fory. is identical to the interference component at the

output of the fixedtime-invariant)Wiener filter except for the scalar multipligt- 4.

The Wiener case has been discussectiaidn [38] where he interference component at

the outputi.e. ¥, was modeled by a Gaussian distributilsientical to the analysis done

in [38], the meanand the variancef the distributionare given in (3-19) and (3-20)
respectively
EQY, @ E (1gmw"i, |
=(1 -mhEGN"i, g

AL-1
(1 -mt?Ezefsi Wi, , (319
=0

L

(1 'mba V_V; E[ in- k]
k=1

0
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Vargy, gVar (1lgmiw"i, g

1-ml) EGN"i MW g (3-20)

where R, £s%d' is the autecorrelation function for the narrowband interference

signal. The variance of theariable §. decreases a$- mb - 0 which, as discussed
earlier, takes placeunder high ISR conditions with a large s&pe. Combining the

results obtained i(8-19) and(3-20), the PDF for§! is given by:
%, ~ CN(0.x, §) (3-21)
where
x2(1- mbwed' w (3-22)

Note that modeling the interference component with a Gaussian distribution is an
approximatiorand its effects will be discussed in Section 3.4.

3.2.3 Conditional PDF of the desired symbol component  §, .

From(3-8), it is clear thathe conditionaPDF of ()"/d,n |d, ;= fm) is dependent on the

transmitted symboJaunlike the noise and the interference comgrd. Similar to (3-11),

¥, canalsobe writtenin summation form:

n

Y/d,nzv_VH(d 'm@jmdnl) +/7é”q1-1-D

PO = P . . | | (3-23)
=wd, & (W W.me)d, W, m¥d,  +ein,
k=1
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From (3-23), observethat thereis a total of L +2 terms. Depending on the value Df,

the coefficients contributing td,_, . can be combined and thus, effectively,, can be
expressed as a sum bf+1 terms.Figure 34 provides a visualization of the vectats,

and d, for all the possible valgeof D. Note thatD is assumed tonly take integer

values between 0 and- 1, including the boundary values of O ahd 1.

dn-l dn
Time Index A=l w-2 =L -1 H-L+1
i |d,_, TR ERE d_, #| d LI B - A
Tap Index A1 L=1 A1 L=1
(@:D =0
Time Index n-1 n-1 n-L n m-1 n—L+1
dn-| dv il & = é'- r; & . “ll- .o ar" d'" i - W 'ﬁq ﬂ‘r - dn 1
Tap Index o1 A-1 A L-1 oo A A+] L-1
(b):0<D<L-1
Tume Index R-1 n-1 -1 L r=1 u-L+1
f"r.._-| 'ar,r-_'- R TN ] #... c}- 'd; ld.|-| L I I T T B B ?u
Tap Index o 1 A-1 A 01 A
(¢): D =L-1

Figure 3-4: Comparison of d,, and d for different values of D.

From Figure 3a, forD =0, d, =7 . Substituting them i3-23) yields

L-1

Voalpo =Wofn A (W W mé*)d, W, ibd _ +efg,
= koL (3-24)
:k|D© + | 0=
dn=Fm dn =fy
wherek| and | are given by:
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k|D@ =W, £ (3-25)

L-1

= (V_VE Wkﬂm[ém)qu Vg‘qu - D_\?\{-l ”w QL (3'26)

=W,, -Wga" +nl is the coefficient ford, , _ .

From Figure 34b, for 0O< D k 1, substituting the valuef d,_ =7, in (3-23),

yields
. . S ; " ; »
Voloc o1 =Wod, & (W W,mee)d, W, m# d, +elby,
dn- D:fm k=1 (3-27)
:k|0< pis1- |o €< -
A 5fm dn - 5h
where ko< pi 1and  |o< pic 1@re given by:
dn. 5Fm A 5Fm
K = (W g, md) (3-28)
_ Lo - = :
|O<DL<1_ :Wodn ta (W< W-lm@')qpk WL -o W1 .mé QL (3-29
dn- 5/m E,:lD -
wherew,| =W, -WmeE" +mlY is the coefficient fod, , _ .

Finally, from Figure 34c, for D =L %, substituting the values ol , =7, in

(3-23):

e =1 ' (3-30)
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where k| and are given by:

D+ 1 |D-tl-

Moo= (W Wy, mé) (3-31)
. bl :
| Wd, A (W W.met)d, wd, (332
d-15fm E,:lD
where w; = W,mE" +ml is the coefficient ford, , . . Note that is a sum

of L random variables for all thealues of0O¢ D & 1.

A ¢, (3-33)

L
k=0
ka

D

Table 31 summarizes the results obtaineq3r24) through(3-33).

Table 3-1: Deterministic and Stochastic Components 0157(,’n for NLMS equalizer.

D K C,
0 W.f ew,,, - Wme" + néY k ¥
P,
G=1 Wy -Wmie” k £3...,L }
! - W, ,m e k =L
0< Dk 1 (V_V*D_ V\;D}m@im) | é W, k=0
AW, - WmeE + el k = D+
U W wme k40L...L 3 {-. D
f -W,_,me" k =L
L-1 (W, - Wo,ma™) :e W oo k=0
c =1 W, -wmm" k &2....L &
b-W,_ me™ + ml k %
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Each of the terms in the summation(8133) represents a scaled and rotated version of

the input constellatiomﬁfm}M with thecomplex constargcaling factorc, . The scaling

factorsare a function of the steady state NLMS weight ve@iom £, and W as shown

in Table 31. Each term in(3-33) can be represented by a probability mass function

(PMF) that take$/ equally likely valuessince the symbols are equally likely.
1N
6~ -8 (% ¢ ) (3-39)
=1

¥,, comprises ofL random variables which are of the form (8f34). The weighted
linear combination of thede random variables can be represented by a probability mass
function (PMF) which can take orM" values. Since the symbols of the input
constellation are equally likely then the PMF at each of fthe values will have a

probability Of%/l L - Thus, the conditional PMF, . is of the form:

N 1 M M
(5o, )= qr8 & 40k 7) (3:39
n- O/ m k0: 4_
k.
wheref is defined as:
7 A -l:
f=aaf (3-36)

3.2.4 Conditional PDF of output ,

The approximateconditional output(yn|dn_ o= fm) was expressed as a sum of three

mutually independent terms {8-7). Thus, the overall PDF will be @nvolution of the
densitiesshown in (3-16), (3-21), and (3-35). Note that the first two are Gaussian
distributions while the last one isdiscrete uniform distributions. Summation of two

independent Gaussian vari@bleads to another Gaussian variable. Convolving the
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resultant Gaussian with the discrete uniform distribution (which is represented by a
diracdelta function(3-35)) will cause a shift in the mean of the Gaussian to the location

where there the diragelta function is noszero i.e., where the PMF has a rar0

probability. From(3-35), observe that there are a total " points where the PMF is

nonzero.So the overall PDF can be expresssa GaussiarBum Mixturecontaining

M" terms:

. 1 M
f(yn|dn D:fm) _MLk?:.lkl

N Mg'(:N( k Wk osE?) (3-37)

k E

Txu& m:i

D

Figure 35 shows an example of the conditiondDR° of yn|dn_ .= €”'* computed

using(3-37). The simulation parameters are identical to the ones used to generate Figure

3-3b(SNR =40 dB, ISR =20 dBf, =}/ , L=3,andD =0).
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Figure 3-5: ¥, with the estimated Y ., centers for different values of D for L=3.

The only differentiating factor between Eig 35a and Figure-5b is the value oD.
The conditional output is shown highlighting the centers of the Gaussians along with the

conditional means- both estimated and simulated and the conditioned symbol

f,=¢e”"*. Note that the estimated and the conditional means coirlcidég. 3-5b the
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effect of changing the equalization point can be observed; there is less probability mass
outside the first quadrant and therefore a smaller contribution to bit error when the

equalization point is towards the center of the tapped delay li

The modeledprobability of errorﬂ% is computedusingthe Gaussian Sumdixture in

(3-37) and given by:

= ff%/d, o 7,) d2 (3-39
A

where A is the region which corresponds to a Bit Error. For example, if a QPSK

modulation scheme is used (as shown in Figu® and f is chosen as the first

quadrant symbol, thef will be the entireA? excludingthe first quadrant, with the third
guadrant contributing two bit errors while the second and fourth quadrant each contribute

single bit errors. Thug3-38) for this particular case can be written as:

A (%.1d, o 7.) dy dy, (3-39)
ViI=-8 =-0%°
o 0

ALY

yI:()yQ =- 0

wherey, and y,, represent the iphase and quadrature componenty,ofespectively.

3.3 Approximate BER m odel for NLMS equalization

The examples shown in Figuresl3and 33, where the equalizer length Is=5 and
L =3 respectively serve more as an illustrative example.phactice,it is more likely
thatequalizers of larger lengttesse usedKeeping the modulation scherttee same the
number of components in the Gaussian SuirtiMe in (3-37) increases exponentially

with anincrease inequalizerlength. For example, if QPSK modulatisused then an
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equalizer lengthof L =10 results in more than a million componem (3-37). It is
obvious that if a more sophisticatewdulation scheme is usedlith a higher value of,
computing the BER usin{B-38) can become cumbersome. To address this,igstleis

section an approxiate version of the Gaussian Siixture in (3-37) is introduced.

Figure 31 shows that witlanincrease in stepize the shape of the conditional output
consellation changes. Figure-3 further shows that at higher stsiges the output
constellation is composed ®f constellationseach of which is a rotated and scaled
version of the corresponding constellation at low stiep. From(3-23), we observe that

the coefficient ofd,_, is dependent onm. For m=0 that coefficent becomes zero

irrespective of other parametefg) approximate version of the Gaussian Suirtive is

thus proposed where each of Meconstellatios is modeled by a Single Gaussian. Thus,

instead of a total oM" components, thapproximatingGaussian SunMixture model

contairsM terms.

Taking the last term.e. thecoefficient ofd | , outside the summation {8-35):

yd,nd :k -|a den- k

n- 5 m

L-1

=k € dn- L a G q1 « (3'40)
k=0
k, D

M o
=k €a f 8acad,,
1=1 ko

M
The term k+c § [ represents the center of tt GaussiansThe variability in
1=1

L-1
a cd,, is modeled by the variance of the summation. Note that dhe are

k=0
k. D

independent symbols.
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hY

€ ﬂ
Vargka i § aVar[ G %]

&. D 0 k . D

= é. |ck|2Var[ d, ] (3-41)
<%
=X, §
where

A Ll 2

Xi=a |Ck| (3-42
<%

The overall variance of each of thv Gaussias is a summation of thgariances
derived forthe noisein (3-13), the interferencén (3-20), and finallyt he &évari anced f

the desired symbol component derived (B¥41). The Approximate Gaussian Sum
Mixture (AGSM)modelis given by:

M
a( %/ d, o=7) =Ma Nk ¢ f % stix &) (3-43)
Similar to(3-38), the probability of error computaging(3-43) is given by:

= A ofival d, o 7,) d2 (3-44)

Figure 36 shows an example of the conditional PDF fof d, ,=€”"* computed

using(3-43). The simulation parameters are identical to the ones used to generate Figure

3-5,i.e. SNR =40 dB, ISR=20dBf =}/, L=3,andD =0.
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Figure 3-6: y,with the estimated AGSM centers for different values oD and L = 3.

From visual inspection it appears that the estimated centers obtained using the AGSM
model for each of th& constellations are accurate. A quantitative comparison between

the two models and the simulation results is presented in the next section.
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3.4 Results

For simulation purposeshe desiredsignalis represented bywo digital modulation

schemes:

i. QPSK symbolswhich makes the alphabgze M =4;
il. 16-QAM symbols which makes the alphabet sixe =16.

The observed value of BER is calculated usifgonte Carlo simulation techniquoy
ensemble averagy of independent runs. Unless specified otherwise, the ensemble size is
100 for allof the subsequent simulations. A single run consists of 100,000 irckpen
symbols generated randomlyhich arethen corrupted by AWGN and the narrowband

interference. Note that with an ensemble size of 100 and 100,000 independent symbols
per run BER up to a magnitude df0°® can be estimatetklativdy accurately. If the

BER is less thari0° either the ensemble size or the number of independent symbols per

run, or both should be increased appropriately.

When the desired signal is represented by QPSK syniBigisres 37 through3-10),
the BERestimate using the GSM and AGSM model is computed (313§).

Figure 37 shows the comparison between BER (F%) calculatedusing theGSM
expressionn (3-38) andthe AGSM modelin (3-43), together withthe observedER, as

a function of stegsizefor an equalizer of length. =7 and D =0 for a QPSK system

ISR was set to 20 dB with the fractional interference frequére$).368 and SNR was

set to 20 dB.
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Figure 3-7: BER calculated by GSM ¢), AGSM (--) and observedBER (0) for a QPSK systemas a
function of step-sizep for L =7, SNR =20 dB and ISR = 20 dB

Figure 37 shows that the BER predicted the GSM expressions accurate for the
entire range of stepizes from[0,1.5. The maximum deviation between the observed
value and the BER predicted by the G®Npressioris observed atn=1.1 where the
derived GSMexpression predictionverestimates the equalizer BER performance by a
factor of]/5th of anorder of magnitudeThe AGSM model underestimates the equalizer
performance forO ¢ m <. The amount of deviation betwedmetobserved BER and the
predicted BER by AGSM increases ag increases from 0 to 0.6. For>0.6 the

difference between the predicted BER and the observed BER decreases anddinally

m? 1, both of thepredictions coincide.

Figure 38 shows the comparison between t@ calculated using the GSM

expression in(3-38) and the AGSM model(3-43) as well asthe observed BER as a
function of SNRfor a QPSK systentor Figure 38, the simulation parameters used are

L=7,D =0, m=1,ISR =20 dBandf, =0.368.
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Figure 3-8: BER calculated by GSM ¢), AGSM (--) and observed BER (ofor a QPSK systemas a
function of SNR forL = 7,u=1and ISR = 20 dB

Note that for SNR > 20 dB, in order to obtain the observed values, the ensemble size
was increased from 100 to 10@&8gure 38 shows thaboth predictionsare identical for
SNR ¢ 20 dB For larger SNRthere is a slight deviationThe pedicted BER
performance of the NLMS equadir by bothmodels is consistent with the simulation

results.

In Figure 39 both predictionsare comparedavith the observed BER as a function of

ISR. Similar to the previous casean equalizer of length =7 and D =0 was chosen.

Although the interference power varigt} frequency was kept the sapa f, =0.368.

SNR was set to 20 dB.
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Figure 3-9: BER calculated by GSM ¢), AGSM (--) and observed BER

25 30

(o¥or a QPSK systemas a

function of ISR for L =7,u =1, SNR =20 dB and ISR = 20 dB

In Figure 39, for ISR values less than 15 dB, the deviation of the observed BER from

the predicted values isggiificant. For example, at ISR = 0 gdBe. when the interference

power s’ is equal to the signal powes?, both models oveestimate equalizer

performance by almost 2 orders of magnitude. The deviation esdiac 1 order of
magnitude for ISR = 10 dBith both models still oveestimating. Finallyfor ISR > 15
dB, the model predictions are consistent with the observed vallogs. that similar

behavior was observed [B3] where the Ikuma model for steady state M§iken asJ,

in (2-27), was accuratéor ISR > 10 dB.

Finally, in Figure 310 the comparisonis shownbetweenthe GSM and AGSM

predicted BER performancand the observe8ER performanceas a function of the

fractional interference frequencf/. The SNR and ISR are both set to 20 dB. Similar to

the previous cases, the equalizer length7 and D =0.
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Figure 3-10: BER predictions by GSM ¢), AGSM (--) and BER observed (ofor a QPSK systemas a
function of f, for L=7,p=1, SNR =20 dB, ISR =20 dB

Note that Figure A0 once again shows the frequency dependence of the BER
performance of the NLMS equalizer similar to what whserved in Figure-8. Boththe
GSM ard AGSM expressionare able to capture the frequency dependence of the BER
performance and the differem between the observed agédicted values never excesed

102 for the entire range of fractional frequer|0.5 .

Figures 3-6 through 310 showthat thederived GSM expressioras well asts more
readily computable mproximate version (AGSM) areble to predict the BER
performance of the equalizer accurately for a wide range of system parafoetars
communicéion system usinghe QPSK modulation schemén fact, thederived GSM
expressionprovides an accurate estimate for the BER performance of the NLMS
equalizer for all the cases other than ISR < 15 dB. The AGSM model on the other hand

underestimates the pfarmance forO¢ m < (as seen in Figure-3 and thus can be

utilized to ascertain a conservative upper bound for the BER performance.
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Higher order modulation schemes are gaining popularity in modern communication
systems due to theirelter throughput. Figure-Bl shows a grey coded -THAM
constellation, whichs a popular choice of digital modulation for modern communication

systems such as LTE.

. Yoy :
0000 0100 1100 § 1000
................ i
) 0011 0111 111 1011 'vf
S R S A
0010 | 0110 1110 1010
v

Figure 3-11: 16 QAM constellation (grey coded).

With higher order modulationshe computtion of a BER estimate using the GSM
and AGSM expressiongs slightly different from what is shown i(3-39). We first

compute the symbol error ratfS.) by integrating ourPDF expressionver the

appropriate regions of interdstlenoted by dotted lines in Figurell.
S=f finld o ) dydy (3-45)

Since the input constellation is gregded, F% can beapproximatedising the following

relation:

o Fhe
I
)

3-46
log, M (3-49



Figure 312 shows the comparison between the Bﬁ-‘; ¢alculated usig the AGSM

model in (3-43) and the observed BER as a function of stige for an equalizer of
length L =7 and D =0 for a 16QAM system. ISR was set to 20 dB with the fractional

interference frequencly =0.368 and SNR was set to 20 dB.
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Figure 3-12: BER calculated by AGSM ¢-) and observed BER (0) for a 18)AM system as a
function of step-sizeu for L =7, SNR = 20 dB, ISR = 20 dB
With M =16, computing the BER estimate usinige GSM expressionbecomes
cumbersome as there a”r§7(° lO’) Gaussian components for eath Thus,for the 16
QAM case, onl\BER estimatesising theAGSM modelareshown in Figure 32 (andin
the subsequent FiguresIB through 316). Note that forthe 16c:QAM case withL =7

the BER performance improvement is less than one order of magnitude as #ieesiep

increasegdwith the maximum improvement observedrat 0.7.

Figure 313 shows the BER performance (both observed and predicteétt BYsSM
model) of a NLMS equalizer fahe 16-QAM case withL =21 and D =0 as a function

of stepsize. ISR was set to 20 dB with the fractional interference frequerdy.368
and SNR was set to 2Bd
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Figure 3-13: BER predicted from AGSM (--) and observed BER (0) for a 18QAM system as a
function of step-sizep for L = 21, SNR =22 dB and ISR = 20 dB

In Figure 313, observe thahe BER performance improves by 2 orders of magnitude

when stegsize is changed fromm=0 to m=0.6, thus showing thathe nonWiener

characteristic of NLMS equalizers present for higher order modulatioihie AGSM

model underestimates the BER performance for< m <0.8. However, the AGSM
model suggestthe BER-optimal stepsize to bem=0.9 and the corresponding BER

performance is very close (~¥Y&rder of magnitude) to the observed BERimal step

size of m=0.6. Thus,in terms of BER performance, the optimal ssgpe predicted by
AGSM model is close to the actual optimal ssege.

Figure 314 shows the comparison betweea EE calculated using the AGSM model

(3-43) and the observed BER as a function of SNR for-826/ system. For Figure-3
14, the simulaon parameters used are=21, D =0, m=1, ISR = 20 dB and

f, =0.368
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Figure 3-14: BER calculated by AGSM ¢-) and observed BER (o) for a 18)AM system as a function
of SNR forL =21, u=1 and ISR = 20 dB.

For the given scenaridhié AGSM model accurately predicts the BER performance for

the entire range of SNR shown.

Figure 315 shows the comparison between EEa:aIculated using the AGSM model

(3-43) and the observed BER as a function of SNR for-826/ system. For Figure-3
14, the simulation parameters used dre21, D =0, m=1, SNR = 22 dB and

f =0.368
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Figure 3-15: BER calculated by AGSM (-) and observed BER (0) for a 16QAM system as a
function of ISR for L =21, p=1 and SNR = 22 dB.

Similar to Figure 3, the AGSM model oveestimates the system performance for
ISR < 15 dB. Note that the ovestimation irthis case is less than an order of magnitude
and thus is not as severe as seefrigure 39, where it was as high as 2 orders of

magnitude

Finally, in Figure 316 the comparison is shown between the AGSM model predicted

BER performance and the observed BER performance as a function of the fractional

interference frequencyf,. The SNR and ISR are set to 22 dB and 20relpectively.

The equalizer parameters were setlte= 21, D =0, and m=1.
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