

State Tourism

 Final Report

 Aditya Agarwal, Sparsh Bansal

 CS 4624: Multimedia, Hypertext, and Information Access

Virginia Tech

Blacksburg, VA 24061

December 15, 2021

Instructor: Dr. Edward A. Fox

Client: Dr. Florian Zach

2

Table of Contents

Abstract - Executive Summary 5

1. Introduction 6

1.1 Teams Roles 7

2. Requirements 8

2.1 Data Extraction 8

 2.2 Data Visualizations 8

3. Design 9

3.1 Extractor 9

3.2 Keyword JSON File 9

3.3 Processing JSON data 9

3.4 Data Visualization 10

4. Implementation 11

4.1 Coding Environment 11

4.2 Language + Tools 11

4.3 Prerequisites 11

4.4 Loading All Data + Config File 16

4.5 Extracting Meta Tags 16

4.6 Amazon Alexa API 16

4.7 Visualization 18

5. User’s Manual 19

6. Developer's Manual 20

6.1 Library Installation 20

6.2 Loading files, Extraction, and CSV output 20

6.3 Handling Visualization 21

7. Methodology 22

7.1 Goals of our Users 22

7.2 Subtasks of our goals 22

7.3 Workflows 22

8. Results 23

9. Scripts 29

10. Lessons Learned 37

10.1 Timeline/schedule 37

10.2 Problems 37

10.3 Solutions 38

10.4 Future Work 39

11. Acknowledgements 40

12. References 41

3

Table of Figures

Figure 1: Format of the created JSON file 9

Figure 2: Anaconda website 11

Figure 3: Anaconda Setup Wizard 12

Figure 4: Execution of pip install dash 13

Figure 5: Execution of pip install dash 14

Figure 6: Execution of pip install pandas 14

Figure 7: Execution of pip install requests 15

Figure 8: Execution of pip install BeautifulSoup4 15

Figure 9: Prices of Alexa Web API 17

Figure 10: Our API implementation 18

Figure 11: Command to run python scripts 19

Figure 12: Developer points in the extraction script 20

Figure 13: Developer points in the visualization script 21

Figure 14: Code output by running the Colorado’s JSON file .. 23

Figure 15: Code output by running the California’s JSON file .. 25

Figure 16: Code output by running the Virginia’s JSON file .. 27

Figure 17: Script 1: script_1_extract.py 29

Figure 18: Script 2: script_2_data_processing.py 31

Figure 19: Script 3: script_3_plotly_script.py 33

Figure 20: Script 4: test 1.py 36

4

Table of Tables

Table 1: Graph of Colorado 26

Table 2: Graph of California 28

Table 3: Graph of Virginia 30

5

Abstract - Executive Summary:

The project is about analyzing and visualizing metadata of tourism websites

of three states (Virginia, Colorado, and California) from 1998 to 2018.

Each state in the United States has its own state website that is used as a

resource to attract new tourists to this location. Each of these sites usually

includes great attractions in this state, travel tips and facts about this place,

blog posts, and reviews from other people who have there. Suggestions

regarding what might attract potential customers could emerge from

examining past tourism websites and looking for any patterns amongst them

that would determine what worked and what didn’t. These patterns can then

be used to determine what was successful and use that information to make

better informed decisions on the future of state tourism.

We will use the historical analysis of past government tourism websites to

further support research on content and traffic trends on these websites. The

various iterations of each state's tourism website are saved as snapshots in

the Internet Archive. Our team was given the Parquet files having the

snapshots of data containing the information recording tourism for California,

Colorado, and Virginia dating back to 1998.

We used a combination of Python’s Pandas library and Beautiful Soup to

examine and extract relevant pieces of data from the given Parquet files. This

data was scraped to extract the meta tags used for the website as of that

date. With this data we plotted the presence of all the various on a state's

tourism website in a chronological order. This made it possible for us to

analyze the addition and removal of keywords and to see other changes that

were made like using phrases, capitalizations, keywords in languages other

than English, and updating of keywords based on internet trends. This led us

to conclude that meta tags play a very important role in a website's search

engine ranking and a lot of analysis needs to be done keeping in mind the

primary user base of the website.

6

1. Introduction

Our goal for this project was to extract and analyze data from past and

present iterations of the California, Colorado and Virginia state tourism

websites -- www.visitcalifornia.com, www.colorado.com, and

www.virginia.org, respectively -- so that researchers are able to learn from

that data. Our client was Dr. Florian Zach of the Howard Feiertag

Department of Hospitality and Tourism.

Dr. Zach asked us to produce a system that is able to extract as much raw

information as possible from the previous iterations of the state website --

such as meta tags -- and store them in a location where he can then use

that information to look for patterns in the data that would lead to more

informed decisions regarding the construction of future iterations of the

state website. We also were to create a visualization model that can be

presented to the class. We chose to focus on the keywords that are

present within each iteration of the website to determine the keywords

used in generating website traffic for a particular state at a given point of

time, building on a prior CS4624 project [14].

For both goals it was crucial that we be able to extract the data first. We

were given Parquet files of each iteration of the Colorado website to

extract data from. These Parquet files contained snapshots of each

version of the Colorado website from random years to the present [1].

After becoming familiar with what types of information were present in

these Parquet files, we determined that we were able to extract the data

that Dr. Zach requested. We created a parser using Python’s Pandas

library and Beautiful Soup, which would sift through all of the Parquet files

and pull out any relevant information we desired. We organized each of

our desired forms of data into their own JSON files for each Parquet file

analyzed and placed them within their own respective folders (all raw text

for each Parquet file went in the raw text folder). We did this not only so

that Dr. Zach is able to easily gather the data that he needs but also so

that other teams could continue, as with the prior team [14].

We then created visualization code that took all the created keyword CSV

files and then plotted a bar graph to show how much of each keyword was

used within a particular time span. Our hope is that with the work we have

completed, in being able to correctly parse and store the data in an easy

to read format, future teams are able to easily pick up our work and

expand upon it, as with the prior team [14].

7

1.1 Teams Roles

Our team had a person assigned to each of two different roles: Project

Lead and Data Extractor/Visualizer. The Project Lead worked as a liaison

between Dr. Zach, Dr. Fox and our team, relaying any new or pertinent

information to the team in between scheduled meetings. The Data

Extractor produced the bulk of our code which was able to parse through

the Parquet files and create designated JSON files for the desired data

and place them into their own designated folder. The Data Visualizer

produced the code that then took the extracted data and created easy to

read graphs to help visualize the data. While each individual on the team

had their own specific role, all team members helped out with each portion

of the project and worked together to produce reports and presentations.

Aditya Agarwal, Project Lead

● Serve as the main point of contact for the project, responsible for

documenting the processes.

● Correspond with the client and document all meetings and

progress.

● Implement the keyword analysis API

Person 2, Sparsh Bansal, Data Extractor and Visualizer

● Develop how the data will be visualized to the users

● Research on SEO tools and meta tags

● Find any kind of a relationship between existing data and the data

we are going to collect

8

2. Requirements

2.2 Data Extraction:

Parquet files, as mentioned above, were given to us by the previous

year’s team. Refactoring of this data is necessary to take the information

from complicated and lengthy Parquet files and make it easy to understand

and analyze. Through these methods, four Parquet files, containing over

50,000 snapshots each, were condensed into one file with meaningful pieces

of data in it. We were then tasked to extract relevant information, pointed out

by Dr. Florian Zach. Main extraction elements included meta tags and raw

text of the files [2]. We extracted specific items from these elements, like the

timestamp, as well as the tags and website keywords mentioned above. The

data was extracted using Python and its external libraries. Python’s Pandas

helped read these Parquet files for the extraction. Beautiful Soup was used

to extract specific elements from the Parquet files.

2.3 Data Visualization:

The main prerequisite for running the visualization program is to have

previously run the data extractor on the Parquet files. This is needed so that we

can accurately pull the data needed to populate the graph. We used a stacked

bar chart to view our data extraction. The data was structured by year, for all

tourism websites. The previous group structured their graphs to include seasonal

visualization, to see change by months. We however decided to go with the

approach of making graphs for each state in a chronological order, so that we

can utilize the existing data to its fullest extent. To make the graphs, we used a

tool called Plotly, which is a part of the Dash library in Python. Plotly lets you set

up the graphs as per your requirements. For our project, we specified

characteristics for the data point, the x axis, the y axis, and the grid itself. Plotly

displays these graphs on the running system’s local host directory which is set to

https://127.0.0.1:8050/ by default on Windows machines.

https://127.0.0.1:8050/

9

3. Design

3.1 Extractor

Data extraction from the multiple .snappy.parquet files to a cumulative

JSON file is done by the data extractor script (script_1_extract.py) which

needs no arguments to run. The extracted data is stored in a JSON file

with a name that is specified in the program.

This script makes use of BeautifulSoup and the Python dictionary data

type to extract the date (MMYYYY format) as well as the corresponding

keywords for that date, and to store them as a JSON object in the output

file.

The script also makes sure that the dates are not being repeated and that

even the characters outside the Unicode-8 range are being taken into

consideration.

3.2 Keyword JSON file

An example of the JSON file used to store the keywords is shown in

Figure 1.

(Figure 1: Format of the created JSON file)

This file enables us to use the other scripts directly and multiple times

rather than having to run the base script again and again. This way, we

can ensure that the most time-consuming operation only has to take place

once for all the data and then we can process it anyway we want.

The JSON file also makes debugging a lot easier since we have an

intermediate stage in the data extraction process that we can refer to and

make sure things are running smoothly.

3.3 Processing JSON data

After the JSON file is created and saved, we run this file through the data

processing script (script_2_data_processing_from_json_file.py) and get a

more refined version of the data in the JSON file. This script is never

called directly and has been added as a helper script for the final

visualization process.

10

The data processing includes rearranging the JSON data in a

chronological order, and creating data tables for the x-axis and the y-axis.

These data tables are returned to the calling script and used to plot the

final graphs.

3.4 Data visualization

Data visualization in a graphical form is done using the Dash Python

library; the tool specifically is called plotly.dash [10]. The script used for

this is script_3_plotly_script.py. It takes the JSON file for the state, runs

script_2 on it, gets data tables for the x and y axes, and then goes on to

generate the various graph components.

This script sets the following for our graph:

● The tracing tool is set to a “Marker” with a defined width.

● Layout follows the preset colors, size, and the visibility of the grid,

the labels, and the lines.

● The margins around the graph are set for its placement, and to

ensure sufficient white space.

● The properties of the graph are set, like width, height, background

color, etc.

Once this is done, we are ready to run the local server to display this

graph [11].

11

4. Implementation

4.1 Coding Environment

○ Operating System used: Windows 10

- Undocumented support may exist for macOS

○ Development Environment: Microsoft Visual Studio Code

○ Python version 3.7

4.2 Language + Tools

○ Python version 3.7

○ Google Drive: Sharing data and Backup

○ GitHub: Manage our code and version control

○ pip: Download Python libraries

4.3 Pre-requisites

 The following Python libraries need to be installed to run the code:

1. Anaconda: Anaconda is an open-source distribution for Python and R [8].

Download (see Figures 2 and 3) from:

https://docs.anaconda.com/anaconda/install/windows/

(Figure 2: Anaconda website)

https://docs.anaconda.com/anaconda/install/windows/

12

(Figure 3: Anaconda Setup Wizard)

2. Dash: Dash is a Python framework created by Plotly for creating

interactive web applications. Dash is open source and the applications

built using this framework are viewed on the web browser [5].

Command: “pip install dash”

13

(Figure 4: Execution of pip install dash)

14

(Figure 5: Execution of pip install dash)

3. Pandas: Pandas is a software library written for the Python programming

language for data manipulation and analysis. In particular, it offers data

structures and operations for manipulating numerical tables and time

series.

Command: “pip install pandas”

(Figure 6: Execution of pip install pandas)

https://en.wikipedia.org/wiki/Software_library
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Time_series

15

4. Requests: Requests is an HTTP library for the Python programming

language. It helps to make HTTP requests simpler and easier.

 Command: “pip install requests”

(Figure 7: Execution of pip install requests)

5. Beautiful Soup: Beautiful Soup is a Python package for parsing HTML

and XML documents. It creates a parse tree for parsed pages that can be

used to extract data from HTML, which is useful for web scraping [9].

 Command: “pip install BeautifulSoup4”

(Figure 8: Execution of pip install BeautifulSoup4)

6. PyArrow: Apache Arrow is a development platform for in-memory

analytics. The Arrow Python bindings (also named “PyArrow”) have first-

class integration with NumPy, Pandas, and built-in Python objects.

16

4.4 Loading All Data + Config File

All data for each state was saved in a folder; the location of this folder

(path) needs to be given to the script.

This makes a JSON file for the given state that extracts all the keywords

from the given archive files.

This is done so that we don’t have to use the parser again and again; it

saves a lot of time.

4.5 Extracting Meta Tags

The meta tags are extracted using “script_1_extract.py”. This script makes

a dictionary of the date and all the keywords from each archive file and

adds it to the state’s JSON file.

This script does not take any arguments.

The folder path, and the name of the final file, will have to be changed

manually every time we run the script.

4.6 Amazon Alexa API

Alexa Web Information Service (AWIS) is an API so developers,

researchers, and website owners can access website traffic data, related

links, etc. [4].

AWIS supports the following actions:

UrlInfo - offers access to Alexa's information about websites, including

Traffic Rank and site statistics [7].

TrafficHistory - returns historical Alexa Traffic Rank, Reach per Million,

and Pageviews per Million metrics for websites -- updated daily [7].

SitesLinkingIn - returns a list of websites linking to a given website --

updated weekly [7].

Charges for this tool (see Figure 9) go to the user's AWS account,

according to usage. Recent requests are cached locally to reduce costs

for repeated requests [6].

17

(Figure 9: Prices of Alexa Web API)

To use the API in Python, we use the requests (or re) Python library. The

following script components are required to access the information

properly [6]:

● API-key: The key that you receive when you subscribe to the API.

● Params: The list of parameters that you will be required to change

based on the kind of request you are trying to make to the server.

18

(Figure 10: Our API implementation)

4.7 Visualization - Tables with data trends

 Plotly dash is a very powerful visualization tool.

The tool can be run using “script_1_plotly_script.py”. This script

takes in a JSON file and uses a data fetching function from

“script_2_data_processing_from_json_file.py” to process the data

into a Plotly ready format.

We then define the layout and all the visual requirements for the

figure. These requirements can be changed as per the user’s

requirements and choices.

The Plotly script returns a list of all the dates that were present for

the given state and then makes a graph at the Dash default local IP

address:

https://127.0.0.1:8050/

This will only work on the host machine till the Python script is not

updated. The graph can be downloaded in a PDF format and used

as required [12] [13].

https://127.0.0.1:8050/

19

5. User’s Manual

 In order to start running the program, please download all the libraries that are

listed in the Developer’s Manual. Open the command prompt in your local host and

check the version of Python the device is running. If the device doesn’t have Python

installed, please install it from the internet. After completing this process, proceed and

open the command prompt again and install all the libraries. All the commands to install

a particular library are listed in the Developer’s Manual. Just type the command in the

prompt and libraries will automatically get installed.

After completing these prerequisites, the machine has all the necessary libraries

installed so the code will run smoothly. The first step that the user needs to do is to

download all the data files and save them in one folder. The user needs to copy the

path where the data folder is stored because the user needs to copy this path in the

Python script and the output JSON file will be made in the same directory. After running

the Python script, the user will again go to that folder and see a JSON file there. After

getting the JSON file, the user needs to update the name of the JSON file in the Python

script, which is making the Plotly representation. In order to do that, open the Python

script and in it add just the name of the JSON file. Then run the Python script. After

running the Python script, the user will see the output in which all the years will be

mentioned for which the user has the data. Moreover, there will be a Dash link with

format: http://127.0.0.1:8050/ . If the user opens this link, the graph will appear which

contains the keywords and the time they were used in. Above this graph, the user could

see a lot of different functions such as zoom in, zoom out, download as PNG, autoscale,

etc. These are some of the built-in functions provided by the Plotly Dash library. The

user can download the graph using those icons. Please read all the instructions

carefully and use it as required.

Using this command, the user can run the Python files (see Figure 11).

(Figure 11: Command to run Python scripts)

Command: python name_of_the_file.py

http://127.0.0.1:8050/

20

6. Developer's Manual

6.1 Library Installation

Install the following Python modules before running the Python scripts

● Pyarrow

● Pandas

● Parquet

● Dash

● Beautiful Soup

6.2 Loading files

 Extraction, and JSON output

● Run the “script_1_plotly_script.py” file to make JSON files for all the

states, or simply use the created JSON file.

● We can change the input path, and the name of the final file

depending on what we need. This information can be changed as

shown in Figure 12.

○ The first marking indicates the path to the files, relative to the

current running directory.

○ The second marking indicates the name of the file that the

script is going to create.

(Figure 12: Developer points in the extraction script)

21

6.3 Handling Visualization

● Run the script script_3_plotly_script.py to generate the graphs on

your machine's localhost server.

● We can change the name of the input file, RGB color keys for each

component, the label for each of the axes, the visibility of the

components, and much more. This information can be changed as

shown in Figure 13.

○ The first marker indicates the file name which can be

changed to get the desired JSON input.

○ The second marker indicates the existing RGB matrix that is

being used as the color code for the graph.

(Figure 13: Developer points in the visualization script)

22

 7. Methodology

7.1 Goals of our Users

To analyze the traffic trends for three states

7.2 Subtasks of our goals

● Extract Meta Tags

● Consume RestAPI

● Generate Visualize tables

7.3 Workflows

These descriptions should help the users to understand and interpret the actual

working of our project.

Workflow #1

User → Goal 1 → Workflow 1

Workflow 1 = Service 1A + Service 1B + Service 1C

Service 1A: Extract Data: Go through the Parquet file and grab all dates that are

present in the data.

Service 1B: Extract Data: Go through Parquet files and grab Meta Tags.

From the meta tags, filter out the content associated with

name=“keywords”

Service 1C: Export the data into one file

b. Workflow #2

User → Goal 2 → Workflow 2

Workflow 2 = Service 2A + Service 2B + Service 2C

Service 2A: Visualization: Output JSON object from the collected data

Service 2B: Visualization: Change the Plotly Dash Python script and add the

JSON file of the state for which one needs to visualize the graph.

23

Service 2C: Visualization: Output a graph showing keywords used in that

particular year to search that state.

8. Results:

Figure 14 illustrates the results of running the Python script on the State of Colorado’s

data, using shell commands.

(Figure 14: Code output by running Colorado’s JSON file)

24

GRAPH 1 (COLORADO):

Table 1 illustrates the output from running the data files for Colorado.

 (Table 1: Graph of Colorado)

25

Figure 15 illustrates the results of running the Python script on the State of California’s

data, using shell commands.

(Figure 15: Code output by running the California’s JSON file)

26

GRAPH 2 (CALIFORNIA):

Table 2 illustrates the output from running the data files for California.

(Table 2: Graph of California)

27

Figure 16 illustrates the results of running the Python script on the Commonwealth of

Virginia’s data, using shell commands.

(Figure 16: Code output by running the Virginia JSON file)

28

GRAPH 3 (VIRGINIA: Zoomed In)

Table 3 illustrates the output from running the data files for Virginia.

 (Table 3: Graph of Virginia)

29

9. Scripts

Script 1: script_1_extract.py

import pyarrow.parquet as pq

from bs4 import BeautifulSoup as bs

import re

import os

import json

def extract(file_name):

 masterDict = {}

 df = pq.read_table(source=file_name).to_pandas()

 #print(df)

 htmlContent = df.payload[1]

 soup = bs(htmlContent, 'lxml')

 dateStr = re.search("Date:\s*.+", soup.text).group(0)

 monthAndYear = re.search("[a-zA-Z]{3} [0-9]{4}", dateStr).group(0)

 metaTags = soup.find_all('meta')

 keywords = []

 for tag in metaTags:

 attrs = tag.attrs

 if 'name' in attrs:

 if attrs['name']=="keywords":

 keywordStr = tag.get('content')

 keywordArr = keywordStr.split(",")

 for kwd in keywordArr:

 kwd = kwd.strip()

 keywords.append(kwd)

30

 if monthAndYear not in masterDict:

 masterDict[monthAndYear] = list(set(keywords)) # converting it to set and

back to list to remove duplicates

 masterDict[monthAndYear] = [kwd for kwd in masterDict[monthAndYear]

if kwd != '']

 else:

 masterDict[monthAndYear].append(keywords)

 masterDict[monthAndYear] = list(set(masterDict[monthAndYear]))

 masterDict[monthAndYear] = [kwd for kwd in masterDict[monthAndYear]

if kwd != '']

 print(masterDict)

 return masterDict

directory_list = list()

complete_list = []

for root, dirs, files in os.walk('./California/California', topdown=False):

 for name in files:

 directory_list.append(os.path.join(root, name))

for i in directory_list:

 print(i)

 complete_list.append(extract(i))

 print(complete_list)

print(complete_list)

#json.dump(complete_list, open('california.json', 'w') ,ensure_ascii=False)

json_file = 'california.json'

with open(json_file, 'w', encoding='utf8') as json_file:

 json.dump(complete_list, json_file, ensure_ascii=False)

(Figure 17: Script 1: script_1_extract.py)

31

Script 2: script_2_data_processing.py

import json

from datetime import datetime

import time

def data_fetching(json_file):

 data = json.load(open(json_file, encoding="utf8"))

 month_list_unsorted = []

 new_data = []

 for i in data:

 for j in i.keys():

 if len(i[j]) == 0:

 pass

 else:

 new_data.append(i)

 if j in month_list_unsorted:

 pass

 else:

 month_list_unsorted.append(j)

 print(month_list_unsorted)

 unsorted_dates = [datetime.strptime(value, '%b %Y') for value in

month_list_unsorted]

 sorted_dates = sorted(unsorted_dates)

 month_list_sorted = [value.strftime('%b %Y') for value in sorted_dates]

 print(month_list_sorted)

 ############### Data arrays ##########################

 x_axis = []

 y_axis = []

 for i in month_list_sorted:

 for j in data:

 for k in j.keys():

 if i == k :

32

 for m in j[k]:

 x_axis.append(k)

 y_axis.append(m)

 print(len(x_axis))

 print(len(y_axis))

 return x_axis,y_axis

(Figure 18: Script 2: script_2_data_processing.py)

33

Script 3: script_3_plotly_script.py

import dash

from dash import dcc

from dash import html

import plotly.express as px

import pandas as pd

import plotly.graph_objects as go

app = dash.Dash(__name__)

import script_2_data_processing_from_json_file

file_name = 'california.json'

months, keywords =

script_2_data_processing_from_json_file.data_fetching(file_name)

fig = go.Figure()

fig.add_trace(go.Scatter(

 x=months, y=keywords,

 name='Keywords wise data',

 marker=dict(

 color='rgba(0, 0, 255, 0.95)',

 line_color='rgba(0, 0, 255, 1.0)'

)

))

fig.update_traces(mode='markers', marker=dict(line_width=15, symbol='line-ew',

size=50))

fig.update_layout(

 title= file_name,

 xaxis=dict(

 showgrid=True,

 gridcolor='rgba(166, 166, 166, 0.35)',

 gridwidth=1, # tried different values, same issue

 showline=True,

 linecolor='rgb(128, 128, 128)',

 tickfont_color='rgb(128, 128, 128)',

 showticklabels=True,

34

 dtick=1,

 ticks='outside',

 tickcolor='rgb(128, 128, 128)',

),

 yaxis=dict(

 showgrid=True,

 gridcolor='rgba(166, 166, 166, 0.35)',

 gridwidth=1, # tried different values, same issue

 showline=True,

 linecolor='rgb(128, 128, 128)',

 tickfont_color='rgb(128, 128, 128)',

 showticklabels=True,

 dtick=1,

 ticks='outside',

 tickcolor='rgb(128, 128, 128)',

),

 margin=dict(l=140, r=40, b=50, t=80),

 legend=dict(

 font_size=10,

 yanchor='middle',

 xanchor='right',

),

 width=1100,

 height=1000,

 paper_bgcolor='white',

 plot_bgcolor='white',

 hovermode='closest',

)

app.layout = html.Div(children=[

 html.H1(children='Hello Dash'),

 html.Div(children='''

 Dash: A web application framework for your data.

 '''),

35

 dcc.Graph(

 id='example-graph',

 figure=fig

)

])

if __name__ == '__main__':

 app.run_server(debug=True)

(Figure 19: Script 3: script_3_plotly_script.py)

36

SCRIPT 4

import requests

import pandas as pd

headers = {

 'x-api-key': 'iDnD9oe3FuoG31A2eoAZ5Jt2eR8F4TX2mSb4sVBd',

}

params = (

 ('Action', 'UrlInfo'),

 ('Count', '10'),

 ('ResponseGroup', 'Rank'),

 ('Start', '1'),

 ('Url', 'https://www.facebook.com'),

)

response = requests.get('https://awis.api.alexa.com/api', headers=headers,

params=params)

print(response.content)

list1 = []

for i in response.content:

 #print(i)

 list1.append(i)

print(list1)

print(len(list1))

(Figure 20: Script 4: test 1.py)

37

10. Lessons Learned

10.1 Timeline / Schedule

● Sept-7: Meet the client and discuss the various objectives for this project. Use

cookies and tracking pixels to understand the data collected by websites and

how it influences their activities.

● Sept-14: Decide on the aspect of the project we will be working on and get

approval from the client.

● Sept-21: Presentation1

● Sept-28: Write Python code and add API support to extract meta tags from

each website

● Oct- 5: Document meta tags collected from each of the websites.

● Oct-12: Use Alexa website tool for analyzing the website traffic

● Oct-19: Plot increasing or decreasing activity for each of the websites

● Oct-26: Arrange all keywords and deliverables from the collected data

● Nov-2: Start Visualization as instructed by the client

● Nov-9: Make the box plots for each keyword based on usage

● Nov-16: Run all the keywords through ALEXA and collect required data

● Dec-7: Deliver complete Report and all the collected data

10.2 Problems

One of the problems we faced was the large learning curve of understanding all

our tools. None of our team members had a very good grasp on Python and its

libraries. That made parsing HTML from a Parquet file using BeautifulSoup a little

harder task than we thought. Just getting to open up a Parquet file was a

challenge in itself. We learned from the previous group's work. But since our way

of arranging files and extracting data was different, we had to largely start from

scratch, but keep in mind future extension of this script and the data.

Another challenge was working with such a large volume of data. When

downloading the data from the shared drive in very large batches, it would often

get corrupted, which led to some of the files being incomplete, and it would take

us running the whole script to realize there is something wrong with the data.

This took a lot of our working time and we had to download every file individually

to make sure we had all the data.

Then we had the challenge of exploring the Dash library. Its scale and complexity

led to a lot of design changes in the final graph design.

38

We also faced the problem that the Alexa API that we wanted to use to get

website rankings and then compare the change in ranking with the addition /

removal of keywords had a limitation that they only accepted dates within the

past 4 years. This did not match with the larger range of dates in our data set.

We tried to use other tools in the same API but they were all in real time and so

were not of as much significance to this project.

10.3 Solutions

The large learning curve of all the technical tools was a relatively easy problem to

solve. Throughout our collegiate years at Tech, we have developed a fair idea of

how different programming languages work. Overall, our group had a very low

understanding of Python, but we did some smaller projects and tried keeping it

fairly simple. It also took us a while to understand the .snappy.parquet files and

to explore all the components they have. This gave us a good idea of the Internet

Archive and also of why the previous teams chose to work with these file formats.

After working on the project and finishing up, we have a better understanding of

Parquet files and how to utilize them. Beautiful Soup is a very useful tool for web

scraping with Python. We found Beautiful Soup to help us with reading Parquet

files and extracting needed data from them.

To fix the problem of data corruption on download, we had to manually download

each file individually and then set up the directories for the scripts to run. Our

client also helped us here by giving us access to the data over another platform

but it turned out to be some network issue, wherein very high file sizes would

time out after some time.

To find the useful components from the Dash library, we followed YouTube

tutorials and other projects. This library had a lot of components and labels which

took us a lot of time and reading to keep track of.

The API component of the project could not be integrated very well with the

keyword aspect. Although we have the script and the collection ready to be used,

the lack of data proved it not effective and we were not able to get any results

from the API. It was a really important and big part of this project and we were

really excited to use RESTful API’s and experiment with the various tools the

Alexa API has to offer. This can be a potential direction for teams to work

towards in the future.

Overall, the project gave us a good perspective of collecting and working with

historical data and we now have a much better knowledge and understanding of

how we can run analysis on data.

39

10.4 Future Work

Future teams can work on our existing code and modify it as per their needs.

Moreover, the user can analyze the keyword usage for any website. The only

thing the user needs is the data files and after running the Python script, the

graphs can be generated. Also, the user should be able to take our codebase

and apply that to extracted information from other state’s Parquet files in order to

help with researching state tourism efforts. The other thing is that, by changing

the Python script and setting the corresponding field that needs to be extracted in

the dictionary, the user can extract images, website description, social media

links, and analysis tools the particular website is using and visualize the data.

Basically, these Python scripts could be used to extract anything from a given

website and then display the results in the graphical manner. If the user doesn’t

want graphs, then he can make some change in our Plotly-Dash Python script

and can add any other library of his own choice and extract the results. The

future groups could use this to their advantage and can help with researching

state tourism efforts.

40

11. Acknowledgements

 Florian Zach, Ph.D. - Assistant Professor in the Howard Feiertag Department of

Hospitality and Tourism Management

Email: florian@vt.edu

Edward Fox, Professor of class CS 4624- Multimedia/Hypertext

Email: fox@vt.edu

mailto:florian@vt.edu

41

12. References

1. Patel, Dr. Birajkumar V., and Dr. Raina D. Gaharwar. Search Engine

Optimization (SEO) Using HTML Meta-Tags. International Journal of Scientific

Research in Science and Technology, 2018, vol. 4, pp. 1–6.

2. Maria Cristina Enache, 2014. "Optimization Methods And Seo Tools," Risk in

Contemporary Economy, Dunarea de Jos University of Galati, Faculty of

Economics and Business Administration, pages 98-

103, https://EconPapers.repec.org/RePEc:ddj:fserec:y:2014:p:98-103.

3. Hardwick, Joshua. Meta Tags for SEO: A Simple Guide for Beginners. (29

September, 2020). Retrieved December 10, 2021, from ahrefs.com/blog/seo-

meta-tags/.

4. Keyword Research, competitor analysis, & website ranking: Alexa. Alexa.com.

(2020, October 7). Retrieved November 9, 2021, from https://www.alexa.com/.

5. Dash.com, Dash documentation & user guide. Plotly. (2021). Retrieved

November 9, 2021, from https://dash.plotly.com/.

6. Catania, P. J., & Keefer, N. (1987). The Marketplace. Amazon. Retrieved

December 10, 2021, from https://aws.amazon.com/marketplace/pp/prodview-

w6qmxismbbs7u.

7. Amazon.com, Developer portal. (2021). Retrieved December 10, 2021, from

https://awis.alexa.com/developer-guide.

8. Anaconda.com, Individual edition. Anaconda. (2021). Retrieved December 10,

2021, from https://www.anaconda.com/products/individual.

9. Beautiful Soap 4.9.0 Documentation, Beautiful Soup documentation. Beautiful

Soup Documentation - Beautiful Soup 4.9.0 documentation. (2021). Retrieved

December 10, 2021, from

https://www.crummy.com/software/BeautifulSoup/bs4/doc/.

10. Dash enterprise. (2021). Retrieved December 10, 2021, from

https://dash.gallery/Portal/.

11. Charming Data. Introduction to dash plotly: Data Visualisation in Python -

YouTube. (2020). Retrieved December 10, 2021, from

https://www.youtube.com/watch?v=hSPmj7mK6ng.

12. Awesome Open Source, The top 236 plotly dash open source projects on

GitHub. (2018). Retrieved December 10, 2021, from

https://awesomeopensource.com/projects/plotly-dash.

13. Ucg8j: Awesome-dash. (2017). UCG8J/awesome-dash: A curated list of

Awesome Dash (plotly) resources. GitHub. Retrieved December 10, 2021, from

https://github.com/ucg8j/awesome-dash.

14. Abhinav Verelly, Ashutosh Bhattarai, Shane Grishaw, David Gruhn. (2021). US

State Tourism, Virginia Tech Department of Computer Science, Blacksburg, VA,

CS4624 Final Report (Spring 2021). Retrieved December 10, 2021, from

https://econpapers.repec.org/RePEc:ddj:fserec:y:2014:p:98-103
https://dash.plotly.com/

42

http://hdl.handle.net/10919/103269

