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ABSTRACT
Background. Using DNAmicroarrays, we previously identified 451 genes expressed in
19 different human tissues. Although ubiquitously expressed, the variable expression
patterns of these ‘‘housekeeping genes’’ (HKGs) could separate one normal human
tissue type from another. Current focus on identifying ‘‘specific disease markers’’ is
problematic as single gene expression in a given sample represents the specific cellular
states of the sample at the time of collection. In this study, we examine the diagnostic
and prognostic potential of the variable expressions of HKGs in lung cancers.
Methods. Microarray and RNA-seq data for normal lungs, lung adenocarcinomas
(AD), squamous cell carcinomas of the lung (SQCLC), and small cell carcinomas
of the lung (SCLC) were collected from online databases. Using 374 of 451 HKGs,
differentially expressed genes between pairs of sample types were determined via two-
sided, homoscedastic t -test. Principal component analysis and hierarchical clustering
classified normal lung and lung cancers subtypes according to relative gene expression
variations. We used uni- and multi-variate cox-regressions to identify significant
predictors of overall survival in AD patients. Classifying genes were selected using a set
of training samples and then validated using an independent test set. Gene Ontology
was examined by PANTHER.
Results. This study showed that the differential expression patterns of 242, 245, and 99
HKGs were able to distinguish normal lung from AD, SCLC, and SQCLC, respectively.
From these, 70HKGswere common across the three lung cancer subtypes. These HKGs
have low expression variation compared to current lung cancer markers (e.g., EGFR,
KRAS) and were involved in the most common biological processes (e.g., metabolism,
stress response). In addition, the expression pattern of 106HKGs alone was a significant
classifier of AD versus SQCLC. We further highlighted that a panel of 13 HKGs was an
independent predictor of overall survival and cumulative risk in AD patients.
Discussion. Here we report HKG expression patterns may be an effective tool for
evaluation of lung cancer states. For example, the differential expression pattern of 70
HKGs alone can separate normal lung tissue from various lung cancers while a panel
of 106 HKGs was a capable class predictor of subtypes of non-small cell carcinomas.
We also reported that HKGs have significantly lower variance compared to traditional
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cancer markers across samples, highlighting the robustness of a panel of genes over any
one specific biomarker. Using RNA-seq data, we showed that the expression pattern
of 13 HKGs is a significant, independent predictor of overall survival for AD patients.
This reinforces the predictive power of a HKG panel across different gene expression
measurement platforms. Thus, we propose the expression patterns of HKGs alone may
be sufficient for the diagnosis and prognosis of individuals with lung cancer.

Subjects Bioinformatics, Computational Biology, Genomics, Oncology, Medical Genetics
Keywords Housekeeping genes, Expression patterns, Lung adenocarcinoma, Small cell
carcinoma, Squamous cell carcinoma, Non-small cell carcinoma, Diagnosis and prognosis

INTRODUCTION
In 1965, Watson characterized housekeeping genes (HKGs) as essential genes, those
‘‘expressed in all tissues’’ (Watson & Levinthal, 1965). Since then, it has been further
refined as genes required for the maintenance of functions essential for a cell’s existence,
ubiquitously expressed across tissue type and developmental or cell cycle stage (Eisenberg &
Levanon, 2013). In addition, other studies have suggested several unique genomic features
of HKGs. For example, HKGs were shown to have shorter introns and exons (Vinogradov,
2004; Eisenberg & Levanon, 2013), lower conservation of promoter sequences (Lawson &
Zhang, 2008), and protein products enriched in some domain families (Lehner & Fraser,
2004). However, one important notion that needs to be re-examined is the assumption
that HKGs maintain constant expression levels across all cells and conditions (Yang et al.,
2002; Rubie et al., 2005).

The advent of high-throughput screening technologies such asmicroarrays andRNA-Seq
provides the ability to formulate a more concrete description of HKGs on the genomic
scale. One such early, large-scale study examined the expression levels of 7,000 genes in
11 different human adult and fetal tissues, from which Warrington et al. (2000) identified
535 HKGs that were expressed in fetal development and throughout adulthood in all
tissues. Subsequently, Hsiao et al. (2001) analysed the expression pattern of 7,070 genes
across 19 human tissue types to identify 451 HKGs, 358 of which were common to
Warrington’s list. These two studies were particularly important as they highlighted that
HKGs, while constitutively expressed across tissues, did not maintain constant expression
levels (Warrington et al., 2000; Hsiao et al., 2001). Rather, Hsiao et al. (2001) demonstrated
that their expression patterns were sufficient to differentiate between human tissue types.

Since HKGs can distinguish one normal human tissue type from another, it is natural
to ask whether these same genes may be used in discriminating between diseased tissues.
Cancer is a multifactorial disease whose characteristics shift with time and space. In a study
focused on breast neoplasms, it was revealed that themost frequently used traditional HKGs
(e.g., GAPDH, ACTB and TUBA1A) appeared significantly altered in expression levels from
one sample to the other (Janssens et al., 2004). Byun, Logothetis & Gorlov (2009) further
noted that HKGs are more likely to be differentially expressed in prostate tumorigenesis,
perhaps indicating their driving role in cancer development.
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For this study, we focus on a subset of 374 of the 451 HKGs (originally identified
by Hsiao et al., 2001) that are common to the three standard Affymetrix microarrays
containing human genes: HuGene-FL (∼7000 unique sequences), HG-U95A (∼12,000
unique sequences), and HG-U133A (∼22,000 unique sequences) (Table S1). Using this
set of 374 HKGs, we can extend our analysis to disease studies using different expression
platforms ranging from multiple array types (HuGene-FL and HG-U95Av2) to RNA-Seq.
Our goal is to test whether the expression patterns of a cluster of HKGs can serve as markers
in fingerprinting human lung cancer.

MATERIAL AND METHODS
Affymetrix oligonucleotide microarray data was collected from online databases,
processed, and then stored in a relational database. The database for lung cancers,
containing 13 normal lung samples, 89 adenocarcinomas of the lung (AD), seven
small cell lung carcinoma (SCLC), and 24 squamous cell lung carcinoma (SQCLC),
using the Affymetrix U95A arrays were downloaded from the Broad Institute (http:
//portals.broadinstitute.org/cgi-bin/cancer/publications/view/62). Additional microarray
datasets using the Affymetrix U133 arrays, GDS4794 (23 SCLC, 42 Normal), GDS3627
(40 AD, 18 SQCLC), and GDS3257 (58 AD, 49 Normal) were downloaded from NCBI’s
database (https://www.ncbi.nlm.nih.gov/gds/) and used for classification of lung cancers.
The Affymetrix microarray expression values were computed in each study using standard
analysis tools such as the Affymetrix Microarray Suite (MAS) software, RMA, or gcRMA.
Then for global normalization of each microarray dataset, the average expression signal in
an array was made equal to 100.

The classification of samples for survival was performed with HKG expression data
from Agilent Whole Human Genome Microarrays GSE13213 (117 AD) as the training set
and the RNA-Seq data of 519 AD samples as the testing set analysed using normalized
RSEM values from the TCGA-LUAD study, downloaded through UCSC Xena Browser
(http://xena.ucsc.edu/).

Differentially expressed genes between pairs of sample types were determined using
two-sided, homoscedastic t -test followed by FDR (Benjamini–Hochberg) correction with
Microsoft Excel. All differences in the mean log (expression levels) between samples of
two groups (e.g., lung cancer versus normal lung) in the training set were determined to
be statistically significant if p< 0.05 following FDR (Benjamini–Hochberg) correction. In
every application the use of different microarray datasets as ‘‘training’’ and ‘‘testing’’ sets
as well as across different gene expression platforms (i.e., microarrays and RNA-seq) serve
to minimize the effects of overfitting that are typically seen when elucidating differentially
expressed genes (Tinker, Boussioutas & Bowtell, 2006).

Hierarchical clustering provided unsupervised classification of normal tissue and
tumours according to relative variations in gene expression patterns of the 374
HKG’s. Hierarchical clustering computations were executed with GENE-E (https:
//software.broadinstitute.org/GENE-E/). Although the choice of clustering algorithm
is somewhat subjective (i.e., there is no ‘‘correct’’ cluster algorithm for all applications)
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(Quackenbush, 2006), the analysis parameters we utilized in this study have been shown
to accurately and reproducibly distinguish between various normal tissues based on
expression levels of HKGs reliably expressed in all specimens (Hsiao et al., 2001). Samples
analysed using both HuGeneFL and U95Av2 microarrays were used in cluster analysis.

Principal component analysis (PCA) and corresponding 95% confidence ellipses were
performed with the R package, FactoMineR (http://factominer.free.fr). Equal numbers of
samples for PCA were randomly selected from each group in a given testing set.

Survival analysis was performed over 451 HKGs with the TCGA-LUAD study. Samples
missing ‘‘Overall Survival’’, age, gender, and status of mutational indicators of lung cancer
(KRAS, EGFR, and ALK) were excluded. To identify significant predictors of overall
survival we used uni- and multi-variate cox–regressions and to examine the strength of
gene expression-guided risk groups we utilized Kaplan–Meier survival analyses, both of
which were performed with SPSS. Risk scores were derived from the Cox proportional
hazards regressionmodel, with themedian score (−0.177) separating ‘‘high-risk’’ and ‘‘low-
risk’’ groups (Parker et al., 2008). Gene Ontology examinations were through PANTHER
(http://pantherdb.org), which utilizes binomial distribution test and Bonferroni correction
in overrepresentation analyses.

RESULTS
Housekeeping genes alone are sufficient to distinguish normal tissue
from lung cancers
Our previous work demonstrated that the 451 HKGs are sufficient to distinguish one
normal human tissue from another (Hsiao et al., 2001). In this study, we explored the
possibility that 374 common HKGs can also be used to distinguish between normal and
diseased tissues across different gene expression platforms and laboratories. Samples for
lung cancers and normal lung tissues were used for this analysis. Expression data of 49
normal lung tissues and 58 AD from GDS3257 using the Affymetrix U133A arrays at the
NIHwere used as a ‘‘training set’’. Two-tailed t -test highlighted 242 differentially expressed
HKGs between the AD and normal lung tissues. These HKGs were then used to classify
the microarray data from the Broad Institute using the Affymetrix U95A arrays (‘‘testing
set’’). The resulting hierarchical cluster demonstrates that HKGs can separate the normal
lung from AD (Fig. 1A).

The same process was repeated with the goal of identifying gene expression patterns
between normal tissue, SCLC and SQCLC. Once again, training sets were utilized to select
for differentially expressed genes. For SCLC analysis, 42 normal and 23 SCLC samples for
the training set were from GDS4794 using the Affymetrix U133 Plus 2 arrays in Japan. In
the SQCLC study, 12 SQCLC and six normal randomly selected samples from the Broad
Institute were used for the training set. Distinct clustering was accomplished with 245
HKGs in 13 normal versus seven SCLC test samples from the Broad (Fig. 1B) and 99 HKGs
in the remaining seven normal versus nine SQCLC test samples also from the Broad dataset
(Fig. 1C; Table S2).

Comparison of the three gene lists used in the Fig. 1 allowed us to identify 70 differentially
expressed HKGs that are common among the lung cancer samples such as 26S protease
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Figure 1 HKGs alone are sufficient to distinguish normal lung tissue from various lung cancers.Using 374 HKGs identified by previous study
(7), hierarchical clustering analysis shows that (A) 242 genes identified in a training set have significant differential expression that are sufficient to
separate normal lung from most lung adenocarcinoma in an independent test set; while (B) 245 genes identified in a training set can distinguish
normal lung from small cell carcinoma in a test set and (C) 99 genes from a training set can distinguish normal lung from squamous cell carcinoma
in a test set. P < 0.01 for A, B and C. NL, Normal Lung; AD, Adenocarcinoma; SC, Small Cell Carcinoma; SQ, Squamous Cell Carcinoma.

Full-size DOI: 10.7717/peerj.4719/fig-1

regulatory subunit 4 (PSMC1), ubiquitin-conjugating enzyme E2 C (UBE2C), ubiquitin-
conjugating enzyme E2 D3 (UBE2D3), proteasomal non-catalytic subunit (PSMD2), ras
homolog family member A (RHOA), and FYN proto-oncogene, Src family tyrosine kinase
(FYN) (Fig. 2A, Table S3). We report here that the expression patterns of these 70 HKGs
alone could separate six normal lung tissues from 18 (six AD, six SCLC, six SQCLC)
cancerous tissues in the Broad test set using principal component analysis (Fig. 2B).
The results were further confirmed via unsupervised hierarchical clustering and k-means
clustering analysis (Figs. S1, S2). Ontology analysis revealed that these 70 genes were largely
involved in the most common biological processes such as those involved in metabolism,
cell cycle regulation, and stress and immune response (Table 1). Many studies have shown
that the four most represented pathways of the 70 HKGs (integrin signalling, ubiquitin
proteasome, EGF receptor signalling, and FGF signalling) have been reported to regulate
cancer growth and metastasis in multiple cancer types (Czubayko et al., 1997; Tamura et
al., 1999; Frezza, Schmitt & Ping Dou, 2011).

The 70 diagnostic housekeeping genes exhibit low variation across
and within multiple lung cancer subtypes compared to current
disease markers
We used six known lung cancer markers, epidermal growth factor receptor (EGFR),
anaplastic lymphoma receptor tyrosine kinase (ALK), GTPase KRas (KRAS), hepatocyte
growth factor receptor (MET), phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic
subunit alpha isoform (PIK3CA), and ret proto-oncogene (RET) to compare the coefficient
of variation (CV) of our 70 HKGs set with cancer datasets. Using the Broad dataset, we
showed that KRAS has the lowest average CV, 0.54, among the six selected markers across

Chang et al. (2018), PeerJ, DOI 10.7717/peerj.4719 5/17

https://peerj.com
https://doi.org/10.7717/peerj.4719/fig-1
http://dx.doi.org/10.7717/peerj.4719#supp-5
http://dx.doi.org/10.7717/peerj.4719#supp-1
http://dx.doi.org/10.7717/peerj.4719#supp-2
http://dx.doi.org/10.7717/peerj.4719


Figure 2 Cluster of normal lung tissue from lung cancer samples demonstrates separation power of
using 70 HKGs. The numeric labels indicate the number of genes used to differentiate normal lung versus
cancers shown in Fig. 1. (A) There are 70 HKGs with significant differential expression patterns common
to AD, SCLC and SQCLC. (B) These 70 HKGs alone were able to achieve separation in an independent
test set of six randomly selected normal lung tissues from AD, SCLC and SQCLC. NL, Normal Lung; AD,
Adenocarcinoma, SCLC, Small Cell Carcinoma; SQCLC, Squamous Cell Carcinoma.

Full-size DOI: 10.7717/peerj.4719/fig-2

120 lung cancer samples. In contrast, 62 out of our 70 genes had an average CV across
the same samples less than 0.54 (Table S3). Examining the 120 lung cancer samples, only
UBE2C and dual specificity protein phosphatase 1 (DUSP1) had average CVs greater than
1 (1.06 and 1.04, respectively). The low variance of these 70 genes across three major lung
cancer types suggests a common set of genetic drivers may be involved in lung cancer
development. In addition, cancer subtype analysis showed that the known cancer markers
have relatively high variation within the subtypes, for example Table 2 shows that ALK had
a CV of 5.19 in AD of the lung, 1.69 in SCLC and 10.33 in SQCLC. Similarly, RET had
a CV of 0.44 in SCLC, 4.90 in AD and 5.10 in SQCLC. In contrast, among our 70 genes,
Table S3 shows that UBE2C has the greatest CV, 1.91 in AD, markedly lower than the CVs
seen in commonly known cancer marker, ALK and RET. Furthermore, Table 2 shows that
the 10 HKGs with the lowest CVs are smaller than 0.34. The relatively low variance of the
70 HKGs within the normal samples and the cancer subtypes may improve their clinical
reliability in serving as cancer biomarkers.

Housekeeping genes alone can also differentiate lung
adenocarcinoma from squamous cell carcinoma
We then assessed the ability of HKGs to distinguish two subtypes of non-small cell
carcinoma (NSCLC). Utilizing GDS3627 data, with 40 AD and 18 SQCLC selected as
the training set, we identified 106 differentially expressed genes between AD and SQCLC
(Table S4). Additional assessment with PCA showed that the expression patterns of these
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Table 1 Ontology and pathway analysis of 70 shared genes among the three lung cancer subtypes (AD,
SCLC, SQCLC).

Biological process:
-Primary metabolic process
-Cell communication
-Cell cycle regulation
-Stress response
-Immune response
Molecular function:
-Protein binding
-Nucleic acid binding
-Hydrolase activity
-Enzyme regulator activity
-Structural constituent of
cytoskeleton
Cellular components:
-Intracellular
-Nucleus
-Plasma membrane
-Protein complex
Pathway:
-Integrin signaling pathway
-Ubiquitin proteasome pathway
-EGF Receptor signaling pathway
-FGF signaling pathway

106 genes displayed clear separation of AD and SQCLC in a test set comprised of 10
randomly selected samples for AD and SQCLC from the Broad dataset. This finding
reinforces the value of HKGs as class predictors (Fig. 3).

While neurofilament light polypeptide (NEFL) and dishevelled segment polarity protein
3 (DVL3) show fold changes of 3.26 and 2.09, respectively, the remaining 104 HKGs have
fold changes less than 2. A total of 34 different pathways were associated with the 106
HKGs. Examination of 15 pathways containing the greatest number of the 106 HKGs
reveals those critical in cancer development such as apoptosis signalling, angiogenesis,
p53, and glycolysis (Table 3). Furthermore, many genes are involved in multiple different
pathways. For example, A-Raf proto-oncogene, serine/threonine kinase (ARAF) appears in
the angiogenesis pathway as well as integrin, VEGF, FGF, and EGF signalling. In addition,
ARAF comprises known functions involving cancer development such as activation
of MAPK/ERK (associated with cell growth) and binding to pyruvate kinase isozymes
M1/M2 (PKM2), critical for the Warburg effect. Furthermore, the 106 HKGs were also
reported to link to diseases such as Alzheimer, Parkinson, and Huntington. Interestingly,
the differentially expressed HKGs associated with the ubiquitin proteasome pathway
all had lower expression in AD compared to SQCLC. The wide range of diseases and
processes associated with the 106 HKGs highlights their roles in basic cellular processes
and maintenances.
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Table 2 Top 10 HKGs with the lowest average coefficient of variation. Among the 70 shared HKGs, these 10 genes have a CV less than 0.34 and a
maximum difference in CV of 0.167 (in HYAL2) across cancer subtypes.

Coefficient of variation

Accession number Gene name Official symbol NL AD SCLC SQCLC

P61077 Ubiquitin-conjugating enzyme E2 D3 UBE2D3 0.204 0.204 0.142 0.257
P61586 Transforming protein RhoA RHOA 0.087 0.179 0.204 0.223
P27348 14-3-3 protein theta YWHAQ 0.111 0.241 0.177 0.213
Q16531 DNA damage-binding protein 1 DDB1 0.074 0.199 0.165 0.296
Q13418 Integrin-linked protein kinase ILK 0.191 0.229 0.260 0.193
P07910 Heterogeneous nuclear ribonucleoproteins C1/C2 HNRNPC 0.124 0.189 0.307 0.188
Q12891 Hyaluronidase-2 HYAL2 0.266 0.194 0.339 0.172
P55061 Bax inhibitor 1 TMBIM6 0.168 0.278 0.257 0.180
P50991 T-complex protein 1 subunit delta CCT4 0.126 0.293 0.128 0.298
Q15233 Non-POU domain-containing octamer-binding protein NONO 0.081 0.250 0.234 0.238
P01116 Kirsten rat sarcoma viral oncogene homolog KRAS 0.240 1.027 0.330 0.262
Q9UM73 ALK receptor tyrosine kinase ALK 2.066 5.190 1.692 10.334
P07949 ret proto-oncogene RET 1.842 4.899 0.440 5.100
P00533 Epidermal growth factor receptor EGFR 0.413 1.897 1.408 0.903
P08581 Hepatocyte growth factor receptor MET 0.961 1.918 1.413 0.836
P42336 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic

subunit alpha isoform
PIK3CA 0.367 0.561 0.655 0.666

Notes.
aBolded gene symbols are housekeeping genes.
NL, Normal Lung; AD, Adenocarcinoma; SCLC, Small Cell Lung Carcinoma; SQCLC, Squamous Cell Lung Carcinoma.

Housekeeping gene expression is an independent predictor of
overall survival in lung Adenocarcinoma
Much of the focus on individual gene expression has been on its value as a prognostic
marker in disease states (Beer et al., 2002; Shedden et al., 2008). Here we demonstrate that
a panel of HKGs may be a valuable tool in predicting overall survival for AD. The list of
HKGs was first ranked by log-rank test P-values gained through Cox-regression analysis
of the training set ( GSE13213) data for 116 patients using Agilent arrays. Survival times
for the 116 patients are listed in Table S5. Utilizing the resulting list of 13 significant
HKGs (p< 0.05, unadjusted) from the training set (Table 4), samples from the testing set
(TCGA-LUAD, RNA-Seq data for 576 patients) were plotted on a continuous risk curve;
the median score (−0.177) separated ‘‘low’’ and ‘‘high’’ risk groups. These risk groups,
classified by expression of 13 HKGs, showed average difference of 2,078 days in overall
survival (mean low risk-mean high risk) (Table 5). To test whether this response was
a viable and independent predictor, we performed multivariate analyses to include age,
gender, and the presence of known mutational drivers (KRAS, EGFR, and ALK) (Table 6).
Our risk group classification was the only significant estimator of overall survival.

Interestingly,most of the 13 individualHKGswere not individually significant predictors
of overall survival in the testing set. Indeed, the greatest differenceswere an average 2.32-fold
decrease in pleckstrin and Sec7 domain containing (PSD) and 2.07-fold increase in 60S
ribosomal protein L27 (RPL27) in the high-risk group (Table 4). In the testing set, all but
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Figure 3 Expression of 106 HKGs is a significant class predictor for subsets of non-small cell lung can-
cers. Ten samples each of AD and SQCLC were randomly selected as testing set, which were able to be dis-
tinguished by 106 differentially expressed HKGs. AD, Adenocarcinoma; SQCLC, Squamous Cell Carci-
noma.

Full-size DOI: 10.7717/peerj.4719/fig-3

Table 3 Examples of pathways involved in 106 differentially expressed genes between AD and SQCLC.

Pathway Genes

Huntington disease NCOR2, GAPDH, ARF4, CAPN2, ARF3, TUBB, DYNLL1
Angiogenesis ARHGAP1, ARAF, DVL3, HSPB1
Ubiquitin proteasome pathway PSMC1, UBE2C, PSMD2, PSMD7
Alzheimer disease NCSTN, DVL3, PSEN1
Integrin signaling pathway ARAF, ILK, ARF3
VEGF signaling pathway ARHGAP1, ARAF, HSPB1
FGF signaling pathway ARAF, YWHAZ, YWHAQ
EGF receptor signaling pathway ARAF, YWHAZ, YWHAQ
Parkinson disease SEPT2, YWHAZ, YWHAQ
Cytoskeletal regulation by Rho GTPase ARHGAP1, TUBB, STMN1
Notch signaling pathway NCOR2, NCSTN, PSEN1
Apoptosis signaling pathway TMBIM6, ATF4
p53 pathway HDAC1, HMGB1
Glycolysis GAPDH, PGAM1
Wnt signaling pathway HDAC1, DVL3

Notes.
aBolded gene symbols have higher expression in AD compared to SQCLC.
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Table 4 Thirteen HKGs significant in predicting overall survival in patients with AD.

Accession number Gene name Official symbol P-value
(training)

P-value
(testing)

Fold change
(testing)

P21333 Filamin-A FLNA 0.000 0.140 2.00
P62873 Guanine nucleotide-binding protein subunit beta-1 GNB1 0.033 0.465 2.01
P50914 60S ribosomal protein L14 RPL14 0.004 0.513 2.03
P62899 60S ribosomal protein L31 RPL31 0.003 0.918 2.03
Q06323 Proteasome activator complex subunit 1 PSME1 0.032 0.359 2.04
O00483 Cytochrome c oxidase subunit NDUFA4 NDUFA4 0.012 0.378 2.04
P61343 60S ribosomal protein L27 RPL27 0.024 0.090 2.07
A5PKW4 Pleckstrin and Sec7 domain containing PSD 0.016 0.000 0.43
P32969 60S ribosomal protein L9 RPL9 0.038 0.038 0.49
Q14011 Cold-inducible RNA-binding protein CIRBP 0.011 0.031 0.49
P20807 Calpain-3 NCL 0.015 0.094 0.50
P30084 Enoyl-CoA hydratase, mitochondrial ECHS1 0.037 0.221 0.50
P18124 60S ribosomal protein L7 RPL7 0.014 0.793 0.50

Table 5 Mean andmedian survival times for two risk groups of patients with adenocarcinoma of lung using 13 HKGs.

Mean Median

95% confidence 95% confidence

Survival (days) Std. error Lower Upper Survival (days) Std. error Lower Upper

Low risk group 3,560.98 352.23 2,870.61 4,251.35 2,617 384.62 1,863.14 3,370.85
High risk group 1,482.93 213.60 1,064.27 1,901.58 995 80.80 836.64 1,153.35
Difference 2,078.35 1,619

Table 6 Multivariable hazards analysis of overall survival for patients with lung adenocarcinoma us-
ing 13 HKGs. Compared to the presence of KRAS/EGFR/ALK mutations, age, and gender of patients, risk
group classification by the expression of 13 HKGs is the only significant predictor of overall survival using
multivariable hazards analysis.

95% confidence

P-value Hazard ratio Lower Upper

Risk group 0 3.29 2.20 4.92
KRAS/EGFR/ALK mutation 0.268 0.98 0.66 1.45
Age 0.508 1.01 0.99 1.03
Gender 0.052 0.70 0.48 1.03

three of these HKGs were not individually significant (p> 0.05); however, their removal
from the panel led to a marked decrease in predictive value. As PSD was determined as the
most significant individual gene in our testing set and had one of the highest fold changes,
we utilized PSD alone to determine risk groups. Our results show a marked reduction in
differences of cumulative hazard between the two groups from classification by 13 HKGs
(Fig. 4). This finding reinforces the value of a panel of genes over any one specific biomarker
in disease prognosis.
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Figure 4 HKGs are significant predictors of long-term hazard in patients with adenocarcinoma. Clas-
sification of individuals with AD into ‘‘high’’ or ‘‘low’’ risk groups by (A) PSD expression alone led to a
marked decrease in the difference of cumulative hazard of the two risk groups when compared to classifi-
cation by (B) 13 HKGs expression.

Full-size DOI: 10.7717/peerj.4719/fig-4

While 5 out of the 13 HKGs are ribosomal protein-related genes, not all the ribosomal
protein encoding genes responded in the same way. RPL14, RPL31, and RPL27 all displayed
increases in high-risk individuals whereas RPL9 and RPL7 were decreased. Despite studies
having examined the roles of RPLs in the regulation of the MDM2/MDMX–p53 cascade,
much remains unknown on how individual RPLs may function in cancer progression
(Zhang et al., 2003; Zhou et al., 2015).

DISCUSSION
Much of the efforts studying disease states using microarray and RNA-Seq technology have
focused on the identification of ‘‘specific disease markers’’ (Bubendorf et al., 1999; Golub et
al., 1999; Glynne et al., 2000). Although the value of these efforts is undeniable, it remains
a challenge to find suitable analytical tools that will provide reliable conclusions. As we
have discussed previously, the gene expression patterns in any given sample represents the
specific cellular states of the sample at the time of collection (Hsiao et al., 2001). In other
words, cancers at different stages may express different markers. For example, the use of
prostate-specific antigen in testing for prostate cancer has yielded much criticism due to
its high false positive rates (Potts, 2000). Similarly, while BRCA1 does significantly increase
risk of breast cancer, germline mutations of this gene only account for 3% of all breast
cancer cases (Whittemore, Gong & Itnyre, 1997). Therefore, there have been efforts towards
examining the relationship between sets of genes or utilizing a panel of biomarkers. For
example, our previous study highlights that using 3 sets of ratios, instead of one set, between
two genes increased differential diagnosis accuracy from 90% to 99% in lung cancer and
mesothelioma (Gordon et al., 2002).
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HKGs offer a potential solution to the problems of specific markers. Their constitutive,
and relatively high, expressions in all cells provide assurance of being identifiable in
any sample (Caracausi et al., 2017). Furthermore, studies have shown that HKGs cannot
be assumed to maintain constant expression levels in all cells and conditions (Hsiao et
al., 2001; Barber et al., 2005). Others have also examined the states of HKGs in cancers;
Blanquicett et al. notes that 15 traditional HKGs (e.g., PGK, GAPDH, and β-Actin)
demonstrate significant expression variations between carcinomatous and normal liver
samples (Blanquicett et al., 2002). Similarly, Rubie et al. found that HKGs that code for
the metabolic enzymes, PGK and GAPDH, show high up-regulation in cancerous versus
normal tissues from the pancreas, stomach, and colon (Rubie et al., 2005). In our study, we
show that the expression patterns of 70 HKGs alone can significantly differentiate between
normal and lung cancer samples.

Our study also highlights that these 70 HKGs maintain low levels of variance across
tumour samples when compared to accepted markers of lung cancer (e.g., KRAS, ALK,
RET). As HKGs are largely responsible for basic cellular maintenance, this suggests that
our identified list of HKGs may be the common drivers of lung cancer development. While
some of the 70 HKGs (e.g., PSMD2) have been identified by other genome-wide association
studies as relevant in single subtypes of lung cancer development (AD), many have not
been fully examined, adding to the list of possible targets for therapeutic development
(Matsuyama et al., 2011). In addition, other HKGs have been seen to drive pathogenesis
across tissue types. For example, overexpression of ubiquitin-conjugating enzyme E2C
(UBE2C) has recently been thought to play a role in not only NSCLC, but also gastric,
colorectal, and breast cancers (Wang et al., 2015; Pellino et al., 2016; Yang et al., 2016).
Despite this low variance of HKGs across lung cancer samples, our study shows that a panel
of only 106 differentially expressed HKGs was able to act as a class predictor between two
subtypes of NSCLC (SQCLC and AD).

Furthermore, the expression patterns of 13 HKGs alone provided significant prognostic
value, estimating 2,078 days in overall survival difference between the high and low risk
groups. These results are independent of traditional clinical markers. Importantly, we
utilized separate datasets for training and testing to circumvent issues of overfitting.
Moreover, our training set being microarray data and our testing set being from RNA-Seq
demonstrates the robustness of a panel of 13 HKGs across different gene expression
measurement technologies.

The results of this study are consistent with the idea that while HKGs may maintain
relatively stable gene expressions among similar tissue-type samples, their expression
profiles remain tissue and disease specific (Warrington et al., 2000; Hsiao et al., 2001). The
disease-specificity of HKG expressions demonstrates the predictive capabilities for lung
cancers, while its ubiquitous and low intra-tissue variance allows for its reproducibility
across different microarray platforms and RNA-seq technology. However, there remains
translational challenges. For example, it has been shown that differentmicroarray platforms
displayed varying degrees of repeatability, reproducibility, and consistency (Consortium,
2006; Shi et al., 2008). Due to lack of public datasets, this study was largely constrained to
two microarray types (HuGeneFL and U95v2).
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CONCLUSIONS
Overall, our findings reinforce both the diagnostic and prognostic power ofHKGexpression
patterns. Given their ubiquitous nature and role in maintenance of basic cellular functions,
it is possible that HKGs act as drivers in lung cancer. Thus, while it has been reported
that HKGs evolve at a slower rate than other genes (Zhang & Li, 2004), it will be of
interest to examine the mutational patterns of HKGs and further validate their relevance
in lung cancer development. Furthermore, as we have demonstrated, HKGs is a strong
predictor of ‘‘low’’ and ‘‘high’’ risk patients whom differ significantly in overall survival.
It is therefore important that future studies examine the correlation of HKG patterns
to the morphology and histology of lung cancer tissues; because while histology may
provide initial stratification of patients into rough classes, HKGs may offer a more reliable
method of classification. Consequently, the ability to identify high-risk individuals in early
lung cancer stages may allow for adjustments of therapeutic interventions and increased
survival.
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