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Abstract Wind at the water‐air interface is an important driver of hydrologic and biogeochemical processes
in lakes. Satellite synthetic aperture radar (SAR) is commonly used over the ocean to retrieve wind fields using
backscatter coefficients which are sensitive to wind‐driven surface water roughness; however, its application to
lakes has been largely unexplored. Here we assess the utility of SAR to retrieve wind fields specifically for
lakes. We estimated wind direction from SAR backscatter using the Modified Local Gradient method for
Surface Water Ocean Topography (SWOT) and Sentinel‐1 data. The estimated wind direction was then used as
an input into a C‐band geophysical modeling function (GMF) to invert wind speed from Sentinel‐1 data.
Comparisons between SWOT backscatter and in situ wind speeds were used to provide a foundation for
understanding how SWOT could be used to study wind speeds. Using buoy data for validation, we found wind
direction (1 km) mean absolute error (MAE) ranged from 31° to 40° for Sentinel‐1 and 28° to 38° for SWOT.
Sentinel‐1 wind speed (100 m) MAE ranged from 1.05 to 2.09 m/s. These retrievals were more accurate and at
higher resolution compared to global reanalysis dataset ERA5 (0.25°), with wind direction MAE from 23° to
50° and wind speed MAE from 1.49 to 2.35 m/s. SWOT backscatter sensitivity to wind speed depended on
incidence angle, and demonstrated utility for developing a GMF for lakes. These methods could be used to better
understand wind dynamics globally, especially over small lakes and in data poor regions.

1. Introduction
Wind at the water‐air interface is a major source of energy that influences lake dynamics. It is an important driver
of water, gas, and energy fluxes, including evaporation and greenhouse gas exchange (Schilder et al., 2013; Zhao
et al., 2024).Wind also drives lake water circulation and influences seasonal and diel thermal structures, transport,
and mixing (Desai et al., 2009; Wang et al., 2020; Woolway et al., 2019). Wind induced turbulent mixing has a
large influence on water quality parameters like suspended solids, total phosphorus, and chlorophyll concen-
trations (Jalil et al., 2019; Tammeorg et al., 2013). Therefore, spatial and temporal variability of wind over lakes is
an important parameter used to understand, monitor, and predict a wide range of processes and conditions in
lakes.

Wind over lakes is often represented using gridded reanalysis datasets at regional to global scales or buoy stations
at point locations (Brunet et al., 2023; Trolle et al., 2012). While reanalysis datasets are useful for large‐scale
analyses or models that require continuous meteorological forcings (Baracchini et al., 2020; Zhao
et al., 2024), they are often too coarse to capture patterns of wind variability within lakes (Brunet et al., 2023).
Furthermore, the difference of wind speed over land compared to water (e.g., usually slower wind speed over land
compared to water) is difficult to resolve because most lake extents are smaller than the size of a reanalysis grid
cell (Messager et al., 2016). For example, global reanalysis datasets ERA5 (0.25° resolution) andMERRA‐2 (0.5°
resolution) are much coarser than the average lake size, estimated to be approximately 0.15 km2 for lakes larger
than one ha (Gelaro et al., 2017; Hersbach et al., 2018; Messager et al., 2016). Consequently, wind speed over
water is often underestimated in reanalysis datasets (Wang et al., 2022). On the other hand, while in‐situ data
collected by buoys are inherently more accurate than reanalysis datasets, they are sparsely distributed point
observations and therefore similarly limited in their ability to represent spatial variability of wind within lakes
(Chen et al., 2004).
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The formation of wind‐driven waves on lakes is sensitive to local environmental conditions. Lakes surrounded by
complex topography including mountains, valleys, and coastal regions often exhibit highly dynamic winds,
generating spatially variable wind‐driven waves (Brunet et al., 2023; Keen & Lyons, 1978; Lemmin &
D’Adamo, 1997). Additionally, the interplay between wind speed and lake morphology (e.g., size and shape)
influences wave formation, resulting in different wave characteristics across lake sizes. For example, in very large
lakes, like the Great Lakes of North America, strong winds act across long fetches generating large wave heights
(Jin & Wang, 1998; Mao et al., 2016). Conversely, shorter and more intermittent waves are often observed on
small lakes with limited fetches (Hofmann et al., 2010). Thus, in order to extract dynamic wind patterns over both
large and small lakes, high resolution satellite remote sensing of wind‐driven waves could provide useful
information.

High‐resolution SAR has been used over the ocean to estimate wind fields by analyzing radar backscatter as a
measure of wind‐driven surface water roughness (see review by Asiyabi et al., 2023). The most commonly used
approach, using a scatterometer, models the dependency of radar backscatter on wind speed, azimuth angle with
respect to wind direction, and incidence angle using a geophysical modeling function (GMF). Scatterometers
invert GMFs to solve for both wind speed and direction by leveraging multiple surface water observations of the
same location at nearly the same time from different viewing geometries (Chelton & Freilich, 2005; Hers-
bach, 2010). In contrast, SAR returns just one observation for each location from a single viewing geometry, and,
therefore, cannot be used to produce a GMF or retrieve wind speeds and directions in the same way as scatter-
ometers. To overcome this limitation, ancillary wind direction is typically supplied to the GMF in order to solve
for wind speed (Jang et al., 2019; Monaldo et al., 2004). Numerical weather prediction datasets (NWPs) are
typically used for the ancillary wind direction; however, they are coarse relative to the sub‐kilometer resolution of
SAR, which inherently limits the gains in spatial resolution.

To address the shortcomings of NWP‐based wind direction estimates, multiple wind direction retrieval algorithms
based on visible wind streaks in SAR imagery have been proposed (Gerling, 1986; Koch, 2004; Zecchetto, 2018).
Wind streaks appear as bright and dark linear features in SAR images that are closely aligned with the mean water
surface wind direction; however, they are not present in all images (Zhao et al., 2016). The Local Gradient (LG)
method, a commonly used retrieval approach, extracts the dominant direction of wind streaks by computing local
gradients (Koch, 2004). Although this approach has not been tested over inland lakes, it has been used extensively
in coastal regions and validated using buoy andNWPdatasetswith a spatial resolution up to 3 kmandwith accuracy
from approximately 10 to 40° (Bruun Christiansen et al., 2006; Koch, 2004; Rana et al., 2019; Wang & Li, 2016;
Zhou et al., 2017). For example, the LGmethod was used to extract wind direction in the geomorphically complex
Camargue and Wadden Sea coastal areas (Rana et al., 2019), during a typhoon in the west Pacific (Wang &
Li, 2016), and in the Sogne Fjord in Norway (Koch, 2004), demonstrating its promise for application to lakes.

Very few studies have utilized radar returns to investigate any part of the wind field over lakes. The application of
coarse scatterometers (12.5–25 km) to lakes has been successful. For example, Nghiem et al. (2004) used Sea-
Winds Scatterometer to retrieve wind speed and direction with reasonable accuracy over the Great Lakes where
NOAA currently provides wind on an operational basis as the Metop‐C ASCAT dataset. In comparison, the
application of high‐resolution SAR (<100 m) has been more limited. Two studies have applied Sentinel‐1 SAR
images across a handful of lakes to retrieve wind speed with reasonable accuracy (Katona & Bartsch, 2018;
Sergeev et al., 2023). Katona and Bartsch (2018) developed a model to predict wind speed dependent on Sentinel‐
1 backscatter and incidence angle using exponential functions. They opted not to include wind direction due to the
coarseness of available products relative to lake size. Sergeev et al. (2023) developed a two‐scale composite
model for wind speed over Gorsky reservoir and compared performance with established C‐band GMFs. To the
best of our knowledge, no studies have used SAR to extract wind direction over lakes. Therefore, it remains
uncertain if SAR‐based wind retrieval methods can be reliably applied to lakes.

The recently launched Surface Water Ocean Topography (SWOT) Ka‐band SAR interferometer was designed to
retrieve water surface elevations from lakes (250 m)2 (science requirement) or larger (Fu et al., 2024), having a
nominal resolution of 22 m. Compared to the side‐looking geometry and centimeter‐scale wavelength of satellites
often used for wind estimation (such as the 5.5 cm wavelength Sentinel‐1 C‐band SAR, discussed here), SWOT's
relatively short Ka‐band wavelengths (8.3 mm) and near‐nadir viewing geometry could be well‐suited to
observing smaller surface waves often found on lakes. Preliminary investigations show Ka‐band near‐nadir
backscatter relationships with wind speed are similar to scatterometers, indicating the potential to estimate
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wind fields using SWOT (Fayne & Smith, 2023). Wind estimates from SWOT could be useful for characterizing
SWOT surface water elevation and extent observation uncertainty.

Uncertainties regarding whether SARmethods developed for wind over ocean environments will transfer to lakes
with comparatively short fetches, small waves, and complex topography requires further investigation. This study
aims to understand the opportunities and challenges of estimating wind over lakes from SAR and determine if
these approaches are generalizable across satellites with different frequencies. Therefore, we use Sentinel‐1 C‐
band and SWOT Ka‐band imagery to investigate backscatter phenomenology over lakes with the following
objectives: (a) characterize the occurrence of wind streaks observed in SAR imagery over lakes, (b) estimate wind
direction and speed using SAR backscatter, and (c) validate estimates at over‐water buoys.

2. Materials and Methods
2.1. Study Areas

The study areas were selected by identifying lakes represented in the SWOT Prior Lake Database (Wang
et al., 2025, in press) that had buoys equipped with anemometers to observe wind speed and direction during
2023–2024 and that were larger than the minimum area required to estimate wind direction (1 km2) (see Sec-
tion 2.4) (Figure 1). Based on this criteria, 19 lakes in North America and Europe were included, ranging in size
from 7 to 82,220 km2 with a median area of 1,121 km2. Lakes are located in a temperate climate except for the
Great Slave Lake, which is located in a boreal climate. All lakes are naturally occurring and experience ice
formation except for Lake Murray which is a reservoir used for hydropower.

2.2. Datasets

2.2.1. Surface Water Ocean Topography Dataset

We retrieved Ka‐band backscatter (sigma0) data from the SWOT Level 2Water Mask Raster Image Data Product
version C at 100 m resolution (SurfaceWater Ocean Topography, 2024). SWOT repeat orbit is 21 days but revisit
time can be as often as 4 days at the mid latitudes (Biancamaria et al., 2016). The data is composed of a 120 km

Figure 1. Over water buoy validation dataset included 58 buoys across 19 lakes (a) Validation buoys were mapped according to which satellites had co‐located
observations. Sentinel‐1 had co‐located observations at all 58 buoys (19 lakes) and SWOT had co‐located observations at seven buoys (seven lakes). The inset CDF plot
shows the distribution of lake area (km2) associated with each buoy grouped according to which satellites had co‐located observations. Lake area was repeatedly counted
if the lake had more than one buoy (b) Four buoys (4 lakes) were included from Switzerland Swiss DataLakes (c) Two buoys (2 lakes) were included from King County,
Washington, US Water and Land Services (d)–(f) 52 buoys (13 lakes) across the USA and Canada were included from NOAA National Data Buoy Center.
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swath with a 20 km gap at nadir. One side of the swath is HH polarized and the other side is VV polarized
(Biancamaria et al., 2016). Backscatter images were delivered with preprocessing steps already applied, including
radiometric and atmospheric calibration (JPL internal document, 2024). We removed pixels flagged as ‘bad’
quality from images. We included backscatter (sigma0) images from January toMarch of 2024 for analysis. There
were no SWOT images with co‐temporal buoy observations in 2023.

2.2.2. Sentinel‐1 Dataset

We retrieved Sentinel‐1 (S1) C‐band data from the S1 interferometric wide swath (IW) ground range detected
product at 10 m resolution with 12 day repeat orbit on Google Earth Engine (GEE) (Earth Engine Data Cata-
log, 2024). This product is delivered by GEE with preprocessing steps already applied (e.g., noise removal,
radiometric calibration, terrain calibration) to derive backscatter (Google for Developers, 2024). We selected VV
polarized images for their compatibility with the CMOD5.N GMF (a full description of the GMF is available in
Section 2.5) and resampled the images using nearest neighbors to 100 m resolution to match SWOT image
resolution and reduce speckles. Images from January 2023 to March of 2024 were included in our analysis.

2.2.3. In‐Situ Buoy Dataset

We obtained in situ wind speed and direction observations from over water buoys to validate SAR‐derived wind
fields. In total, 58 buoys across 19 lakes in North America and Europe were included from three sources,
including NOAA (NOAANational Data Buoy Center, 1971) (52 buoys, 13 lakes), King County, Washington, US
Water and Land Services (King County, 2024) (2 buoys, 2 lakes), and Swiss DataLakes (Datalakes, 2024) (4
buoys, 4 lakes) (Figure 1). Buoy wind speeds were observed using anemometers at different heights (1–10 m).
Differences between anemometer height from the ground and modeled wind speed height must be taken into
account for equivalent comparisons. Since most anemometer heights were below 10 m, we converted wind speed
to 10 m height for consistency with wind speeds modeled from SAR (see Section 2.5) using a simple logarithmic
wind profile equation defined as

U(z) = U(zm) × ln(z/z0) / ln(zm/z0) (1)

where z0 is the roughness length (typical value of 1.52 × 10
− 4 m), z is the target height of 10 m, zm is the

anemometer height, U (zm) is the measured buoy wind speed, and U(z) is the estimated wind speed at 10 m height
(Lu et al., 2018; Sergeev et al., 2023). This conversion resulted in an average difference of 0.31 m/s between
original and 10 m buoy wind speeds. Four NOAA buoys did not provide anemometer height, so the mean height
of all other buoys was used instead. Temporal sampling varied by buoy from one to 60 minutes. Complete buoy
information can be found in Table S1 in Supporting Information S1.

2.2.4. Reanalysis Dataset

We used wind fields from the European Center for Medium‐Range Weather Forecasts (ECMWF) Reanalysis v5
(ERA5) dataset to benchmark the improvement of our SAR‐based estimates over existing global reanalysis data.
ERA5 is the fifth generation ECMWF reanalysis for global climate and weather available hourly at a 0.25°
resolution (Hersbach et al., 2018). While local datasets tend to be higher resolution, we chose ERA5 for its global
coverage since this analysis spanned three countries (USA, Canada, Switzerland) and presented methods that are
globally applicable. We use the 10 m speed and direction products for this analysis.

2.3. Analyze Wind Streak Frequency

Wind streaks in SAR backscatter images can be used to extract wind direction; however, they are not always easy
to detect (Zhao et al., 2016). Wind streaks are necessary to extract reliable wind direction from SAR backscatter
using the LG method but it is unclear how often they are present in SAR imagery over lakes. We quantified the
frequency of wind streaks in S1 and SWOT images and the conditions under which they were observed. While
automatic methods using deep learning have been applied to identify wind streaks, they require large training data
sets (Wang et al., 2020). More commonly, a visual approach is applied, involving expert inspection of SAR
images to manually identify wind streaks (Lehner et al., 1998; Levy, 2001; Zhao et al., 2016). In this study, we
used the visual approach to quantify the frequency of visible wind streaks in S1 and SWOT images. It should be
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noted, however, that the visual approach may lead to a conservative identification of wind streaks because vis-
ibility can be subject to the range of values used to render the image. Therefore, the thoroughness of the visual
wind streak detection does not affect wind direction estimation using the LG‐Method (see Section 2.4). For each
buoy, we identified co‐located images with an overpass occurring within 1 hour of a buoy observation (buoy‐
image pairs) and recorded the presence/absence of wind streaks at the buoy location. We excluded buoy‐image
pairs from analysis if ice was present within the water body on the day of the observation. We used the Sentinel‐3
derived Daily Lake Ice Extent product with 500 m resolution from the Copernicus Land Monitoring System to
identify lake ice extents (European Commission Directorate‐General Joint Research Centre, 2024; Heinilä
et al., 2021). This filtering process produced 4–13 SWOT images and 2–144 S1 images for analysis at each buoy,
and a total of 1,540 buoy‐image pairs with wind streak presence/absence records from January 2023–March 2024.
Note that wind streak frequency at each buoy is not spatially independent because some lakes have multiple buoys
that were observed within the same image. We tested for statistical differences in the distribution of buoy‐derived
wind speeds and lake fetches, grouped by wind streak presence or absence, using the nonparametric Mann
Whitney test (Mann &Whitney, 1947). We defined fetch as the maximum distance that wind in a given direction
can travel across the lake surface. We calculated lake fetch for each buoy‐image pair using the buoy wind di-
rection measurement and the PLD water body extent.

2.4. Estimate Wind Direction

We retrieved wind direction over lakes from S1 and SWOT using the Modified LG method (LG‐Mod) (Rana
et al., 2015). The LG method works by evaluating local gradients in backscatter images caused by wind streaks
(Koch, 2004). Wind streaks are ideally constant in the direction of the wind and vary the strongest in the direction
orthogonal to the wind. Therefore, the gradient describes the direction of the strongest increase, and is orthogonal
to the wind direction. While gradients can be found in any direction due to the noise inherent to SAR images,
gradients tend to be oriented in the correct orthogonal direction based on the wind streak.

In the LG‐Mod method, images are typically resampled between 100 and 400 m to reduce speckle and enhance
visualization of wind streaks (Koch, 2004; Rana et al., 2015; Wang & Li, 2016). Then the study area is divided
into subimages, or regions of interest (ROIs), corresponding to the user's desired output grid. Local gradients are
calculated by applying the optimized derivative Sobel operator to backscatter images in linear scale. Gradients
corresponding to unusable points are discarded (i.e., pixels corresponding to land), and then the main wind di-
rection and associated marginal error parameter (ME) can be extracted in each ROI. The marginal error parameter
is calculated using a (1‐α) confidence interval and used as an indicator of the reliability of the wind direction
estimate. Regions of interest with less directional variability have a smaller ME and likely a more accurate di-
rection. Therefore, the ME can be used to exclude unreliable directions by setting an acceptance angular
threshold, METH. For a full explanation of LG‐Mod, see Rana et al. (2015).

We estimated wind direction at 1 km resolution and the associated ME with a 95% confidence interval. This
means each ROI was 1 km by 1 km and consisted of 100 m resolution pixels (i.e., 100 pixels in each ROI). Wind
direction was only estimated in ROIs where at least 40% of pixels were within the water body boundary. While it
is ideal to estimate wind direction in ROIs with wind streaks, we estimated wind direction in ROIs without wind
streaks as well because the visual method of identifying wind streaks may be conservative. LG‐Mod wind di-
rections have an inherent 180° ambiguity, whereby they can determine the wind orientation but not the wind
origin. Hereafter, wind direction estimated from SAR using LG‐Mod are referred to as S1 wind direction or
SWOT wind direction, respective to the satellite used.

2.5. Estimate Wind Speed

CMOD5.N is a C‐band GMF defining the empirical relationship between C‐band backscatter sensed by the ERS‐
2 and ASCAT scatterometers and equivalent neutral 10 m ocean winds (i.e., wind speed at neutral atmospheric
conditions) (Hersbach, 2010). Differences between lake and ocean environments with respect to GMFs are fetch,
water temperature, and salinity, which have a weak influence on the first‐order relationship between backscatter
and wind speeds (Donelan & Pierson, 1987). So, despite the development of CMOD5.N for use over the ocean,
we expect the first‐order relationship between backscatter and wind speed will be similar over lakes. We esti-
mated wind speed at 100 m resolution by inverting CMOD5.N using S1 backscatter data, the S1 wind direction
data relative to azimuth, and incidence angle. S1 wind direction estimates used in the wind speed calculation were
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downscaled from 1 to 100 m resolution to match the S1 backscatter data resolution. Hereafter, wind speeds
estimated from S1 with CMOD5.N and LG‐Mod are referred to as S1 wind speeds.

GMFs for SWOT Ka‐band winds are under development to complement the mission's low‐rate ocean observa-
tions (Fayne, 2023, 2024; Stiles et al., 2024). But they are in early stages, and so were not incorporated into this
analysis. Instead, we conducted a preliminary analysis of the relationship between SWOT backscatter, incidence
angle, and wind speed. First, we extracted SWOT backscatter and incidence angle at buoy locations with co‐
temporal wind speed observations within 1 hour of satellite overpass. This point‐wise comparison yielded 66
observations with limited representation of SWOT backscatter across the full range of wind speeds and incidence
angles. We then conducted a complementary analysis using ERA5 wind speeds for direct comparison. We
extracted the median SWOT backscatter, incidence angle and ERA5 wind speed from water bodies included in
this study using all SWOT images included in the analysis (Number of observations = 447).

2.6. Validate Wind Field Estimates

We validated wind fields estimated from SAR using buoy observations and benchmarked the improvement over
ERA5. For validation, we selected wind fields with co‐located buoy observations within 1 hour of satellite
overpass and extracted the wind field value at the buoy location (Figure 1). We did not account for atmospheric
stability in buoy observations, but the average difference between neutral and non‐neutral wind speeds is low
(∼0.2 m/s), and likely has minimal influence on our estimates (Hersbach, 2010; Rana et al., 2019). We evaluated
wind direction performance with 180° ambiguity in order to quantify skill at extracting wind streak orientation
and because, given ERA5's coarseness, it was largely ineffective at identifying the correct wind direction.
Considering the 18° ambiguity, we evaluated wind direction performance using the mean absolute error (MAE).
We evaluated wind speed performance using mean bias error (MBE), MAE, and root mean square error (RMSE).
We compared the performance of SAR wind direction and speed to ERA5 performance. A total of 66 SWOT and
1474 S1 buoy‐image pairs were used for wind direction validation. A total of 1474 S1 image‐buoy pairs were used
for wind speed validation.

To understand what lake or buoy conditions were associated with better performance, we calculated the Pearson
correlation coefficient between the wind error and a variety of lake, buoy, and radar characteristics including buoy
wind speed (m/s), buoy wind direction (degrees), buoy distance to shore (km), lake fetch (km), lake area (km2),
sigma0, incidence angle (degrees), and time difference between buoy observation and satellite overpass (sec-
onds). Only wind estimates filtered using the angular threshold METH = 30° were included in this analysis.

We also tested these methods using 10 m resolution S1 images but the performance was worse than that from
100 m resolution S1 images (Table S2 in Supporting Information S1), likely because the resampling reduced
speckle noises and improved the overall signal‐to‐noise ratio (SNR) of the original SAR images. Therefore, we
chose to present results from our analysis using 100 m resolution S1 and SWOT images in the main text.

3. Results
3.1. Wind Streak Frequency Analsysis

We quantified the frequency of wind streaks observed by SWOT and S1 (Figure 2). Wind streaks were visible in
13.7% of all buoy‐image pairs, and observed more frequently by S1 (14.3%, 211/1474) than SWOT (0%, 0/66).
Wind streaks were more frequently observed at higher wind speeds and on lakes with longer fetches. The median
wind speed of buoy‐image pairs with wind streaks (5.6 m/s) was significantly faster (p < 0.0001) than without
wind streaks (2.2 m/s). The median lake fetch of buoy‐image pairs with wind streaks (125.6 km) was significantly
longer (p < 0.0001) than without wind streaks (7.9 km). The median wind speed (2.7 m/s) and lake fetch
(13.4 km) of S1 image‐buoy pairs was faster and longer compared to SWOT median wind speed (1.4 m/s) and
lake fetch (2.6 km).

3.2. Wind Direction Analysis

We assessed the performance of SAR‐based wind direction with 180° ambiguity according to satellite, angular
threshold METH, and wind streak presence. SWOT wind direction performance improved with stricter METH,
ranging from aMAE of 37.9° using all observations to 28.1° usingMETH= 20° (Table 1). In comparison, S1 wind

Earth and Space Science 10.1029/2024EA003971

MCQUILLAN ET AL. 6 of 16

 23335084, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024E

A
003971, W

iley O
nline L

ibrary on [04/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



direction performance did not improve with stricter METH but did improve when filtered to observations with
wind streaks, reducing MAE from 40.4 to 31.0° (Table 1).

SAR‐based wind direction performance was also compared to ERA5 performance, based on the same subsets of
buoy wind direction observations for a direct comparison. S1 and SWOT wind direction were more accurate at a
higher resolution than ERA5 wind direction. SWOT wind direction performed better than ERA5 in all cases,
while S1 wind direction performed better than ERA5 in all cases except when filtering using METH = 20 with
wind streaks (Table 1). We attempted to identify lake and buoy characteristics associated with better wind di-
rection performance; however, none of the characteristics yielded a significant relationship (p ≤ 0.05) (Figure S1
in Supporting Information S1).

In Figure 3, we mapped S1 wind direction at 1 km resolution over Lake Ontario to highlight the improved
representation of within lake wind direction using LG‐Mod compared to ERA5. Prominent wind streaks were
oriented east‐west along the western shore that were aligned with buoy wind direction of 265° (Figure 3a). S1
wind direction aligned closely with wind streaks and the buoy wind direction. The most reliable wind directions
with the lowest ME were found along the western shore of the lake where wind streaks were the most prominent.
In comparison, the least reliable wind directions with the highest MEwere found in the southeastern portion of the

Figure 2. Wind streak summary (a) The number of co‐located satellite images with buoy observations within 1 hour of satellite overpass (buoy‐image pairs) were
grouped according to satellite and wind streak presence (b) The distributions of buoy wind speed (m/s) and (c) lake fetch (km) were grouped according to satellite and
wind streak presence.

Table 1
Wind Direction Performance Calculated With 180° Ambiguity Grouped According to Satellite, Angular Threshold METH,
and Presence of Wind Streaks

Image subset N LG‐mod MAE (degrees) ERA5 MAE (degrees)

SWOT 66 37.93 39.78

SWOT (METH = 40) 31 37.54 41.26

SWOT (METH = 30) 24 34.78 40.32

SWOT (METH = 20) 10 28.13 50.38

S1 1,474 40.42 41.28

S1 (METH = 40) 397 38.53 41.38

S1 (METH = 30) 289 40.09 41.88

S1 (METH = 20) 94 40.38 41.19

S1 (Wind streaks) 211 34.13 36.46

S1 (Wind streaks, METH = 40) 61 32 32.75

S1 (Wind streaks, METH = 30) 44 33.41 35.63

S1 (Wind streaks, METH = 20) 12 31.04 22.77
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lake where wind streaks were not found, demonstrating the utility of the method to identify regions with and
without wind streaks.

SAR‐based wind direction also performed well on small lakes. In Figure 4, we map SWOT wind direction over
Lake Greifen (7.9 km2) to demonstrate the improved capability of SAR‐based wind direction to resolve small
lakes that are a fraction of the size of a single ERA5 grid cell. While wind streaks were difficult to discern visually,
LG‐Mod was able to retrieve wind direction closely aligned with the buoy wind direction of 123° (see more
discussion in Section 4).

Figure 3. Wind streaks inform S1 wind direction (a) S1 backscatter (linear scale, resampled to 100 m resolution) over a
western portion of Lake Ontario on 2023‐05‐20 with visible wind streaks along the western shore (b) Wind direction andME
(degrees, in 1 km grid) estimated from S1 backscatter using LG‐Mod. Arrows represent the wind direction and arrow color
represents the ME (degrees). Buoy wind direction shown by the red arrow (265°). ERA5 wind direction pixels (0.25° grid)
and arrows shown in gray.
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3.3. Wind Speed Analysis

We assessed the performance of S1 wind speed according to METH and wind
streak presence. Performance improved when filtering with stricter METH and
improved further when filtering to only include observations with wind
streaks (Table 2). Mean absolute error ranged from 2.09 m/s to 1.05 m/s,
RMSE ranged from 3.14 m/s to 1.36 m/s, and MBE ranged from 1.38 m/s to
− 0.27 m/s (Table 2).

S1 wind speed performance was compared with ERA5 based on the same
subsets of buoy wind speed observations for a direct comparison. Perfor-
mance without any filtering, where 85% of estimates did not have wind
streaks present, was similar to ERA5. S1 wind speed MAE and RMSE were
lower than ERA5 across most subsets (Table 2), with an average decrease in
MAE and RMSE of 0.46 m/s and 0.22 m/s, respectively. ERA5 and S1 wind
speeds were consistently positively biased (with the only exception from S1
with wind streaks) and bias magnitude decreased with stricter METH (Ta-
ble 2). Based on least squares linear model fits between observed and
modeled wind speed, we find S1 captured more wind speed variability with an
R2 of 0.417 (p < 0.0001) compared to ERA5 with an R2 of 0.28 (p < 0.0001)
(Figure 5). Overall, S1 wind speed showed better agreement with buoy ob-
servations than ERA5 (Table 2, Figure 5). Higher wind speed, longer lake
fetch, larger lake area, greater buoy distance to shore, smaller sigma0, and
larger time difference between buoy and satellite observations were weakly
but significantly correlated (p ≤ 0.05) with smaller wind speed errors (Figure
S1 in Supporting Information S1).

Figure 6 illustrates the benefits and challenges of estimating wind from SAR
by mapping S1 wind direction (1 km) and wind speed (100 m) on Lake
Washington in Seattle. Synthetic aperture radar observations captured spatial
variations in wind speeds over the long and narrow arms of LakeWashington,
including low wind speeds in the northern portion and higher wind speeds in
the middle and southern portions. The most reliable wind direction estimates
were found in the middle of the lake corresponding closely with wind streak
orientation and buoy wind direction. However, erroneous S1 wind speed and
direction estimates were found near the lake shore and at the locations of
bridges extending over the lake, highlighting the sensitivity of these methods
to non‐water pixels.

In the absence of a published SWOT GMF for high‐rate data, we assessed the
relationship between SWOT backscatter, incidence angle, and wind speed.
There were limited comparisons of SWOT observations with cotemporal
buoy observations at higher wind speeds and in the smallest incidence angle
bin, 0.5–1.5 (Figure 7). However, the relationship between SWOT back-
scatter, incidence angle, and wind speed were similar between the point‐scale
buoy wind speed dataset and the waterbody‐scale ERA5 wind speed dataset.
This correspondence gives us confidence in the ERA5 patterns, despite the
limited accuracy of the ERA5 wind speeds reported in Table 2. SWOT
backscatter increased with wind speed in the largest incidence angle bin (3.5–

4.5°) (Figure 7). In contrast, it decreased with wind speed in the smallest incidence angle bin (0.5–1.5°). There
was no discernible trend in the incidence angle bins from 1.5 to 3.5.

4. Discussion
This study finds that SAR can provide useful estimates of wind speed and direction over lakes. While the methods
used in this study were originally developed for oceanic and coastal applications, they transfer well to lakes. We
find that there are multiple benefits of retrieving wind from SAR. First, wind speed and direction estimates from

Figure 4. SWOT wind direction compared to ERA5 (a) ERA5 grid cells
(0.25°) with wind direction represented by black arrows. Lake Greifen is
located in the bottom right grid cell (b) SWOT wind direction (1 km scale)
estimated over Lake Greifen on 2024‐03‐17 is shown using blue arrows.
Buoy wind direction shown using the red arrow (123°).
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SWOT and S1 achieve better accuracy at higher spatial resolution compared to the global reanalysis dataset,
ERA5 (Tables 1 and 2). Second, the higher spatial resolution of SAR‐based winds allows for observation of
considerably more wind variability within lakes than is possible from global reanalysis datasets or a single buoy
(Figures 3, 4 and 6). This could be especially beneficial for observing small lakes, lakes with complex shapes, and
lakes where local conditions cause wind to shift quickly (Brunet et al., 2023). For example, S1 observations
identify low winds in a small part of Lake Washington, which would otherwise be difficult to resolve using
reanalysis datasets and buoys because of its complex shape and surrounding topography, located west of the Puget
Sound and east of the Cascade mountain range (Figure 6).

Table 2
S1 and ERA5 Wind Speed Performance Grouped According to METH and Wind Streak Presence

Image subset N

MBE (m/s) MAE (m/s) RMSE (m/s)

CMOD5.N + LG‐Mod ERA5 CMOD5.N + LG‐Mod ERA5 CMOD5.N + LG‐Mod ERA5

S1 1,474 1.38 1.39 1.95 2.24 2.82 2.72

S1 (METH = 40) 397 1.36 1.27 1.87 2.17 2.81 2.67

S1 (METH = 30) 289 1.19 1.2 1.74 2.17 2.62 2.67

S1 (METH = 20) 94 0.99 1.43 1.52 2.35 2.09 2.8

S1 (Wind streaks) 211 1.03 0.4 2.09 2.08 3.14 2.68

S1 (Wind streaks, METH = 40) 61 0.28 0.9 1.29 2.0 1.99 2.51

S1 (Wind streaks, METH = 30) 44 0.23 0.67 1.16 1.85 1.63 2.34

S1 (Wind streaks, METH = 20) 12 − 0.27 0.73 1.05 1.49 1.36 1.81

Figure 5. S1 and ERA5 wind speed (m/s) compared to buoy observations. Least squares linear model fits between modeled
and observed wind speed plotted for S1 and ERA5. The black dashed line represents a 1:1 relationship.

Earth and Space Science 10.1029/2024EA003971

MCQUILLAN ET AL. 10 of 16

 23335084, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024E

A
003971, W

iley O
nline L

ibrary on [04/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



To our knowledge, this study is the first large‐scale assessment of SAR‐based
wind over lakes. Lake buoy stations are limited, resulting in 58 available
buoys for validation with a minimum lake size of seven km2 (Figure 1). This
limitation, however, underscores the value of leveraging SAR for wind
estimation over lakes. The methods applied here could readily be applied
globally to inform our understanding of wind and its role driving lake dy-
namics, especially in data poor regions (Desai et al., 2009; Jalil et al., 2019;
Woolway et al., 2019; Zhao et al., 2024).

Despite differences between S1 and SWOT radar instruments, both datasets
perform similarly estimating winds. One notable difference is the prevalence
that wind streaks are observed by each satellite. S1 observes wind streaks in
14% of buoy‐image pairs, which is toward the lower end of the range reported
over the ocean, from 12.8% to 70% (Figure 2) (Lehner et al., 1998;
Levy, 2001; Wang et al., 2020; Zhao et al., 2016). In contrast, SWOT ob-
serves wind streaks in 0% of buoy‐image pairs. However, this does not
necessarily imply that SWOT is less sensitive to wind‐driven roughness, but
is likely due to there being a fraction of SWOT observations compared to S1
observations and also the fact that the buoys with available SWOT obser-
vations are located on smaller lakes with shorter fetches and slower wind
speeds compared to S1 (Figure 2). Since wind streaks are more commonly
observed at higher wind speeds and in environments with longer fetches, the
lack of observations by SWOT is unsurprising, as is the frequency of S1
observations compared to observations over the ocean (Wang et al., 2020).
One other notable difference between the satellites is that the SWOT wind
direction performance improved with stricter METH while S1 stayed
approximately the same (Table 1). Low ME is ideally a result of wind streaks
but can be the result of any phenomena on the lake surface that creates a
strong gradient or less gradient variability. S1 likely did not improve because

ME associated with S1 wind direction was influenced by non‐wind features more easily observed on large lakes
(i.e., gravity waves, eddies, currents, and circulation patterns driven by thermal difference, density difference, and

Figure 6. Wind direction and speed from S1 (a) S1 derived wind direction
(1 km) and (b) wind speed (100 m) on 2023‐03‐21 over Lake Washington.
Arrows indicate wind direction and are colored according to ME (degrees).
Wind speed (m/s) was estimated from S1 backscatter and wind direction
using CMOD5.N. The measured buoy wind speed on this date is 5.49 m/s.

Figure 7. Relationship between Surface Water Ocean Topography (SWOT) backscatter, incidence angle, and wind speed (a) Point comparisons of SWOT backscatter
(dB) binned according to buoy wind speed (m/s) and incidence angle (degrees) (b) Median water body comparisons of SWOT backscatter (dB) binned according to
ERA5 wind speed and incidence angle (degrees).
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the interactions with lake shores and barriers). Overall, both datasets appear well suited to observe wind over
lakes.

S1 and SWOT wind directions are more accurate than ERA5 and comparable to the accuracy reported from SAR
studies in coastal regions (Rana et al., 2015, 2019). Wind direction estimated using LG‐Mod from Envisat at
3.6 km resolution and validated with two buoys in coastal Wales had an RMSE ranging from 20 to 44° (Rana
et al., 2015). Also using LG‐Mod, wind direction estimated from S1 at 12.5 km resolution and validated using
buoys in the Camargue andWadden Sea, regions with complex geomorphology and shallow water depths, had an
RMSE ranging from 9 to 15° (Rana et al., 2019). Other studies have applied variants of the LGmethod and report
RMSE ranging from approximately 17 to 36°, which aligns with our MAE ranging from approximately 28 to 40°
(Table 1) (Koch, 2004; Wang & Li, 2016; Zhou et al., 2017). Unlike those studies, we report accuracy with an
180° ambiguity due to the difficulty of using ERA5 data to resolve ambiguity in the SAR‐based wind direction
estimates. Over the ocean, ambiguity is typically resolved using NWP directions, which has worked well because
those datasets are accurate over the ocean, and even used as training and validation datasets for GMFs (Wang &
Li, 2016). We attempt to resolve ambiguity of SAR based wind direction over lakes using ERA5, but find that it
was no more accurate than wind direction estimated from SAR itself, and therefore, not effective for removing
180° ambiguity (Table 1). A primary reason to estimate wind direction from SAR is as an input to a wind speed
GMF.Wind speed GMFs are most sensitive to the upwind/downwind or crosswind orientation relative to satellite
azimuth, so wind direction with 180° ambiguity is still useful (Hersbach, 2010). Even so, future work should seek
to remove this ambiguity more effectively. For example, it is possible that lake seiches, which could be observed
using SWOT elevation data, or wind shadows could be used to remove ambiguity.

Wind direction performance is sensitive to directional content but not to the tested lake or buoy characteristics.
Directional content refers to the strength of the signal in the backscatter images which can be used to indicate wind
direction (Rana et al., 2015). We identify directional content in two ways, including the presence/absence of wind
streaks and ME estimates, which are based on the alignment of local directions within an ROI. Consistent with
other studies, we find that greater directional content improves wind direction performance for both satellites
(Rana et al., 2015, 2019). Interestingly, LG‐Mod returns accurate estimates even when gradients are difficult to
visually discern (Figure 4). Therefore, we may be underestimating the wind streak frequency based on what we
can see compared to what the algorithm can identify (Rana et al., 2015). This is evidenced by the improvement of
SWOT wind direction performance with stricter ME thresholds (an indication of increasing directional content),
despite no visually identified observations of wind streaks (Figure 2, Table 1). We did not find any significant
relationships between wind direction error and lake or buoy characteristics (Figure S1 in Supporting Informa-
tion S1). While other variables could be influential, we believe a large reason for errors is noise in backscatter
resulting in erroneous gradients.

SARwind speed estimates over lakes are more accurate than ERA5 but not as accurate as estimates over the ocean
(Carvajal et al., 2014; Rana et al., 2019; Sergeev et al., 2023; Verspeek et al., 2010). This is unsurprising since
CMOD5.N was developed for oceanic use (Hersbach, 2010). Although limited research has been conducted
estimating wind speed from SAR over lakes, our results are consistent with those studies (Table 2). Sergeev
et al. (2023) used S1 with CMOD5.N to retrieve wind speed over the Gorsky reservoir (430 km2) with an RMSE
ranging from 0.96 to 1.5 m/s and a bias ranging from − 0.22 to − 1.1 m/s. Katona and Bartsch (2018) used S1 to
develop a new empirical model to retrieve wind speed over five small lakes in central Europe with RMSE ranging
from 0.9 to 2.6 m/s. Difference in lake size could contribute to the better performance at the larger Gorsky
reservoir compared to five small lakes. Similarly, we find better wind speed accuracy on larger lakes, with longer
fetches, and faster wind speeds, conditions that more closely resemble those over the ocean (Supplementary
Figure S1 in Supporting Information S1). S1 wind speed accuracy increases when filtered to only include ob-
servations with wind streaks (Table 2). This improvement is likely due to more accurate wind direction (Table 1)
and the tendency of wind streaks to be observed at higher wind speeds.

Although CMOD5.N has better wind speed performance compared to ERA5, we do not necessarily advocate for
the application of GMFs developed for the ocean to lakes. Ideally, GMFs should be tailored for lake environments
to account for the complexity of lake size and fetch. Particularly with the launch of satellite missions like SWOT
that are aimed at observing inland water bodies, methods and models to extract paired observations of wind with
surface water extent and height could open new avenues to understand lake dynamics and observation uncertainty
at the global scale.
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Our analysis shows that SWOT backscatter is sensitive to wind speed, highlighting its applicability for developing
a GMF for lakes (Figure 7). The lower range of incidence angles shows a pattern of increasing SWOT backscatter
with increasing wind speed, which aligns with patterns observed from co‐temporal AirSWOT (the airborne
complement to SWOT) backscatter and ERA5wind speed (Fayne & Smith, 2023). In contrast, SWOT backscatter
decreased with wind speed in the higher range of incidence angles. This is consistent with relationships observed
between aircraft Ka‐band scatterometer data and near surface wind speed in coastal areas and the open ocean
(Vandemark et al., 2004). The recently developed SWOTGMF for coastal and oceanic applications predicts wind
speed using SWOT backscatter, incidence angle, and significant wave height (Stiles et al., 2024) and validation
using collocated measurements from the ASCAT ocean wind scatterometer onboard MetOP‐B and C reports bias
ranging from − 0.31 m/s to − 0.25 m/s (Stiles et al., 2024). SWOT high‐rate products that observe inland water
bodies, including the raster and pixel cloud, do not include estimates of significant wave height, which makes it
difficult to apply this model in the same way we did CMOD5.N. Further, it may be unnecessary to include
significant wave height in a GMF tailored to inland water bodies because they experience smaller wave heights.
Additional observations of SWOT backscatter across a range of incident angles, azimuths, lake sizes and shapes,
wind speeds and directions are needed to further understand these complex relationships, identify important
factors, and eventually fit a GMF.

Despite the limited temporal resolution of wind from SAR relative to buoys or reanalysis datasets, there are a
number of applications for which it is useful and provides novel insights. First, the increased spatial resolution is
necessary to represent wind variability within lakes, which would be otherwise impossible from coarse reanalysis
datasets (Figure 6). Additionally, SAR‐based wind fields could be used to improve model representation of wind
over lakes through data assimilation. For SWOT specifically, estimates of wind speed could be used to char-
acterize uncertainty of SWOT water surface elevation and extent (Fayne & Smith, 2023).

Several challenges remain in applying SAR to estimate wind over lakes. First, a directional signal is necessary to
retrieve reliable wind direction. We find wind streaks in only 14% of observations, and even if underestimated,
leaves times when other datasets would be necessary to fill in the gaps (Figure 2). Additionally, backscatter
images capture many lake phenomena other than wind streaks, including circulation patterns, river inlets or
outlets, anthropogenic usage, and infrastructure from our built environment (Figure 6) (Hamze‐Ziabari
et al., 2022). Methods to retrieve wind are sensitive to these phenomena and can lead to erroneous estimates.
Implementing the ME threshold is one example of a strategy that has been proposed to deal with this challenge but
it is not perfect (Rana et al., 2015). For example, wind direction estimates over Lake Washington are sensitive to
the strong linear signal of bridges crossing the lake, leading to multiple conflicting wind direction estimates
(Figure 6). Existing wind speed GMFs (based on C‐band SAR) are sensitive to high backscatter returns (Hers-
bach, 2010), which often correlate with non‐water or double bounce pixels. In the same Lake Washington
example, extremely high wind speeds are estimated from S1 along the lake shore and bridge due to high back-
scatter of non‐water features and future applications should be careful to mask non‐water pixels.

5. Conclusions
This study assessed the utility of SAR, specifically from Sentinel‐1 and SWOT satellites, to estimate wind over
lakes. Our findings suggest SAR can be used to estimate wind speed and direction at the water‐air interface with
better accuracy and higher spatial resolution compared to a global reanalysis dataset, ERA5. SWOT and S1 wind
direction MAE ranged from 28 to 40° with better performance on subsets with greater directional content. S1
wind speed MAE ranged from 1.05 to 2.09 m/s with better performance on subsets with greater directional
content, longer fetches, and faster wind speeds. The relatively high resolution enables direct observation of
smaller lakes as well as more detailed observations of within lake variability over large and complexly shaped
lakes. While information on wind over lakes is currently limited, SAR has the potential to retrieve high quality
information on wind over lakes at a global scale, and may be particularly useful in data scarce regions. SWOT is
particularly well suited for this task, and the relationships identified between SWOT backscatter, incidence angle,
and wind speed over lakes demonstrate SWOT sensitivity to wind speed. These observations can be useful to
inform our understanding of dynamic lake processes and conditions, like evaporation, greenhouse gas emissions,
and water quality. Future work to develop wind speed models specifically for lake environments is crucial for
reliable retrievals of wind speed across lakes of all shapes and sizes.

Earth and Space Science 10.1029/2024EA003971

MCQUILLAN ET AL. 13 of 16

 23335084, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024E

A
003971, W

iley O
nline L

ibrary on [04/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Data Availability Statement
All data used in this study is publicly available online. Sentinel‐1 data was downloaded from GEE (Earth Engine
Data Catalog, 2024). Surface Water Ocean Topography data was downloaded from PO.DAAC (Surface Water
Ocean Topography, 2024). ERA5 data was downloaded from Copernicus (Hersbach et al., 2018). Buoy data from
NOAA was downloaded from the National Data Buoy Center (NOAA National Data Buoy Center, 1971). Buoy
data from King County, Washington, Water and Land Services was downloaded from (King County, 2024). Buoy
data from Swiss DataLakes was downloaded from (Datalakes, 2024). Sentinel‐3 derived Daily Lake Ice Extent
product was downloaded from the Copernicus Land Monitoring System (European Commission Directorate‐
General Joint Research Centre, 2024; Heinilä et al., 2021). Code used for this analysis was uploaded to Zen-
odo (McQuillan, 2024).
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