a2 United States Patent

US010541765B1

ao) Patent No.: US 10,541,765 B1

O’Shea et al. 45) Date of Patent: *Jan. 21, 2020
(54) PROCESSING OF COMMUNICATIONS (56) References Cited
SIGNALS USING MACHINE LEARNING
U.S. PATENT DOCUMENTS
(71) Applicant: ¥lrgll];lla T{e;h Intf]gecglsal Properties, 10,396,919 B1* 82019 O’Shea ............... GO6N 3/0454
nc., Blacksburg, VA (US) 2007/0168315 Al 7/2007 Covannon
. 2018/0164756 Al 6/2018 Yamaguchi
(72) Inventors: Timothy James O’Shea, Arlington, VA
(US); Thomas Charles Clancy, III,
Arlington, VA (US) OTHER PUBLICATIONS
) . . Abadi et al., “Tensorflow: large-scale machine learning on hetero-
(73) Assignee: Virginia Tech Intellectual Properties, geneous systems, 20157, Software available from tensorflow. Org.
Inc., Blacksburg, VA (US) Bergstra et al., “Teano: a CPU and GPU math expression complier,”
in Proceedings of the Python for Scientific Computing Conference
(*) Notice:  Subject to any disclaimer, the term of this E:ShCiEY), OarlathreS?t’{ltt}iIOIé, AESMtfin},l THX,M-IUII 2%(1)5 (hitps:/github
: : ollet et al., https://github.com/fchollet/keras, , (https://github.
%atserét lls SZ)ESHS;dO Oéa;;i]uswd under 33 com/keras-team/keras) or (https://github.com/keras-team/keras/issues/
e : 247).
This patent is subject to a terminal dis- Duan et al., “Benchmarking deep reinforcement learning for con-
claimer tinuous control”, arXiv preprint arXiv:1604.06778, 2016.
(Continued)
21) Appl. No.: 16/549,011
(1) App ’ Primary Examiner — Nguyen T Vo
(22) Filed: Aug. 23, 2019 (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
(57) ABSTRACT
Related U.S. Application Data One or more processors control processing of radio fre-
(63) Continuation of application No. 15/978,920, filed on quency (RF) signals using a machine-learning network. The
May 14, 2018, now Pat. No. 10,396,919. one or more processors receive as input, to a radio commu-
(Continued) nications apparatus, a first representation of an RF signal,
which is processed using one or more radio stages, providing
(51) Int. CL a second representation of the RF signal. Observations
HO04B 17/391 (2015.01) about, and metrics of, the second representation of the RF
HO04B 17/10 (2015.01) signal are obtained. Past observations and metrics are
(Continued) accessed from storage. Using the observations, metrics and
(52) US.Cl past observations and metrics, parameters of a machine-
CPC ... HO4B 17/3912 (2015.01); GO6N 3/0454 le?aming networ.k, which implemegts policies to process RF
(2013.01); GO6N 5/046 (2013.01); signals, are ad]ust.ed by contro!hng the radio stages. In
Continued response to the adjustments, actions performed by one or
. . ( onfinte ) more controllers of the radio stages are updated. A repre-
(58) Field of Classification Search sentation of a subsequent input RF signal is processed using
CPC i, HO4B 17/3912; HO4B 17/101; the radio stages that are controlled based on actions includ-
HO4B 17/373; HO4B 17/3913; 2%?8(1)\1 ing the updated one or more actions.
(Continued) 37 Claims, 8 Drawing Sheets

500

~J

[ s

&2

E;

PROCESS THE FiRST REPAS
2R M

TAT'ON OF THE SIGHAL USING ONE
RADID STAZES s

3
.

} GUTPUT A SECON RE!
: o

ERESENTATION OF THE SINAL FROM THE |
5 0t

NE OR MORE PADIO STAGE:

:
¥

7 GarAN ONE 1 AOHE ObSEmVATIONS 50U Tz <o
"

EPRES

ENTATION OF THE SIGHAL st J

i

MEASUKE ONE OF MORE KIETPICS
REPRESENTANON OF THE

e secoms
e o

:

V' AUCESS SAST OBSEAVATIONS AND METRICE SROM STDFAEEFZ}

1 ot ACTIONS PERFORMED BY ONE G MORE CONTROLLERS |
i CORKESPONGING TG THE RADIO STAGES 5181

S & REPRESENTATION OF & NAL USING

L
1 T a0 TaGES ConROL
W

1




US 10,541,765 B1
Page 2

(60)

(1)

(52)

(58)

Related U.S. Application Data

Provisional application No. 62/505,219, filed on May
12, 2017.

Int. CL.

HO04B 17/373 (2015.01)

HO4L 25/02 (2006.01)

GO6N 3/04 (2006.01)

HO4L 25/03 (2006.01)

GO6N 20/00 (2019.01)

GO6N 5/04 (2006.01)

HO04B 17/24 (2015.01)

U.S. CL

CPC ......... GO6N 20/00 (2019.01); HO4B 17/101

(2015.01); H04B 17/373 (2015.01); H04B
17/3913 (2015.01); HO4L 25/0252 (2013.01);
HO4L 25/03165 (2013.01); HO4B 17/24
(2015.01); HO4L 2025/03464 (2013.01)
Field of Classification Search

CPC .. GO6N 3/0454; GO6N 5/046; HOAL 25/0252;
HO4L 25/03165

See application file for complete search history.

(56) References Cited

OTHER PUBLICATIONS

Hausknecht et al., “Deep recurrent q-learning with double g-learn-
ing,” arXiv preprint arXiv: 1507.06527, 2015.

Kingma et al., “Adam: a method for stochastic optimization,” arXiv
preprint: 1412.6980, 2014.

Mnih et al., “Playing Atari with deep reinforcement learning,” arXiv
preprint arXiv: 1312.5602, 2013.

O’Shea et al., “Convolutional radio modulation recognition net-
works”, arXiv preprint arXiv:1602.04105, 2016

O’Shea et al., Kerlym: keras reinforcement learning gym agents,
(https://arxiv.org/abs/1605.09221) 2016.

Silver et al., “Mastering the game of go with deep neural networks
and tree search”, Nature, 529(7587):484-489, 2016.

Sutton et al., “Reinforcement learning: an introduction,” MIT Press,
1998, (http://web.stanford.edu/class/psych2009/Readings/
SuttonBartoIPRL. Book2ndEd.pdf).

Van Hasselt et al,, “Deep reinforcement learning with double
q-learning”, arXiv preprint arXiv:1509.06461, 2015.

* cited by examiner



US 10,541,765 B1

Sheet 1 of 8

Jan. 21, 2020

U.S. Patent

{1£1) spiemay g
SUGIIEAIBSQQ

{ce) s=anod

L "9l

SIUBISAS

BYO oL

{801}
wpguLsi Inding

{11}
IBHOUCTY BLIGIDARAR

{207} jeusig

{$£1)

{o1°1] sRy0uuoR SR,
sussasoad-aag 1Ru3g

Uo28RS UOIDY

{ze1)
unezundQ ASHod

{og1)
ebeioig

@o_ﬂ UOISIBAUODY
LMog [eHdig

(11} seqonue) (561)
SBUmNG Y : {(DOY) 18paauo
_ ! fenbig o) Bojeuy
(1) . (yoL) souny
Jajjonuoy Jeuny
{£TT) SiBonuoy {01} 1oremueny
LOBENUSLYY puE s praynduryy
fzrnd {zoT1)
SO0 UMITIBRT 4335 UOI19319S 423
{(L11) sslionuog {101}
sUUSUY {7 euusiuy oipey
(61T 5i8[j017u0) | (60T ) safels o1pey

b
i
i
i
i
¥
¥

ul 4y

Mgw



U.S. Patent Jan. 21, 2020 Sheet 2 of 8 US 10,541,765 B1

" | 5EFT sohen fogod B %]
oy f ? K ,5 {
e AR T T S <
H ST P N !
GEET Jehe Aojod & =
Zg gy £ 0
k< & £ ) Dot
- AT s &
Eh AN =
N~ |EEETefeifogog K W O
A
S N S—

1317 .
4
130



US 10,541,765 B1

Sheet 3 of 8

Jan. 21, 2020

U.S. Patent

SUDIBAIBSGD)

{187} spiemay g

{££2) som0d

¢ Ol

{got)

g anding

y

SIB}JOJIU0T

palenuwIg

sa8e1s Dipey

shieing

woneruidg Axjod

uj 4¥
wis

ORI

{zwz)
S4BV
PRIBIIHG

ﬁm%
fBuueyy

{1v2)
I0IBINLIG OLIBUBDS
oipey pue jeeds

Mgm



US 10,541,765 B1

Sheet 4 of 8

Jan. 21, 2020

U.S. Patent

UONBULIOH

{6ee) saoeuSy

{0ee)
abeioig

{1£€) spsemay 8
ORISR

1

(ggg) seiod

el

uoneIREnRdQ

DIEMSY

{gee) eordg
uoRBAISSaD

ndino

(10¢) uonewIoUY
eye/eubig

uo BRG]

(61E) s4o]j043U07

{60¢) so8e15 o1pRY

Ui 4y

M 008



U.S. Patent Jan. 21, 2020 Sheet 5 of 8 US 10,541,765 B1

{21y} NNesusg

e e e e R

{014 areusieouos)/sbispy

FIG. 4

{807} NNasuag

T
(yov) NNasusa 1§ | (90v) NNAUGD

@ ey
D5 8 S w @&
= s T i
[ P o] - 2
35S gSES
>\..- D e
5 i ;
i § ¥
Y
2
o <
=y
5~
o
[<b]
[72)
L
<

400 Z



U.S. Patent Jan. 21, 2020 Sheet 6 of 8 US 10,541,765 B1

500
Q INPUT A FIRST REPRESENTATION OF A SIGNAL

802

PROCESS THE FIRST REPRESENTATION OF THE SIGNAL USING ONE
OR MORE RADIO STAGES 504

!

QUTPUT A SECOND REPRESENTATION OF THE SIGNAL FROM THE
(ONE OR MORE RADIO STAGES 508

OBTAIN ONE OR MORE OBSERVATIONS ABOUT THE SECOND
REPRESENTATION OF THE SIGNAL 508

MEASURE ONE OR MORE METRICS OF THE SECOND
REPRESENTATION OF THE SIGNAL 10

; 51

ACCESS PAST OBSERVATIONS AND METRICS FROM STCIRAGEm F E G . 5

I

ADSUST, USING THE OBSERVATIONS, METRICS AND PAST
OBSERVATIONS, PARAMETERS OF A MACHINE-LEARNING
NETWORK THAT EXECUTES POLICIES TO PROCESS SIGNALS BY
CONTROLLING THE RADIO STAGES 514

-i

UPDATE ACTIONS PERFORMED BY ONE OR MORE CONTROLLERS
CORRESPONDING TO THE RADIO STAGES 516

‘ ;4
PROCESS A REPRESENTATION OF A SUBSEQUENT HGNAL USING
THE RADID STAGES CONTROLLED 8Y ACTIONS THAT INCLUDE THE
UPDATED ACTIONS 518




US 10,541,765 B1

Sheet 7 of 8

Jan. 21, 2020

U.S. Patent

V9 Ol

M 009



US 10,541,765 B1

Sheet 8 of 8

Jan. 21, 2020

U.S. Patent

s



US 10,541,765 B1

1
PROCESSING OF COMMUNICATIONS
SIGNALS USING MACHINE LEARNING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 15/978,920 filed May 14, 2018, which claims
priority to U.S. Provisional Application No. 62/505,219,
filed on May 12, 2017. The disclosures of both applications
are considered part of, and are incorporated by reference in,
the disclosure of this application.

TECHNICAL FIELD

The present disclosure relates to using machine learning
to process communications signals, and in particular radio
frequency (RF) signals.

BACKGROUND

RF waveforms are prevalent in many systems for com-
munication, storage, sensing, measurements, and monitor-
ing. RF waveforms are transmitted and received through
various types of communication media, such as over the air,
under water, or through outer space. In some scenarios, RF
waveforms transmit information that is modulated onto one
or more carrier waveforms operating at RF frequencies. In
other scenarios, RF waveforms are themselves information,
such as outputs of sensors or probes. Information that is
carried in RF waveforms is typically processed, stored,
and/or transported through other forms of communication,
such as through an internal system bus in a computer or
through local or wide-area networks.

SUMMARY

In general, the subject matter described in this disclosure
can be embodied in methods, apparatuses, and systems for
training and deploying machine-learning networks to con-
trol processing of communications signals sent over RF
channels.

In one aspect, one or more processors control processing
of radio frequency (RF) signals using a machine-learning
network. The one or more processors receive, as input to a
radio communications apparatus, a first representation of an
RF signal. The first representation of the RF signal is
processed using one or more radio stages of the radio
communications apparatus. In response to the processing,
the one or more processors output a second representation of
the RF signal from the one or more radio stages. The one or
more processors obtain one or more observations about the
second representation of the RF signal and measure one or
more metrics of the second representation of the RF signal.
The one or more processors access past observations and
metrics from a storage coupled to the radio communications
apparatus. The one or more processors adjust, using (i) the
one or more observations, (ii) the one or more metrics and
(iii) the past observations and metrics that are accessed from
the storage, parameters of a machine-learning network that
implements one or more policies to process RF signals by
controlling the one or more radio stages. In response to
adjusting the parameters of the machine-learning network,
the one or more processors update one or more actions
performed by one or more controllers corresponding to the
one or more radio stages, wherein a controller performs
actions to control a respective radio stage. The one or more

15

20

25

30

35

40

45

55

2

processors process a representation of a subsequent RF
signal input to the radio communications apparatus using the
one or more radio stages that are controlled based on actions
that include the updated one or more actions.

Particular implementations of the above aspect may
include one or more of the following features. Updating the
one or more actions may include: executing the one or more
policies with adjustments in response to adjusting the
parameters of the machine-learning network; obtaining, as a
result of executing the one or more policies with the adjust-
ments, an updated prediction of a next action to be taken by
the one or more controllers; and providing the next action to
the one or more controllers. Obtaining the updated predic-
tion of the next action may include obtaining an updated
prediction of a next action that is expected to achieve a target
value for at least one metric of the one or more metrics. The
updated prediction may be distinct from a prediction that
would have been obtained as a result of executing the one or
more policies without the adjustments.

Obtaining the updated prediction of the next action may
include: determining, from a group of available actions, a
particular action that is expected to minimize a difference
between a current value of at least one metric of the one or
more metrics and a target value of the at least one metric;
and selecting the particular action as the next action. At a
first time, a first updated prediction of a next action may be
obtained, wherein the first updated prediction is based on a
first set of past observations and metrics that are accessed
from the storage, wherein the first updated prediction is
expected to result in a first difference between a current
value of the at least one metric and the target value; and at
a second time subsequent to the first time, a second updated
prediction of a next action may be obtained, wherein the
second updated prediction is based on a second set of past
observations and metrics that are accessed from the storage,
wherein the second updated prediction is expected to result
in a second difference between a current value of the at least
one metric and the target value, the second difference being
smaller than the first difference, and wherein the second set
of past observations and metrics is larger than the first set of
past observations and metrics.

The machine-learning network may include an artificial
neural network (ANN). Adjusting parameters of the
machine-learning network may include updating at least one
of: a connectivity in one or more layers of the ANN, or a
weight of connection in one or more layers of the ANN.

Adjusting parameters of the machine-learning network
may include adjusting parameters of the machine-learning
network using at least one of reinforcement learning, Deep
Q-Learning, Double Q-Learning, policy gradients, or an
actor-critic method. The machine-learning network may
include at least one of a deep dense neural network
(DenseNN) or a convolutional neural network (ConvNN)
comprising a series of parametric multiplications, additions,
and non-linearities. Updating the one or more actions may
include determining, from a group of available actions, the
one or more actions using at least one of a greedy learning
process, or a soft learning process.

The one or more observations may include at least one of
power spectrum estimates, cyclic features, time domain
samples, current controller settings, historical information,
or different forms of the second representation of the RF
signal. The one or more metrics may include number of
signals found, signal to noise ratio, information about types
of signals, information about users of the radio communi-
cations apparatus, or information about signal contents.
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The one or more observations may include channel
response, power spectrum, time domain signal, spatial infor-
mation about transmitters and receivers, current controller
settings, historical information, information describing the
first representation of the RF signal, or information describ-
ing the second representation of the RF signal. The one or
more metrics may include bit error rate (BER), frame error
rate (FER), symbol error distance, multi-user throughput,
packet drop rate, spectral efficiency, quality statistics of a
radio communications channel, or performance of the radio
communications channel.

Other implementations of this and other aspects include
corresponding systems, apparatuses, and computer pro-
grams, configured to perform the actions of the methods,
encoded on computer storage devices. A system of one or
more computers can be so configured by virtue of software,
firmware, hardware, or a combination of them installed on
the system that in operation cause the system to perform the
actions. One or more computer programs can be so config-
ured by virtue of having instructions that, when executed by
data processing apparatus, cause the apparatus to perform
the actions. The apparatuses may include a wireless router,
a wireless access point, a cellular phone, a cellular base
station, or a software radio.

All or part of the features described throughout this
application can be implemented as a computer program
product including instructions that are stored on one or more
non-transitory machine-readable storage media, and that are
executable on one or more processing devices. All or part of
the features described throughout this application can be
implemented as an apparatus, method, or electronic system
that can include one or more processing devices and
memory to store executable instructions to implement the
stated functions.

The details of one or more implementations of the subject
matter of this disclosure are set forth in the accompanying
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a radio communications
system that uses machine learning to adjust actions taken by
radio controllers to process RF communications signals.

FIG. 1A illustrates an example of a network structure of
a machine-learning policy network that may be implemented
in an RF communications system to implement policies for
radio controller action selection.

FIG. 2 illustrates an example of a radio communications
system that uses a scenario simulator and simulated radio
stages to train a machine-learning network.

FIG. 3 illustrates an example of a radio communications
system that uses machine learning to sense signals and
emitters in the environment, or to receive transmitted RF
signals, or both.

FIG. 4 illustrates an example of a network architecture
that uses a deep learning to implement policies for providing
action-value estimates.

FIG. 5 is a flowchart illustrating an example method for
controlling processing of an RF signal using a machine-
learning network.

FIGS. 6A and 6B are diagrams illustrating examples of a
computing device and a mobile computing device, respec-
tively, that can control processing of an RF signal using a
machine-learning network.
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Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

Techniques are disclosed herein for learning and control-
ling parameters and operating strategies of radio communi-
cations systems. The disclosed techniques employ machine
learning that use training methodologies, e.g., reinforcement
learning, to control radio signal processing hardware and
respond to stimuli to optimize the operation of radio systems
for specific radio system tasks. A radio communications
system employing these techniques learns optimal or near-
optimal policies for controlling radio hardware settings to
perform a range of tasks, such as frequency selection, gain
control, or other amplifier and filter stage parameter selec-
tion. In some implementations, the system accumulates
experience over multiple iterations of exploration, develop-
ing reward-seeking policies that attempt to accomplish cer-
tain objectives, e.g., fastest signal detection, most robust
signal detection, identification or reception of a radio signal,
low bit error rate, low power, low bandwidth, low complex-
ity, optimal resource allocation (for single users, or multiple
users, or both), robust performance in well in particular
regimes such as at low signal to noise (SNR) ratio channels
or under specific types of fading or interference, among
other criteria. In some implementations, the objectives cor-
respond to historical objectives that are learned by the
system based on the accumulated experiences. Using his-
torical observations from the accumulated experiences, poli-
cies are developed or adjusted to optimize for such historical
rewards. In this context, optimizing for rewards refers to
parameter configuration adjustments of the radio hardware
that are intended to achieve certain objectives, e.g., target
values of one or more metrics of the communications
signals. In doing so, the radio communications system can
adaptively learn to take intelligent search and radio control
actions autonomously. The objectives include, for example,
utilizing limited computing resources to efficiently process
signal information to minimize detection time for certain
types of signals, identify certain types of bursts to extract in
the wideband, or maximize resource utilization for aggre-
gate multi-user capacity, among others.

In conventional approaches, tasks such as radio spectrum
search, signal detection, receiver tuning and hardware opti-
mization are done manually, e.g., by a human operator, or a
simple state machine-based automated method (e.g. scan-
ning through settings or channels iteratively in a pre-pro-
grammed manner that does not learn, improve or change
from experience). In such cases, an operator may select,
through trial and error, an operating frequency on a hardware
oscillator and mixer device, a combination of gain settings
and/or attenuation settings on a programmable gain ampli-
fier or programmable attenuator, a combination of filter
settings, and potentially a large number of manually set or
tuned parameters within a radio receiver and digitizer hard-
ware device, to receive a signal with minimum distortion.
Often, experienced expert operators are rare, expensive, not
scalable to a large number of instances, or not methodical,
quantitative and predictable. In contrast to such conven-
tional approaches, the implementations disclosed herein
provide for autonomously training, optimizing and deploy-
ing a radio communications system and method for control-
ling the radio hardware components in a radio signal pro-
cessing system, such as a sensing system or a radio
communications system, to achieve target objectives.
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The disclosed implementations present a novel approach
to how radio communications systems are designed and
deployed for radio communications applications. For
example, the disclosed implementations may help improve
a slow and incremental conventional process of radio signal
engineering that does not scale well (e.g., due to use of
human operators, as noted above), and instead enable a new
way of designing, constructing, and realizing radio commu-
nications systems. The policies employed by these radio
communications systems include policies realized by
machine-learning networks that are trained to learn suitable
radio signal sensing or radio signal generation parameters
for different types of communication media. In doing so, the
radio communications systems offer various advantages,
such as rapid adaptation, self-optimization, improved power,
resiliency, and complexity advantages over presently avail-
able systems. This can be especially important for commu-
nications channels that have very complex sets of effects that
are hard to model, have a large number of operating con-
figurations, conditions or modes, or are hard to optimize for
using other approaches, e.g., wireless or cellular communi-
cations channels.

The implementations disclosed herein can be applied to a
wide range of radio communication systems, such as cellu-
lar, satellite, optical, acoustic, physical, emergency hand-
held, broadcast, point-to-point, Wi-Fi, Bluetooth, and other
forms of radio systems, including channels that undergo
transmission impairments. Channel impairments can
include, for example, thermal noise, such as Gaussian-like
noise, multi-path fading, impulse noise, spurious or continu-
ous jamming, interference, distortion, hardware effects, and
other impairments.

The system may implement techniques to control radio
hardware that are learned from one or more machine-
learning networks that have been trained to select from a
range of suitable policies that govern actions performed by
the radio control hardware based on one or more objective
criteria. In some implementations, the machine-learning
networks are artificial neural networks (ANNs). During
training, the machine-learning networks may be adapted
through selection of model architecture, weights, and param-
eters in the encoder and/or the decoder to learn encoding and
decoding mappings.

In some implementations, a machine-learning network is
trained to perform unsupervised, or partially supervised,
machine learning to determine techniques to process RF
signals for transmission, or reception, or both, or to identify
RF signals present in detection power spectra. Therefore, in
some scenarios, rather than being reliant upon pre-designed
systems for signal tuning, mode selection or identification of
received RF signals, the disclosed implementations adap-
tively learn techniques for processing information in RF
waveforms that are transmitted or received over a channel,
as well as techniques for identifying RF waveforms in
detection emissions. The machine-learning network may be
trained on real or simulated channel conditions. Radio
communications apparatus or systems that utilize results of
training such machine-learning networks can be further
updated during deployment, thus providing advantages in
adapting to different types of wireless system requirements,
which can result in improvements to throughput, error rate,
acquisition time, resilience, flexibility, complexity, and
power consumption performance of such systems. Depend-
ing on the configuration of the training system and data sets,
simulators and/or channel models used, such machine-learn-
ing communication techniques can specialize in perfor-
mance for a narrow class of conditions, signal band or
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6

channel types, or may generalize and optimize performance
for a wide range of signal, band or channel types or mixtures
of one or more signals, bands or channels.

FIG. 1 illustrates an example of a radio communications
system 100 that uses machine learning to adjust actions
taken by radio controllers to process RF communications
signals. The system 100 includes one or more radio stages,
collectively referred to as radio stages 109, which are
controlled by one or more controllers, collectively referred
to as controllers 119. The system 100 further includes a
storage 130, observations and rewards 131, policy optimi-
zation 132, policies 133 and action selection 134.

In some implementations, the system 100 is an apparatus,
such as a hardware electronic device or an embedded
software radio, which includes the radio stages 109, the
controllers 119, storage 130, observations and rewards 131,
policy optimization 132, policies 133 and action selection
134, as combinations of one or more hardware components,
or software components, or both. For example, the system
100 is a wireless device, such as a cellular phone or an
access point, in some cases. In some implementations, the
system 100 includes multiple different hardware electronic
devices or embedded software radios that are connected to
one another, each of which includes one or more of the radio
stages 109, the controllers 119, storage 130, observations
and rewards 131, policy optimization 132, policies 133 and
action selection 134. For example, in some cases, the system
100 is a cellular base station resource block scheduler that
includes multiple different hardware and software compo-
nents. For example, the cellular base station can leverage
reinforcement learning by the machine-learning network to
optimize resource allocation, resource scheduling, and pri-
oritization of physical radio parameters.

As shown in FIG. 1, an RF signal (RF In) input to the
system 100 is processed by the radio stages 109 based on
actions by the controllers 119, to produce output information
108. In some implementations, the radio stages 109 include
one or more of the following components, which can be a
hardware (e.g., tuning or filtering) or instructions executed
in a processor (e.g., synchronization, demodulation, or
modulation, among others). Each radio stage is controlled by
a corresponding controller of the controllers 119. For
example, the radio stages 109 include a radio antenna 101,
which is controlled by a corresponding antenna controller
111 that selects one or more antenna parameters, such as the
antenna’s azimuth, elevation, other geometry, impedance
matching, antenna port, or other antenna operating charac-
teristics which receives RF In. As described below, actions
taken by the antenna controller 111 to select one or more of
these parameters is adjusted based on adjustments to the
policies 133.

The radios stages 109 and corresponding controllers 119
also include a filter selection 102 hardware component,
which is controlled by a filter selection controller 112; a set
of programmable gain amplifiers and/or attenuators 103,
which are controlled by gain and attenuation controllers 113;
a tuner 104 (which can include, e.g., an oscillator and a
mixer, or multiple stages of oscillators and mixers, in the
case of non-direction-conversion), for which the oscillator
frequency and other settings are controlled by tuner con-
troller 114; and an analog to digital converter (ADC) 105,
which converts the tuned signal to a digital representation
(in some implementations, after an optional additional set of
filters and/or amplifiers/attenuators), where an ADC settings
controller 115 controls the operating parameters of the ADC
105. In some implementations, the radio stages 109 also
includes a digital down converter 106, which uses a set of
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digital signal processing algorithms to perform digital down
conversion, e.g., providing additional tuning and filtering.
The digital down converter is controlled by a digital pre-
processor parameter controller 116, which selects operating
parameters and modes for the down-conversion.

Upon processing by the radio stages above, a received
digital signal 107 is produced, e.g., either as a raw signal
representation, or some processed version of the signal, such
as through a demodulator, detector, classifier, or other signal
processing algorithm(s). A waveform controller 117 controls
the modem-operating mode and operating parameters of the
signal processing algorithm(s). Following processing by the
signal processing algorithm(s), output information 108 is
produced, which is intended for use by other downstream
systems or users.

In some implementations, the output information 108 is
improved by optimal control and tuning of various radio
stages 109 by the set of controllers 119, which may change,
e.g., the operating modes, parameters, or settings of the radio
stages. In such implementations, the output information 108
is used, in addition to being sent to other systems, to produce
observations 131 about RF In, and results in accumulation of
rewards 131 based on a mission and application specific
radio task that is being performed, e.g., as described in
greater detail below with respect to FIG. 3.

In some implementations, observations and rewards 131
over multiple iterations, and actions that are taken by the
radio controllers 119 corresponding to the observations and
rewards, are stored as historical information and traces in
storage 130, e.g., a database, as the system 100 learns and
experiments over time. During one iteration, the system 100
provides as input the present observations and rewards 131,
and the historical information obtained from the storage 130,
to a set of policies 133, which predicts the next action(s)
(e.g., optimal actions) to be taken by one or more of the
controllers 119 to produce the best reward. In some cases,
the storage 130 is implemented in memory, such as random
access memory (RAM), read-only memory (ROM), non-
volatile memory such as flash memory, or hard disk memory.
In some implementations, the policies 133 predict the good-
ness, or utility, of the next action(s) to achieve the best
reward. Based on the prediction, an action selection com-
ponent 134 selects the optimal actions and provides them to
the target controllers that are to be adjusted, to adjust the
processing performed on RF In. In subsequent iterations, the
system 100 continues to map observations 131 through the
set of policies 133, to determine actions that are provided by
action selection 134 to one or more of the controllers 119.
For example, in some implementations, in response to
current or predicted channel conditions (e.g. rate adaptation
to appropriate encoding schemes) determined by the policies
133, actions to tune the radio stages 109 to particular
modulation and coding modes, or autoencoder encoding or
decoding configurations, are selected by action selection
134.

In some implementations, a policy optimization routine
132 is run offline or online during deployment of the system
100. The policy optimization routine 132 uses the prior
experience by the system 100, e.g., the historical informa-
tion and traces obtained from the storage 130, and one or
more methods to develop, improve and/or optimize the set
of policies 133. The policies 133 include, for example,
action-value policies, which estimate the predicted reward
and/or next state given by each action; and state-value
policies, which predict the potential future rewards given by
each state. In this context, “state’” means the current status of
objects, emitters, locations, propagation effects and other
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effects within the environment, along with the current obser-
vations and configuration and operation modes of some or
all of the radio stages 109. The policies 133 also include
advantage policies, which estimate only the difference in
reward among various actions. In some implementations, the
policies 133 also include a number of prediction models,
which predict the next state given the current state. In some
implementations, the prediction models include predicted
effects of the next action. For example, emitters often follow
predictable emission patterns that can be modeled and
predicted and may not be effected by the actions taken by the
receiver. In some implementations, the prediction models
exclude the predicted effects of the next action.

In some implementations, one or more of the policies 133,
policy optimization 132 and action selection 134 are imple-
mented as: hardware routines, e.g., firmware embedded in
one or more integrated circuits, microcontrollers, or field
programmable gate arrays (FPGAs); or as software routines,
e.g., instructions stored in memory (e.g., flash memory) that
are executed by one or more processors; or a combination of
both.

In some implementations, the policies 133, or the policy
optimizations 132, or both, are implemented as machine-
learning networks or other parametric models, in which the
parameters are updated through policy optimization. This
process can involve policy iteration, e.g., in which experi-
ences are replayed to compute and minimize the distance
between predicted rewards and actual rewards using a
method such as gradient descent or evolutionary parameter
selection, thereby improving the accuracy with which the
policy functions reflect the operating environment.

In some implementations, the machine-learning networks
that implement the policies 133 and/or the policy optimiza-
tions 132 include ANNSs, which consist of one or more
connected layers of parametric multiplications, additions,
and non-linearities. In such implementations, updating the
machine-learning networks include updating weights of the
ANN layers, or updating connectivity in the ANN layers, or
other modifications of the ANN architecture, so as to modify
the actions selected by action selection 134.

FIG. 1A illustrates an example of a network structure 135
of' a machine-learning policy network that may be imple-
mented in an RF communications system to implement
policies for radio controller action selection. As shown, the
network structure 135 is an ANN that executes the policies
133.

The network structure 135 uses one or more policy layers,
e.g., policy layers 133a, 1335 and 133c¢, to form an ANN that
executes policies 133. Each policy layer includes one or
more artificial neurons. The output of each policy layer is
used as input to the next policy layer. For example, the
output of policy layer 133a is used as input to policy layer
1335. Each layer of the ANN generates an output from a
received input in accordance with current values of a respec-
tive set of parameters. For example, in some implementa-
tions, the network 135 includes a plurality of policy layers
that are collectively or iteratively trained.

The network input are observations and rewards 131 from
the present actions taken by radio controllers to control their
respective radio stages. The policy layers also communicate
with policy optimization 132, which adjusts the connections
between the policy layers (e.g., by adjusting the weights of
the connections between neurons of different layers) based
on the observations and rewards 131, and also using his-
torical information, e.g., retrieved from storage 130. The
network output corresponds to the action selection 134, e.g.,






