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ABSTRACT

Wide bandgap (WBG) semiconductor deviees becoming increasing popular in power
electonics applicatiors. However WBG semiconductor devicggnerate a substantial amount of
conducted electromagnetic interference (EMI) compared to silicon (Si) devices due to their ability
to operate at higher switching frequencies, higher operating veltagk faster slew rates. This
thesisexploresand analyzesEMI mitigation techniques that can be appliecatpowermodule
architectureat the packaging level.

In this thesis, the EMI footprint of four different module architecturesneasured
experimerally. A time domain LTspice simulation modef the experimental test setigpthen
built. The common mode (CM) EMI emissi®that escapéhe baseplate of the modulgto the
converter ighenexaminedhroughthe simulationThe simulation is used to exjpe the CM noise
footprint of eight additionaimodulearchitectures thawere found in literature. Th&MI trends
and the underlyingnitigation principlefor the twelve modukeis explainedby highlightingkey
differences in the architecturesing commormode equivalent modelling and substitution and
superposition theorenthe work aims to help future module designers by not only comparing the
EMI performance of the majority of module architectures available in literaturdybatso
providing an analysismethodology that can be used to understand the EMI behaviay ofeav
module architecture that $iaot beerdiscussedAlthoughsilicon carbide $iC) modulesare used

for this study, the results arapplicable for any WBG device.
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Taha Moaz
GENERAL AUDIENCE ABSTRACT

As society moves towards the electric grid of the future, there have beeningczdls
for high efficiency, high powedensiy, and low electromagnetic interferen@EMI) power
electronic converter&£MI is abig problem when using widbandgap (WBG) devicess these
devices camswitchvery quicklyand handle higer voltageswhen compared to silicon devicés.
this study, waydo reduce EMI in a WBG power modutbroughtwelve differenttypes of
packagingareexplored FourWBG power modules adesignedand fabricated in the latwhereas
a simulation model ascreatedo studythe EMI behavior of theemainingeightpower modug.
The EMI behavior of themodules is explained using common m@ad#&1) equivalent modeling
and substitution ahsuperposition theorenThis study is important because WBG devices are
becoming morand moregopular inpowerelectronic applicationd he auwhor hopeghefindings
and analysis presented in this pageam help future module designers redieEMI footprint of

modulesthey design.
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Chapter 1: Introduction

1.1 Background

The leading semicatuctor choice for power electronics applications has been silicon (Si)
for several decadgs]. Although Stbased power electronics provides the benefit of being mature
and wellestablished, the technology is gradually reaching its limitatjighsWide-band gap
(WBG) semiconductor devices have recently started to attract attention in power electronics due
to their higher operating temperatures, faster switching speeds, higher voltage breakdown
capability, and lower conduction lossg, [3]. The ntrinsic device properties of silicon (Si
green, andWBG devices such agllium nitride (GaN purple and silicon carbide (Si®lug are

shown inFigurel.

Si GaN 4H-SiC

Electric Field
(MV/cm)

Low Conduction
Losses

High Voltage
Capability

Electron Mobility

(103 cm?/ (Vs)) » ) Bandgap (eV)

Fast Switching
Speed

High Temperature
Operation

Electron Saturation X Thermal Conductivity
Velocity (107 cm/ s) (W/ (cmK))

Figure 1: Intrinsic device properties of slicon (Si, Green), gallium nitride (GaN, Purple), and
silicon carbide SIC, Blue)



Thehigher voltage capability, higher operating temperatures, lower conduction krsdes
faster switching speedsf WBG devices result in higher efficiency and power dgnddsigns;
however, the higher operating frequenagdhigher operating voltagessoresult infasterslew
rates whichresults in a largeglectromagnetic interference (EMI) footprint of the sysféiin[9].

An example oRnEMI issuelimiting the perbrmance of WBG devica=sn be found ifil0], where

a 10 kv, 120 A SiC MOSFET/JBS full bridge mod{dd] was run in a power electronic building
block (PEBB) based impedance measurement(lMlt)) as shown irFigure2(a). The @nverter
could not be run at full voltage or rated power levels due to EMI issues. It can ba Eapire

2(b) that the peak of the noise current flowintp the ground through thearasitic capacitance
across thalirect bon@d copper PDBC) substrate in the power moduléas comparable to the
current flowing through the induct@oing to theoutputload (Figure 2(c)). The noise current
contaminatedhe groundof the converter andias causing the contrell to malfunction, limiting

the operating conditionsf the converterlt can therefore beoncludedhat properly addressing

EMIl issues is crucial to ensure that the advantages of WBG devices are not undeémaeethe
noise current was flowing througihe parasitic capacitance across the DBC substrate in the power
module,it has therefore become necessary that EMI mitigation is considered in the initial design

stages of the power modules.

In this work the effect of the power module architecture ondgtvamon mode (CM) EMI
generated by WBG devices is studied. The EMI emissions of a tatakbfe different module
architectures found in literature are explqr@ad different analysis techniques are used to explain

and compare the EMI spectrum generdtg@ach module.



=§ l \
= = T
| = C (dv/dt) osrETIBS Module QS
(a)
~~ 200
<L
~ 100
S
S 0
< 100
S
2005 10 20 30 40 50
Time (ms)
115
- 110
< 105
:100 '
90 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Time (us)
(©

Figure 2: (a) Circuit schematic of 10 kV, 120 A SiC MOSFET/JBS module in PEBB based

IMU (b) ground current (c) inductor current from [10].



1.2 Literature Survey

Over thepastdecade research efforts have been cemicated on mitigating CNhoise
issuesn WBG devices at various levels of the conver@atutions such as CM chokes and EMI
filters are often implemented at the input of the converter to minimize the amount of CM current
flowing into the systenf12]i[19]. In [20], aCM filter is integrated inside the module package.
Thesesolutiors increase the weight and volumetbé system and limit the efficiency apdwer
density of theconverter412], [21]. For example, the addition of an EMI filter can ocgungarly
onethird of the volume of the convertg@2]. Other CM current solutions involve the use of active
gate drivers to minimize issues related to CM curi28it Slowing down the slew rates can reduce
noise generatedut also increases switclginosseqd24]. Active gate drivers employ slew rate
control to help achieve a balance between switching losses and EM|Imgig&an increase the
complexity of the circuitry and controls of the converf@3], [25]. Snubber circuits and ferrite
beadsan also be used to daemyoltage and current oscillatipwhich results in lower EMR6]i

[30].

Less work has been dedicated to studying and mitigating CM current at the power module
packagindevel. It should be noted thag¢ducing the EMI generated the packaging level will not
eliminate the need fafilter, butwould minimize the amount of noise that will need to be filtered
at the converter leveWith the rise of WBG devices, the layout and design of power modules have
garnered attention due the higher sensitivity of WBG devices to parasitic inductances and
capacitancef31]i [33]. Since CM current is worsened by these parasitics, which are related to the
power module design, EMI mitigation and containment solutions at the package lelvelraye

investigated34].



When it comes to reducing CM noise inside the package, a large portion of the literature is
focused on minimizing the powdsop and gatdoop inductances that lead to ringing during
switching events. A popular way to reduce fthgact of stray inductances is to integrate
decoupling capacitors inside the module to reduce the commutatiof3®popther designers
have attempted to reduce ttie/dt of the module by embedding gate resistorsltov down the
fast switching transigs [36] or embedding resistarapacitor (RC) snubbers and ferrite beads to
reduce voltage ringing during switching evef8%]. These techniques help mitigate CM current

by reducing the switching speed; this approach offsets the benefits offered®ylgviges.

Otherstudieshave focused on the capacitive coupling to the baseplatgigate the flow
of CM current. The literature has proposed mitigating CM current by reducincafiaeitive
coupling of theswitchingnodeto the baseplatpresent inhie power modul¢38]. In traditional
power modules, an insulated substrate is patterned to form-hriggjé configuration, with the
switchingnode pad being a significant portion of the footprint. This switchiode pad has
capacitive couplingicrosghe substrate insulation to the baseplate, creating a critical path for CM
current to flow through. This capacitive coupling can be reduced either by shrin&ifogtprint
of the switchingnode or increasing the thickness of ithgulation dielectri¢39]. Othertechniques
include removing regions dhe insulated substrabebottom coppetayerand replamg it with
low-permittivity material[40], andcanceling the CM current through the baseplate of a single
phase invertewith the input and outpumpedances of the EMI testbéging made to bptl],
[42]. This CM current cancellation is achieviegmanipulating the ratio betweehe switching
node capacitance and the equivalent baseplate capacitance. In addition, it has been shown that
reducing tke switchingnode capacitance of the module and balancing the DC+ anddilC

parasitics help reduce CM current by minimizing differential mode (DM) to CM convdr3pn



A review of thehalf bridgemodule architectures that have been used in litertdumeplore
EMI mitigation at the module packaging levelnsw presentedin [44], the effect on theEMI
performance od GaNhigh-electrormobility transistor HEMTS) based hdtbridge power module
is studied with the integration of CM filter capac#oand decoupling capacitod&s module
architectures similar tBaseline ¢ ) (Figure3(b)) andBaseline ¢ ) (Figure3(c)). Compared to
the Baselinearchitecturg(Figure 3(a)), the integration fodecoupling capacitors into the module
results in mitigation in the CM noise generated in the 40 MHz to 100 MHz range. The integration
of CM filter capacitors resulted in significant CM noise reduction in the conducted EMI frequency
range. A Baseliné , 0 ) architecturgFigure3(d)), module architecture obtained by combining
Figure 3(b) andFigure 3(c), is eventually reommendedIn [45], CM filtering capacitors are
integrated directly into a SIC JFET based Hmilfige power moduleresulting in a module
architecture similar t®aseline ¢ ) shavn in Figure3(c). The EMI gerformance of thenodule
architecture isompared to a standard Baseline modkigure3(a)) by measuring the noisgthe
line impedance stabilization network (LISN)hehighest peak in thEMI spectrum for th@oise
generated by the Baseling § architecture showed a mitigation of 10 d@mpared to the highest
peak in the EMI spectrum of the Baselmedule. An average mitigation of 6 d&as measured
compared to the Baseline module architectoeéveen 100 kHz to 1MHZn [46], the EMI
performance of configuration similar to the Baseliné () module architecturéigure3(a)) is
simulatedn alGBT based half bridge chopper circuUfor the Baselined( ) module the value of
decouplingcapacitors is varied from O toyF and effect on the CM noise generatedimulated
It was observed that treddition of the decoupling capacitors reduces the high frequency noise
peaks in theCM noisefrequency spectrunbut introduces a additionalpeak in the frequency

spectrumat lower frequencies. CM filtering capacitors are then added across the module terminals



along with the decoupling capacitpend the EMI footprint of the converter is experimdmytal
tested. Significant mitigation was seenthe CM noise beyond 3 MHA Baseline(6 , 0 )
(Figure3(d)) architecture is recommendédd [47], Baselined ) and Baselined ) are proposed;
however, the integration of capacitors is dsicussedlnsteadthe paper proposes modifying the
module geometry and using the parasitic capacitances inside the module to obtain a somewhat

similar effect. The architectures are tested as a half bridge operating in a boost converter topology.

Modulearchitectures in literature that use stacked substrates for a lower EMI footprint are
now discussedn [48], the EMI footprint of &iC haltbridge powemoduleswitched in a boost
converter configuration is measured with four different module arcaresx:t BaselinéFigure
3(a)), CM Screen(Figure3(e)), CM Screen0 ) (Figure3(f)) andCM Screen(DC Mid) (Figure
3(g)). The EMIfootprints of thesefour module architectures compared and théM ScreenDC
Mid) architecturds concluded to have the low&M EMI in the conducted EMI frequency range
0 a mitigation of more than 1B over awide frequency range. Although experimental results
are provided, analysis of the noise reduction and frequency spectrum for each module architecture
is not provided. In[47], the CM Screen(Figure 3(e)) and CM Screen(d ) (Figure 3(f))
architectures are proposed atabsted with halbridge power modules operatiig a boost
converter topologyThe integration of decoupling capacitors into the architecturehtoCM
Screen(0 ) is not discussed; however, a somewhat similar effect is achieved by modifying the
geometry to take advant age tf49]ttHe EMIpesfairuoaneed s p a
of aCM Screen(Figure3(e)) and aCM ScreenDC Mid) (Figure3(g)) architecturas compared
in the time domainThelargest peak of theoise generately the CM ScreenDC Mid) module
architecturevasmeasuredo beten times lower than thkargest peak for thEM Screermodule

architecturelLittle analysison the mitigation seen is providebh [50], the EMI performance of a



stacked substrate module architectureafdfType NPC power modul@igure3(h)), made using
ahybrid combination of SIC MOSFETs and Si IGBT®scompared to baselinesingle substrate
T-Type NPC module architecturéhe stacked substrate introduced into the module architecture
is intended to act aan EMI shield and is connected to a fixed potential formed by the series
connection of decoupling capacitads a configurationreminiscentof CM Screen(DC Mid)
(Figure3(g)) from an EMI point of viewExperimental resultshoweda mitigation of up to 24B.
Although analysis of the EMI results is presenti@ analysis islone fora T-Type NPC power
module and insights gained are notilgaappicableto a half bridge moduldn [51], a stacked
substrate for half bridgapplications is proposed withGMV ScreenDC-) (Figure3(i)) andCM
ScreenDC+) (Figure3(j)) architecture. No EMI analysis of the architectures is preseim¢sR]

and [53], astacked substrate hdifidgepower module with £M ScreenDC-, 0 ) architecture
(Figure 3(h)) is presented and the EMI performansecompared to a commercially available
module with similaspecifications Experimental results showed an average mitigatiapdb14

dB and 25 dB in the noise voltage measured at the LISN, respectingB4], local shielding
solutions to reduce CM current at the inputadéaN HEMT basedhalf-bridge inverte leg are
proposedand attenuation in the CM noise spedtrabserved An architecture similar to theéM
Screen(DC+) (Figure3(j)) architecture is explored&hielding is also applied to the gate driver and
betwea the thermal pad and the heatsiAkotal noise reduction of up to 17 dasobservedin

[37], [40], [55]the CM screen baseplatén the module architecture was split. All portions of the
split CM screen were left floating. This technique can bel useobtain module architectures

similar toFigure3(k).
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Chapter 2: Introduction to Module Architectures

2.1 Introduction

This chapter introduces thivelve module architectures whose EMI footprimould be
explored in tis thesis. The hardware implementation of four of the module architectures is
presentedThe hypothetical desigrthat could be used to implement the remaining eight module

architecturess also presented.

2.2 Module Layout

To study the impact of the CM screen, a new module design was developed. The design
allows for testing the CM screen under different design conditions and provides insight into the
effectiveness of containing CM currenttinn the moduleFigure4(a) shows the topside view of
the | ayout where 1.2 kV, 4 0 -bridge Biod@e. MOBEG+E T s arr
DCi and OUT terminal placements are kept consistent between module variatideslowing

the flexibility to connect the screen to different DC nodes.

A side view of the CM screen module is showirigure4(b). The module uses two 0:35
mmtthick alumina DBC substrates stacked together to create the screemngNag bonds are
used to electrically connect the top copper layer to the screening layer. This layout enables

paralleling of many wire bonds to reduce the impedance to the screening layer.

In the literature, the CM screen is not only used to containc@ivent but also as a path
for the commutation loof62]. This enables a reduction in the pov@p inductance through
magnetic field cancellation, which enables cleaner switching events that redud®ZMro

avoid variations in the EMI due to ainges in the poweoop inductances, all of the proposed
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modules have the commutation loop on thedinle of DBC 1 Figure4(b)). This allows for the
screening layer to be used only to divert CM current and not to serve asgmartrofitation loop.

This enables modification of the screening layer while keeping the power loop inductance
consistent between a baseline and CM screen design. ANSYS Q3D simulations show that the
powerloop inductance with and without the decoupling capegiinside the module is 3.5 nH

and 7.5 nH aL00 MHz respectively.

The switchingnode capacitance across DBC 1 to the screening layer is dendieg. as
The screening layer capacitance across DBC 2 to the baseplate is defteds,asurthermore,
Ccmis 80.2 pF, an@screenis 436.9 pF for all the module variations. The module design also allows
for two paralleled 10 nF decoupling capacitors to be placed in series to minimize thdquywer

inductance and form the DC Mid node.
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Figure 4: (a) Top view, and (b) side view of commoemode screen module.

2.3 Module Variations Fabricated

The amount of CM current that will be diverted to theiDb@s depends on the high
frequency impedance of the screening layer. For the CM screereftebve, condition(1) has
to be satisfied48]:

Z screen << Z bp (1)

whereZscreenis the impedance of the CM screen to the desired DC nod&pgimsl the
impedance from the Chcreen to the module baseplate. For the case of thec@dnDC+) and

(DC Mid) module inFigure5(c) and (d)ZscreenCan be respectively written:as

DC+ __ DC+ DC+
Z screen ] w L screen + R screen (2)
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Mid __ ; Mid Mid
Z sclreen - ] w Lsc;een + R sc;een + Z C D (3)

wherel .Y and0 .Y are the equivalent inductance and resistance of

the wire bonds connecting the screening layer to DC+ and DC Mid nodes, respectively; and

is the impedance of the decoupling capacitors. Figure5(d), @ will be definedas:

1
ZCD - jwC ), (4)

whereCp is the equivalent capacitance of the decoupling capacitors between the DC Mid

and DC+ or DEnodes respectively.
In both architectures, the impedance to the baseplate can be given as

1
pr N ja) CSCI'EE‘I) (5)

where Cscreen iS the screeningpyer capacitance across DRBClo the baseplate of the

module. Usindg?2), (3), and(5), theinequality of(1) for the twoCM screemmodules becomes

1
. DC+ Dc+ -
jw Locieent Rocreen K ]a) C screen (6)
.y Mid Mid
] (l.) L screen + R screen + ZCD << j a) Cscreell (7)

wherew is defined according to equati¢f). It can be seen froii®) and(7) that it is critical
to reduce the parasitic inductance and resistance of the CM screen to be effective in redirecting the
CM current to its connected DC node. For the case of the CM scréem{@ module, the
decoupling capacitdZp (20 nF) was selected to be greater than 50 titiesn(436.9pF) tobetter
divert the CM current from flowing towards the baseplate of the module to the DC Mifaédde

It should be noted that integratiniget decoupling capacitoSp into the module increases the
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footprint of DBC 2 and the value @iscreen FOr this work, compact ceramic capacitors with high
capacitance values were selected to balance the -dffde
betweenCscreenand Cp. Furthermore, theapacitors are COG type, which means they are stable
with variations in temperature and voltage. This allows the CM screen to have the same

effectiveness under different voltage and temperature profiles.

With the module design established, four desigratians (shown ifrigure5) were developed

to study the impact of the module architecture on CM noise reduction. The variations are:

1 Baseline Module:This variation only uses DBC 1. The OUT node is coupled to

the baseplate throughe switchingnode capacitand@&cwm (Figure5(a)).

1 Baseline (®) Module: This variation is the same as the baseline design but with

the addition of integrated decoupling capacitigyre5(b)).

1 CM Screen(DC+) Module:DBC 1 and DBC 2 form a screening layer connected
to the DC+ nodelhe DC+ node is coupled to the baseplate thrdtighen(Figure5(c)). There
are no integrated decoupling capacitors in this module. The archetedsar serves as the CM

screen counterpart to the Baseline module.

1 CM Screen (DC Mid) ModuleTwo series decoupling capacitors are included to
create the midpoint DC Mid. DBC and DBC 2 form a screening layer connected to the DC
Mid node.The DC Mid is caopled to the baseplate throu@creen (Figure 5(d)). This
architecture is the CM screen counterpart to the Bas@islemodule.

In Figure5, the highside and lowside SiC MOSFET dies in the hdifidgeschematic are

referred to a® and0 , respectively. The final module prototypes are showFigare6. Testing
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these modules will provide a better understanding of the EMI mitigation associated with

redirecting the CMeurrent to different parts of the Dials.
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Figure 5: Variation of the module (a) Baseline module with no commoimnode (CM) screen
(b) Baseline module with no CM screen but with decoupling capacitors, (c) CM screen
module with screening layer connected to DC+, and (d) CM screen module with screening
layer connected to DC Mid.
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Figure 6: Images of the fabricated CM screen module prototypes.

2.4 Module Variations Simulated

In addition to the four module architeces studied experimentally, eight additional
module architectures were simulatecet@luateandunderstand EMI mitigationsing packaging
techniquesn more detail The eight module architectures studied are showgare?. It should
be noted that all eight architectures can be fabricated through packaging teclmogeser they

were not made due to time limitations.

1 Baseline(Cy) Module: This variation is the same as tBaseline(Cp) design but
the Mid node formed by theddition of integrated decoupling capacitasshorted to the
baseplat€Figure7(a) andFigure8(a)).

1 CM Screen ModuleDBC 1 and DBC aare stacked together form a screening

layer, however, the sceming layer is notonnected to thany nodeand leftfloating. The
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architecture serve® showonly the effect of stackd substratesn the generated EMF{gure
7(b) andFigure8(b)).
i CM Screen(Cp) Module: Thisvariation is the same &ise CM Screerdesign but

with the addition of integrated decoupling capaci{éigure7(c) andFigure8(c)).

1 CM Screen(DC+, Cp) Module: Thisvariation is the same #seCM Screer(DC+)

design but with the addition of integrated decoupling capaditagsire7(d) andFigure8(d)).

1 CM Screen (DCG) Module: DBC 1 and DBC 2 form a screening layer connected
to the DG node The DG node is coupled to the baseplate thro@gkeen (Figure 7(e) and

Figure8(e)). There are no integrated decoupling capacitors in this module.

1 CM Screen(DC-, Cp) Module: This variation is the sae asCM Screen(DC-)
design but with the addition of integrated decoupling capadiogsire 7(f) andFigure8(f) or
Figure9(a)).

1 CM Screen DC+,DC-) Module: DBC 1 and DBC 2Zorm a screening layéhat is
split similar towhat isshown inFigure 3(k). Onehalf is connected tthe DC+ node andhe
otherhalf is connected to Dhode.The screening layer is split such thiae OUT node has a
capacitivecoupling to each paaf the screening layer equalhalf of capacitanc€cwm, and the
capacitive coupling eagbad of the screening laybas to the baseplateagual tohalf of the
capacitancé&screen There are no integrated decoupling capacitors srttodule(Figure 7(g)

andFigure8(g)).

i CM Screen DC+, DC-, Cp) Module: This variation is the same &M Screen
(DC-) design but with the addition of integrated decoupling capacitergure7(h) andFigure

8(h) or Figure9(b)).
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In Figure7?, the highside and lowside SIiC MOSFET dies in the hdifidge schematic are
referred to ag) and 0 , respectively.Simulating the EMI behavior ofheseeight module
architectureslong with the four previously describedll provide a better understanding thfe
EMI mitigation option available at the packaging levEigure 8 shows hypothetical module
layouts for the architectures shownHigure?7. It should be noted that iRigure8(f) and (h) the
midpoint node has been removed as it was not neeldedever if needed inside the module vias

can be used as shownRigure9.
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Figure 7: Eight additional module architectures studied through simulation
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