RESPONSE OF A CRACKED ROTATING SHAFT WITH A DISK
DURING PASSAGE THROUGH A CRITICAL SPEED
by

Surjani Suherman

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
in

Civil Engineering

APPROVED

Raymond H. Plaut, Chairman

et DLkl

R. Gordon Kirk Alfred L. Wicks

December, 1992

Blacksburg, Virginia



C. %

Ly
565¢
vgsse
1992
S goYY

C.2




RESPONSE OF A CRACKED ROTATING SHAFT WITH A DISK
DURING PASSAGE THROUGH A CRITICAL SPEED
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(ABSTRACT)

Non-stationary motion of a cracked rotating shaft with accelerating or
decelerating angular velocity {} through a critical speed is studied. The shaft has a
breathing transverse crack and a disk. There are two parts, which are the
investigation of flexural response, neglecting the torsional vibrations, and the
investigation of flexural-torsional response. In both studies the longitudinal
vibration and the influence of shear deformation are neglected. The boundary
conditions of the supports are simply supported for the transverse displacements
and fixed-free in relation to torsion (for the flexural-torsional response only).

The transverse surface crack, which causes a geometric discontinuity, is
replaced by generalized moments at the crack location. The equations of motion
follow the formulation of Wauer. Galerkin’s method and numerical integration are
used to obtain approximate solutions. The maximum responses are determined.

The effects of the acceleration and deceleration rate and the different

parameters of the breathing cracked rotating shaft, such as crack depth, crack
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location, disk location, disk eccentricity, disk eccentricity angle, and disk mass,
are studied. The influence of internal damping, external damping, and torsional
external damping, are investigated. Comparisons with an open cracked rotating
shaft and an uncracked rotating shaft are also presented. The influence of

torsional deformation is analyzed. The results are presented in tables and figures.
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NOMENCLATURE

a : crack height

b : crack location

b : nondimensional crack location

c : disk location

¢ : nondimensional disk location

C44, Cs5, Cge : Teciprocals of stiffness coefficients k,4, kss, keg
€445 Cs5, Cge - nondimensional reciprocals of stiffness coefficients kyy, kss, keg
dc : crack damping coefficient

d¢ : nondimensional crack damping coefficient

de : external damping coefficient

de : nondimensional external damping coefficient

: internal damping coefficient

: nondimensional internal damping coefficient

dp : torsional external damping coefficient

dt : nondimensional torsional external damping coefficient
D : shaft diameter

em : disk eccentricity

ém : nondimensional disk eccentricity

E : Young’s modulus

g : gravity

G : shear modulus of shaft

x1



Nomenclature xii

I, : moment of inertia of shaft with respect to the 1 - principal axis
I, : moment of inertia of shaft with respect to the 2 - principal axis
Ip : polar mass moment of inertia of disk

J : torsional constant of shaft

L : length of shaft

m : mass of disk

1 : nondimensional disk mass

rq, Iy : radii of gyration of shaft

rg : radius of shaft

R4 : radius of disk

t : time

v : transverse displacement in 7-direction

¥ : nondimensional transverse displacement in 7-direction

w : transverse displacement in the {-direction

W% : nondimensional transverse displacement in (-direction

x : location of measurement

% : nondimensional location of measurement

z : nondimensional transverse displacement in vertical direction
Zmax,w : nondimensional maximum z-transverse displacement over the whole
length

Zmax,x : nondimensional maximum z-transverse displacement at X = 0.7

I : ratio between I, and I,
Om : disk eccentricity angle
€ : crack width parameter

6 : rotational angle (in radians)



Nomenclature xii1

: nondimensional rotational acceleration/deceleration

> >

: crack condition parameter; A = 1 for open crack, A = 0 for closed crack
4 : mass of shaft per unit length

: nondimensional shaft mass

=@

v : Poisson’s ratio
p : density of shaft
7 : nondimensional time

T - Dondimensional time when the angular velocity passes the critical speed

crit *
Tmax : Nondimensional time when the maximum response occurs
¢ : torsional deformation

@ ox g Maximum ¢-torsional deformation after transient response
’

@ in ¢ Minimum ¢-torsional deformation after transient response

¢amp1 ¢ - maximum amplitude of ¢-torsional deformation after transient response

¢ ...+ mean amplitude of ¢-torsional deformation after transient response

w : natural frequency

1 : nondimensional angular velocity

Q

crit : first critical speed

Note: in the figures of time history, all parameters are nondimensional (tilde is

left off).



Chapter 1
Introduction

1.1. Scope

Cracks in rotating shafts can cause problems. It is important to understand
the behavior of cracked rotating shafts, so that cracks can be detected as early as
possible. Transverse surface cracks cause geometric discontinuities on the rotating
shaft. Therefore, there are non-linearities in the stiffness and damping of the
system.

In this present study, the behavior of a cracked rotating shaft with a disk is
investigated analytically. The shaft is accelerated or decelerated and the angular
velocity (), a function of time, passes through a critical speed. When the shaft is
rotating, the crack is assumed to be either completely open or completely closed
at any one time, called a breathing condition, depending on the curvature of the
shaft at the cracked cross section.

The mathematical formulation of this system is derived following the
previous work of Wauer. Galerkin’s method is used to obtain approximate
solutions of the equations. The parameters in the equations are non-
dimensionalized. Then, the approximate solutions of the non-dimensionalized
responses are calculated numerically, using the Adams-Moulton method.

In the first part of this study, the flexural response neglecting torsional
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vibration is considered. In the second part, the interaction between flexural and
torsional responses is studied. In both studies, the longitudinal vibration and the
shear deformation are neglected. The boundary conditions of the shaft are simply
supported on transverse displacements and fixed-free in relation to torsion (for the
second part of the study). The influence of torsional deformation is analyzed.

There are four types of damping, i.e., internal damping, external damping,
torsional external damping, and crack damping. The influence of the dampings is
studied. Also, the relation between the internal damping and the external
damping for instability under constant angular velocity is determined.

The relationships of various parameters, i.e., crack depth, crack location, disk
location, disk eccentricity, disk eccentricity angle, and disk mass under certain
acceleration and deceleration rates are investigated. The influence of the
acceleration and deceleration rate is analyzed. The responses under various crack
conditions, i.e., breathing crack, open crack, and no crack, are also evaluated. The
maximum responses are determined.

The results are illustrated in graphs and tables. Based on those results, the

conclusions are drawn. Finally, suggestions for future research are presented.

1.2. Literature Review

Many investigations on rotating shafts with a transverse crack have been
published. In a paper by Muszynskal?®, asymmetrical shafts with a heavy
unbalanced disk in the center, and with gaping or breathing cracks, were analyzed
and the results were compared with experimental results. The crack was modelled
by local changes in stiffness. Yingl4ll also studied the transient whirling of a

rotating shaft with an unbalanced disk. He showed for low damping cases of
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rotating shafts with low acceleration that the maximum responses decrease as the
acceleration increases. Using the finite element method, Bachschmid, Diana, and

Bl investigated the effects of unbalance on a cracked rotor. The unbalance

Pizzigoni
reduced the vibration of the cracked rotor when passing through a critical speed.
They also determined the vibrations in the case of different crack depths.

There are many models for replacing the crack in an analytical method to
obtain the equations of motion. Ga,sch[u], who analyzed the dynamic behavior of a
simple rotor with a disk and a cross-sectional crack, replaced the crack by a
simple mechanism that described the breathing action. In another paper, Gasch,
Person, and Weitz['? made a comparison of crack models with regard to the
behavior of a Laval rotor with a cracked hollow shaft.

Mayes and Davies?” described analytical and experimental work on the
coupled behavior of a rotating shaft with a transverse crack. They used finite
element computer programs to calculate the vibrations of the shaft, and they
developed a method of successive approximations. Likewise, Nelson and Nataraj (2]
analyzed the dynamics of a rotor system with a cracked shaft by using a finite
element methodology and a time-varying crack together with a series expansion of
the solution. The presence of a crack was taken into account by a rotating
stiffness variation represented by a Fourier series expansion. Schmied and
Krimer4 calculated the vibrational behavior of a rotor with a crack, including
unbalance response, transient vibration, and the control of stability for a rotor
with an arbitrary number of degrees of freedom. They described the opening and
closing of the crack by a certain function.

The effect of cracks on cylindrical shells was studied by Petroski and

Glazik®d. The presence of cracks in cylindrical shells increases the bending

deformations. Moreover, Petroski®! considered simple beams with cracks and
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modeled the effect of a crack by a pair of concentrated moments acting at the
location of the crack.

Gudmundson™! discussed a dynamic model for beams with cross-sectional
cracks that remain open. The crack was represented by a consistent, static
flexibility matrix. Papadopoulos and Dimarogonasi?”:223% investigated coupled
longitudinal and bending vibration of a cracked shaft. The crack was described by
a local flexibility matrix, whose dimension depended on the number of degrees of
freedom considered. Jun, Lee, and co-workers!!”182% developed the equation of
motion for a simple rotor with a breathing crack based on fracture mechanics.
They simplified the breathing crack model to a switching crack model having two
different stiffnesses.

The effects of acceleration and deceleration through a critical speed on the
vibration of a shaft is one of the interesting subjects to be discussed. Lewis!*!] gave
an exact solution for a single degree of freedom system with linear damping during
acceleration through a critical speed. Baker!!l investigated the vibration of an
unbalanced rotor under different rates of constant angular acceleration and
deceleration. He also discussed the effect of the spring constant, damping, and
mass.

An energy approach was used by Bodger!® to solve the problem of a single-
degree-of-freedom rotor decelerating slowly through a critical speed; the approach
gave a closed solution. Aibal!! considered a rotating shaft under angular
acceleration passing through the critical speed and included the gyroscopic effect
in the problem. He solved the equations of motion by using Runge-Kutta-Gill’s
numerical method. Naveh and Brach®” studied the behavior of an eccentric
rotating shaft and disk with an exponential transition of the angular velocity

through a critical speed. The results gave higher amplitudes than the results
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under a linear transition of the angular velocity.

Gasch, Markert, and Pfiitzner'¥ investigated the bending vibrational
behavior of a flexible rotor passing its critical speed under a driving torque. They
showed that the effect of the torsional flexibility of the shaft on the bending
vibrational behavior was negligible. Tsuchiyal®® worked on the oscillations of a
rotor passing through a critical speed. His analysis was based on the method of
multiple scales and the method of matched asymptotic expansions. Zobnin,
Kelzon, and Neigebauer 2 analyzed the influence of gyroscopic effects on
resonance avoidance during acceleration of unbalanced flexible rotors. Ishida,
Ikeda, Yamamoto and Murakami"® dealt with the vibration of a flexible rotating
shaft with nonlinear spring characteristics during constant acceleration and
deceleration through a critical speed. They examined the influence of the angular
acceleration and the angular position of the unbalance at the start of the
acceleration. They compared the theoretical results to experiments. Wang, Duan ,
Huang, and Wenl®"! discussed the responses of a simple rotor with a transverse
surface crack. They also showed the transitional response of the rotor passing
through a subcritical speed.

Collins, Plaut, and Wauerl® discussed detection of cracks of a rotating
Timoshenko shaft by wusing axial impulses at a constant angular speed.
Generalized forces and moments represented the open and closed conditions. They
also investigated free and forced longitudinal vibrations of a cantilever bar with a
transverse crack®. Andruet” studied the behavior of a rotating Euler-Bernoulli
shaft with a breathing crack under acceleration and deceleration through a critical
speed. He neglected torsional and longitudinal vibrations.

The effect of torsional vibration of a cracked shaft has been investigated by

several researchers. Christides and Barrl”l derived the equation of motion and
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associated boundary conditions for a cracked beam subjected to torsional
vibration. The beam was uniform with non-circular cross section, and contained
one or more pairs of symmetric cracks. They used the Hu-Washizu variational
principle. Papadopoulos and Dimarogonas 1?81 analyzed a non-rotating cracked
Timoshenko shaft with coupling of bending and torsional vibrations. They showed
the influence of the bending vibration on the torsional vibration spectrum, and
vice-versa. They derived the equations of motion of the shaft with three degrees of
freedom and the relation of the eigenvalues of the system to the crack depth and

[16]

the slenderness ratio of the shaft. Iwatsubo, Yamamoto, and Kawai" " investigated
the torsional vibration of a rotating machine due to the interaction between
electrical and mechanical systems.

WauerP presented a literature survey on the dynamics of cracked rotors,
including descriptions of crack models and detection procedures. Then Wauerlf]
derived the equation of motion for a cracked, rotating, Timoshenko shaft
including extension and torsion. He formulated the open-close condition and
replaced the crack with a load discontinuity at the crack location. Furthermore, to
simulate an open crack, he reduced the stiffness and the damping. In another
paper, Wauerl® showed the secondary effects in transient vibrations of rotating
shafts during passage through a critical speeds. He also considered non-symmetry,
torsional motion of the shaft, and gyroscopic effects.

A recent paper dealing with torsional vibration is by Ostachowicz and
Krawczuk!?®l. They considered the influence of transverse cracks, considered to be
open, on the coupled torsional and bending vibrations of a rotor. They also

calculated the stiffness matrix for a beam finite element containing a single-sided

open crack.



Chapter 2
Flexural Response of
Cracked Rotating Shaft with a Disk

2.1. Physical Model

The physical model of a cracked shaft with a disk is shown in Fig. 2.1. The
idealized model consists of a uniform non-circular shaft of length L with mass per
unit length u, flexural rigidities EI; and EI, (E: Young’s modulus; I; and I,:
moments of inertia with respect to the principal directions 1,2), and mass of disk
m, rotating at an angular velocity {2, a function of time. The shaft is assumed to
be homogeneous and linearly elastic. Both ends of the shaft are simply supported.
The crack is located at a distance b from the left support, and the disk is at a
distance ¢ from the same reference point.

Two coordinate systems are used to define the model (Fig. 2.2), i.e., fixed
coordinates (x,y,z) and shaft coordinates (&,7,{). The x-axis coincides with the
axial direction of the shaft (£-axis). The slope between the x-axis and a horizontal
plane is the angle +; therefore, if v is zero the shaft lies in a horizontal position
and the z-axis is in the gravitational direction. The 5-axis is parallel to the 2-
principal axis and the (-axis is parallel to the l-principal axis. The 1- and 2-
principal axes divide the cross section of the shaft symmetrically. The x,y,z

coordinate system is stationary, but the {1, coordinate system rotates with the
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Fig. 2.1 Model of Cracked Shaft
(Non-Specified Boundary Conditions)
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Fig. 2.2 Coordinate Systems and
Cracked Cross-Sectional Area
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same angular velocity as the shaft.

The coordinates of motion (u,v,w) are the space- and time- dependent
displacements and are measured in the shaft coordinates (£,7,(), with u(x,t) in the
axial direction (¢-axis), and v(x,t), w(x,t) in the transverse direction (n-, (- axes,
respectively). In this study, the longitudinal displacement is neglected; only
transverse displacements (v and w) are taken into account. Additionally, the shear
deformation is also neglected; therefore, the model is based on the Euler-Bernoulli
theory. The transverse displacements (v and w) are continuous along the shaft,
including at the crack location.

Other parameters of the shaft are also shown in Fig. 2.2. The crack depth of
the shaft is ’ a ’ , measured parallel to the 2- principal axis. The distance from the
center of geometry of the uncracked cross section to the perimeter of the shaft
parallel to the 2- principal axis is called h;; similarly, the distance parallel to the
1- principal axis is called h,. I; and I, are the moments of inertia related to the 1-
and 2- principal axes, and r; and r, are the radii of gyration, respectively. It is
assumed that I, is less than or equal to I, so h, is less than or equal to h;.

The geometrical center of the cross section is the same as the center of mass.
As a result, there is no eccentricity for the shaft. However, there is unbalance in
the disk. As 1is shown in Fig. 2.3, the distance en is the eccentricity of the disk
and 6, is the angle of the center of mass of the disk from the 2- principal axis.

In this chapter, it is assumed that there are three types of damping in the
shaft, i.e., external damping with coefficient de, internal damping with coefficient
d;, and damping at the crack when the crack is closed with coefficient dc. It is
assumed that the external and crack damping act only on the shaft, not on the

disk.
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Fig. 2.3 Disk Cross-Sectional Area

11
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The transverse surface crack causes a geometric discontinuity on the shaft.
To avoid the complexity of this discontinuity, the crack is replaced by two
generalized moments (M and m) at the crack location, i.e., x=b. and x=b; (Fig.
2.4). The quantity € is the crack width parameter, where e=b,-b. and € — 0.
There is a local reduction of the shaft stiffness and damping when the crack is
open. The replacement of the concentrated geometric discontinuity at the
transverse surface crack by loads at the crack location was previously used by
Kirmser'®, ThomsonP3, Petroski and Glazik[32], Petroski®! and Chang and

Petroskil®l.
2.2. Mathematical Model

The governing equations of motion were derived by Wauer*. They include
gyroscopic effects and neglect the influence of shear, longitudinal vibrations, and
torsional vibrations in this first part of the study. Euler-Bernoulli theory is
applied. The equations of motion for a cracked rotating shaft with a disk, as

Wauer formulated in his paper[*®] are as follows:

ElLvixxx + [p + m6(x—c)] [v“ - 20w, - 92\! - éw] + de pp (vi - 0W) + ELd;Vixxxx
+ (1-4) do p (v, - Bw) 8(c-b) + A [8'(e-by) - 8'(x-bo)] (M + m,)
= [u + m6(x—c)] gsin @ + m ey 6(x-c) [92 cos ém + 0 sin 6m] (2.1)

IELwyxxx + [ “+ m5(x—c)] [th + 20v, - 0w + 9v] + de gt (wy + Ov)
+ TEL diWiax + (1-A) de g (W, + 8v) 6(x-b) - A[6'(x-by) - 8'(x-b.)] (My + my)
=g+ m 6(x—c)] gcos 8 + m ey 6(x-c) [92 sin 6 - @ cos 6m] (2.2)














































































































































































































































































































































































