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A Refined Methodology for Calibrating Premium Threaded Connection Make-ups  
 

Erik B. Ostergaard 
 
 

ABSTRACT 
 
 

Digital Image Correlation is used to generate high-spatial-density full-field displacement 
and strain data of a connection box outer diameter for use in the calibration of finite element 
make-up models.  Image acquisition and data processing techniques are discussed and best 
practice recommendations are made.  3D-wedge models consisting of a twenty-degree sweep of 
the connection geometry are generated from manufacturer supplied profiles.  Deformation 
plasticity material models are developed from identified minimum strength material coupons.  
Axisymmetric and 3D meshing schemes are used to capture the geometric complexity, supply 
enough resolution to represent seal performance, and provide a solution in an acceptable 
timeframe.  Several techniques for achieving good contact resolution are presented.   The 
mechanics of the full 3D connection makeup are decomposed into simple idealized 
representations.  Finite element boundary conditions are developed to adequately represent the 
360-degree make-up mechanics in a wedge section.  The wedge model is loaded to achieve a 
torque-rotation coupling which satisfies the experimental make-up conditions.  This model 
displays a much improved ability to capture box outer diameter strain and displacement fields, 
and thus better represents the mechanics of a connection make-up.  A 3D inspired axisymmetric 
pretension loading scheme is developed which enables the 3D-wedge seal conditions to be 
replicated in a computationally efficient axisymmetric form for connection performance 
evaluation.  Seal metrics are developed and converged to evaluate connection sealing capabilities 
in the power-tight configuration.  Modeling error metrics are developed, and the final 3D-wedge 
model is evaluated relative to the experimental DIC data.   
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Chapter 1 Introduction and Motivation 

���  �������	
��������

Oil Country Tubular Goods (OCTG) are the collection of pipes used for the drilling and 

extraction of oil and gas. An oil well is comprised of several OCTG's joined by threaded 
connections. Modern oil wells primarily rely on a subset of these tubulars appropriately named 
“premium connections”. These connections are complex proprietary designs, and have been 
tailored to provide structural integrity for the well and ensure an effective connection seal for 
drilling and production fluids under extreme conditions. A steel manufacturer often produces 
dozens of families of connections, and each connection is made available in hundreds of 
variations to suit the needs of the well designer. A single well often requires several variants of 
premium connections, and the performance limits of each connection variant must be well 
understood to ensure a safe and successful well design. The connections can vary substantially in 
size, weight, and grade, however a common design feature in all premium connections is a 
reliance on a small metal-to-metal contact region for sealability. The current best practice for 
understanding connection seal performance limits is extensive testing under various conditions at 
a connection test facility. At a cost of several months and hundreds of thousands of dollars [1] a 
connection test qualification program is a burden for operators who seek a reliable 
characterization of minimum seal performance. Furthermore, very little insight into the 
mechanics of the connection can be gathered from current test methods. As a result, little is 
understood of what governs the sealing mechanism itself and reliance upon expensive testing 
procedures has developed. The objective of this study is to develop a methodology that can help 
reduce the amount of testing required to qualify an OCTG premium connection for field service. 

���  ��������
�����	����

The amount of required physical testing needed to qualify a connection can be reduced by 

the use of Finite Element Analysis (FEA) provided an accurate representation of the make-up 
condition has been achieved.  Achieving an appropriate finite element make-up model is the 
most difficult aspect of connection modeling. It is in this make-up event that the metal-to-metal 
seal is generated by the interference fit of the box and pin in the seal region(s). 

A process for reducing connection testing is outlined in the data flow diagram [2] of 
Figure 1.1.  The process begins with an accurate parametric geometry from the connection 
manufacturer that is representative of a prepared test specimen.  A finite element make-up model 
is generated based on the provided geometry, torque/turn data from the make-up event, 
corresponding strain and displacement measurements, and material test data.  Parameters in the 
finite element model are tuned to achieve a make-up configuration that produces a minimum 
error fit of the experimental strain and displacement measurements.  This minimum error model 
is realized by minimizing error metrics that utilize experimental data as the reference.  Service 
loads are then applied to the minimum error make-up model to predict field performance.  Once 
the performance of several connection variants is captured, connection performance can be 
interpolated between well bounded configurations.  A more detailed data flow diagram for this 
process is provided in Appendix A. 
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Figure 1.1: High level data flow diagram for the generation of a premium connection minimum seal performance 
envelope. 

���  �����	
���	
	��
The direct measurement of seal conditions at make-up is currently infeasible, and the best 

approximations are made from finite element models calibrated with strain gauge data.  The 
make-up configuration has an immense impact on the ability of a connection model to accurately 
predict seal performance.  Current axisymmetric modeling practice relies on axial offset 
assumptions at various locations to generate this make-up stress state.  These axial offset 
assumptions are nonphysical and have little technical basis available in the public domain.  For 
this reason, the goal of this modeling effort is to achieve a mechanics-based finite element make-
up solution using only the manufacturer supplied geometry, connection test data, and 
commercially available finite element software.   

���  ����	���������
` The focus of this work is the: 

·  Identification of best practices for premium connection DIC data acquisition and 
processing. 

·  Development of a tractable modeling technique that can produce a mechanics-
based torque-rotation relationship for an OCTG connection. 
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·  Replication of accurate connection make-up results in efficient axisymmetric 
pretension models. 

·  Development of quantitative metrics for connection seal evaluation. 
·  Development of quantitative metrics for the evaluation of model conformance to 

experimental data. 
 
The simulation of connection performance under service loading is beyond the scope of 

this work.  The interpolation of connection performance between well bounded configurations, 
as well as the response surface modeling and optimization of seal performance is also beyond the 
scope. A general outline for the response surface modeling approach is presented.  

���  ����������
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������������

The thesis begins by establishing the need for greater spatial density in connection make-

up experimental data so that connection models may be held to higher standards.  Digital Image 
Correlation is introduced as a means to provide this higher standard.  A technique for DIC 
imaging and data processing is presented, and the data quality is assessed.   
 With the experimental data in hand, the discussion turns to the finite element modeling 
technique.  The great challenge of modeling premium connection make-ups is balancing the 
computational cost with the need for accurate results.  The full 360-degree model is presented as 
the truest available representation, but found intractable because of its computational expense.  
Current axisymmetric modeling technique is evaluated and found sufficient for its computational 
efficiency, but lacking any documented technical basis for its assumed connection make-up 
boundary conditions. 

A compromise is proposed which makes use of 3D-wedge modeling along with its own 
challenges.  This modeling technique is revealed in full.  3D-wedge geometries are generated 
from manufacturer supplied axisymmetric profiles.  Material models that permit a smooth 
transition from elastic to plastic behavior are constructed from minimum strength coupons.  An 
efficient meshing method is presented to achieve 3D solutions in an acceptable timeframe.  
Several contact formulations are supplied to provide alternative paths for achieving good thread 
and seal contact resolution.  The boundary conditions for the 3D-wedge make-up model are 
developed from a mechanics of materials basis and are applied to achieve experimental torque 
values.   
 With a 3D torque-rotation coupling achieved in the wedge model, a technical basis is 
available to guide the computationally efficient axisymmetric modeling effort.  The 3D power-
tight seal conditions are replicated in axisymmetric form using pretension sections, and the 
challenge of quantitatively evaluating the seal condition is presented.  Several seal metrics are 
developed and evaluated in the power-tight configuration.  An ability to converge the seal 
metrics is demonstrated and found crucial in characterizing seal behavior. 
 The 3D-wedge finite element model is then evaluated with respect to the 
uncompromising DIC data.  Error metrics are used to quantify the fit of the box outer diameter 
displacement and strain signals through different but complimenting perspectives.  Conclusions 
and recommendations for future efforts complete the write up.  
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Chapter 2 Literature Review 
 

This research is focused on achieving an accurate connection make-up model for the 
purpose of seal performance evaluation.  It relies on the theoretical development of the 
connection stress state which has progressed from fundamental thick-walled cylinder theory to 
the use of finite elements.  This work also relies on experimental techniques used in the oil and 
gas industry for connection qualification, and the use of optical metrology to measure 
displacement and strain fields.   

���  ����������
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Weiner [3] was the first to present the industry with a method of stress analysis for 

tapered threaded connections and lay the mathematical foundation for analysis of connection and 
seal performance.  He makes simplifying assumptions to reduce the complex geometry of an API 
connection to a tractable axisymmetric linear elasticity problem.    

Hilbert and Khalil [4] lay the groundwork for axisymmetric finite element modeling of 
premium connections while acknowledging that there is, “currently no verified, reliable, and 
general correlation between make-up torque and torque shoulder interference.  Therefore a 
parametric study of the effect of increasing torque shoulder interference is usually conducted” of 
which they give no further detail.  They maintain that the axisymmetric assumption produces 
accurate stress and strain calculations but do not distinguish this between calculations of an 
assembled connection under service conditions and the connection make-up event.   They 
reinforce the importance of nonlinear material models for seal use and make use of multilinear 
material models in their work.  They also implement contact algorithms based on master and 
slave surface penetration rather than relying on node-based ties.  They begin the work of 
identifying worst case performance by testing and modeling the tolerance extremes of each 
connection, and begin the correlation of their finite element models to experimental strain gauge 
data.   

The ExxonMobil Connection Evaluation Program documentation [5] requires prospective 
connection suppliers to submit geometries with a built-in torque shoulder interference of 0.001 
inches. This torque shoulder interference is, “measured at the mid-point of the shoulder when the 
interference of the closest seal is just resolved (i.e., to measure the shoulder interference, 
translate the pin geometry radially until the seal surfaces are just in contact)”.  This supplied 
geometry is then used to generate “forecasted performance envelopes” for each connection 
irrespective of the connection make-up torque.  While Exxon acknowledges that make-up torque 
has an effect on sealability and claims the use of strain measurements to calibrate their 
connection make-up assumptions [1] there does not seem to be a well-defined process for this 
crucial modeling step in the public domain. 

Dvorkin provides good insight into the element requirements for effective axisymmetric 
seal modeling, agrees that node-to-node contact algorithms are insufficient for modeling large 
sliding situations, and reinforces the need for nonlinear material models [6].  He shows the 
extreme extent of plasticity in the seal region during overtorque situations, and provides an 
example of a traditional finite element model validation based on standard strain gauge 
experimental data. 
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The extensive testing process for OCTG connections is outlined in ISO 13679 [7].  The 

immense expense of connection testing has motivated the investigation of inferring untested 
connection performance based on previously completed tests. Heijnsbroek [8] acknowledges that 
by using extensive finite element modeling coupled with physical testing, “it might be possible 
to interpolate between test results of various diameters”.   Powers [9] defines product families 
which “extend physical test results” based on “thread and seal interference magnitudes, thread 
pitch and taper, seal taper, torque shoulder taper, among other details”.  Khemakhem [1] later 
extends Powers’ work to define finite-element-based, “characteristic performance factors, such 
as sealability factor, structural integrity factor, galling resistance factor, environmental resistance 
factor, [and] fatigue resistance factor” to infer the performance of a large group of connections 
based on the experimental performance of only a few. 

��(  �������
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Concrete OCTG sealability requirements are difficult to find and often debated, however 

sources are available which allude to contributing factors.  Hilbert and Khalil [4] evaluate seals 
based on the seal contact stress “length, height, enclosed area, and general shape”.  They also 
note that, “since the mechanics of the seal can be affected by interaction with the torque 
shoulder, it is important to plot both seal and torque shoulder contact stresses”.  Sugino [10] 
offers a “normalized seal contact energy” metric where the contact pressure is integrated over the 
seal length.   Dvorkin [6] offers seal metrics using seal length, peak contact stresses, and extends 
Sugino’s method to incorporate internal pressure values by integrating the pointwise difference 
between seal contact stress and connection internal pressure.  Heijnsbroek [8] performs 
fundamental background work on seal characterization.  His experimental focus is conical metal-
to-metal seals with the goal of identifying the main factors driving sealability.  His work 
compares the advantages of high contact stresses over short seal lengths with lower contact 
stresses distributed over larger seal areas. He aides the effort of prioritizing the factors of 
sealability by using his experimental data to show that “sealing is mainly determined by axial 
displacement” (39). 

  Heijnsbroek concludes that plastic strain is a requirement for sealing, an assertion that 
many in the industry disagree with.  Because of his academic affiliation, he is the only source 
with the freedom to reveal a quantitative requirement for OCTG sealability. 
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The use of strain gauge measurements to verify OCTG makeup models can be traced back at 
least as far as Weiner [3].  The challenge with this measurement approach is the limited spatial 
resolution available.  Hilbert and Khalil [4] reveal that preliminary finite element models are 
used to guide gauge placement prior to make-up.  They acknowledge that this, “placement of 
gauges frequently misses locations of high strain or stress, due to the overall complex behavior 
of the connection”.  Finite element models are then provided with the claim that, “the FEA 
detects peak strains that the gauges miss”.  However, by examining the relatively sparse strain 
gauge data provided, it could easily be argued that the strain gauges are collecting accurate 
information and the model is missing the mark.  To make such bold claims in regard to modeling 
capability requires greater spatial resolution in the experimental data. 
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 Digital image correlation has the ability to provide this increase in spatial resolution as 
shown in Chapter 3.  Sutton [11] has presented a detailed basis for Digital Image Correlation 
including the bundle adjustment technique used to generate a 3D representation from multiple 
2D images of a calibration panel taken from different viewpoints.  A useful procedure for 
determining the sensitivity and accuracy of an ARAMIS system configuration is provided by 
Schmidt [12,13].  A series of articles by Reu [14–17] also provides a helpful overview of Digital 
Image Correlation shape functions as well as recommendations for speckle patterns.  Reu 
recommends averaging points at the same radius in an axisymmetric body to reduce 
measurement noise.  He also maintains that the displacement measurement should be given 
priority over any subsequently calculated strain value because it is the primary measurement of a 
DIC system. 
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Replicating the make-up condition of a connection in a finite element model is a 

challenging task which typically relies on the use of strain gauges.  However, strain-gauge data is 
typically only available at select points along the pipe axis and circumference.  The typical 
application of strain gauges does not provide enough spatial resolution to properly capture the 
complex strain fields as demonstrated in Figure 3.1.  In addition, current practice in industry 
relies on the finite element model to determine proper strain gauge placement [4].  This typically 
produces some issues in the test lab as even small variations in strain gauge placement can 
produce large variations in recorded strain values. 

 
Figure 3.1: Axial strain vs. axial length of a commonly used OCTG premium connection after make-up. Used with 
permission of Hess Corporation [18]. 

Recent advances in the field of Digital Image Correlation (DIC) have produced a tool that 
can yield a more precise representation of a premium connection make-up. The ability of the 
DIC to capture high-spatial-resolution full-field displacement and strain data means that finite 
element connection models may now be held to higher standards. DIC systems have the ability to 
produce 3D displacement and strain fields rather than merely recording strain at discrete points.  
As a result, a more comprehensive picture of the connection state is available than traditional 
strain gauge arrays can offer.  DIC systems can capture full-field strain features easily missed by 
sparse gauge placement.  DIC systems also eliminate gauge location issues because they do not 
rely on a pre-existing model to determine where the strain is sampled.   DIC measurements can 
provide high-spatial-density full-field validation data for finite element models of OCTG 
premium connection make-ups if an appropriate correlation technique is used to relate the 
displacements and strains on the outside of the pipe connection make-up zone.  A validated FE 
model can then be used to better represent the connection performance under service loads.   

���  ���������������
A DIC data set is only as credible as its calibration.  Calibrations are performed using 

certified calibration panels.  Several images of the calibration panel are taken in precise 
orientations and a photogrammetry process known as bundle adjustment is used to determine the 
geometric orientation of the cameras with respect to the calibrated volume.  Extreme care must 
be taken in this process to ensure a quality DIC data set for correlation to predictions from finite 
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element models. In addition, the cameras and test specimen should be well isolated from any 
source of vibration whenever possible.  

�����  ����	�
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Several fiduciary marks must be introduced in the images to provide a basis for  
 

1) Mapping the DIC data back to the geometry  
2) Accounting for rigid body motion in the system.   
 

The marks indicating the axis should be inscribed on the pipe itself at several 
circumferential locations within the field of view, and should be close to the edges of the 
calibrated volume to provide the greatest accuracy in the pipe axis designation. Great care should 
be taken to ensure that the fiduciary marks used for the purpose of rigid body motion subtraction 
remain completely stationary throughout the DIC data acquisition.   

The rigid body reference fiduciary marks should be pushed to the edges of the calibrated 
volume to provide the greatest accuracy.  In an ideal case, vibration isolated laser pinpoints 
would be projected onto the imaged surface in well documented locations.  Doing so provides 
the analyst with a means to properly account for rigid body translations and rotations as the 
connection make-up progresses. 

(�(  ����
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Several tolerance variants of a common industry connection were selected for make-up 

studies.  The ARAMIS system [19] was set up and calibrated as shown in Figure 3.2.  Further 
guidelines on best practice experimental setup are provided in Appendix B.  A random paint 
pattern was applied to the outer diameter of the box in the connection make-up zone.  The outer 
diameter of the box was imaged before, during, and after the connection make-up.  Several 
images were taken as the make-up progressed, and the ARAMIS system computed the relative 
displacement of the paint pattern in successive images as demonstrated in Figure 3.3.  Strain and 
displacement data is made available through the software as shown in Figure 3.4.  To compute 
the image deformations a facet size of 25x25 pixels was chosen with a 15-pixel overlap between 
facets.  This image processing technique produced calibrated high-spatial-density full-field 
output images on the outer diameter of the box with data points arranged in a grid.  Both strain 
and displacement data were extracted. 
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Figure 3.2: Diagram illustrating the ARAMIS experimental setup. Used with permission of Hess Corporation [18]. 

 

 
Figure 3.3: Demonstration of pattern tracking during deformation.  Undeformed left and right camera images (top) 
and deformed left and right camera images (bottom). Used with permission of Trilion Quality Systems [19]. 
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Figure 3.4: The random paint pattern applied to the box with axial strain output overlaid (left).  A GOM ARAMIS 
DIC camera system (right).  Used with permission of Trilion Quality Systems [19].  

���  ������������	���������� 	�����
Because of the orientation of the DIC system to the connection during the test, there is a 

variation in precision depending on the component of displacement or strain.  Statistical analysis 
of the DIC images reveals differing noise levels for the desired output quantities.  The radial 
results measured out of the plane of view contain more noise than the axial and circumferential 
results measured in the plane of view.   

This can be seen in the standard deviation and the signal-to-noise ratio of the DIC data at 
the final make-up frame.  The standard deviation provides an indication of the amount of noise in 
the signal.  The signal-to-noise ratio is the ratio of the dynamic range of the signal to the standard 
deviation as shown in Equation (3.1).   

 ��� �
��� � �	


�
 (3.1) 

Where ���  is the signal-to-noise ratio, ���  and �	
�  are the maximum and minimum values of 
the signal, and �  is the standard deviation of the signal. 

From Table 3.1, it can be seen that there is consistently more noise in the radial 
displacement signal than that in the axial and circumferential displacement signals even though 
the radial ���  is greater.  The standard deviation for the radial displacement signals was on 
average six times greater than those of the in-plane axial and circumferential displacement 
measurements.  
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Table 3.1: Statistics for DIC data. 

 
 

Two minor issues in the DIC data caused some error.  A few locations along the box had 
inadequate lighting and/or a poor paint pattern.  This resulted in voids in the computed full-field 
strain image.  The voids are present in less than 1% of the total field.  The second issue was a 
slight misalignment between the pipe axis and the camera orientation. Because of this, the image 
computation grid orientation was roughly 6 degrees offset from the assumed axial ‘X’ and 
circumferential ‘Y’ directions as shown in Figure 3.5.  While the error induced here is small, 
future imaging should include fiduciary marks to orient the image with the natural cylindrical 
coordinate system of the pipe. 

 

 
Figure 3.5: Two issues with the DIC data are highlighted.  Inadequate lighting and/or a poor paint pattern in some 
areas produces a void in the computed data fields.  The small offset between the image computation grid (blue) and 
the assumed system coordinates (black) produces a coordinate mismatch which prevents equal spacing between 
extracted section points (gold). 

To overcome these issues and achieve a robust estimate of the DIC data fields, the output 
quantities are extracted at five sections designated by their circumferential coordinates.  The five 
extraction sections were centered around an axis parallel to the pipe axis and closest to the 
cameras.  Each section consists of approximately 450 data points. As shown in Figure 3.7 and 
Figure 3.8, there exists some variation in the DIC data fields with respect to the circumferential 
direction due to the mapping of the convex connection surface to a flat Cartesian plane for 
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extraction.  This circumferential variation must be carefully eliminated in order to properly 
correlate the DIC data to an axisymmetric finite element model which does not allow for 
variation in the displacement or strain fields in the circumferential direction.   

To collapse this data into a usable form, a median process was developed. The five 
sections are sampled at a desired axial coordinate.  Because the differences in the alignment of 
the coordinate systems between the DIC image and the pipe/FE model coordinate system lead to 
the error described in Figure 3.5, a section point is not always available for extraction at a 
desired coordinate. To overcome this, the output variable of the closest section point is taken to 
be representative for that desired coordinate. This produces five output samples for each desired 
axial coordinate.  The median value of these five output samples is recorded as the robust 
estimate of the DIC data, and passed on for correlation with the output of the finite element 
model.  

��!  ��������	����"#�$	������#�����%��"�
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Because fiduciary marks were not available to directly orient the DIC data sets, an 

alternative method was used to define the DIC coordinate system.  Doing so allows the data 
exported from the DIC software to be registered with the natural coordinate system of the 
connection.  

A least squares error method was used to project a best fit cylinder on the imaged surface.  
The axis of this best fit cylinder was used to define the DIC coordinate system as shown in 
Figure 3.6.  By design, the connection imaged did not have constant outer diameter (OD) in the 
connection region.  Because of this variation in the OD, the best fit cylinder needed to be tailored 
to fit the area of greatest interest.  The strongest displacement and strain signals for this 
particular connection were found between the connection shoulder and the outer seal.  The area 
of the images chosen for the cylinder fitting extended from the outer seal to the shoulder in the 
axial direction, and from the bottom extraction set to the top extraction set in the circumferential 
direction.  This measure forced the greatest coordinate system accuracy in the region of greatest 
interest.  The DIC field data on the surface of the connection was transformed into the newly 
defined coordinate system. 
 

 
Figure 3.6: The fitted cylinder used to orient the DIC data.  The coordinate system was defined by points projected 
from the image surface to the axis of the cylinder primitive.  
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A powerful advantage of the ARAMIS system is that the geometry can be measured as 
well as the deformation and strain of a body.  This can come into great use when trying to 
reconcile DIC data with finite element models.  As a check, the box outer diameter should be 
measured in the test facility and checked against 1) the DIC best fit cylinder diameter in the 
original undeformed state 2) the API outer diameter tolerance specifications for the given 
connection and 3) the outer diameter of the box in the finite element model.  The reason for this 
is that a small variation in outer diameter can have a large impact when trying to reconcile 
displacement and strain fields, especially in the tangential direction. The outer diameters of the 
DIC data and the manufacturer supplied geometry in this study were found to be in agreement to 
within 0.2%. 

�����  ���	�����������	����	��	�
As the make-up progresses, there is a tendency for the pipe to translate and rotate in the 

rigid body mode.  When trying to measure small elastic deformations, the identification and 
subtraction of the rigid body mode is essential.  Because stationary fiduciary marks were not 
available in the images to give a proper reference, the best practice of rigid body subtraction was 
to identify the region of the images with the smallest displacement throughout the make-up.  The 
region of least deformation on the box outer diameter was found to be the area furthest from the 
outer seal as shown in Figure 3.7.  The mean displacement of this region was first calculated and 
then subtracted from the full displacement field, thus removing the rigid body translation as 
much as possible. 

 
Figure 3.7: The region of least deformation used to identify the rigid body mode is shown in dark grey to the far 
right of the image.  The extraction set locations are shown plotted over the result, and are designated by 
circumferential coordinate. 

One consequence of using this rigid body motion removal technique is that the 
displacements are forced to zero at the far right of the extraction sets as shown in Figure 3.8.  
While the true value of the displacement field may not be zero in this location, the technique 
opens the door for the creation of a common reference point between the DIC and the finite 
element model.  Displacements can now be measured and correlated relative to the far right pixel 
of the image. The strain signals are not affected by this procedure because they are spatial 
derivatives of the displacement field and not subject to rigid body offset. 
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Figure 3.8: The extracted results from Figure 3.7.  The displacement results are forced to zero at the far right of the 
extraction sets.  The extracted axial displacement data is shown plotted as a function of the axial coordinate. 

�����  ��������
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The five output variables selected for extraction are the axial, circumferential, and radial 

displacements as well as the axial and circumferential strains.  The radial strains were not 
extracted because the noise levels in this out-of plane strain measurement were too high for a 
reliable reading.  The value of extracting both strains and displacements cannot be overlooked.  
The strength of the experimental displacement signals is the ability to calibrate the model to the 
scales of the connection behavior.  The strain signals offer the ability to represent the trends 
present in the mechanics of the system.  The displacement and strain data was exported in text 
file format from the ARAMIS software for further processing in MATLAB.  
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The ARAMIS software package offers several filtering options using discrete operators 

such as average, median, and gradient filters. These tools have the advantages of a quick and 
easy method to access and visualize an arbitrary DIC data field.  Their disadvantage is that they 
attenuate the signal because they are an inherent smoothing operation.  This attenuation can be 
cause for concern when trying to identify the peaks of a displacement or strain signal, especially 
if the signal is over filtered.  In addition, generic discrete operators do not take the mechanics or 
features of the imaged system into account when operating on the data.   
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An alternative to using discrete operators to filter a DIC signal is to make use of the Fast 

Fourier Transform to identify the spatial frequency content of the signal.  The FFT provides an 
orthogonal view of the DIC data as illustrated in Figure 3.9.  Separating out the spatial frequency 
components of the signal allows the signal to be reconstructed using the inverse FFT using only 
the low frequency content as demonstrated in Figure 3.10.   
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Figure 3.9: The relationship between the time and frequency domains. a) Three-dimensional coordinates showing 
time, frequency, and amplitude b) Time domain view c) Frequency domain view. © Agilent Technologies, Inc. 
2000. Reproduced with Permission, Courtesy of Agilent Technologies, Inc. [20]. 

The ideal cutoff frequency varies between data sets, but a good starting point is the thread 
pitch of the connection because, in general, no feature of interest exists in the displacement or 
strain signals above the thread pitch frequency.  This technique permits us to apply knowledge of 
the mechanics of the system at hand in our filter design. A disadvantage of this filtering 
technique is that by removing the high frequency content we are removing energy from the 
signal and the inverse FFT has difficulty representing the end conditions.   The cutoff frequency 
should be tailored such that the error in representing the original signal is kept to a minimum.  To 
evaluate the fit of the inverse FFT, the residuals should be closely monitored.  A residual signal 
with a mean zero random distribution and small random amplitudes is desired.  

 

 
Figure 3.10: FFT Filtering demonstrated on a sample DIC extracted set.   To the left, the original extracted signal in 
blue, and the reconstructed inverse FFT signal using only low frequency content in red. To the right, the spatial 
frequency content of the filtered signal after the high frequencies have been thrown out.  

To perform an FFT, the signal must be sampled at evenly spaced intervals and the 
number of samples must be a power of two.  Prior to performing the FFT, the signals were 
resampled at1024 equally spaced points.  To reduce the poor representation at the edges, the 
signal was mirrored to force the signal to be periodic in the window.  The FFT was performed 
and the frequencies above the cutoff were replaced with zeros as shown in Figure 3.10.  An 
inverse FFT was performed on this data and the filtered signal was passed for correlation to the 
finite element model. 
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The direct measurement of seal conditions at make-up is currently infeasible, and the best 
approximations are made from finite element models calibrated with strain gauge data.  The 
make-up configuration has an immense impact on the ability of a connection model to accurately 
predict seal performance.  Current axisymmetric modeling practice relies on axial offset 
assumptions at various locations to generate this make-up stress state.  These axial offset 
assumptions are nonphysical and have little technical basis available in the public domain.  For 
this reason, the primary goal of this modeling effort is to achieve a mechanics-based finite 
element make-up solution using only the manufacturer supplied geometry, connection test data, 
and commercially available finite element software.   
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There are many variations of premium connections, but most have similar components 

with specific functions in the make-up process.  Figure 4.1 illustrates an axisymmetric cross 
section of a generic integral connection with a mid-shoulder and two seals.  The box is the outer 
(female) member; the pin is the inner (male) member.  

A make-up begins when the pin and box are lubricated.  The pin is aligned by hand and 
twisted to “hand-tight” with the box held fixed.  Tongs are placed on the box and pin at 
approximately one-diameter’s length from the connection region.  The pin is then rotated to 
“shoulder-tight” where the shoulders of the two members come into contact.  To this point in the 
make-up the only torque generating mechanism of the connection is the radial interference of the 
thread features.  The shouldering point can be easily identified as a spike in a plot of torque vs. 
rotation.   

The pin is further rotated by a hydraulic torque wrench to “power-tight” at a 
manufacturer specified torque range.  It is in this power-tight phase of the make-up that the seals 
are generated by the action of a more compliant member riding an inclined plane in a manner 
analogous to a cam follower.  The shoulder is the surface perpendicular to the pipe axis that 
functions like a bearing surface for the threads to work against. The shoulder also serves as a 
gauging point to align the seals in their proper axial locations.  As the torque is applied, the 
threaded sections are elastically stretched as the pin translates to the right as shown in Figure 4.1.  
 

 
Figure 4.1: A generic axisymmetric connection geometry shown in the shoulder-tight configuration. 
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The truest available finite element model of a connection make-up is a full 360-degree 

representation of the box and pin using 3D continuum elements.  This representation has no 
associated modeling assumptions.  The geometry, boundary conditions, loads, and stiffness 
distributions can be represented exactly.  Unfortunately, this type of model is often intractable 
because of 

1) The extreme geometric complexity of the connection 
2) The overall aspect ratio of the connection 
3) The level of mesh refinement required to achieve an acceptable seal solution 
4) The number of degrees of freedom required to calculate a 3D continuum element 

solution 
A 360-degree representation of the desired connection at an acceptable level of 

convergence would likely require over 1 million 3D brick elements.  Such representations were 
attempted but the solution was found to be intractable with the time and resources available.  As 
a result, modeling assumptions were made to reduce run times and achieve a working solution. 

�����  ��������������	����
OCTG connections are usually modeled in an axisymmetric form.  The axisymmetric 

assumption is valid for models that meet the following requirements: 
1) There is no variation in the geometry with respect to the circumferential 

coordinate. 
2) There is no variation in material properties with respect to the circumferential 

coordinate. 
3) There is no variation in loading with respect to the circumferential coordinate. 
4) There is no variation in displacement with respect to the circumferential 

coordinate. 
5) There is no radial rigid body displacement. 

When recognized and appropriately exploited, axisymmetry can reduce the number of 
degrees of freedom in a finite element model considerably while maintaining sufficiently 
accurate solutions. For decades, OCTG models have applied the axisymmetric assumption to 
make the problem tractable.  However, OCTG connections are not axisymmetric because the 
helix angle of the thread form causes a variation in geometry with respect to the circumferential 
coordinate.  In addition, the mechanism of rotating the pin at make-up results in a variation in the 
displacement field with respect to the circumferential coordinate.  Such a variation in 
displacement under an applied torque can be easily seen in the analogous cantilevered torsion bar 
problem.  For these reasons, an axisymmetric model does not have the degrees of freedom 
required to represent the geometry or the true connection behavior.   

The mechanism often employed to simulate the applied torque in an axisymmetric 
connection make-up is the pretension section, also known as a bolt load [21].  This load method 
was originally developed for use in bolted joint analysis and its intention is to mimic the effect of 
a bolt with minimal computational effort. A traditional application of a pretension section is the 
modeling of a bolted flange.  In this type of analysis, the length of the bolt shank can be 
artificially shortened in order to study the flange and gasket members in compression.  The 
object of this type of study is rarely the bolt itself, but rather the members under the effects of the 
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bolt.  It is an efficient loading trick for a problem of this caliber, but its modeling capacity is 
limited.   

In the implementation of a pretension section load, there is no inherent link between the 
pretension section offset and the torque applied to the bolt, but rather the force-displacement 
coupling is assumed and artificially inserted by the user.  The application of a pretension section 
also assumes that the distributed elasticity of the bolt can be represented by an axial offset at a 
single point. 

Pretension sections have been extended and applied in the analysis of OCTG premium 
connections in an effort to simplify the loading mechanism by only considering the axial 
component.  They operate by defining an axis of rotation and a perpendicular surface that cuts 
through the connection member.  A layer of elements on this perpendicular surface is designated 
in the box and pin.  This layer of elements is then dilated or contracted by a certain distance to 
mimic an axial advance of the pin into the box as shown in Figure 4.2.   

 
Figure 4.2: An axisymmetric pretension section using four dilated pretension sections.  The deformations have been 
exaggerated for visualization purposes. 
 

The pretension section scheme can effectively place the shoulder and seals in 
compression.  However, a plot of the axial displacement field will reveal that the loading 
mechanism is entirely nonphysical as shown in Figure 4.3.   

 
Figure 4.3: The axial displacement field of an axisymmetric pretension model. 
 

The axial displacements are extracted on the box outer diameter as shown in Figure 4.4.  
A clear point of singularity can be seen in the axial displacement field, but cannot be detected 
from the radial displacements. Similarly in a plot of strain or stress components the effects of the 
pretension section mechanism are easily masked.  A plot of von Mises stress further masks this 
mechanism to the point that it is nearly undetectable.  Because the pretension sections can be 
dilated or contracted independent of any force-displacement relationship, the displacement and 
strain fields can be tuned at discrete points to correlate perfectly with experimental strain gauge 
measurements.   
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Figure 4.4: The extracted axial displacement field. 

 
However, when attempting to reconcile these displacement results with full-field DIC 

data as shown in Figure 4.5, the inherent flaws of the modeling technique become painfully 
apparent. This axisymmetric pretension section modeling technique can only achieve a very 
limited level of correlation even when optimized.  Furthermore, application of pretension 
sections often applies identical offsets in different locations of the connection.  This practice 
neglects the difference in stiffness in the regions above and below the shoulder as well as the 
difference in stiffness between the box and pin.  

 
Figure 4.5: The resulting axial displacement field overlaid on the DIC displacement data. 
 

A pretension section can only be deemed an acceptable representation of a connection 
make-up if a concrete, mechanics-based link is made between the applied torque and the 
axisymmetric displacement field.  Relying on a turn-pitch calculation to determine the axial 
offset at the pretension section neglects the fact that the connection is a complex distributed 
elastic system. To find the link between the applied torque and a representative axisymmetric 
displacement field, a 3D representation is required.  
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A middle ground between the full 3D model and the axisymmetric formulation was 

investigated by modeling a sector of the full box and pin.  This 3D-wedge model offers the 
ability to capture the torque-theta relationship with considerably fewer degrees of freedom than 
the full 360-degree representation if a few assumptions are made: 

1) The displacement field is representative of the 360-degree model at the center line 
of the wedge section.   

2) The torque load is evenly distributed with respect to the circumferential direction. 
3) The boundary conditions at the cut-planes are representative of the unmodeled 

cylinder section. 
The wedge model pushes closer to the full 3D representation than the axisymmetric 

model because the circumferential degree of freedom is activated.  This ability to capture 
variation in circumferential displacement allows the model to investigate the torsional stiffness 
of the members.  Most importantly the kinematic relationship between the rotation and axial 
advance of the pin is now available.  

)�(  +��&����
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It is essential to have an exact representation of the test geometry because slight 

variations in tolerances or thread profiles can result in large seal performance variations.  
Whenever possible, the geometries should be acquired directly from the manufacturer and should 
be generated in a format that relies on lines and radii specifications rather than spline 
representations.  This will allow for easier model partitioning in later modeling steps. 

�����  ��!�������"��������������	!���������
Because many manufacturers do not model connections in 3D, the wedge models were 

constructed by revolving the axisymmetric profile through a sweep angle.  This can be a 
challenging procedure and requires careful consideration and manipulation of the geometry.    

The thread helix angle causes a variation of geometry with respect to the circumferential 
coordinate in the threaded regions, but not in the shoulder or seal regions.  To overcome this 
discrepancy, the original axisymmetric profile is split into five main sections and four transition 
regions as labeled in Figure 4.6.  Each section is revolved through the sweep angle, and a helix 
revolution is specified for the threaded sections according to the pitch of the thread form.  The 
five sections are later merged and all interior features are discarded as illustrated in Figure 4.7. 
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Figure 4.6:  Simplified axisymmetric profile illustrating the cut-planes and transition regions used to generate the 3D 
swept sections.  The Nose, Shoulder, and Base sections are revolved without a helix angle.  The threaded regions 
include a helix angle in the revolution. 

To make this merge possible, cuts are made in the axisymmetric profile such that an axial 
overlap creates a transition region between the five sections.  The axial length of this transition 
region corresponds to the axial advance of the threaded section due to the helix when swept 
through the revolution angle.  To ensure that the revolution and merge operations are executed 
flawlessly, the cut-planes must be perpendicular to the axis of revolution.  Similarly, the 
transition regions work best when they are bounded on the inner and outer diameters by edges 
parallel to the axis of revolution. To ensure this, the geometry may require slight modification.   
 The axial length of the transition regions should be given an additional margin to prevent 
an acute angle from forming in the merge operation between the helix swept threaded regions 
and the flat swept seal and shoulder regions.  If a severely acute angle is formed in the transition 
region by the merge operation, aspect ratio issues will be inevitable in the meshing phase. 
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Figure 4.7: The five 3D swept regions with transition regions before (left) and after (right) the merge operation.  All 
interior surfaces are discarded and the single solid part remains. 

The geometries for box and pin are generated so that they can be instantiated in the 
shoulder tight configuration.  Once instantiated, a contact resolution method is used to resolve 
the thread and seal interferences as discussed in Section 4.6.  

���  ��	��������	���
To characterize minimum seal performance for a given connection, the worst case 

material properties must be assumed.  In order to identify these minimum strength material 
properties for modeling purposes, an extensive material evaluation was performed [22]. After 
completing the connection tests, tensile coupons were cut from the box and pin in the nominal 
pipe body and the connection zone as shown in Appendix C [18]. Two longitudinal and two 
transverse samples were cut every 90 degrees around the circumference of the box and pin at the 
indicated axial locations. Tensile tests were performed on these coupons at ambient and elevated 
temperatures. The minimum strength coupons were identified based on the yield stress 
corresponding to 0.65% strain offset for both the ambient and elevated temperature cases.  The 
tensile test data of the minimum strength coupon was used to construct the material model for 
use in the finite element analysis. 

�����  "#����$����%�����&�
�'"��		�����	
����	�(!����������	��!�
A Ramberg-Osgood deformation plasticity material model was chosen to represent the 

stress-strain constitutive behavior [23]. This form was chosen because it allows both the elastic 
and plastic material behavior to be represented by a single smooth curve. The proper definition 
of a continuous transition between elastic and plastic behavior is necessary to appropriately 
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capture the plastic zones that develop throughout the connection analysis. The general 1D form 
of the deformation plasticity material model [21] is given by Equation (4.1) 

 � �

�

�
�
�

�
� �

 � �
� � �

 (4.1) 

Where �  is the total strain,   is the stress, �  is the Young’s modulus, �  is the yield offset, 
  is the 
hardening exponent for the plastic term, and  �  is the yield stress such that when  �  � , 
Equation (4.2) is satisfied. 

 � �
� � � � �  �

�
 (4.2) 

Stress and strain values were read from the tensile test data of the minimum strength 
coupon.  In addition, initial estimates for the Young’s Modulus � �  and the yield offset  �

�  were 
determined from the data. Equation (4.2) was solved for � �  as shown in Equation (4.3), and an 
initial estimate of unity was made for 
 � . 

 � � � �
� � � � �

 �
� � � �  (4.3) 

Where � �  is the measured strain corresponding to� �
� . In this way, an initial estimate of the 

deformation plasticity model was made.  The initial estimate vector � � � � � � � 
 � �  �
� � � � �  was 

constructed and passed to a nonlinear least squares optimization algorithm [24] as shown in the 
example code of Appendix D.  The optimization algorithm began at the starting point � �  and 
used a search method to minimize the error in a least-squares sense between the deformation 
plasticity model given in Equation (4.1) and the extracted material test data. The fitted curve was 
plotted against the material test data and is shown below in Figure 4.8. 

 
Figure 4.8: A fitted Ramberg-Osgood deformation plasticity material model 
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The optimized coefficients �� 
�  �  and �  were used to construct the Abaqus deformation 
plasticity model.  In cases where the deformation plasticity formulation was prohibited 
(Abaqus/Explicit) a suitable table of stress and strain values was constructed from the Ramberg-
Osgood fit and interpolated by Abaqus. 

��!  �	� ��"��� 	
	��
Premium connections are some of the most difficult geometries to effectively mesh.  It is 

for this reason that leading commercial meshing algorithms use premium connection geometries 
as test cases for development and benchmarking purposes.  The axisymmetric profile of a 
premium connection will often have a geometric aspect ratio above 30.  The seals are the main 
focus of the connection model, yet the entire seal region will never comprise more than 0.01% of 
the total meshed area.  In the threaded region, there is a lack of regularity among the thread 
profiles, and rarely will two threads have the same dimensions.  Rarely are two surfaces parallel 
to each other, and rarely do two edges meet at a right angle.  

Because of this, the meshing scheme will make or easily break the connection model.  
Great care and effort must be devoted to the meshing scheme to achieve a stable mesh that can 
successfully converge a difficult contact solution in a reasonable amount of time. Several 
meshing techniques were investigated on the axisymmetric model and extended to the 3D case. 

�����  )��������
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Partitioning is required to efficiently isolate regions of higher mesh resolution from 

regions of lower mesh resolution as shown in Figure 4.9.  Often it is most efficient to use 
structured meshing in regions of high resolution, which comprise the immediate vicinity of the 
seals and shoulder.  The second region to be isolated is the threaded region, with medium mesh 
density.  The third region to be isolated is the area in the connection region behind the threads 
and the shoulder.  These areas are given a medium to sparse mesh density and use a structured 
meshing technique. The final region to be isolated is the nominal pipe body which is assigned a 
sparse mesh density with longitudinal biasing toward the connection.  The above regions are 
meshed, and then mesh transition regions between the sections are generated to bind these 
sections together using swept and free meshing techniques. 

 
Figure 4.9: Partitioning scheme used for assignment of mesh parameters. High mesh density regions shown in red, 
medium density thread regions in orange, medium-sparse density shown in yellow, sparse density in green, and 
transition regions in pink. 

The seal and shoulder areas are usually the starting point for any connection mesh 
because they have the greatest strain energy density and require the highest resolution to capture 
the steep stress gradients.  The seal and shoulder surfaces are first lofted to provide parallel edges 
as a framework for the structured seal mesh.  These surfaces should have several layers of 
elements with aspect ratios near 1. It is essential that the mesh maintains good aspect ratio in the 
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seal areas under load.  To accomplish this, the elements can be tailored such that compression at 
the seal surfaces forces them into an ideal shape. 

The thread regions are meshed second.  The threads are not meshed at the high resolution 
of the seals to save computation time, but the thread mesh must be dense enough to adequately 
capture the thread geometry and effectively resolve the thread interference.  The seals must be 
properly energized by resolving the thread and shoulder contact.  Efficient structured thread 
meshing consisting of regularly shaped elements and good resolution at rounded edges can save 
a great deal of time when trying to resolve contact interference. Each thread should be 
partitioned into its own cell by extending lines from the thread root corners to the nominal ID or 
OD as shown in Figure 4.10.  Further partitioning of the thread cell to isolate radii helps provide 
a more rectangular shape for efficient structured meshing in the thread interior.  
 

 
Figure 4.10: Thread partitioning (left) and meshing scheme (right). 

All contact regions must be meshed with the interaction properties in mind.  When selecting 
node densities, the elements on the slave contact surface should be kept smaller than those of the 
master surface.  Best results were found with the pin contact surface treated as the slave and the 
box contact surface as the master.  Slave elements were kept at roughly two thirds the size of the 
master elements.  A guideline to element sizing with ballpark element distributions and compute 
times for axisymmetric models at various levels of refinement is given in Table 4.1. 
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Table 4.1: Seeding guidelines and element distributions for axisymmetric meshes at different levels of refinement 
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There is a constant battle between element count and aspect ratio.  Best performance was 

identified for axisymmetric models with aspect ratio’s less than 10 in the nominal pipe region, 
less than 5 in the connection region, less than 3 in the threaded regions, and less than 2 in the seal 
and shoulder region.  All axisymmetric models were run with 4 node bilinear continuum 
axisymmetric elements (Abaqus CAX4 elements) using full integration. To improve compute 
time, reduced integration may be used selectively in the nominal sections and far from contact 
regions.  Reduced integration should never be applied in contact sections or in the nose section 
where bending is the dominant mechanism.  

��#��  ������� �
With the shift from axisymmetric to 3D came a tremendous increase in the number of 

degrees of freedom and as a result, the mesh had to be efficiently tailored to permit fast model 
turnaround.  3D-wedge models consisting of a twenty-degree sweep of the connection geometry 
were used for both the box and pin.  The meshing scheme in the radial-longitudinal 
(axisymmetric) plane was essentially unaltered. 

Biasing was needed in the circumferential direction to keep element counts low.  The 
priorities were to maintain good element quality at the cut-planes and at the wedge center line.  
The cut-planes required a low aspect ratio to aid the contact algorithm in resolving the edge 
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effects.  The wedge centerline aspect ratio was kept low to provide optimum contact solutions 
and high quality elements for result extraction.  In the seal region, aspect ratios were fixed at 1 as 
shown in Figure 4.11.  A circumferential double bias was chosen as the best method to facilitate 
these needs.  Radially, the biasing was toward the contact surfaces of the seals and threads and 
away from the connection OD and ID.  Biasing was applied axially toward the connection zone 
in the nominal pipe body, but enough elements were kept in this nominal region to enforce the 
applied boundary conditions at the base of the part.  
 

 

Figure 4.11: The circumferential double biasing scheme provides low aspect ratio at the wedge centerline and the 
edges. The aspect ratio of the elements on the wedge centerline at the seals is fixed at 1.  Seal results are extracted 
from the area shown in red. 

Mesh transition regions are much more expensive in 3D than in the axisymmetric models.  
To maintain efficiency, the transitions were tailored to produce changes in mesh density over a 
small volume while still maintaining acceptable aspect ratios.  Considerable mesh savings were 
made by using a double transition in the area between the connection zone and the nominal 
region as illustrated in Figure 4.27. This transition was constructed by creating two axial 
partitions and using sweep meshing techniques. The first partition was seeded to provide a mesh 
reduction in the � � �  plane and then swept in the radial direction.  The second partition was 
seeded to produce a reduction in the � � �  plane and swept in the circumferential direction.  The 
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resulting mesh transition provided a very effective and concise reduction in mesh density 
between the dense seal regions and the sparse nominal section. 
 

 
Figure 4.12: Meshing techniques used to achieve efficient mesh transitions. 

The added degrees of freedom in the 3D models limit the ability to concentrate mesh 
refinement purely at the seals.  This is apparent when comparing the percentage of elements 
allocated to the seal regions in both the axisymmetric and 3D models.  As shown in Table 4.1 
and  

 
 
 
 
Table 4.2, at the highest levels of refinement the axisymmetric models allocate 68% of 

the total elements in the model to the critical shoulder and seal sections and 32% of the elements 
to capturing the “supporting” thread and transition regions. The 3D meshes can only allocate 
21% of their elements to the critical sections, and must use 78% of the elements in the model to 
capture the threads and the mesh transitions.  The reason for this is that mesh transitions are 
much more expensive in 3D.  In addition the helix swept thread regions require additional mesh 
transition regions to maintain geometric continuity with the flat swept shoulder, nominal, and 
nose sections. 
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Table 4.2: Seeding guidelines and element distributions for 3D meshes at different levels of refinement 
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Computation time was greatly increased in the 3D models because each element now had 

24 degrees of freedom.  To reduce computation time, reduced integration was used more 
generously than that in the axisymmetric models, but all contact regions used full integration.  
Level 1 meshes took 6-10 hours to complete on a desktop computer, and all other levels required 
the use of a compute server [25]. 
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One of the greatest challenges is modeling premium connections is achieving an 

acceptable contact solution at the threads, seals, and shoulder.  An acceptable contact solution is 
recognized by its ability to eliminate regions of overclosure in the geometry.  In the physical 
connection make-up the interference in the threads is built up gradually between the hand-tight 
configuration and the shoulder-tight configuration as the pin is rotated into the box.  This can be 
seen by the gradual and fairly linear torque buildup in the torque-turn plot as shown in Figure 
4.13.   
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Figure 4.13: Sample torque-turn plot from experimental connection make-up illustrating the shoulder point and final 
torque dump. Used with permission of Hess Corporation [18]. 

This large deformation process is extremely expensive to capture with standard finite 
element formulations.  It is more efficient to skip this gradual interference buildup and achieve a 
shoulder tight configuration by instantiating the box and pin directly in their shoulder tight 
locations.  The tradeoff is that a highly nonlinear contact constraint must now be enforced.  No 
single contact resolution method will satisfy every modeling case, and several complimenting 
methods have been developed for varying levels of contact severity. 
 
There are three conceptual means to accomplish the contact constraint enforcement: 

1) The transient dynamic effects of an impulse contact resolution can be ignored and the 
interference can be resolved by gradually enforcing the constraint in pseudo-time 
using many small increments. This is referred to as the standard interference fit 
formulation. 

2) A thermal expansion process can be applied to the system to treat the event like a 
shrink fit problem.  Once the overclosures have been eliminated by the mechanism of 
thermal expansion the contact property can be instantiated and the thermal gradient 
gradually removed to build up the contact pressures.  This is referred to as the method 
of thermal expansion.  

3) The transient dynamic effects of an impulse contact resolution can be taken into 
account.  The kinetic energy of the impulse event can be dissipated by the model 
through the parallel mechanisms of the inertial effects and strain energy. Damping 
can then be applied to eliminate the inertial effects, and the resulting steady state 
solution remains with strain energy as the only remaining form.  This is referred to as 
the explicit finite element contact formulation. 
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Often the fastest and most straightforward method of contact resolution is to initialize the 

model in the shoulder-tight configuration and specify the contact to be solved as a standard 
interference fit.  This approach works well for most applications, but will have difficulty with 
high density seal meshes where the overclosures to be resolved are greater than several element 
thicknesses.  In this case, the contact manager will force the volume of the slave elements in the 
immediate contact region to zero in an effort to satisfy the penetration requirements. This action 
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forces the Jacobian of those elements to zero which prohibits the stiffness matrix from being 
inverted, causing the model to fail.  If this is the case, the method of thermal expansion should be 
used to resolve the make-up interference fit as shown in Section 4.6.2.  Both contact resolution 
methods will produce consistent seal results. 
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When setting the contact properties for a standard interference fit, a surface to surface 

contact discretization is the best practice because it provides a built-in smoothing operation 
where slave penetrations are averaged over surface regions rather than at nodal points of 
singularity.  Finite sliding formulations should be used because the large deformation in the 
contact areas means that the surface normals will need to be recomputed as the incremental 
solution progresses.  Surface smoothing was applied in the 3D models to aid the representation 
of curved contact surfaces using linear element faces. 

When selecting contact pairs and master/slave designations, the master surface in the 
contact definition should always be the stiffer member.  The master surface consisted of the 
entire box contact surface, and the slave surface consisted of the entire pin contact surface as 
shown in Figure 4.14.  Alternative combinations of master and slave surfaces could be used, such 
as splitting up the contact zone and using several contact definitions across the connection 
length, but the above configuration functioned well because only a single set of contact 
constraints was required.   

 
Figure 4.14: Master box contact surface shown in red. Slave pin contact surface shown in pink. 
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The initial overclosures in the models were treated as interference fits.  The slave node 

overclosures were gradually removed throughout the step duration by specifying a uniform 
allowable interference with a normalized smooth step amplitude curve.  The generalized form of 
this cubic function is found in Equation (4.4) [21].  
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(4.4) 

Where ����  is the amplitude of the maximum allowable slave node penetration as a 
function of step time � , � � � �  is the initial normalized amplitude, � ��� �   is the final 
amplitude, � � �   is the initial step time, and � ��� � �  is the final step time.  This amplitude 
curve has the same form as a cam curve and was used because it provides a smooth application 
of the constraint with zero velocity and zero acceleration at the beginning and end of the time 
step as shown in Figure 4.15.  By smoothing out the step application of the constraint the contact 
problem becomes tractable. 
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Figure 4.15: The smooth step amplitude curve used to apply the maximum allowable interference constraint in the 
contact formulation. First and second time derivatives also shown. 

A penalty constraint enforcement method was specified in both the tangent and normal 
directions.  The penalty method is an approximation of hard contact that replaces the step 
function boundary application with a stiff approximation.  The penalty stiffness is calculated 
based on the underlying stiffness of the contact surfaces but a scaling factor can be applied to 
tune the penalty formulation for the application.  A high penalty stiffness can result in a smaller 
stable time increment and a longer solve time.  A small penalty stiffness can result in excessive 
penetrations at the end of the step.  Best results were achieved using a penalty stiffness between 
100 and 1000 based on the mesh density and interference magnitudes.  

A penalty enforcement method was also applied to the tangential friction in the 3D 
models.  There is no need to specify friction coefficients in axisymmetric connection models 
because the primary degree of freedom that the friction acts along is disabled.  This is not the 
case in the 3D models.  In 3D connection models, the assumed friction coefficient between the 
two bodies is linearly proportional to the torque that the model can achieve.  Accurate torque-
theta measurements in the lab can provide valuable data for tuning the appropriate 3D connection 
model friction coefficient(s). Appropriate friction coefficients were found in the range between 
0.08 and 0.12.  These friction coefficient values are in the same ballpark as those assumed for 
modeling and testing purposes in the industry today. 
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At higher levels of mesh refinement, the interference can be so severe that elements in the 

contact region collapse to zero volume.  To resolve this issue an additional measure was taken to 
aid the contact resolution. 

The thermal expansion make-up simulation occurs in four steps. The pin and box are 
instantiated at a reference temperature of zero in the shoulder-tight configuration with no contact 
property defined.  With the axial displacement fixed at the shoulder, a negative temperature is 
applied to the pin volume and it undergoes volumetric contraction until the radial interference 
between pin and box is eliminated.  The standard contact definition as outlined in Section 4.6.1 is 
initiated in this interference-free state.  The pin is then returned to its original temperature, 
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gradually building contact pressure in the thread, shoulder, and seal interference regions as it 
expands back to its original location. 

In this process, the threads cannot simply translate radially because the thread load flanks 
make an angle with the radial-longitudinal plane as shown in Figure 4.16.  To effectively shrink 
the pin in the radial direction, there must be a simultaneous axial translation in the threaded 
region. This issue is addressed by applying orthotropic thermal expansion coefficients in the 
threaded areas of the pin. Additionally, pretension sections can be used in the cool and warm 
steps to help prevent axial thread interference as the threads contract radially.  These “thread 
location pretensions” must be zeroed out at the end of the warm step so the geometry is not 
skewed in any subsequent analysis steps. 

The expansion coefficients must be applied with the fixed axial displacement boundary 
condition at the pin shoulder in mind.  The threads above the shoulder require both radial and 
axial expansion with a positive temperature change, thus the signs of both the axial and 
transverse expansion coefficients should be positive. The threads below the shoulder boundary 
condition require radial contraction and axial expansion to maintain the kinematic thread 
requirements with a positive change in temperature; therefore the transverse expansion 
coefficients must be negative.   
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The expansion coefficients are calculated by first establishing a right-hand cylindrical 

coordinate system to define the intended thread translation vector %&'  and thread translation angle 
(  measured counterclockwise from the positive Z axis in the Z-R plane as shown in Figure 4.16.  
This coordinate system is also used to define the orthotropic material orientation.   
 

 
Figure 4.16: The coordinate system defined for the orthotropic expansion coefficients with desired thread translation 
vector ���  and angle �  corresponding to a positive temperature change. The box is displayed in green, and the pin in 
grey. 
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In order to have the pin threads translate in the proper direction �*+ with a positive 
temperature change, the strains in the radial direction 
 ��  and in the axial direction 
 ��  must be 
governed by Equation (4.5). 

 ��� : � ; �

 ��


 ��
 (4.5) 

It has also been found that enforcing a transverse isotropic expansion requirement 
produces the best results. This requires the transverse expansion coefficients in the radial 4��  and 
circumferential 4��  directions to be equivalent.  The strains of a three dimensional thermal 
expansion problem are related by the relationships found in Equation (4.6) 
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(4.6) 

Substituting Equation (4.5) into Equation (4.6) , enforcing the isotropic expansion 
requirement, and rearranging terms produce the following system that can be solved to find the 
transverse expansion coefficients. 
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= (4.7) 

��$��  %����	���� ���%���� �&� �
	�������
��� 
An alternative method to tackle the contact problem is to use an explicit finite element 

formulation. This formulation is inherently more stable because inertial effects work in parallel 
with the mechanism of strain energy to help dissipate energy as a result of the sudden “impact” 
of the contact constraint enforcement.  
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In the standard (implicit) formulation, the entire structure is forced into equilibrium with 

the externally applied loads at the end of each load increment.  For nonlinear elasticity problems 
in which the stiffness of the structure is a function of the displacement field, several iterations 
must take place to reach the incrementally applied load.  These problems were solved using 
Newton-Raphson iterations by first assuming an initial tangent stiffness @� �	 A to solve for the 
initial displacement estimate / ( � 0 under a small increment / � � 0�of the total load / � 0�as shown in 
Equation (4.8) [26].   

 / ( � 0� @� �	 A� � / � � 0 (4.8) 

The force error /B� 0�for the initial displacement estimate / ( � 0 is then evaluated by Equation (4.9) 
where @� �� A is the tangent stiffness evaluated using the displacement vector / ( � 0. 
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 /B� 0� / � � 0� @� �� A/( � 0 (4.9) 

Equilibrium iterations are executed to minimize this force error by beginning at / ( � 0 and using 
@� �� A to solve for the next displacement estimate / ( � 0 as shown in Equation (4.10). 

 / ( � 0� @� �� A� � / � � 0 (4.10) 

 / ( � 0 is then used to calculate @� �� A and the force error /B� 0�is evaluated using Equation (4.11). 

 /B� 0� / � � 0� @� �� A/( � 0 (4.11) 

The process continues until the force error /B� 0 is sufficiently minimized and the displacement 
vector / ( � 0 approaches the correct value 	 ( � 
  which is equivalent to the product of @� �� A��  and 
	 � � 
 .  The load increment 	 � � 
  is then increased by the contact algorithm until all slave node 
penetrations are eliminated.   

This solver has the advantage of being unconditionally stable which allows for fewer 
increments in nonlinear problems, but the drawback of using Newton-Raphson iterations is that 
the stiffness matrix � " �� �  must be assembled and inverted every time the displacement vector 
/ ( � 0 is updated.  This is an extremely memory intensive operation that tends to be limited by the 
data transfer capabilities of the computer. Implicit alternatives to the Newton-Raphson method 
exist but the quadratic convergence rate of this method was found to be superior in terms of 
solution time for this problem. 
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The explicit formulation does not enforce this static equilibrium at the end of each 

increment; rather the contact constraint enforcement is modeled in the same manner as a wave 
propagation problem using Equation (4.12). 

  @� A/ ( 0� @C A	 ( )
 � / � 0 (4.12) 

Where �C �  is the global assembled mass matrix, 	 ()
  is the vector of nodal accelerations, and 	 � 
  
is the vector of loads which may now vary in time.  The most powerful advantage of the explicit 
finite element formulation in solving nonlinear elasticity problems is that the stiffness matrix no 
longer needs to be inverted.  Instead, the internal forces of the system � ��� � @� A/( 0 can be 
calculated in element-by-element fashion by Equation (4.13) [26]. 

 / � ��� 0� D : /E��� 0� ;

� ��

�  �

 (4.13) 

Where the elemental internal forces /E��� 0�  are calculated using the strain-displacement matrix 
�F�  and the elemental stress vector / � 0�  by Equation (4.14) 

 /E��� 0� � G@FA! / � 0� ��  (4.14) 

By removing the formation and storage of � " � , the problem is freed from the limiting 
data transfer capabilities of the computer and is now limited only by the processor speed.  
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Explicit contact solutions were found to be faster on extremely large models (over 1 million 
elements) because of their ability to scale well on large compute servers.  This method of 
resolving the contact problem is likely the best way forward if a full 360-degree model were to 
be attempted.  

The disadvantage to the explicit method is that it is conditionally stable.  The time 
increment � �  is limited by the natural frequency of the smallest element in the mesh as shown in 
Equation (4.15) [26]. 

 � � �
�

� "�#
 (4.15) 

Where H���  corresponds to the highest natural frequency of the undamped system in Equation 
(4.16) 

 : @" A� H� @C A; / ( 0� 	 � 
  (4.16) 

  This requirement presents a challenge when trying to use a high resolution mesh in the 
seal region.  The result is often an extremely small stable time increment and many time steps to 
reach a solution.  The ratio of the kinetic energy to the total energy of the model must be 
monitored and brought to less than 1% at the end of the step.  The kinetic energy can be reduced 
by using smooth step amplitude curves to apply loads, contact constraint enforcements, and 
boundary conditions as shown in Section 4.6.1.2.  Damping can also be added to the system to 
reduce kinetic energy levels. 

)�1  '������
��	�&��
���
2�������
����������

Once the initial contact resolution has completed and the connection is shouldered, torque 

must be applied to the system to generate the final make-up state.  Several methods of applying 
loads and boundary conditions were investigated to find the most representative make-up 
configuration in an acceptable amount of time.     
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The full 360-degree finite element model is almost intractable due to the geometric 

complexity of premium connections and the high mesh resolution required to achieve a 
meaningful seal result.  To achieve a 3D model yet keep runtimes low the 3D-wedge model was 
developed.  For the wedge model to represent the full 360-degree system, the unmodeled portion 
of the connection must be sufficiently represented using loads and boundary conditions.  To find 
the proper set of loads and boundary conditions the make-up problem was broken down into its 
dominant features. 

The connection make-up can be thought of in terms of a superposition of the composite 
cylinders problem and the torsion bar problem. Such problems seem trivial, but isolate subtle 
details that contribute to the proper modeling technique of the 3D-wedge. 
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In its simplest form, the radial metal-metal seal of an OCTG connection can be viewed as 

a composite cylinder made up of an inner and outer member.  If we consider only a section far 
from the ends so that edge effects can be neglected, and maintain linear elastic isotropic material 
behavior, it is possible to construct some basic relations from the equations of equilibrium and 
the compatibility conditions.  We shall assume that the deformations of the cylinder are 
axisymmetric, that the cylinder is open ended (i.e. no end caps), and that the deformations are 
independent of the axial coordinate�3.  Only axisymmetric loads and constraints will be 
permitted, and thus our solution will be purely a function of the radial coordinate &.  The 
circumferential coordinate shall be referred to as 6. The cylindrical deformations ( � , � -  will 
correspond to the directions &�6�3 respectively.  If we neglect all body force components, the 
equations of equilibrium become [27] 

 &
� � ��

�&
� � �� � � ��  (4.17) 

Which when rearranged shows  
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Thus the strain components become 
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The shear components 5�� ��5�� �� ����5 ��  become zero due to the radial symmetry.  By these 
equations we can see that 
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 ��
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 �� � 
 ��  (4.20) 

Which when rearranged yields the strain compatibility equation for the thick walled cylinder. 
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For a cylinder of inner radius �  and outer radius �  subject to inner pressure � �  and outer pressure 
� �  in the absence of temperature changes, the radial displacement as a function of & is 

 ( �
&

� : � � � � � ;
J: � � 8; : � � � � � � � � � ; �

: � � 8; � � � �

&� : � � � � � ; K (4.22) 

If the cylinder exists in the absence of an axial force and at constant temperature the stress 
relationships are 
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At this point we shall assume a linear elastic isotropic material condition.  The stress-strain 
relations for a linearly elastic isotropic material are 
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(4.24) 

 
As an example, let a composite cylinder be made up of two members as shown in Figure 

4.17.  The inner member (the pin) has an inner radius of � � � 5  mm and an outer radius of 
- � � ��5  mm.  The outer member (the box) has an inner radius of - � � ��67!  mm and an outer 
radius of * � �,!  mm.  After make-up, the interface shown at point -  reaches equilibrium. 
 

 
Figure 4.17: The composite cylinder example problem. 
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The displacement at the interface for the pin uses�� � � � �� � � � � � ��& � � � �� � � � � � � � �  in 
Equation (4.22). 

 ( ��� �
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� : � �
� � � � ;

@: � � 8; : � � � � �
� ; � : � � 8; � � : � � � ; A (4.25) 

The displacement at the interface for the box uses:  � � � � � �� �� � � �� & � � � � � � � � � � � �  
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� ;

@: � � 8; : � � � �
� ; � : � � 8; � � : � � ; A (4.26) 

Where � �  is the pressure between the two cylinders at their interface.  We know that the sum of 
the deflections at the interface must be the difference between � �  and � � .   
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(4.27) 

 
This equation can be solved to find the interfacial pressure � � � ���� �CP� .  The deflection can 
be calculated at the interface based on this interfacial pressure. 
 

( ��� � ������ ���  
( ��� � �������� ���  

 
Here the negative sign on ( ���  shows the deflection is towards the center of the radius. 

The interface between the two cylinders can be calculated as � � � � � ( ��� � �� �!� ��� .  The 
resulting stresses and strains at various locations can now be computed by the relations given 
above.  For the pin we use the following values in the displacement equation: � � � � �� � � �
� � �� � � � � � � � � .  For the box the following values are used: � � � � � �� �� � � �� � � � � � � � � . 
The principal stresses and strains are plotted in Figure 4.18 as a function of the composite 
cylinder wall thickness.  
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This solution can also be achieved by the Finite Element Method.  Consistent with the 

plane stress assumption of the formulation in Section 4.7.1.2 , a 2D plane stress finite element 
model was constructed for the case of the full 360-degree composite cylinders problem.  Stress 
results were extracted through the connection thickness.  There is a slight variation between the 
hand solution and the finite element solution at the inner and outer diameters in the radial stress 
result due to the challenge of representing a free boundary condition.  Despite these differences 
the radial stress results can be shown to agree to within 1.9% of the hand solution and the 
tangential stress results agree with the hand solution to within 0.7% as shown in Figure 4.18.   

By assuming the full 360-degree composite cylinders problem can be modeled using only 
a sector, an acceptable finite element result can be achieved while significantly reducing the 
number of degrees of freedom.  A twenty-degree sector was used to model the plane stress 
composite cylinder problem.  The best way to approximate the effect of the removed 340-degree 
section in the composite cylinders problem is to apply symmetry boundary conditions to the cut-
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planes in the tangential direction.  These boundary conditions produce stress results that agree 
with the hand solution to within 2.3% in the radial direction and to within 0.7% in the tangential 
direction as shown in Figure 4.18.   

 

 
Figure 4.18: An overlay of three solutions for the composite cylinders problem. 

Modeling features used in the 360-degree and wedge models are provided in Table 4.3.  
It should also be noted that the twenty-degree wedge model produces the same result as the 360-
degree model with 1/18th of the required elements. 

 
Table 4.3: Features for the composite cylinders finite element models 
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The second step in a make-up analysis is taking a connection in the shoulder-tight 

configuration and applying a torque 8.  This process can be idealized as a cantilevered 
cylindrical member under a torsion load.  This idealization in the finite element model removes 
expensive thread features from the problem and allows for quick turnaround and boundary 
condition experimentation.  It also allows the model to be calibrated by reference to a hand 
calculation. 

The hollow cylinder from the composite cylinders problem is 300 mm long with an inner 
radius of 108 mm and an outer radius of 125 mm is subject to a torsion load of 40,000 N*m.  The 
circumferential displacement 9 of the cylinder is given by Equation (4.28). 
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Where < is the polar moment of inertia as shown in Equation (4.29) and ;  is the shear modulus.  
The stresses in the torsion bar are zero except for the in-plane shear component which can be 
calculated by Equation (4.30). 

 0
� �
8>
<

 (4.30) 

Where > is the radius measured from the middle of the cylinder.   
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An identical solution to the torsion bar problem can be found using a full 360-degree 3D 

finite element model.  As presented in Table 4.4, the bottom surface of the pipe was fixed in all 
directions and torque was applied at a reference point on the axis of symmetry which was 
kinematically constrained to the pipe top surface.  The displacement results measured along the 
longitudinal axis of the 360-degree model agree with the hand solution to within 1%.  The shear 
stress results for these two formulations also agree to within 1% as shown in Figure 4.20.   

An equally acceptable solution can be found with far less computational effort by using 
the 20-degree wedge.  The best method of loading the wedge for the torsion problem is to use 
displacement controlled loading to and measure the torque reaction at the base as illustrated in 
Figure 4.19.  These boundary conditions are also given in Table 4.4 and Table 4.5.  The method 
of prescribing displacements is simpler to apply and more stable than loading the model by 
application of surface tractions.  The bottom surface was kinematically constrained to a reference 
point on the axis and held fixed in all directions.  Antisymmetry boundary conditions are the best 
choice for the cut-planes in the torsion bar problem.  This means that the cut-planes are restricted 
in the longitudinal and radial directions but are free to move tangentially.  It is the complete 
reciprocal of the cut-plane boundary conditions applied in the composite cylinders problem. 
 
Table 4.4: Features for the torsion bar finite element models 

 



 42

 

Table 4.5: Tangential boundary conditions at the top surface for the torsion bar wedge problem. 

Boundary Condition Radius (mm) U2 Prescribed Displacement 

Inner Radius � 5   7 ??@ 

Middle Radius ��"   7� 6�  

Outer Radius �,!   7��A?  
 

 
Figure 4.19: The 20-degree wedge model illustrating the displacement controlled loading method. 

The displacement at the top of the 360-degree pipe model was measured as ?7�? �
� � �+�B.  Because Abaqus designates the 2-direction for a model in the cylindrical coordinate 
system to be the tangential direction rather than the circumferential direction, all rotational 
prescriptions are calculated using Equation (4.31).   

 C	 � + � �  (4.31) 

Where C	  is the tangential displacement, +�is the radius at a given point, and �  is the angle of 
circumferential rotation measured in radians.  Three sections designated by radial coordinate 
were used on the top surface to apply the tangential boundary condition calculated by Equation 
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(4.31) using � � ?7�? � � � �+�B�and given in Table 4.5.  The reaction torque measured at the 
base was ,7, � � � �� � DD  which meets the intended torque for a 1/18th model to within 0.8%.   

The resulting displacement field for the 20-degree wedge agreed with the hand 
calculation to within 1% and the resulting stress distribution agreed to within 1.7% as shown in 
Figure 4.20.  The twenty-degree wedge has again shown itself able to produce acceptable results 
using 1/18th the number of elements and completing in 1/10th of the time needed for the full 360-
degree model. 

 
Figure 4.20: An overlay of three solutions for the Torsion bar problem. 
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The actual connection wedge model is a combination of the two models described above. 

Once the make-up is achieved, the ideal 3D-wedge connection model will have a perfectly 
symmetric contact pressure distribution about the wedge centerline.  The seals will be in contact 
and the torque reaction measured at the base will be the same as that measured in the lab. At the 
base, a state of pure torsion will be realized by the absence of reaction forces and the presence of 
a single reaction moment about the axis.  This state of pure torsion will have no reaction 
moments in the off axis directions. 
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Currently this ideal wedge model has not been completely achieved with the OCTG 

premium connection.  The torsion bar problem described above assumes the body is continuous, 
but the actual OCTG premium connection geometry has a discontinuity between the box and pin.  
This discontinuity in the joint introduces many additional degrees of freedom to the problem 
which makes it difficult to replicate with simple boundary conditions.   

In addition, while the connection make-up displays characteristics of both the composite 
cylinders problem and the torsion bar problem, the boundary conditions applied to the cut-planes 
for these two problems are mutually exclusive.  If the antisymmetric boundary conditions of the 
torsion problem are applied to the composite cylinders problem, there will be no restoring 
moment applied at the cut-plane faces to keep the cylinder wedges in contact where seal results 
are collected at the midplane.  The result of the contact resolution step is a bowing behavior as 
illustrated in Figure 4.21 which prevents the seals from being in contact at the desired location.   
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Figure 4.21: Depiction of composite cylinder wedge model behavior with antisymmetric boundary conditions on the 
cut-planes.  The box is shown in red, the pin in blue, and the pipe axis is out of the page. 

Despite these boundary condition challenges, the 3D-wedge model still provides the 
ability to capture the torque-theta relationship of a rotating thread form driving a seal contact.  
Further study should point to a more representative boundary condition configuration at the cut-
planes.  By storing the stress state of the composite cylinders solution at the cut-planes and later 
applying it as a predefined field to construct an initial state for the torsion problem, both 
constituent problems could be honored. 
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After investigating numerous combinations of boundary conditions and loading schemes 

for the 3D-wedge model, the best practice was determined as shown in Figure 4.22.  The 
boundary condition application was intended to simplify the final calculation of the connection 
torque. With only three reaction nodes to produce a moment about the pipe axis on the box, the 
torque calculation was simplified immensely. 

Two reactions were developed at the cut-planes of the box.  A large portion of the left 
and right cut-planes were kinematically constrained to a reference point on the cut-plane surface.  
Symmetry boundary conditions were applied to these reference points in the tangential direction.  
The entire cut-plane could not be restricted in the tangential direction to provide flexibility for 
the contact solution near the seal and threaded regions.  Overconstraining this region restricts the 
slave from moving to accommodate the master surface.   

An additional reaction was developed at the base of the box.  The bottom surface of the 
box was kinematically constrained to a reference point located on the pipe axis at the same axial 
coordinate.  This reference point was held fixed throughout the entire analysis.  The nominal 
pipe region of the pin was restricted in the radial direction on the inner diameter to help maintain 
the radial interference of the seals and threads.   

The analysis took place in two steps.  The first step was a contact resolution step similar 
to the composite cylinders problem.  During this step, the top surface of the pin was restricted in 
the axial direction.  Several edge partitions of constant radius were created on the top pin surface 
as shown in Figure 4.19.  In the second step, the tangential displacements at these edge partitions 
were prescribed according to Equation (4.31) to rotate the pin into the box.  This displacement 
controlled loading scheme proved significantly faster than an equivalent force controlled method 
as the geometric complexity increased.     
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To prevent the pin and box from separating, an axial displacement was prescribed on the 
top surface of the pin according to Equation (4.32).   

 E� � � � ) � � �  (4.32) 

Where E�  is the axial displacement, )  is the pitch of the threadform, and �  is the angle of 
rotation.  This top E� �prescription provided the moments necessary to prevent the pin from 
snagging at a point, separating from the box and cocking to one side as the rotation progressed.  
The issue of cocking was detected by a gradient in the tangential displacement field with respect 
to the axial coordinate as well as a non-symmetric contact pressure distribution.  As an additional 
measure, the threads were prevented from separating once contact had been initiated.  This 
contact constraint allowed the thread form to slide tangentially but prevented separation once 
surfaces were placed in contact.  Checks were performed to ensure that any negative (tensile) 
contact pressures that developed were kept to a minimum.  

 
Figure 4.22: Boundary conditions and loading scheme for 3D-wedge model. 

As the rotation of the pin progressed, the torque developed at the base reaction node was 
monitored.  The pin rotation continued until the contact solution deteriorated, usually at the high 
stress concentrations at the seal(s).  Several variables were critical to the torque achieved in the 
connection.  The main factor was the quality of the mesh and the level of mesh refinement. The 
driving factor behind all meshing efforts was the ability to achieve good contact resolution as the 
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pin was driven into the box.  Effectively representing the thread geometry was especially critical 
as compressive loads were developed in the thread root and crest corners. 

A second major contributor to the torque achieved was the specified friction coefficient.  
It is appropriate to specify a friction coefficient in the 3D-wedge model because the tangential 
degree of freedom that the friction forces act primarily upon is present.  For this reason, the 3D 
model alone provides the means to determine a representative friction coefficient.  Values 
between 7 � �  and 7 � ����  were tested on the same mesh with the same loads and boundary 
conditions.  The pin was rotated until the contact solution could not accommodate further 
rotation, and the maximum torque was recorded as shown in Table 4.6.  
 
Table 4.6: Maximum torque achieved by model as a function of friction coefficient. 

Friction 
Coefficient Q 

% of Experimental 
Torque Achieved 

�  � ��  % 
� ��"  � �# % 
� ��!   � �!  % 
� ���  ��� �# % 

 
In the frictionless case, the only mechanism available in the connection to hold torque is 

the coupling of the pin rotation to the axial compression of the shoulder surface.  This 
mechanism only accounts for a small percentage of the total torque achieved in an experimental 
connection test.  As friction is introduced the tangential forces at the threads, shoulder, and seal 
surfaces develop and quickly become dominant.  Contact convergence becomes more difficult as 
the friction coefficient exceeds ���!  and the tangential forces deform elements beyond their 
useful aspect ratio.  A solution was found using a friction coefficient of 7 � ����  that achieved 
the experimental torque values.  While this final model did not achieve the idyllic state of pure 
torsion, it is the closest approximation of the connection make-up state available. 
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Future improvements could be made to this loading formulation by applying predefined 

stress fields to superimpose the composite cylinders and torsion problems.  Recognizing that the 
symmetry conditions applied to the cut-planes is only a best approximation of the 360-degree 
force-displacement relationship, the stress fields at the cut-planes of the composite cylinders 
solution could be stored and subsequently applied to the torsion wedge cut-planes. 
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Rather than using only a wedge of the connection, an alternative method to solve the 

make-up problem is to use a simplified version of the full 360-degree geometry.  This type of 
model would have the ability to achieve a state of pure torsion.  The tradeoff is that the 
geometric complexity could not be honored for most premium connections.  The fastest way to 
remove degrees of freedom from the model is by reducing the number of threads, or removing 
the thread features all together.  The thread features could be replaced by a kinematic constraint 
linking the tangential and axial degrees of freedom of the pin.  Approximations would also need 
to be made for the torque held by the thread form.  For simpler connection geometries, a full 
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360-degree model could be made if great care is taken to concentrate compute effort in only the 
most critical regions.   
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The 3D-wedge model has the capability to produce a direct torque-theta relationship and 

can therefore serve as the link between the experimental connection data and the computationally 
efficient axisymmetric representation.  Because of the extreme jump in modeling complexity, the 
3D-wedge model could not attain the level of refinement needed for seal analysis. It can, 
however, provide valuable information for the proper calibration of the axisymmetric connection 
model.  Without this calibration, a connection analyst is forced to make a best guess assessment 
of the make-up state when applying pretension section settings.  These nonphysical pretension 
settings can have tremendous impact on the models’ seal performance and can be improved with 
the help of the 3D results.   

A technique was developed to replicate 3D seal conditions in axisymmetric form using 
pretension sections.  The resulting make-up seal conditions were converged in the axisymmetric 
make-up models and stored for later use in service load studies.  The 3D to axisymmetric 
correlation was based on the assumption that the seal condition is primarily a function of the 
connections’ distributed axial displacement on the contact surfaces.  The 3D axial displacements 
at the contact surfaces on both the box and pin were extracted as illustrated in Figure 4.23.  
These values and the corresponding axisymmetric displacements are plotted on top of each other 
in Figure 4.24 and Figure 4.25.  An iterative process was used to dial in the boundary conditions 
and pretension section loads that provided the least error at the seals and shoulders.  Throughout 
this process, it was critical to monitor the displacement fields on both the pin outer diameter and 
the box inner diameter because it is the relative displacement of the two surfaces that affects the 
seal properties.  

 
Figure 4.23: Naming conventions shown for Pin and Box surfaces.  Displacement results were extracted on both the 
Box ID and the Pin OD for the 3D-axisymmetric seal calibration. 
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Figure 4.24: Displacement field of the Box ID for the both the 3D and axisymmetric models. The pretension 
sections are shown as well as the shoulder, inner seal, and outer seal locations. 

 
Figure 4.25: Displacement field of the Pin OD for the both the 3D and axisymmetric models. The pretension 
sections are shown as well as the shoulder, inner seal, and outer seal locations. 

One noticeable feature of the final correlated axisymmetric model in Figure 4.24 and 
Figure 4.25 is that the optimized pretension section offsets are unequal between the regions 
above and below the shoulder for each member.  In addition the pretension offsets are unequal at 
each seal between the box and pin.  At the inner seal, the axial displacement is nearly six times 
greater in the pin than in the box.  This optimized axisymmetric loading scheme reflects the 
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relative stiffness of the members and would be extremely difficult to accomplish without a 3D 
calibration. 

Several pretension schemes are in practice today, but they are rarely discussed in detail 
because of their proprietary nature. The pretension section scheme used for this study was 
selected because it minimized the error with respect to the 3D axial displacement field at the 
seals and shoulder.  The displacement values at the seals and shoulder were given priority over 
those at the threads because these regions are believed to have the greatest impact on seal 
performance.   
 The axisymmetric loading scheme began by defining several surfaces that cut through the 
geometry at different locations perpendicular to the pipe axis.  Pretension sections were then 
applied at eight locations as shown in Figure 4.26.  These pretentions were able to target regions 
above and below each threaded section. The four pretension sections located near the shoulder 
were complimented by four axial boundary conditions that provided additional control over the 
shoulder displacements.  These eight modeling features were used to place the shoulder in 
compression and calibrate the axisymmetric shoulder displacements.  The remaining pretensions 
were used to align the displacements of the seal surfaces through an iterative process.   

 
Figure 4.26: Axisymmetric pretension loading scheme shown.  Pretensions which dilate shown in red.  Pretensions 
which contract shown in blue.  Fixed axial boundary conditions shown in orange. 
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With a loaded connection model in place, several metrics were developed to characterize 

the effectiveness of the seal. These metrics are based on prior experimental work [8] as well as 
interviews with engineers in the field.  While the absolute indicators of seal integrity are a 
subject of debate, several theories on the major contributors exist and are presented below.  
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Several models are evaluated under service loads with the help of the Abaqus Pressure 

Penetration Routine [21].  This routine is indeed a helpful tool when it comes to loading the 
connection, and for some connection analysts, pressure penetration is the chief evaluation metric 
in connection analysis.  The pressure penetration routine operates by first defining a master and 
slave contact surface, a critical contact pressure, and a fluid entry point on the seal surface.  The 
critical contact pressure is defined such that it accounts for the asperities present in the seal 
surface.  With the connection under load, the pressure penetration operates such that a simulated 
fluid pressure is applied normal to the contacting surfaces beginning at the specified fluid entry 
point until a point is reached on the contact surface where the contact pressure exceeds the 
specified critical value.  At this point the simulated fluid pressure is “stopped” and the seal holds.  
Conversely, if the contact pressure does not reach the specified critical value, the fluid passes 
through and the seal fails. 
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To use the pressure penetration routine as the sole seal metric is to rely purely on the 
mechanism of contact pressure in the evaluation of seal integrity.  However, a closer examination 
of the seal mechanics reveals that there may be a more comprehensive way to represent the 
problem. In addition, the intent of the pressure penetration routine does not seem to be that of a 
conclusive seal metric, but merely a more representative loading mechanism.   

��)��  &� �
	�*���
�+��
� 
If the material state of the connection is examined, it is often found that the seal is at a 

stress state very close to or above the yield stress.  Heijnsbroek maintains that in his experiments 
of dry conical metal-to-metal seals that “No sealing whatsoever was observed with the contact 
surfaces in the elastic state” and that, “seals must have plastic deformation at the contact surface 
in order to seal” [8].  The manipulation of seal plasticity is a common technique used by 
connection designers to ensure that any asperities in the seal surfaces are not able to produce a 
leak path. 

A much more precise evaluation metric may be the use of the normal strain in the contact 
region rather than the contact stress.  By examining the stress strain curve from uniaxial tensile 
test data such as in Figure 4.8, one can see that in steel near or beyond the onset of yield a small 
deviation in the measured stress can correspond to a large variation in strain. The converse 
however is not true.  This has led many to believe that the sealing mechanism in metal-to-metal 
premium connections is strain dominated rather than stress dominated. 
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An additional metric commonly monitored in the industry is the length of the seal contact 

region itself.  There is a clear distinction in seal robustness between narrow seals with very large 
maximum contact stresses and wider seals with lower contact stresses [8]. Some manufacturers 
require a connection to maintain what is known as a minimum contact area, defined as the area 
below the contact pressure curve as shown in Equation (4.33). 

 � � � G � � �� � �
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 (4.33) 

Where � �  is the contact area, � �  is the normal component of the stress tensor, � �  is the coordinate 
of length along the seal contact region, and �  is the measured length of the seal contact region. 
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As in many engineering systems, a more appropriate model can often be constructed by 

applying energy methods rather than using a force based technique [28]. Seals are no different.  
If we approach the sealing problem from an energy perspective, a more robust indicator of seal 
performance and convergence can be obtained. 

The first law of thermodynamics states that for a system in static equilibrium and under 
adiabatic conditions, the variation in work of the external forces on the system ��� equals the 
variation in internal energy ��  as shown in Equation (4.34) [27]. 

 �� � I �  (4.34) 
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The internal energy �  of a volume �� can be expressed in terms of the internal energy 
density � 	  which is the energy per unit volume.  The variation in strain energy density can thus 
be used to describe the variation in internal energy as shown in Equation (4.35). 

 �� � G � � 	 ���
%

 (4.35) 

Combining equations (4.34), (4.37), and (4.35) yields an expression for the internal energy 
density at a point in terms of the stress components and the variation in the strain components. 
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In the absence of body forces, the variation of work can be given as a summation of the products 
of the components of stress and strain as shown in Equation (4.37). 
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When a connection make-up is performed, the component of strain energy normal to the 
seal surface provides sealing capability.  By performing a coordinate transformation on the 
principal stress and strain components, the normal component of the strain energy density can be 
extracted.   

If first order axisymmetric elements are used in the seal region, the normal vectors �$ �  for 
each element �  may be calculated from the nodal coordinates as shown below.  The easiest way 
to find the normal vectors to each element seal face is to first find the unit vector tangent to the 
element face  �$ � ��  by subtracting the consecutive nodal coordinates in the seal set as shown in 
Equation (4.41) 
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� � � � � � � � �� �1� � � ' � 1� � � �

T : � � � � � � � ; � � : 1� � � ' � 1� ; �
 (4.38) 

Where �� signifies the axial nodal coordinate, and 1 signifies the radial nodal coordinate for 
element � .  For an axisymmetric problem, the circumferential coordinate is fixed at zero.  The 
unit vector normal to the seal face for element ��is then found by Equation (4.39) 
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T : � � � � � � � ; � � : 1� � � ' � 1� ; �
 (4.39) 

The direction cosines � , �� ��and�U can be found for the unit normal vector by taking the 
dot product of the unit normal vector and �$ � .  For an axisymmetric problem, the direction cosine 
between �$ �  and the circumferential unit vector is unity. The transformation vector � �  can be 
assembled as shown in Equation (4.40). 

 � � � @� �� �� A • [� � �   (4.40) 
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The elastic and plastic strains can be extracted at the nodes in the global coordinate 
system, summed, and transformed into the seal coordinate system by Equation (4.42).  In an 
axisymmetric problem, the strain components 5&� �5��  will be zero.  The result is a 1x3 strain 
tensor transformed into the local seal coordinate system with normal, tangent, and out of plane 
components.   
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Because the normal unit vectors are defined for each element, and the strains are 
extracted at the nodes, there will always be one more node in the seal set than the number of 
normal vectors if first order elements are used (See Figure 4.27).  This issue can be overcome for 
the interior nodes in the set by averaging the two normal vectors � �  and � ���  in the computation 
of � � .  

The calculation of the seal strain energy density continues with the extraction of the 
contact pressure in the seal region, � � .  This contact pressure is readily available to users of most 
commercial finite element packages, but it can also be calculated in the same manner as 
 � .  The 
normal strain energy density � 	 ��  can now be calculated at each node as shown in Equation 
(4.43). 

 � 	 �� � � � $ %
 � % (4.43) 

If the normal strain energy is integrated along the length of the seal, a single 
representative number describing the seal state under a given load configuration results.  This 
Seal Number is shown in Equation (4.44). 
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Where '#  is the Seal Number, �  is the length of the seal, � �  is the seal coordinate as shown in 
Figure 4.27, and !  is the number of elements in contact in the seal region. 
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Figure 4.27: Components used in the calculation of the Seal Number; the element height � , change in element height 
due to load � , the component of the stress tensor normal to the seal surface projected to the node � �� , the seal surface 
unit normal vectors � �	 , the element seal face lengths 
 � , and the seal coordinate � � .  The normal strain can be 
visualized as � �  �����  

Because it uses an integration scheme, the Seal Number is able to smooth out the noise 
often found in contact pressure and normal strain data extractions and has shown to be a robust 
indicator of seal convergence.  The Seal Number allows the analyst to give credit to the seal 
characterization methods of contact pressure, contact area, contact strain, and contact length 
while concisely representing the state of the seal with a single energy based value.  

��.��  �	��
�����	�����!����
����
None of the above seal metrics can be considered representative without an accompanying 
convergence plot.  The percent convergence indicates how close the model is to representing a 
value extracted from an infinite-degree-of-freedom model under the same loads and boundary 
conditions.  The percent convergence is calculated as shown in Equation (4.45) and is in essence 
the percent error between two meshes. 

   F �>.
9 �
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� �
� �  F  (4.45) 

Where � �  is a result extracted from model 	 , and � ���  is the same result extracted from the same 
model but containing fewer degrees of freedom.  A sample of typical axisymmetric convergence 
values is given in Table 4.7.  Seal metric convergence is best visualized as a function of the 
number of nodes in the seal region with a positive contact pressure as shown in Figure 4.28.   
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Figure 4.28: Convergence plots for each seal metric  

Particular attention must be given to the seal length metric when examining model 
convergence.  Typical industry mesh sizing only results in 8-9 seal nodes in contact.  As seen 
Figure 4.28, this mesh sizing over predicts the seal length by nearly 45%.   A false confidence 
will result if such a coarse mesh is used for the prediction of seal performance.  Further 
refinement provides a much more accurate representation of the seal state at the expense of a 
slight increase in computation time.  The seal length was converged to 3.7% in a model 
containing 125,000 bilinear axisymmetric elements which completed in 25 minutes on 12 cores.  
 
Table 4.7: Typical seal metric convergence levels. 
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The above seal metrics were evaluated on a connection provided by a major connection 

manufacturer.  The connection type, weight, and grade were kept constant.  Four geometric 
variants were made available for analysis: LL-PSBF, HL-PNBN, HL-PSBF, and HH-PFBS.   

The above naming convention allows manufacturers to conceal design details while still 
providing customers with the geometric extremes within the allowable tolerances.  The names 
are constructed to designate the connection thread interference, seal interference, and taper 
mismatch as illustrated in Figure 4.29.  The first letter designates the thread interference: Low, 
Nominal, or High.  Similarly the second letter designates the seal interference.  The remaining 
four letters after the dash (-) designate the taper mismatch.  The letter following the ‘P’ 
designates the pin taper: Low, Nominal, or High.  Similarly the letter following the ‘B’ 
designates the box taper.  The ideal connection is a NN-PNBN.  This NN-PNBN geometry was 
not analyzed but would provide a good baseline for evaluation of the other variants.  Often the 
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geometries analyzed by well designers are LL-PSBF, HL-PNBN, HL-PSBF, and HH-PFBS 
because it is commonly believed that one of these will provide the worst case performance under 
a given service load [4,9]. 

 
Figure 4.29: Diagram of connection naming conventions illustrating the “High Low – Pin Slow Box Fast” 
configuration.  

Due to limitations in project scope, only the LL-PSBF model was generated in 3D.  The 
process outlined in Section 4.7.2 was used to generate an equivalent LL-PSBF axisymmetric 
model with pretension section loading.  The same pretension settings were then applied to the 
remaining axisymmetric geometries.  This set of models provided a basis for geometric 
comparison as well as evaluation of seal metric capabilities.  To preserve the proprietary 
information of the connection design, all results given below have been normalized or multiplied 
by an arbitrary scaling factor.  

��-����  ���	��	�'�
����
�����0��$����	�����
The contact pressure metric was able to provide valuable insight into the variation in 

sealing capacity present in a given connection pulled from the production line.  Table 4.8 shows 
the maximum, mean, and median contact pressure in the seal region after make-up.  These values 
have been normalized to the material’s yield offset stress  �  calculated from uniaxial tensile test 
data in Section 4.4.1.  HH-PFBS shows stress values far beyond the yield offset.  It is indeed 
feasible that stress values beyond yield can be achieved because in some areas the seal is nearing 
a state of hydrostatic compression.  The drastic contrast in seal contact pressure between the high 
seal interference of HH-PFBS and the low seal interference of HL-PSBF should also be noted.  
In addition, the contact pressure metric can distinguish between the nominal taper variation of 
HL-PNBN and the assumed worst case taper variation of HL-PSBF.   
 
Table 4.8: Contact Pressure results from the comparative seal analysis. Results extracted from equivalent 
axisymmetric model configurations developed from 3-D wedge models and correlated with DIC data. 

Model 
Contact Pressure 

Max  
(G� /G� ) 

Percent 
Converged 

Mean 
(G� /G� ) 

Percent 
Converged 

Median 
(G� /G� ) 

Percent 
Converged 

LL-PSBF 1.02 0.9 0.69 5.2 0.79 -2.3 
HL-PNBN 0.97 3.4 0.55 5.8 0.52 2.2 
HL-PSBF 0.69 1.9 0.27 2.3 0.21 4.8 
HH-PFBS 1.29 0.0 0.91 2.5 1.06 1.6 
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Statistics on the normal strain values �� � ) are given in Table 4.9.  The normal strain is the 

component of the total strain perpendicular to the contact surface as calculated in Equation 
(4.42).  The values presented have been normalized to the offset yield strain �� � � .  Convergence 
of the normal strain values is more difficult than the contact pressure values because total strain 
levels at a point vary greatly with a small increase in stress beyond�� � . 
 
Table 4.9: Normal Strain results from the comparative seal analysis. Results extracted from equivalent axisymmetric 
model configurations developed from 3-D wedge models and correlated with DIC data. 

Model 
Normal Strain 

Max 
(H� /H� ) 

Percent 
Converged 

Mean 
(H� /H� ) 

Percent 
Converged 

Median 
(H� /H� ) 

Percent 
Converged 

LL-PSBF 0.131 7.6 -0.167 9.1 -0.208 11.3 
HL-PNBN 0.126 7.9 -0.116 11.3 -0.120 11.8 
HL-PSBF 0.117 5.8 -0.011 38.8 0.010 -19.2 
HH-PFBS 0.189 6.9 -0.201 5.0 -0.250 3.2 
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The seal length’s for the geometric variants have been multiplied by an arbitrary constant 

‘X’ and are shown in Table 4.10.  The negative sign on the convergence values indicates that the 
metric converges from above.  As previously mentioned in Section 4.8.5 this level of 
convergence must be closely monitored if a minimum seal length requirement is imposed.  By 
looking at Table 4.8 and Table 4.10 simultaneously it can be seen that HL-PSBF has both the 
lowest contact pressure and the greatest seal length.  It is this phenomenon that leads many 
designers to impose both a seal length requirement as well as a contact pressure requirement. The 
converse, where the shortest seal length coincides with the highest contact pressure, does not 
exist in this data set.   

 
Table 4.10: Seal Length results from the comparative seal analysis. Results extracted from equivalent axisymmetric 
model configurations developed from 3-D wedge models and correlated with DIC data. 

 
 �
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The seal number from Section 4.8.4 combines aspects of the contact pressure metric, the 

strain metric, and the seal length metric into a single energy based value.  The seal number 
results for the available geometries have been scaled by an arbitrary constant ‘X’ and are given 
in Table 4.11.  One noticeable aspect of the seal metric is that it converges much faster than the 
contact pressure or seal length.  This can be attributed to the use of an integration scheme, shown 
in Equation (4.44), which has a smoothing effect on the data.   

When comparing the seal number across the available geometries, a maximum is reached 
where expected on the high thread and seal interferences of HH-PFBS.  The seal number reaches 
only half this value on the low thread and seal interference configuration of LL-PSBF.  As the 
seal interference is further reduced in the high thread, low seal configuration of HL-PNBN a 
slightly lower seal number of 0.42*X is achieved.  Finally, the seal number proves to be 
considerably diminished on the traditionally worst-case HL-PSBF geometry with its high thread 
interference, low seal interference, and mismatch in taper.  Here, the seal number shows an 
ability to differentiate between nominal and offset taper angles- a feature that is apparent but not 
nearly as noticeable in the contributing seal length, normal strain, and contact pressure metrics. 

 
Table 4.11: Seal Number results from the comparative seal analysis. Results extracted from equivalent axisymmetric 
model configurations developed from 3-D wedge models and correlated with DIC data. 
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Chapter 5 Calibration of the Finite Element Model 
Several finite element modeling techniques were attempted before the final 3D-wedge 

and 3D-inspired axisymmetric pretension techniques were determined.  In this model 
development process, several error metrics were used to help steer the efforts of the study 
towards the best available solution based in the DIC data.  These metrics are valuable not only 
because they quantitatively determine the error present in the models, but are also able to reveal 
the nature of the error and the path forward for model improvement.  The metrics are evaluated 
on both the axisymmetric and 3D finite element models. 
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The error metrics operate on two data sets: the DIC data and the finite element model.  

The term correlation will refer to the combined notion of the traditional correlation coefficient, 
the sum-squared error (SSE) between the two data streams, and the sum squared error of the 
spatial frequency content (FFT SSE).  All correlations discussed will be the finite element data 
relative to the experimental DIC strain and displacement field reference. 
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The traditional correlation coefficient is a measure of linear dependence between 

variables [24]. The correlation coefficient is normalized to a scale from -1 to 1. High correlation 
coefficient magnitudes (positive or negative) correspond to a strong relationship between two 
variables. Negative correlation coefficients indicate an inverse relationship. Correlation 
coefficients are not sensitive to the order of magnitude of the data set (scale) or vertical (DC) 
offsets.  They are a measure of a variables’ trend rather than its numerical value.  The final 
correlation coefficients of the 3D-wedge model are given in Table 5.1, and show that the trends 
in the finite element models’ mechanics are representative of the DIC displacement and strain 
data.  By comparison, the axisymmetric displacement fields were only able to produce levels of 
correlation of 0.4.   

 
Table 5.1: Correlation coefficients for the final 3D-wedge model 
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Prior to correlation the axial origin of the FE data set must be registered with the axial 

origin of the DIC data. This is necessary because the FE model data is not guaranteed to begin at 
the same physical location as the DIC data unless great care has been taken in the experiment to 
orient the DIC images to a stationary, well documented coordinate system.  The process of 
registering the axial origins of the two data sets is illustrated by Figure 5.1.  The process begins 
at the origin of the DIC data set and compares the interpolated FE data set to the DIC data set 
using the correlation coefficients.  The FE data set is then given a phase offset��  bounded by 
Equation (5.1). 
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   I J I J ���  (5.1) 

The maximum phase offset, J ��� , has been fixed at 50 mm for speed and correlation 
accuracy.  At each phase offset evaluation the FE data set has to be interpolated from the nodal 
values to maintain a one-to-one spatial relationship with the DIC data.  All J  are evaluated 
within the limits, and the largest correlation coefficient is recorded with its associated optimum 
phase offset J �����  as shown in Figure 5.1.  The axial coordinate of the final point in the offset 
FE data set is determined, and the DIC data is trimmed to maintain equivalent spatial length K��  
in both data sets. This is needed because the FE and DIC data are not guaranteed to cover the 
same spatial length.  

 

 
Figure 5.1: Alignment of data sets. � �����  is the phase offset that produces the largest correlation coefficient.  The 
trimmed data sets (illustrated in red) are passed forward for error metric evaluation. 

In the search for the optimum phase offset, the correlation coefficient was calculated 
using data over the full connection length.  This decision produces a data alignment that does not 
favor any particular region of the connection, despite the fact that some regions along the axis 
contain more dynamic signals than others.  An alternate formulation for middle shoulder 
connections is to only consider the ‘upper’ half of the connection between the shoulder and the 
outer seal for the data alignment.  It is in this upper region that the displacement and strain 
signals have a higher signal-to-noise ratio as seen in Figure 3.4 and Figure 3.7.  The reason for 
the low SNR below the shoulder is the additional thickness of the box as shown in Figure 4.23.  
The added thickness in this section smooth’s out the frequency content of the data on the outer 
diameter as the strain energy is dissipated from the thread contact surface. 

�����  �/���0/�
����

	
�
The modified FE data with the best correlation coefficient and the trimmed DIC data are 

then compared using the sum squared error method of Equation (5.2).  The SSE is the sum of the 
pointwise difference between the FE model data and the mean zero DIC data.  This quantity is 
then normalized to the maximum value of the DIC data.  The sum-squared error is necessary to 
quantitatively show the spatial relation between the two data sets.  The sum squared error values 
for the final 3D-wedge model are given in Table 5.2. 
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Table 5.2: Sum Squared error values for the final 3D-wedge model 
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The Fast Fourier Transform provides an orthogonal view of the data as shown in Figure 

3.9.  The FFT allows the DIC and FE data streams to be viewed through a different 
characterization, spatial frequencies and amplitudes.  In order to be able to perform an FFT on 
the two data sets, the data points must be sampled at a fixed spatial interval and the number of 
data points must be a power of 2.  To capture the relevant frequency content in the displacement 
and strain fields, the FFT should be constructed such that it can capture wavelengths as small as 
the pitch of the thread form, and as large as the total length of the connection. 

For example if the spatial length of the two data streams is 200 mm and the pitch is 5 
mm, resampling the data at 512 equally spaced points would produce 512/2.56+1=200 spectral 
lines, plus an additional spectral line when the DC component is included.  The resulting spatial 
frequency range would be from 1/200mm = 0.005 cycles/mm to 0.005cycles/mm*200 spectral 
lines = 1 cycle/mm.  With these FFT parameters, wavelengths between 1 and 200 mm could be 
captured on the outer diameter of the box.  This is sufficient to capture features smaller than the 
pitch of 5mm and as large as the entire connection length.  The final FFT plots of the DIC and 
FE data can be found in Figure 5.2.   

The spatial frequency content of some components is represented better than others by 
the finite element model.  While the radial and circumferential displacement as well as the 
circumferential strain field show remarkable similarity, the axial displacement and axial strain 
fields are more difficult to represent.   
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Figure 5.2: FFT overlays of the FE and DIC data. Note: The vertical scales are not constant in this image. 
 

Another way to characterize the difference in the spatial frequency content is to use a 
sum squared error metric.  By summing the difference between the amplitudes at each spectral 
line of the two FFT’s, an FFT sum squared error (LL8���� ) was calculated as shown in 
Equation (5.3). 

 LL8 ���� � M � L� � � NO>� � 	

�

� � �

 (5.3) 

Where 
  is the number of spectral lines, L� �  is the 	 ’th spectral line for the finite element data 
set, and NO>�  is the 	 ’th spectral line for the DIC data set.  FFT sum squared errors are given for 
the final model in Table 5.3.  

Table 5.3: Fast Fourier Transform sum squared error values for the final 3D-wedge model 
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Examining the residuals throughout the model development process provided insight into 

model and data acquisition improvement. An ideal model correlation would result in a residual 
signal randomly distributed about the mean with a maximum value significantly less than the 
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amplitude of the signal itself.  There should be no physics remaining in the ideal residual signal. 
A residual analysis performed on an early model is shown in Figure 5.3. The radial displacement 
residual signal shows a variation in the pointwise difference between the finite element model 
and DIC data with respect to the axial coordinate.  This type of error is due to the common rigid 
body rotation mode of the connection in the test facility.  Because no fiduciary marks were 
available a rotation subtraction operation could not be performed on the DIC data to improve this 
type of error.   

A mean offset can be seen in the both radial and axial displacement signals.  This is 
indicative of a rigid body translation mode present in the DIC displacement data and can be 
corrected by subtracting the mean of the residual.  Additional justification for this operation 
could be provided by observing the translation of available fiduciary marks in the test.  The 
circumferential and axial strain residuals for this model do show a mean zero error that is more 
randomly scattered about the mean. Because of the spatial derivative of the strain components, 
any rigid body displacements and rotations are removed.  

 
Figure 5.3: Example plots of the residual analysis.   

The FFT of the residual displacement signal shown in Figure 5.4 illustrates the spatial 
frequency error of the model.  The FFT of the displacement residuals also shows a mean offset in 
the zero Hertz (DC) component.   
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Figure 5.4: FFT of the residuals for the final correlated model. The FFT SSE from Equation (5.3) is a squared 
summation of the above data. 
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Many of the metrics in Section 5.1 were developed with a goal of optimizing the 

axisymmetric connection formulations used in industry today.  The metrics have been able to 
quantitatively determine the effects of finite element modeling decisions using full-field DIC 
strain and displacement data as the reference.  As discussed in Chapter 4, it was eventually 
determined that only a 3D model could provide the necessary degrees of freedom to capture the 
torque-theta relationship of a connection make-up.  Because of the immense computational cost 
of a full 3D representation, a 3D-wedge model was developed and later used to guide the 
computationally efficient axisymmetric formulation.  The most representative connection make-
up model found during the course of the study was the 3D-wedge model that achieved 
experimental torque values.  The outer diameter displacement and strain fields for this final 3D-
wedge model are plotted in Figure 5.4 along with the corresponding DIC data. 
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Figure 5.5: Final overlay of 3D-wedge finite element data and extracted DIC data. Displacements (top) and Strains 
(bottom) show strong resemblance. 
 

The plotted strain data provides visual confirmation of the model’s ability to capture the 
trends in the mechanics of the connection.  This is confirmed by the high correlation coefficients 
for the strain data shown in Table 5.1.  The overall trends in the displacement data appear to be 
adequately represented by the finite element model as well.  Improvements to the displacement 
correlation can be made by establishing the true rigid body motion in the experimental data.  
This can be done by registering the DIC data with fiduciary marks as discussed in Section 3.2.1.  
The 3D-wedge model does not represent the DIC data perfectly, but provides substantial 
improvement over axisymmetric pretension section representations. It is unlikely that much 
improvement can be made to the modeling technique without applying predefined fields to place 
the connection in pure torsion as discussed in Section 4.7.1.9 or extending the 3D model to 360 
degrees as discussed in Section 4.7.1.10.   
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Chapter 6 Summary, Conclusions, and 
Recommendations 
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From a review of the literature, Hilbert and Khalil have identified that a need exists for a 

general correlation between torque and equivalent axisymmetric loading for OCTG connection 
make-ups. Heijnsbroek adds that axial displacement is the dominant mechanism linked to sealing 
capability.  The literature also reveals that strain gauge methods do not provide enough spatial 
resolution to properly capture the complex OCTG outer diameter strain fields.  The conclusion 
drawn is that confidence in any OCTG modeling technique can only be as good as the resolution 
of the corresponding experimental data.   

The use of DIC in connection testing means that finite element connection models may 
now be held to higher standards.  DIC strain and displacement measurements can provide high-
spatial-density full-field validation data for finite element models of OCTG premium connection 
make-ups.  This ability hinges on the requirement that appropriate correlation techniques are 
used.  Fiduciary marks are necessary to provide a concrete reference for mapping the DIC data 
back to the geometry and accounting for any rigid body motion present in the system.  Best 
practice recommendations are made throughout Chapter 3 if these marks are not available.   

Metrics such as Signal to Noise Ratio can be used to quantitatively assess the DIC data 
quality as shown in Section 3.4.  The calibration, paint pattern, lighting, and camera orientations 
have been shown to drastically influence data quality.  DIC data processing must be done 
carefully and with knowledge of the mechanics of the system at hand.  Data robustness can be 
improved by sampling at several circumferential coordinates and using a median technique to 
collapse the data into an axisymmetric equivalent form. The value of extracting both strains and 
displacements cannot be overlooked.  The strength of the experimental displacement signals is 
the ability to calibrate the model to the scales of the connection behavior.  The strain signals 
offer the ability to represent the trends present in the mechanics of the system.  Filtering is 
necessary and should be used with caution to avoid over processing the data set. 

Chapter 4 describes the technique and reasoning behind the construction of the finite 
element make-up model.  The truest available finite element model of a connection make-up is a 
full 360-degree representation of the box and pin using 3D continuum elements.  This 
representation has no associated modeling assumptions.  Unfortunately, this type of model is 
often intractable. 

When recognized and appropriately exploited, axisymmetry can reduce the number of 
degrees of freedom in a finite element model while maintaining sufficiently accurate solutions.  
However, OCTG connections are not axisymmetric because the helix angle of the thread form 
causes a variation in geometry with respect to the circumferential coordinate.  In addition, the 
mechanism of rotating the pin at make-up results in a variation of the displacement field with 
respect to the circumferential coordinate.  This mechanism cannot be directly modeled in a 
conventional axisymmetric model.   

Relying on a turn-pitch calculation to determine pretension axial offsets at discrete points 
neglects the fact that the connection is a complex distributed elastic system.  The pretension 
section loading method can only be deemed an acceptable representation of a connection make-
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up if a concrete, mechanics-based link is made between the applied torque and the resulting 
axisymmetric displacement field.  Only a 3D representation can provide this link.   

The 3D-wedge model offers the ability to capture the torque-theta relationship with 
considerably fewer degrees of freedom than the full 360-degree representation.  Because the 
circumferential degree of freedom is activated, the 3D-wedge model incorporates the torsional 
stiffness’s of the box and pin.  In addition, a direct kinematic relationship between the pin 
rotation and the distributed axial displacement of the system is now available. 

Several recommendations are made for the construction of the 3D-wedge model.  A 
Ramberg-Osgood deformation plasticity material model is found to be a very effective 
representation of the stress-strain constitutive behavior.  This form was chosen in Section 4.4 
because it allows both the elastic and plastic material behavior to be represented by a single 
smooth curve. The proper definition of a continuous transition between elastic and plastic 
behavior is necessary to appropriately capture the plastic zones that develop throughout the 
geometry.   

In Section 4.5, it is demonstrated that great care and effort must be devoted to the 
meshing scheme to achieve a stable mesh that can successfully converge a difficult contact 
solution in a reasonable amount of time.  This is especially critical in 3D applications where 
efficient and effective meshes drive the model’s contact performance.  The ability of the 
connection model to support experimental torque values was limited primarily by its ability to 
resolve the contact problem at the threads, seals, and shoulder as the pin was driven into the box.  
Section 4.6 illustrates that no single contact resolution method will adequately satisfy every 
modeling case, and several complimenting methods have been developed for varying levels of 
contact severity.   
 For the wedge model to represent the full 360-degree make-up, the unmodeled portion of 
the connection must be represented using loads and boundary conditions as discussed in Section 
4.7.  An appropriate set of boundary conditions is determined by viewing the make-up as a 
superposition of the composite cylinders problem and the torsion bar problem.  The 360 results 
of these constituent problems can be reproduced with sufficient accuracy in 1/10th the time using 
a 20-degree wedge section.  The challenge realized is that the boundary conditions for these two 
constituent problems are mutually exclusive.  A compromise is reached in Section 4.7.1.8 and 
the 3D-wedge model is able to couple torque, rotation, and axial displacement at the thread form 
to drive contact at the shoulder and seals.   While this final model did not achieve the idyllic state 
of pure torsion, it is the closest approximation of the connection make-up state available. 
 The 3D-wedge model can now serve as the link between the experimental connection 
data and the computationally efficient axisymmetric model.  In Section 4.7.2 the axisymmetric 
representation is forced into agreement with the 3D-wedge model through an iterative process by 
monitoring the axial displacement at the shoulder and seals. 
 With a representative axisymmetric connection model in place, several metrics are 
developed in Section 4.8 to characterize the seal effectiveness.  None of the seal metrics may be 
considered representative without an accompanying convergence plot.  Particular attention must 
be given to the seal length metric when determining model convergence.  The convergence plots 
provided illustrate how a false confidence will result if an unconverged mesh is used for the 
prediction of seal performance.  Current industry mesh density produces seal length values 45% 
higher than models with greater mesh refinement.  This refinement provides a much more 
accurate representation of the seal state at the expense of a slight increase in computation time.   
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The contact pressure metric was able to provide valuable insight into the potential 
variation in sealing capacity present in a given connection pulled from the production line.  The 
Seal Number shows an ability to differentiate between nominal and offset taper angles- a feature 
that is apparent but not nearly as noticeable in the contributing seal length, normal strain, and 
contact pressure metrics.   
 In Chapter 5 modeling error metrics are developed using the DIC data as the reference.  
These metrics are valuable not only because they quantitatively determine the error present in the 
models, but can also reveal the nature of the error and the path forward for model improvement.  
The error metrics show good correlation between the 3D-wedge model and the DIC data.  The 
3D-wedge model does not represent the experimental data perfectly, but provides substantial 
improvement over current axisymmetric pretension section representations.  
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The make-up event is only the beginning of the connection model evaluation process. 

Future efforts should test the above models to determine if an enhanced ability to predict seal 
performance has been achieved.  Efforts to minimize physical testing should then be carried out 
as highlighted below. 
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The seal(s) of the minimum error make-up model are to be monitored as service loads are 

applied using the seal metrics of Section 4.8. A minimum seal performance envelope can be 
developed for the particular connection variant.   The envelope is then discretized using a series 
of segments as shown in Figure 6.1.  The discretized “In-Plane Minimum Seal Performance 
Envelope” is a mathematical representation of the seal performance limits at a given location in 
the design space.   

 
Figure 6.1: The In-Plane Minimum Seal Performance Envelope can be discretized into several segments which 
allow the envelope to be operated upon. 
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Several In-Plane Minimum Seal Performance Envelopes built from geometric connection 

variants can be related by applying trajectory functions as shown in Figure 6.2.  These trajectory 
functions operate in the space between well-defined connection variants and can be used to 
generate an “Out-of-Plane” projection of untested seal performance.  Once the trajectory 
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functions are defined, interpolation methods can be utilized to study seal performance as a 
function of a single design variable.   

 
Figure 6.2: Trajectory functions can be used to generate Out-of-Plane Minimum Seal Performance envelopes and to 
interpolate minimum seal performance limits between known test configurations.  Here the trajectories operate as a 
function of the outer diameter design variable. 
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Seal performance can also be studied as a function of multiple design variables by 

applying response surface methods. The response surface is a well-defined statistical tool that 
typically assumes a polynomial solution to a function of interest over a domain, uses sampling 
methodology to examine the domain, then defines a least-squares-error best-fit solution to model 
the function of interest [29].  It is a powerful technique because it allows the analyst to explore a 
design space while accounting for coupled design variables.  The basics of the finite-element-
based response surface are provided in Appendix E, and the possible applications to OCTG are 
discussed below. 
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Application of response surface techniques in the analysis of premium connections 

allows simultaneous consideration of coupled design variables.  Rather than sampling a well-
known function over an arbitrary domain as Appendix A, the response surface can sample 
parametric finite element models operating within the feasible design space.  Design 
optimization methods can then operate upon the constructed response surface to identify and 
investigate areas of interest [30].  
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Response surfaces can be applied to calibrate a finite element make-up model based on 

experimental and/or analytical make-up data.  This experimental data should take advantage of 
Digital Image Correlation as outlined in Chapter 3. Recommendations for the formulation of the 
finite element make-up model are made in Chapter 4.  The functions of interest are the model 
error metrics developed in Section 5.1.  The domain of the make-up problem is the design space 
defined by an arbitrary number of connection design variables.  These design variables describe 
a particular geometric variant and/or modeling assumption of a make-up model.  The particular 
combination of design variables that produces a model with minimum error can be identified as 
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illustrated in Figure 6.3.  Service load studies can then be performed on the minimum error 
make-up model.  
 
Table 6.1: Table of design variables for make-up studies 

Design Variables 
Connection Type 
Connection Diameter 
Connection Wall Thickness 
Material Model 
Thread Interference 

Seal Interference 
Box Taper 
Pin Taper 
Axial Interference Parameter(s) or Make-up Torque 
Friction Coefficient 

 
Figure 6.3: The response surface can operate upon a parametric finite element make-up model to identify the 
modeling configuration that produces the minimum error with respect to the experimental data. 
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Application of response surface methodology to premium connection service load studies 

produces a systematic way to explore and characterize seal performance once a minimum error 
make-up model has been achieved. The functions of interest are now the seal metrics developed 
in Section 4.8.  The sample points are the load configurations operating on the minimum error 
make-up model at feasible locations in the load space.  The domain of the problem is the load 
space defined by an arbitrary number of load types which may include those found in  
Table 6.2.  Areas of minimum seal performance can be identified in order to eliminate 
unnecessary physical testing, and testing efforts can be directed towards areas of marginal 
performance.  These areas of marginal performance can then be investigated analytically as well 
as experimentally to further refine the application of the seal metrics. 
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Table 6.2: Table of load variables for service load studies 

Service Load Variables 
Axial Load 
Bending Moment 
Internal Pressure 
External Pressure 
Internal Temperature 
External Temperature 

 

 
Figure 6.4: The response surface can operate upon a parametric finite element service load model to investigate seal 
performance across the load space. 
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Methods to reduce the dimensionality of the problem should be investigated to the 

furthest possible extent to reduce the number of model runs required to represent the design and 
load space.  Some of the best ways to accomplish this are to combine similar variables, or use 
similitude in the system to reduce dimensionality [28].  A common reduction is to combine the 
nominal wall thickness and outer diameter into a ratio [1,9].  Other reductions can be made by 
combining box and pin tapers into a taper difference or combining internal and external load 
variables into differential forms.  Only the most relevant and essential variables should be used 
in the construction of the response surface, and the variables believed to be most dominant 
should be investigated first.   
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Figure B.1: A good DIC experimental setup.  Cameras pushed far apart to maximize the dynamic range of the out-
of-plane ray tracing measurement.  Cameras are also oriented parallel to the pipe axis to give better resolution for in-
plane measurements.  Used with permission of Hess Corporation [18]. 

 

Figure B.2: A poor DIC experimental setup.  Cameras are not separated by a sufficient angle. Cameras also oriented 
perpendicular to the pipe axis.  Used with permission of Hess Corporation [18]. 
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Used with permission of Hess Corporation [18]. 
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Appendix D MATLAB Code for Deformation 
Plasticity Material Model Optimization 

% Ramberg Osgood material constants optimization fi t for Abaqus formulation  
clc  
clear all  
StressDATA=[]; % Insert Stress Data Here  
StrainDATA=[]; % Insert Corresponding Strain Data Here  
%% Abaqus form for the ramberg osgood stress-strain  relation  
%Initial Parameters (constant)  
E0=;  %Young’s Modulus  
so0=; %Yield offset  
eo=; %strain at Yield offset  
% Initial variable values  
n0=1;  
alpha0=((eo*E0)/so0)-1;  
x0=[alpha0,n0,so0,E0];  
%FINDS OPTIMIZED RAMBERG-OSGOOD CONSTANTS IN ABAQUS FORM 
[x]=lsqnonlin(@strainError,x0)  
alpha=x(1)  
n=x(2)  
so=x(3)  
E=x(4)  
%Plot initial fit and final fit over experimental d ata  
stressfit=linspace(0,1100,1000);  
for  i=1:length(stressfit)  
    strainfitFinal(i)=AbqRO_StrainCalc(alpha,n,so,s tressfit(i),E);  
end  
plot(StrainDATA,StressDATA, 'ro' ,strainfitFinal,stressfit, 'b' )  
%title('Abaqus form of Ramberg-Osgood stress/strain  curve')  
xlabel( 'strain ()' )  
ylabel( 'stress ()' )  
legend ( 'Material Test Data Points' , 'Fitted Ramberg Osgood Curve' )  
grid on 
%check that the proper relationship is satisfied at  yield onset  
check=0.0065-so/E*(1+alpha)   
function  [strainErr]= strainError(x)  

alpha=x(1);  
n=x(2);  
so=x(3);  
E=x(4);  
StressDATA=[]; % Insert Stress data here  
StrainDATA=[]; % Insert Strain data here  
% Abaqus form for the ramberg osgood stress-strain relation  
%Parameters (constant)  
E=;  %Youngs Mod  
eo=; %Strain at yield offset  
for  i=1:length(StressDATA)  

strainErr(i)=AbqRO_StrainCalc(alpha,n,so,StressDATA (i),E)… 
-StrainDATA(i);  

end  
end  
function  [AbqRO_Strain]= AbqRO_StrainCalc(alpha,n,so,s,E)  

%Abaqus form of the Ramberg Osgood stress strain re lationship  
AbqRO_Strain=s/E+(s*alpha)/E*(abs(s)/so)^(n-1);  

end  
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Appendix E Finite-Element Based Response Surface 
Formulation 

The response surface is formulated below with a finite element-based-twist.  Rather than 
fitting a series of polynomials over the domain, the domain is discretized into a set of response 
surface elements which use Gauss-Legendre sampling schemes to sample the space. Lagrangian 
shape functions are used to solve the over-determined system and find a least-squares-error best-
fit solution to the function of interest over the domain of each response surface element.  The 
response surface mesh can then be refined to the point of convergence where it represents the 
function of interest within an acceptable margin. 

Once nodal function values 1��  are known, the response surface may be queried for a 
function value anywhere in the element domain using 

 1� : � ; � D 1�� $ # �� � � �

"�# '� � �

�  �

 (E.1) 

Where !�is the node number within response surface element � , 1��  are the nodal function values 
corresponding to 1�� � 1� : � ; � # ��  are the shape functions for element � , and �  is the desired 
sample location the within the domain.  The bulk of the effort in response surface modeling is 
finding the nodal function values�1�� .  This is accomplished by finding the solution to the 
function of interest � � � �  at sample locations �.��  as shown in Equation (E.2). The sample 
locations �.��  are arbitrary but will be demonstrated with Gauss-Legendre sampling schemes.  

 1Z� � � � � � .�� � .   (E.2) 

The function of interest, � : � ; , is rarely a function of a single variable but rather a vector 
of design parameters denoted as�/ � 0 � 	 � � � � � � ( � � 
 .  The parameters used to create the vector 
	 � 
  are at the discretion of the investigator.  Great care should be used to limit the size of 	 � 
  
because the number of samples required to construct the full response surface grows according to 
Equation (E.3). 

 	 � � �  (E.3) 

Where 	  is the number of samples required to fully construct the response surface, �  is the 
number of levels at which each variable of 	 � 
  will be sampled (proportional to the response 
surface mesh density), and �  is the number of independent variables that the response surface is 
operating within.  

To solve for the best fit response surface, a mesh must first be generated over the domain.  
Once the mesh is in place, sample points are calculated within find the nodal function values 1��  ,  

#��
 ��������
���$���
#3�&���
��
�
������
��&������

To model the single dimension function � : � ; � � �  over the domain / � � � � � 0 , we 

shall first assume a linear form for the response surface.  Two elements will be used as shown in 
Figure E.5.  The Lagrangian shape functions for the linear 1D case are given in Equation (E.4) 
[26]  
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� � �
� 	 � �
� 	 � � �

 

� 	 �
� � � �

� 	 � � �
 

(E.4) 

Where � �  is the coordinate of node 1, and � 	  is the coordinate of node 2.  Two point 
Gauss-Legendre sampling is used which results in samples taken for the 1D linear element at the 
normalized local coordinates P � Q 7!66@! ,"?,  [31].  These sample points can be 
transformed into the global system by Equation (E.5) [31].   

 
Figure E.3: The 1D linear response surface element with normalized local coordinate � . 

 
Figure E.4: The 1D response surface mesh in the global coordinate system consisting of two linear 1D elements. 

 RS�� � R� �
�
,

� R	 � R� � � � � � P�  (E.5) 

This results in sample points being generated at the locations shown in Table E.1. 
 
Table E.1: Sampling locations for the 1D example problem. 

Element 
Element Sample 

Number 
Normalized 
Coordinate 

Global 
Coordinate 

1 �  P� � � TU@ � V� �  7� !6  

1 ,  P� � � TU@ � V	 �  7@?A@ 

2 �  P� � � TU@ � V� �  7" !6  

2 ,  P� � � TU@ � V �  75?A@ 
 
The element shape functions for the mesh are constructed by applying Equation (E.1) as shown 
in Table E.2. 
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Table E.2: Shape function contributions for the 1D example problem. 

Element Element Shape Function Contribution 

1 1Z� � E: � .� ; � # � : � .� ; 1� � # � : � .� ; 1�  

1 1Z� � E: � .� ; � # � : � .� ; 1� � # � : � .� ; 1�  

2 1Z� � E: � .� ; � # � : � .� ; 1� � # � : � .� ; 1�  

2 1Z+ � E: � .+; � # � : � .+; 1� � # � : � .+; 1�  
 
These equations can be assembled into a global shape matrix as shown in Equation (E.5)  
 

 
[

1Z�
1Z�
1Z�
1Z+

\ �

]
^
^
_# � : � .� ;
# � : �.� ;

�
�

# � : � .� ;
# � : � .� ;
# � : �.� ;
# � : �.+;

�
�

# � : �.� ;
# � : �.+; `

a
a
b
<
1�
1�
1�

= 

/1Z0� @# A	 1
  

(E.6) 

Where /1Z0� � :/ �.0; is the vector of function values at the sampling locations, �# �  is the matrix 
of shape funcitons, and 	 1
  is the vector of nodal function values.  Equation (E.6) has four 
equations and three unknowns and thus is an over determined system.  The squared error of the 
response surface in representing the function can be written in Equation (E.7). Application of 
Equation (E.7) at the nodes can be found in Equation (E.8). 

 � �
� � : 1� � 1Z� ; �  (E.7) 

 

 

� �
� � : # � : � .� ; 1� � # � : � .� ; 1� � 1Z� ; �  

� �
� � : # � : �.� ; 1� � # � : �.� ; 1� � 1Z� ; �  

� �
� � : # � : �.� ; 1� � # � : �.� ; 1� � 1Z� ; �  

� +
� � : # � : � .+; 1� � # � : � .+; 1� � 1Z+; �  

(E.8) 

The goal is to minimize the sum squared error as shown in Equation (E.9) 

 C�� �X''� � D � �
�

+

�  �

Y (E.9) 

This minimum can be found by taking the partial derivative of the sum squared error 
function with respect to each nodal value 1�  and setting it to zero.  This is demonstrated for node 
1 in Equation (E.10). 
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W����
W�X�

�  � , � 1� � � � V� � X� � � 	 � � V� � X	 � XS� 3� � � � � V� �  

  � � � � �V� � � � � �V� � X� � � � � �V� � � 	 � �V� � X	 � � � � �V� � XS�  

X� �
� � � �V� � � 	 � �V� � X	 � � � � �V� � XS�

� � � � V� � � � � � V� �
 

(E.10) 

This process can be continued for each individual node, or the vector of nodal values �X�  can be 
solved in matrix form by Equation (E.11). 

 � X� � � 1� 3� 1� 3� � � 1� 3� � XS�  (E.11) 

This least-squares error response surface solution is plotted in Figure E.5.   
 

 
Figure E.5: The linear response surface solution to ����  � 	  using two elements. 

 
The response surface solution is exact only at the sampling locations because a linear 

form of the solution was assumed for a quadratic function.  A single quadratic element as shown 
in Figure E.6 could be used to represent the function exactly. The shape functions for this 
element are given in Equation (E.12) [26].   
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Figure E.6: The 1D quadratic response surface element. 

 

� � �
� � 	 � � � � � � � � �

�� 	 � � � ��� � � � � �
 

� 	 �
� � � � � � �� � � ��

�� � � � 	 ��� � � � 	 �
 

� � �
� � � � � � �� 	 � ��

� � � � � � � � � 	 � � � �
 

(E.12) 

The same process applies in the case of the single quadratic element, only the shape 
functions and the sampling scheme have changed. A three point Gauss-Legendre sampling 
scheme is used which has samples taken at normalized coordinates of P � Q7666A!?"""?,  and 
�P �   [31].   Because only one quadratic element is needed to model the system perfectly, only 
three samples must be taken over the whole domain. The samples are evaluated, and the nodal 
function values are computed according to Equation (E.11).  The quadratic response surface is 
plotted in Figure E.7. 
 

 
Figure E.7: The single quadratic element response surface solution to ����  � 	 . 
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The same response surface methodology can be extended to problems of two dimensions 

by taking the tensor product of the 1D shape functions [26].  An example mesh consisting of four 
bilinear response surface elements is shown in Figure E.8.  The shape matrix 1�3 is generated for 
the mesh, and the function of interest is evaluated at the sample points. The nodal solution is then 
found by Equation (E.11).  With mesh refinement to the point of convergence, any function can 
be well represented within an acceptable margin.  

 
Figure E.8: An example bilinear mesh in two dimensions.  Four linear elements are used to represent the domain 
with two point Gauss sampling shown by red ‘x’.   
 

Similarly the response surface can be further extended to any number of dimensions by 
again taking the tensor product of the 1D shape functions.  Error estimates of the response 
surface can be made by comparing response surface solutions to results extracted from models 
constructed at the response surface nodal coordinates. 
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