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specified, is considered. Based on the 9lobally convergent Chow-Yorke
algorithm, a new homotopy method which is simple, accurate, stable,

and efficient is developed, For comparison, numerical resylts of some

numerical resylts are given for N = 2,3,4.



1. Introduction

The study of large, non]inéar deflections of rods or beams is impor-
tant in many engineering problems, for example, frame structures]’z, leaf
springss, cloth fabrics4 and flexible Tinkagess.' The theory for the ngn-
linear bending of thfﬁ rods, or elastica theory, was first formulated by

Euler. In his De Curvis Elasticiss.EuTer stated that the curvature of 3

thin rod at any peint is Proportional to the 1ocal moment applied. The
elastica problem was subsequently studied by many authors, including a

noteworthy book7 by Frisch-Fay in 1562. Only incompressibie elastica are
considered here. '

Figure 1 shows an elastica subjected to terminal Joads p', Q' and

moment M'. The equation governing its shape is

da_. it 1,1
Elagu =M +Q'x' - p Yy (1}

Here EI s the flexural rigidity, s 1is the local angle of inclination,
and s' s the arc length along the Curve. Thus, ds/ds' ig the local

curvature. Since

g?: = Cos8 - (2)
%S!,' = sins (3)

€9 (1) can be written as

2 .
Q—Qé = Q'coss - P'sins (4)

ds'

£l

If the loads and moment are known apriori, the solution to Eq (4) can bhe
éxpressed as elliptic functions7. Although the solytion s analytic, the
brocess s extremely tedious, and the accuracy is limited to the accuracy

of the tables of elliptic functions. With the advent of the computer,



Equation {4) can now pe easily integrated numerically as an initial valye

problem with the initial conditiong

de M' _
O:ds "ET!G'U (5)

Using this method, one obtains the Tocal inctination o as & function of
s'. The cartesian positions «x', ¥' can be found by integrating Egs (2)
and (3).

The problem becomes exiremely difficult even for numericai integration
when the loads and moment Py Q' M' are unknowns while the end positions
and inclinations are given. The usual method is to use shooting with Newton-
Raphson fterationg'}z. However, as pointed out by Shoup]0 ]1, Newton's
method would not converge unless the initial guess is extremely close, to
the correct solution, This is due to the fact that the elastica problem
is very sensitive to end conditions, aspecially for the more com911cated
shapes. Finite element methods have also been applied tg the elastica
problem13-]6. Since a functional form is assumed for each efement, finite
element solutions are approximate at best, Similar to the shooting method,

@ good initial guess is required for convergence. In addition, the finite
element program is extremely tedious to write. In the next section, we
shall investigate some of the simpler approaches to the numerical so1ution

of the elastica problem.

2. Results of Various Numerical Approaches

Let us nondimensionalize our variables as follows:
X'y y = y'/L, t= s'/L (6)
LM'/EL, o= LipiEr, = 12 /er (7)

X

M

1]



Here L s the tota] length of the elastica. Then Eqs (1-3) become

de

FE - -Py+ M (8)

g% cos8 {9)

dy

sing ' (10)
dt

The boundary conditions are
x(0) = y(0) = e(0) = 0 - {11)
x(1} = a, y(1) = b, 8(1) = ¢. (12)
%here are six conditions and six unknowns: x, v, g, g, P, M.

2.1: Newton's method - shooting

Newton's method based on shooting is the simplest approach. Let ,
v = (Q,P,M), and denote the solution to the initial value prcblem Eqs (8-11)

by x(t;v), y(t;v), 6(t:v). Then clearly Egs (8-12) is equivalent to

x(1;v) - a
Flv) = Jy(sv) -b] =2 (13)
8(1sv) - ¢

Newton's method requjres the Jacobian matrix DF(v}, but that can be computed
accurately with no difficulty here. Partials like ax (1)/5Q can be
easily computed Dy numerically solving a larger nonlinear initial
value problem as described yn [24], and for this problem aF/avi is only
slightly more expensive to obtain than F(v) dtself.

For 2 =0, b=2/r, c=1, the exact solution is 7§ = (Q,P.M) = (0,0,7).
Starting at v = (0, o, 1.85), Néwton*s method on Eq (13) failed to coverée,
and this was typical behavior for other boundary conditions and other start-

1ng points.
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F(v) is Eg (13) is in effect computed by an integration (integrating an
ordinary differentia] equation).  An approach based directly on numerical in-
tegration (quadrature) follows. The first integral of Eqs (8) and (11) gives

H(8,Q,P.M) = (M2 + 20sing + 2P(cose-]72 = 178
Egs (9), (10), (12) then yield the nonlinear system of equations

c
I H(8,Q,P,M)cosads - a =0

1]

0
c
6-H(e,Q,P,M)sinede -b=090 (13A)

rOHLPMYde -1 = g
equiva?ent to Egs (8-12). H is not defined for 311 Q. P, M, which means a poor
Tnitial guess may result in H becoming undefined. Even at the solution (Q,P,M),
H may not be analytic on the closed intervail [0,¢] (which happens if the rod is
bell-shaped, for example). This latter fact means that only an adaptivé quadrature
algorithm will be accurate, and suych quadrature is very expensive, expecially if ¢
is large. Furthermore, Eq (13A) cannot handle the important cases with ¢ = 0. For
these reasons, Eq (13A) is not competitive with Eq (13). Using the same data as
above, Newton's method on Eq (13A) also failed.

There are many related Tocally convergent methods such as n~dimensiona1.reguia
falsi [25], n-dimensiona] secant, nonlinear GausQ-SeideI, Brown's mefhod,Broyden’s
method, and the quasi-Newton BFGS method. NonE(rFEhese methods are truly globally
convergent, and their domain of convergence is fairy small for the elastica problems
considered here, To illustrate, the widely used subroutine ZSYSTM (based on Brown's
method) from the IMsSL package diverged for 3 = 0, b=..9,¢c=4 §tartfng from the
solution for a =9, p = -8, ¢ = 1w, and this was typical behavior. The very so-
phisticated quasi-Newton code HYBRJ, developed at Argonne Naticnal Laboratory 261,

also failed in the above situation. However, HYBRJ did converge in about 40% of the

cases tried, which was far better than any other locally convergent method.



2.2: 'Newton's Method - Finite Difference Approximation
- Eqn. (8) is equivalent tg
9(t) = Qcoso(t) - Psine(t), | | (14)
which eliminates the constant M. Let h = 1/(n+ 1), t, =1in, i =0,
- » n+l, and X Vs 8, be approximations to x(t}.), y(ti)’ e(ti)
respectively. Using a second order accurate finite difference approximation

to Eqns. (9-12, 14) yields the equations

( 0-1 0 N\ S [“2hcose, T
1 0 -1 X2 EhCOS@2
0 1 0‘ X3 2hcose3
: s + .
’ . - /’
0 -1 A1 2hcos@n_]
\ 1 0 ) __XD 1 _2hcosen - 2 |
\ ) -
(0 -0 " ,_Zhsine]
1o 2 2hsine,
010 Y3 | 2hsine,
* + *
0 -1 Yoy 2hsing
1 0 J Yn Zhsinen - b
\ . . . =
2 -1 0 \ E hz(cgcose1 - Psino, )
12 - e, hz(Qcosez - Psino,)
O ‘T 2. 63
' +
[ 2 i
2 -1 ®n-1 h (Qcosen__T - Psine
2 .
-1 2 } o h (Qcosen - Psmen) -c
\ [ - B _



S0; - 4o, + 6, + h%Q =

Sen - 4en_] + n-n - 2¢ +h2 {Qcosc - Psinc) = ¢
which can be written as

6(z) = 0, (15)
where

z = (X

- 3 Xn, Y-!, LI AR Yn, @T, L | ens P: Q)‘

10 -
Solving Eq (15) by Newton's method is even more difficult than solving

Eq (13), because the entire shape of the rod as wel] as P and Q must
be estimated in the initia] guéss. For the selution to Eq (15) to be

@ reasonably accurate approximation to the trye continuous solution, n
must be at least 9, which means Eq {15) must be at least 29 dimensional.
For a =90, b= Z/w; ¢C=m n=9, startingat z = Q Newton's mef%od

failed. The size of Ean. (15) coupled with the burden of finding a good

initial z ‘make solving (15) by Newton's method impractical.

2.3: Imbedding - Shooting

A more sophisticated approach is to consider the family of problems
b (6v) = AF (V) + (1= 3)(v - w) = 0 (16)
for 0 < <1, where w € E'3 is fixed, and F{v} 1s given by Eq (13).
The imbedding algorithm is to increase A from 0 to 1, and track the
solutions of Yy =0 from w (at x = 0) to the solution ¥ of F(v) =0
(at A = 1). This apprdach fails if ww(f,v) = 8 has no sélution or if
the Jacobian matrix Dvww(f,v) is singular, because then the solutions
cannot be “continuegd® beyond 1 = %.

The exact solution for g3 = .98584269, b = -14607461, ¢ = -.06339365

]

is v = (-2,1,1). Starting at w (-3,1.5,1.5) the Jacobian matrix

.12, and therefore imbedding fails.

il

Dvww(A,v) becomes singular at )



For some problems changing the sign of some components of F(v) helps,

but imbedding failed for every problem of the form diag(=1, =1 1)F(v).

2.4: Imbedding - Finite Difference Approximation

The imbedding family here is

nw(A,z) = AM(z) + (1 -~ A}z - w) =0, (17)
where G(z) are the finite difference equations given by Eq (15) and

W e E3n+2. For a=0, b= 2/7, ¢ =1, and p = 9, the exact soluy-

tion is

= _ ,sin.1n $in.97 1 - cos. 1 1 -~ ¢os.9n '

2= (___'_' L Y £y 9 r e 3 -__—___"_-, .]Tr, " ey -91?, 0, O)-
T ? g bid 4 )

For the starting point w = 0. the Jacobian matrix Dvﬁw(k,z) becomes
singular at A = 99925, and imbedding again fails. For some boundary

condit{bns and sfarting points, |z]] - » as 3 - 1.

2.5: Chow-Yorke Algorithm - Shooting

The Chow-Yorke algorithm is a homotopy method using the same homotopy
map as £Eq (16), but differs from standard imbedding in several important
respects. It is globally convergent with probability one for certain.c]asses-
of probTems}7’]8’19, and is unaffected by "singular points”. The computer
implementation of the Chow-Yorke algorithm is very different from that o%
the'typica} imbedding algorithm. See Watson 19 for the theoretical back-
ground and details of the computer implementation. Basically the supperting
theory says that for almost aY?_ W, there is a zero curve ¥ of ww(k,v),

emanating from (0,w), along which the Jacobian matrix wa (with respect



to both % and v) has full rank. y either reaches a zero § of F
:(at A=1) or wanders off to infinity. The Chow-Yorke algorithm is to
track vy, where A and V are both dégéndent variables along v.
Using the same boundary conditions and starting point as in Section
2.3, the Chow-Yorke algorithm also failed. Y turns back at i = .12

and goes to infinity with 1 + 0, vl] » =,

2.6: . Chow-Yorke Algorithm - Finite Difference Approximation

The theory is the same as in Section 2.5, except the homotopy map
Eq (17) 1is used. Using the same boundary conditions and starting point
as in Section 2.4, the Chow-Yorke algorithm again failed. The zero curve
Y goes off to infinity (fzll » =)ard dither A = 0 or A=+ 1, depegd-
ing on the problem and starting point. The Chow-Yorke algorithm does %on-
vergé for n =2 (h = .2), but the mesh is too coarse for the éo?ution to

be of much vajue.

2.7: A Homotopy Method Based on Chow-Yorke Algorithm

REE VT LQPML W Gewyawg)s and x(t3v), y(tsv), e(tsv) be
the same as in Section 2.1. Now define 0,:00,1) x 35 B3 by
x(15v) - ha + (1 - AJwy ]
o, (v} = plwan,v) = [y(15v) - (26 + (1 - Aw, ] (18)
6(7;v) ~ [ac + (1 - x)w3]
The Chow-Yorke algorithm is based on the foT?owing'factTg:
Lemma. Suppose that the Jacobian matrix Dp(w,A,v) of o has full rank
on p"](o). Then for almost all w e ES (in the sense of Lebesgue measure),
the Jacobian matrix Dpw(A,V) of P, a1s0 has full rank on Q;T(O).
| The implication of this Lemma is that the set of zeros of Py in

[0,1) x E3 consists of smooth, disjoint curves whose only endpoints must



Tie in {0} x E3 or {1} x E3. Furthermore the Jacobian matrix Do,
has full rank along these curves. Thus if
0, (0,¥) = 0

there exists a smooth curve Y, emanating from (0,V), along which the
Jacobian matrix Dpw has full rank. vy either reaches A = 1, or wanders
off to infinity. The above statements hold with probability one, in the
sense of holding for almost all w,

The proposed homotopy method is as follows: Choose a pair w, Vv such
that pw(O,V) = 0; this is easily done. Then track the zero curve vy
of P, ©€manating from (D,Vj until A = 1. If pQ(T,G) = 0, then from
Ea (18) v solves the boundary value problem - Egs (8-12). The zero curve

Yy 1is the trajectory of the initial valye problem !

3o, (A,v) g
épw('\(s)av(s)) = [—%:A_—‘—_’ Dva(lavﬂ g‘S/ = 0 (}9)
; 2 .
dA d
ol -0 e
A(0) =0, v(0) = ¥ (21)

where s s arc tength along «. Egs (19-21) are best solved by a vari-
able step, variable order Adams method as described in Shampinezo. Note
that the derivative (dr/ds, dv/ds) s only implicitly defined by Egs.
(19-20), and S0me nontrivial numerical linear algebra is required.for its
calculation. The details of calculating (dr/ds, dv/ds) and for solving
Egs (19-21) are similar to those of the fixed point algorithm in watsonlg.
The Jacobian matrix Dva(l,v) inﬁolves partials Tike ax{1}/3Q.

These could be approximated by finite differences, but the following pro-

cedure is more accurate and efficient. Let

u{t) = (x(t),y(t), s(t), ax(t)/aQ, sy(t)/aq, 36(t)/2Q)
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Then the solution to the initial value problem

51 = Cos u3
62 = 51n u3
ﬁ3 = QUI - Pu2 + M

&4 = -u6 sin u3

ﬂS = u6 cos u3

"

Qu4 + uy - Pu5
0 (22)

gives, e.g., u4(1) = 3x(1)/3Q. Similarly for P and M.

u(0)

An important point is that the homotopy map Eq (18) is not just an
imbedding. A does not have to increase monotonically from 0 to 1
along T and there are never any "singular paints” along . Becausé
of the full rank of the Jacobian matrix and the way in which. vy is
tracked, "turning.pointsf pose no difficu}tieé whatsoever.

In the next section this homotopy method based on the Chow-Yorka

algorithm is applied to a practical problem in elastica theory.

3. The circular elastica ring subjected to symmetric point Joads

3.1 Two loads

Consider a naturally straight elastica rod of length 2L bent into a
circular ring. Figure 2 shows such a ring subjected to two symmetric point
loads. This problem has been studied previously by several authorSZ]'ZB
by the analytical method using elliptic functions. There are two disadvan-

tages using this method. Firstly the accuracy of the results cannot be
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better than the accuracy of the elliptic functions used. ‘Secondly, the
variables b, Q, M are deﬁermined aposteriori, i.e. cannot be control-
led. Table 1-a shows typical results obtained by this method published
by Frisch-Fayy. Also shown in Table ]1-a are those obtained by our homo-
topy algorithm. A1l our figures are correct while the traditional method
gives only two figure accuracy. Since we can control our parameters,
Table 1-b shows the results for given b, using the present method.

In what follows, we shall generate the results for the deformation of
a circular elastica ring by more than two symmetric loads. To the
authors’ knowledge these results have naver been published before.

/

3.2: More than two Joads

Figure 3 shows a.circuTar elastica ring of free radius R subjected
to N symmetrical loads F'. Set L = 2nR/N  and normalize all lengths,
forces, moments as in Eq (6~7). The problem then reduces to Eq (8-12) with

a =.Ksin%%,‘ b= K(1 - cos%?), c =-%% (23)
where K 1is the distance from the center of symmetry to the point of load
application. For given K one can integrate for the forces and mcment Q,
P, and M. Considering one segment of the ring 0 <8 < 2n/N, the norma-
Tized force F can be calculated as follows

'

-L-i—g—- = F = 2(0° + P2y p(a? 4 p2) | (24)
Using symmetry which dictates Ph = Qa one obtains the simple result

F=2Q (25)

The numerical values for force F as a function of distance K for
N=23 and N =4 are tabulated onTables 2 and 3. Figure 4 shows some

of the deformation configurations for four loads. It is obvious that the

complicated geometries are unsuitable for a finite element formulation.
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Table Captions
Table 1 Deformation of a ring by two loads
Table 2 Deformation of a ring by three loads

Table 3 Deformation of a ring by four loads

Figure Captions
Figure 1 The coordinate system
Figure 2 Deformation of a ring by two loads
(a) compression, (b) free, (c) extension
Figure 3 Schematic diagram for N symmetric loads

Figure 4 Integrated Deformation shapes for 4 symmetric loads
(a) K = 0.68, (b) X = 0.4, (c) kX =0.7. s
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