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ABSTRACT 

This study conducted a series of tests on a shock mitigating seat designed for high speed 

craft using various input excitations to better understand the relationship between various 

seat and operational conditions, and the response of the seat. A seat model of the test seat 

is used for a parametric study of various spring, damping and operational configurations. 

 A seat shake rig is implemented to simulate motions of multiple high-speed craft as well 

as various defined inputs. At each test input the occupant weight and suspension preload 

is varied and the response is analyzed to find changes in acceleration, which is 

representative of the changes in force and displacement. By representing the seat as a 

based-excitation two-degree-of-freedom system, we develop the equations of motion and 

model them in Simulink to analyze the effects of various spring rates and damping 

coefficients. 

Based on the results it is found that an increase in occupant mass results in a decrease in 

observed acceleration. Increasing suspension preload is found to be detrimental to the 

mitigating abilities of the seat, changing the dynamics to those similar of a rigid-mounted 

seat. An analysis of the defined inputs resulted in confirming various seat characteristics. 

The analysis of the Simulink model revealed that increasing the spring rate results in an 

increase in acceleration. An increase in damping coefficient resulted in an increase in 

acceleration and ride harshness.  
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Chapter 1.  Introduction 

This chapter presents the introductory material that aids in the understanding of the 

research described in this thesis. The first section describes the motivation for performing 

this study. Then the objectives are presented along with the approach used to solve the 

objectives. The chapter ends with an overall outline of the contents of this thesis which is 

followed by the potential contributions to the field of high speed boat seat testing. 

1.1 Motivation 

Operators of high speed craft are required to traverse seas in conditions that are, at times, 

less than favorable. The Mark V Special Operations Craft (SOC) is one of the popular 

choices for Special Operation Forces. The twin 2285 hp diesel engines of the Mark V are 

able to propel its 5 crew members and up to 16 passengers at  speeds exceeding 50 knots 

over the sea [1]. The 82-foot aluminum hull of the Mark V has been known to deliver a 

rough ride; personnel have reported everything from bruises to foot and back injuries 

when traveling in excess of 50 knots [2]. The aluminum hull transmits a majority of the 

wave impact to the occupant. There are two solutions to mitigate the shock experienced 

by the occupants of high speed craft; one is to redesign the hull to absorb more of the 

impact and the other solution is to isolate the occupant from the hull to mitigate the shock 

forces. The later of the two choices is chosen for a quick and relatively efficient solution.

Although it may seem that implementation of shock mitigating seats has solved the issue 

of shock transmission, the seats themselves have introduced problems into the situation. 

The first problem is with the development process of shock mitigating seats. Currently a 

majority of testing is done while underway in a high-speed craft at sea. At-sea testing is 

very costly due to the requirement of a qualified crew and cost of fuel. The unpredictable 

nature of the sea makes testing difficult and even impossible at times. When specific 

testing conditions are desired there could be a long waiting period for the desired 

conditions. Also, some sea states only occur during certain seasons and sometimes only 

occur at certain geographic locations requiring costly travel. When testing at sea the test 

conditions could also change during the test depending on the environment and distance 
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traveled. For example, when traveling at a constant heading the conditions at the 

beginning of a test could differ from that at the end if a large distance was traveled. 

Although at sea testing is the best way of testing shock mitigating seats, at the moment 

these complications make testing difficult. 

 Most of the shock mitigating seats currently in use implement a passive suspension 

system to absorb the shock transmitted through the hull. A passive suspension system can 

only be tuned for a specific condition because of its non-adjustable nature. Some passive 

systems have the ability to be manually adjusted before use but are difficult to adjust 

while underway during extreme motion. A high speed craft may encounter different 

environmental conditions on the same voyage, varying from calm seas at harbor to 

violent rough waves away from shore. Also, the occupant of the seat is not always 

constant, meaning that occupants of different size and weight may operate the seat at 

different times. The variability in operating conditions makes it difficult to design an 

ideal suspension system to be implemented on shock mitigating seats. As a result naval 

personnel often prefer standing to sitting while operating their vessels, believing that they 

could use their legs from a standing position to absorb impacts [3]. 

Most tests of shock mitigating seats are conducted with a human occupant. These tests 

can be very difficult to interpret due to the subjective nature of the results. The response 

of the occupant varies greatly depending on the background of the test subject and the 

subject’s tolerance to harsh sea conditions. Even when using the same test subject the 

tests remain highly subjective, which degrades the significance of the results.

There have been studies done in the field of shock mitigating seats but there remains 

areas for improvement. Most of the studies on shock mitigating seats have been 

conducted by the seat manufacturers themselves. This creates a level of bias which is 

inherent in all the studies conducted. There isn’t much public information on third party 

testing of shock mitigating seats which is not endorsed by a manufacturer.  

An independent study has been done to create a seat testing rig to accurately test the 

dynamics of seats with high repeatability in a lab environment. The study resulted in a 

drop test rig which is able to accurately simulate a singular wave impact event. Although 
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the study has provided substantial contributions to the field of seat testing, measuring the 

performance of a shock mitigating seat that will be operated on a high speed craft should 

not be done on the basis of a singular impact event.  

There are still many areas of improvement with the design and testing of shock mitigating 

seats. Shock mitigating seat design is relatively new and current seats are far from 

perfection. Testing of the seats is highly subjective and comparisons of test results have 

high levels of experimental variability. Lab tests mainly consist of drop testing, which 

can only simulate a single wave impact. The research presented in this study focuses on 

improving these areas in the field of shock mitigating seats. 

1.2 Objectives 

The primary objectives of this research are: 

1. Create a seat testing system that is capable of simulating high speed craft 

motions with high repeatability. 

2. Test and evaluate the performance of a shock mitigating seat under various 

test conditions.

3. Create a computer model of a shock mitigating seat which closely matches the 

response of the seat during experimental testing. 

4. Use the model to test non-adjustable seat parameters to see the effects on the 

system. 

The overall objective of this research is to create a seat testing system and computer 

model of a shock mitigating seat to improve on the design and testing of these seats. 

Current research in the field has revealed much variability in at sea testing and the only 

effective seat test systems in a laboratory environment can only replicate a singular drop 

impact event. A repeatable seat testing system can provide accurate results which will 

allow accurate comparisons of shock mitigating seats while eliminating the need for 

costly and time consuming at sea testing. 



4

1.3 Approach 

The approach used to address the issues presented in this study is the following: 

Perform a comprehensive survey of past studies in the areas of ship motion, shock 

mitigating seats and the physiology of a seated person. 

Create a seat shake rig using 80/20 pieces and implement a hydraulic actuation 

system to excite the system with user defined inputs which will include 

simulations of ship motion. 

Create a computer model that simulates the response of a shock mitigating seat to 

user defined inputs and also allows modification of suspension parameters. 

A preliminary literature review revealed that there were a number of studies conducted 

on the topic of shock mitigating seats. A majority of the research on shock mitigating 

seats are focused around testing and comparison of various seats in comparison to non-

shock mitigating seats. There are also some studies on wave impacts and the effects on 

the ship structure; this topic is relatively new due to the recent demand for high speed 

craft. There were not any studies on replicating ship motion with a focus on measuring 

the response of shock mitigating seats. The only study found on laboratory seat testing 

was of replicating a singular wave impact event.  

To create a seat testing rig multiple pieces of 80/20 aluminum were used to construct a 

rigid frame for single axis actuation.  The design of the seat shake rig consisted of an 

outer rigid frame to restrict motion in the vertical direction while an inner carriage would 

act as a moveable base for a solid mounting point to place the seat. An MTS hydraulic 

actuation system is implemented to simulate the desired input excitation into the system 

for testing. A Stidd 800v5 shock mitigating seat is placed on the inner carriage for 

experimental testing. The seat was then instrumented with multiple accelerometers and a 

string potentiometer to measure acceleration and relative displacement at multiple points 

of the seat. The combination of a rigid seat shake rig, a hydraulic actuator able to 

replicate motions accurately, and multiple sensors enables the system to conduct tests 

with high levels of accuracy and repeatability.  
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The computer model is created by use of Simulink modeling software. The seat system is 

modeled as a 2-degree-of-freedom system with base excitation, with the first degree of 

freedom representing the coil-over suspension system and the second representing the 

seat cushion itself. The equations of motion from each degree of freedom are modeled 

using Simulink blocks. The model is then verified to the experimental data collected 

using the seat shake rig test system to ensure that the model accurately represents the 

seat.

Once the model is verified against the response of the seat collected using the seat shake 

rig the parameters of the model can be varied to examine their effects on the dynamics of 

the system. The same input excitations used for the seat shake rig are used for the model 

excitation. Using these excitation inputs the spring rate and damping coefficients are 

varied from the original values to examine the impacts on the dynamics of the seat.  

1.4 Contributions 

The potential direct impacts of the proposed research presented in this study to the field 

of high speed craft shock mitigation are: 

Establishing a seat shake rig system that is able to simulate high speed craft 

motion with great repeatability in a laboratory environment.  

A better understanding of the Stidd 800v5 shock mitigating seat dynamics and the 

response of the system to changes in operating conditions. 

An analysis on possible changes to the spring rate and damping coefficients of the 

suspension system of a shock mitigating seat, and the effects of these changes on 

the seat occupant. 

In addition to these direct impacts to the field of shock mitigating seats for high speed 

craft there are some indirect impacts. The seat testing system created in this study can be 

used to create a testing standard to quickly compare various seat designs by exposing the 

seats to repeated tests and establish the performance of the seat objectively.   
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The analysis of the current seat design widely in use can lead to improvements in 

suspension geometry of seats and an improvement in overall system efficiency. An 

improved seat design could have many possible benefits in the field such as: 

Increased situational awareness of the high speed craft operators in all sea 

conditions.

A decrease in likelihood of injury to the seat occupants while underway which 

could lead to increase in mission effectiveness. 

A greater reduction of shock to the boat operator will permit longer and faster 

transit in rough sea conditions. 

Reduce the need to test shock mitigating seats in an at sea test. Thus reducing the 

development time and cost of designing shock mitigating seats.  

1.5 Outline 

The contents of this thesis are organized into nine chapters. Chapter 2 explains the basics 

of ship motion, effects of the seated position on the human body and then ends with a 

literature review on past shock mitigating seat studies. Chapter 3 describes the 

experimental setup that was used for testing. In this chapter the seat shake rig, hydraulic 

system, instrumentation and test inputs are described in detail. Chapter 4 presents the 

repeatability tests and results that were conducted on the seat shake rig. Chapter 5 

presents the results on the comparison analysis of the shock mitigating seat with and 

without the shock mitigation system. Chapters 6 and 7 present the analysis of the 

response of the shock mitigating seat under various input excitation files. Chapter 8 

describes how equations of motion were implemented to create a Simulink model of the 

seat. Then later in the chapter the results from testing of the model are explained. Chapter 

9 provides an overall summary of the entire study and important conclusions along with 

suggestions on future work.
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Chapter 2.  Background 

This section presents background information necessary towards understanding the issues 

of shock mitigating seat design in relation to high speed craft comfort and fatigue. The 

accumulation of this background information was acquired through a literature review of 

both past and present research in the field of suspension seat design. The section begins 

with a discussion of wave slamming and ship motion. Then an overview of how vibration 

affects the human body in a seated position is presented.  The chapter then concludes 

with a literature review of past work done in the field of shock mitigating seat research 

with a focus on high speed craft.

2.1 Ship Motion 

To analyze shock mitigating seats it is required to first understand the environment in 

which it operates in. The stochastic nature of waves and the ocean environment make it 

difficult to characterize simply. The scale used for classification of sea conditions is the 

World Meteorological Organization Sea State Code or Douglas Scale with the sea state 

classification system, which goes from 0 to 9 [4]. Each individual state is characterized 

by multiple variables; these include significant wave height, wind speed and significant 

wave period. Sea state conditions are typically determined by wave buoy measurements. 

This scale is used to asses testing conditions for in-sea trials for many tests. The flaw 

with this method of environment classification is that each sea state classification 

corresponds to a wide range of conditions. 

In general, high speed craft motion can be placed in one of two types of motion [5]. The 

first type is predominantly characterized by repeated shocks or transient vibrations which 

are created by multiple wave impacts. This is sometimes called repeated shock and can 

cause extreme injury to human occupants. This type of motion usually occurs in higher 

sea states while operating at a high speed. An example of this motion is shown in Figure 

2-1, multiple shock events are shown as sharp peaks in the acceleration plot. The second 

type is characterized as a sinusoidal nature, where occasional shocks and transients are 

present but do not dominate the state. This motion usually occurs in mild sea states at 
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wave heights. When multiple shock impulse events are linked together the result can be 

extremely damaging to the craft structure and crew. 

2.2 Wave Slamming 

A ship motion that is of particular interest with current development of high speed crafts 

is wave slamming. A wave slam is similar in nature to what was previously described as 

a shock impulse event. A wave slam event is described as an impact that imparts a high 

localized pressure in the region of the impact and a large global load onto the vessel’s 

structure, mainly the hull girder [11]. The dynamic response of the global structure is 

observed as shudder after a slam event has occurred, also known as whipping [12]. The 

first study on wave slamming was conducted on the landing impact of seaplane floats, 

this research mainly used expanding plate theory to approximate the forces and motions 

observed. The research gained from seaplane landing impacts was later adapted to ship 

motion.

Whipping is of concern to modern high-speed craft due to its damaging effects on the 

hull structure. The combination of high speed and flexible light-weight aluminum 

materials has increased the vulnerability of high-speed vessels in terms of strength and 

fatigue life [13]. The effects of whipping on larger and heavier vessels are much smaller 

since the vibratory motions are less prevalent when a large amount of mass is present. A 

single slam event applied at the bow of a ship usually excites the first longitudinal mode 

in the vertical plane. This causes a singular bending motion across the entire global 

structure. The whipping response due to a slam event is examined using a 2.5 meter long 

model of a high-speed catamaran, the result is shown in Figure 2-3. The response can be 

described as a decaying sinusoidal wave.  
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12 feet. Data was recorded using GPS sensors to determine ship location and speed, 

accelerometers were used to determine ship motion and ultrasonic sensors to record the 

wave field in front of the ship.

The data revealed that four distinct slam events occurred while underway. A wave slam 

was characterized as a shock event that was outside of the usual motion observed during 

a specific time period. All four slam events that were recorded were similar. A wave slam 

event began with wave heights of about 2 meters, then the vessel typically encounters a 

series of waves that are of amplitudes much greater than the average 2 meter amplitude 

which cause the bow of the ship to lift out of the water surface and then collide with the 

last wave, which usually is the largest in height, causing the shock impulse characteristic 

of a wave slam event. The slam event is indicated by a large amount of white water or 

water spray when the bow comes into contact with the water surface. Each slam event 

occurred when the ship’s bow pitched down below the normal pitch boundary and then 

pitched up towards the upper boundary of the envelope. This general motion was 

observed in all slam events that were recorded and identified. 

The slam events that were recorded during the rough water testing of the Sea Fighter 

vessel are characteristic of typical slam events. Wave slam events usually don’t occur 

when only one singular shock event is observed but rather a series of wave impacts. 

Another key characteristic is that the slam event itself usually occurs when the bow of the 

ship lifts out of the water surface and then returns violently. This would be predicted 

from the previously mentioned research on water entry and the harsh after effects. Also, 

the most extreme events are observed when successive wave crest of increasing 

amplitudes.  

2.3 Effects of the High-Speed Craft Environment on the Human 
Body 

Tremendous recent development in the design and construction of high speed craft has 

created faster and larger vessels that travel at much higher speeds than traditional ships. 

The harsh environment in which high speed craft are exposed to is transmitted to the 

occupants and operators that are on the craft [15]. Quantitative evidence demonstrates 
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that high-speed boat crew have a high incidence of hospitalization [16]. Surveys of self-

reported injuries among special operation boat operators revealed the extreme nature of 

the environment. Of the population that was surveyed 64.9% reported at least one injury, 

some operators reported up to three injuries [17]. These injuries range from sprains/strain 

to chronic pain and more severe stress fractures. These injuries result in a high 

hospitalization rate that compares to those of construction-men, firemen and airmen. 

Most of the injuries that occur while underway can be placed in the category of fatigue 

induced. Many that are not familiar to the environment and definition of fatigue will 

associate the term with comfort. The definition of comfort is vague and typically depends 

on the application at hand. It is generally defined as a lack of comfort [18]. For seat 

design purposes it typically refers to the short-term effect of a seat on the human body; 

that is, the sensation that commonly occurs from sitting on a seat for a short period of 

time. The short-term comfort offered by a seat is relatively easy to determine, the best 

method is to survey potential users and measure the “feel” that each user reported for the 

short period of time in which they are using the seat. Comfort is in most cases a 

subjective measure and can be hard to quantify at times.  

While in contrast to comfort, fatigue is more clearly defined as the physical impairment 

that results from the exposure to the seat dynamics for a long period of time. These 

impairments are cognitive in nature and include deficiencies in attention, perception, 

decision-making, vigilance, and reaction time. For the automotive field driving fatigue is 

thought of as falling asleep while driving, a decline in driving performance often 

precedes sleep. This is proven by the U.S. Department of Transportation which found that 

the most influential factor of driver fatigue was the time of day [19]. For reference, some 

of the recognized causes of automotive driver fatigue are: driving with sleep debt, night-

time driving, extended driving time, physical work that is in addition to driving and 

monotonous driving conditions. For the environment of high-speed craft fatigue is caused 

by the human body’s reaction to the motion of the high-speed craft which is usually 

referred to as motion induced fatigue (MIF). The cause of MIF is due to the physical 

work associated with mitigating the shocks during transit [5]. The purpose of shock 

mitigating seats is to reduce the effects of MIF in all conditions. 
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The research presented here focuses mainly on fatigue, more specifically the MIF that 

high speed craft operators experience. Many studies have shown that there is little 

correlation between comfort (the short-term sensation) and fatigue (the long-term 

physical effect) of a seat. In other terms, what may be comfortable at first contact may 

not be less fatiguing during a long duration of time. An inverse relationship between 

comfort and fatigue has been supported by research that found that comfort evaluations 

for short-term and long-term driving do not agree [20].

The Effects of Vibration on the Human Body 

When studying methods of reducing fatigue it is important to analyze the causes of 

fatigue itself. A cause of fatigue in the high speed craft environment is vibration. 

Vibration exposure can cause a broad spectrum of sensations to the human body 

depending on the type of vibration, the physical characteristics of the person and the 

duration of exposure. The high-speed craft environment is dynamic in nature; the seated 

occupant is exposed to vibrations from the sea environment and the engine. The ability of 

the ship to minimize the transmission of these vibrations is of major concern. 

Vibration can cause a lack of comfort and fatigue but in different ways. Discomfort is 

caused by the dynamic properties of the human body and how it reactions to vibration. 

For an example, the human body experiences discomfort when the head and neck are 

shaken at their resonant frequencies. Fatigue due to vibration is caused by prolonged 

muscle activity-both voluntary and involuntary-resulting from the body’s attempt to 

counter act the vibration. The muscle tissue and organs act as shock absorbers that 

dampen vibration and can become fatigued over a long duration of time. Fatigue can be 

more apparent when the vibration exposed is at the resonant frequencies of the human 

body. For example, research has shown that humans reach a level of fatigue much 

quicker when subject to 4 to 8 Hz vibration in the vertical direction and 1 to 2 Hz in the 

transverse direction [21]. Other resonant frequencies include 20 to 30 Hz for the head, 

neck and shoulders and approximately 60 to 90 Hz for the eyes [22]. In general, the 

human body’s reaction to vertical vibration can be considered linear below the frequency 

of 100 Hz. 
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Pressure Distribution while in the Seated Position 

The distribution of weight among the different parts of the human body varies depending 

on the position and orientation of the body. Of main concern is the distribution of weight 

while in the seated position. This is noticeable when examining the amount and type of 

the injuries of high speed craft operators, 34% of the injuries are of the lumbar spine [23]. 

While in the seated position a majority of weight is placed on the ischialtuberocities of 

the pelvis and the surrounding soft tissues [22]. The pie chart shown in Figure 2-6 below 

shows the distribution of weight while a person is in the seated position. The chart below 

shows that about 45 percent of the weight is placed on the ischialtuberocities.

Figure 2-6. Typical weight distribution of a person in the seated position [24]. 
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lumbar spine tends to flatten. In an upright position the peak pressure on the soft tissue 

would be from the ischialtuberocities or bony prominence of the pelvis. However, when 

seated in a slumped position the peak pressure is shifted away from the ischialtuberocities 

to the coccyx or the lower sacrum. When a person tilts sideways, the trochanters will bear 

the greatest peak pressure. The shifts in pressure distribution between the different areas 

of the pelvis prove that maintaining an ideal posture, usually the upright position, is of 

great importance. Maintaining posture can be difficult while in the extreme environment 

of a high speed craft but is extremely important to avoid injury. 

Figure 2-7. Pelvis orientation when (a) standing; (b) sitting relaxed; (c) sitting 

upright; (d) sitting forward; (e) sitting back. [22]  
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In most environments the interface between seat and human are of the utmost importance. 

The ideal situation is to maintain seat cushion pressure between approximately 60 mmHg 

and 120 mmHg, these pressure represent the average blood diastolic and systolic 

pressures. The reason for keeping the pressure within this range is to prevent blood 

starvation which could deprive cells of an adequate supply of nutrients, and especially 

oxygen. In most cases where a person assumes a seated position for a long period of time 

blood starvation occurs when exposed to unfavorable cushion pressure. Figure 2-8 shows 

the general relationship between cushion pressure and seated duration. A higher pressure 

can be tolerated for a short period of time while providing comfort and not causing 

adverse effects to the occupant. Although, for the environment of the high-speed craft 

this seat cushion pressure is not as critical. The large amplitude of the vibration and shock 

events cause the occupant to accelerate upwards slightly allowing excess pressure with 

the seat cushion to be relieved. This is in contrast to the more static environment of most 

seats, such as an automotive seat. 

Figure 2-8. General relationship between seat cushion pressure and seated duration 

[25].
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There are many models and standards that are currently in use by the International 

Organization for Standardization and military for evaluating vibration and shock 

exposure on a human occupant. Since the occurrence of severe injury due to the extreme 

environment of high speed craft is fairly new there are no established standards for the 

naval environment. Many standards are adopted from other fields to characterize the 

effects of high speed craft motion exposure on the human body. Two popularly used 

models are the Dynamic Response Index (DRI) from the air force and Vibration Dose 

Value (VDV) from the automotive environment.  

Based on researching past work on high speed craft motion the best model that can be 

used to characterize the environment is the Dynamic Response Index (DRI). The DRI 

was originally created to characterize the effects of aircraft ejection seats on the human 

body. To place in perspective the severity of an aircraft ejection event, typical 

acceleration levels experienced during an emergency ejection event is usually just less 

than 15 g and the onset rate is approximately 250 gs-1 [26]. When ejection seat 

technology was first implemented there was a large likelihood of spinal injury due to the 

extreme acceleration in the same direction as the spinal column. A majority of the 

damage done to the spinal column happens when the ejection sequence is first initiated 

and there is a sudden acceleration onset in the vertical direction. The injury experienced 

is usually not permanent and most pilots are able to continue flying after a three month 

convalescence [26]. This type of injury is typical of high speed craft operators.

DRI is a representation of the maximum dynamic compression of the vertebral column of 

the human body. The DRI equation is derived by representing the human spinal column 

as a spring mass damper system modeled by equation 1-1. Equation 1-2 represents the 

calculation used to quantify the DRI value based on the parameters from equation 1-1. By 

substituting these suggested values into equations 1-1 and 1-2, equation 1-3 is formed. 

Thus the equation to calculate the DRI value for a specific instance is simply a function 

of the maximum compression observed. Seen in the final equation the DRI value is 

largely a function of the maximum compression of the spinal column which usually 

happens at the point of maximum acceleration. DRI is a good representation of high 



21

speed craft motion since most of the damaging impacts occur at the maximum 

acceleration points. 

(1 1)

(1 2)

(1 3)

The other commonly used model is Vibration Dose Value (VDV).  The VDV number is 

representative of the cumulative effect of complex vibration which includes high crest 

factors, intermittent events or shock events [27]. VDV is used mostly in the automotive 

field since most vibration is experienced as a constant frequency low amplitude nature 

with occasional large impacts which are typically not severe in nature. VDV 

measurements are typically used to evaluate the effects of Whole Body Vibration (WBV) 

on the human body [28] which is usually measured and stated for a specific duration, 

mostly 8 hours which is representative of a typical work day. Equation 1-4 shows the 

calculation used to evaluate the VDV of the exposed motion [27]. As seen by the nature 

of the equation, VDV places a heavy emphasis on the average acceleration observed and 

less on the maximum impact value. This is to be expected in the automotive environment 

which mostly consists of paved roads that are fairly smooth. In a high sea state ocean 

environment the large impacts are mainly the source of human injury. Based on these 

facts the Vibration Dose Value (VDV) is not the optimal method of characterizing the 

high speed craft environment but can still be used as a comparison to other environments 

where VDV is calculated.

(1 4)
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2.4 Past Studies on Seat testing 

This section presents past work that was accomplished specifically on shock mitigating 

seats on high speed craft. First presented is a study on implementing a drop table to 

simulate a single impact event. Then a review of a study on multiple suspension 

configurations of the Stidd 800v5 shock mitigating seat and its performance during at sea 

trials is presented.  

Implementation of Drop Table Testing 

Research in high-speed craft motion has been conducted multiple times in past work with 

the focus of reducing impact harshness on occupants. Sean D. Kearns at the 

Massachusetts Institute of Technology conducted a study on the Analysis and Mitigation 

of Mechanical Shock on High Speed Planing Boats [8]. The object of the research was to 

conduct a comprehensive analysis of the problem, to research methods by which the 

problem can be mitigated, and to develop and validate a method for laboratory design, 

test and evaluation. An analysis of the mechanical motion of high speed craft identified 

hull water entry and wave slamming as key contributors to shock impulses. Rough water 

test data was recorded using the SnapShock-PLUS self-contained acceleration recorder 

from Instrumented Sensor Technologies (IST). Data was recorded on a NSW RHIB and 

Mark V SOC in Sea State 2 and Sea State 3 conditions. The SnapShock-PLUS only 

records magnitude acceleration from each shock event. Figure 2-9 shows an example of 

the data taken using the SnapShock-PLUS on the Mark V SOC. Although this represents 

the nature of the motion exhibited on these craft, only limited deductions can be made 

without the waveform time data. 
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2-10. The table, which is mostly accelerated by gravity, can be pushed or pulled 

downwards in the vertical direction to create the desired impact force. The wave shape of 

the impact can be further altered by changing the shape and material of the impact 

surface to create the desired impact. The drop table used in the experiment was tested 

using simple masses and proved sufficient at simulating a shock impact event 

characteristic of those experienced on high speed craft. 

After the drop table was verified to be sufficient for testing; a Stidd 800v5 shock 

mitigating seat was attached to the drop table. The seat cushions were removed to isolate 

the suspension system for analysis by removing the additional suspension characteristics 

of the cushion. A lumped mass attached to the seat was varied from 180 lbs. to 205 lbs. to 

simulate a human occupant. Drop heights were from 6 to 18 inches to simulate the 5 to 12 

g acceleration range experienced on high speed craft.  
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Development of a Passive Shock Isolation System

Research on the shock isolation system for high speed craft has been previously 

conducted by Alan Klembczyk from Taylor Devices. A parametric study was conducted 

on the suspension system of a Stidd 800v5 shock mitigation seat with a focus on the 

spring rate, damping coefficient and suspension travel to find the optimum solution. This 

study focuses on the typical motion of the Mark V Special Operations Craft since the 

Special Operation Forces (SOF) utilize this boat for most of their missions and the best 

shock mitigation system to isolate the occupants from the harsh environment exposed. 

A passive shock isolation system was chosen for its simplicity and high level of 

effectiveness. SOF desired a low risk, highly robust, reliable, and cost-effective solution 

for the Mark V SOC that would minimize any impositions on the mobility of the 

operators and crew [17]. Even though a fully active system has been developed and 

proved superior in isolating occupants from vibration and shock a fully active system 

requires external power, regular maintenance and is a more complex system. A semi-

active system, while being less complex, still requires an external power. This established 

a passive isolation as being the optimal choice.

To conduct an analytical parametric study on choosing the optimal suspension parameters 

a two-degree-of-freedom spring-mass-damper model was used ,shown in Figure 2-12. 

The first system is the spring (Ks) and damper (Cs) of the shock isolation system. The 

second system is the spring (K1) and damping effects (C1) of the operator. Since the 

shock isolation system only attenuates motion in the vertical direction the other two axes 

are ignored to reduce complexity. Models of the system were also developed using the 

Taylor Shock Isolation Simulation Program and used to verify analytical results. 
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force to prevent the system from hitting the bump stops while allowing the system to 

follow the periodic nature of wave motion. A variable damping coefficient that was 

velocity dependent was chosen as the optimal solution to the varying input forces. This 

variable coefficient also proved to be efficient at adapting to varying occupant weights 

where the calculated DRI and Se values differed by a small percentage between the 

heaviest and lightest occupants.

The last parameter to be examined was whether an increase in suspension travel would 

prove beneficial. When a longer suspension stroke was implemented it was discovered 

that a lower spring rate had to be used to accommodate for the extended stroke, at the 

longer stroke the spring force dominates the suspension characteristics in an adverse 

manner. This resulted in having a spring rate that was uncomfortable, as was proven 

through in field test surveys. A longer stroke would also create visibility issues at certain 

areas of the suspension. For example, at the fully compressed position the occupant might 

have an issue seeing above the horizon line of the boat. When DRI and Se calculations 

were conducted it was found that suspension travel increase from 6.5 inches to 10 inches 

provided marginal improvements and did not warrant a change in design. A suspension 

travel length of 6.5 inches was proven to be optimal.  

After the optimal parameters were calculated and simulated, at-sea trials were conducted 

to verify the system. The optimal shock isolator was built and fitted to a Stidd 800v5 seat 

on a Mark V SOC. Two boats were used on a test trip from Little Creek, Virginia to 

King’s Bay, Georgia. One boat was fitted with multiple shock mitigating seats and 

another was fitted with standard rigid mounted seats. For the duration of the trip 

occupants were switched around between boats and between different shock mitigating 

seats. After the trip occupants were asked to complete questionnaires and provide 

feedback on the ride comparison. The ride quality was greatly improved by implementing 

shock mitigating seats. The ride was described to be completely comfortable, even after 

airborne events. The new shock isolators were proved to be superior to existing designs.
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2.5 Summary 

The research presented in this study is based on the background information given in this 

section and relies on objective measures for evaluating the efficiency of shock mitigating 

seats at isolating occupants from the high speed craft environment. Current research has 

provided knowledge on the response of high speed craft to wave slam events, methods 

for evaluating shock mitigating seats during at sea trials and a method of replicating a 

singular wave slam event in a laboratory environment repeatedly. There still remains very 

little work on replicating the harsh at sea environment of high speed craft in a laboratory 

environment. Also, testing a shock mitigating seat designed to be implemented on a high 

speed by subjecting the seat to singular drop tests impacts is not representative of high 

speed craft motion which usually results in personnel injury.  

The major problem with current shock mitigating testing is that the only true 

representative way of evaluating the response of the seat towards high sea states on a 

high speed craft is to conduct in sea testing. There is currently no way of testing and 

evaluating shock mitigating seats in a laboratory environment while effectively 

simulating the motion of high speed craft. The ultimate goal of this work is to create a 

test method that is representative of a wave slam event and can be conducted repeatedly 

without the need of at-sea trials. This will be done by implementing a hydraulic actuator 

to simulate the high speed craft and measuring the response of the seat pan, then 

comparing the response to that of an in sea trial. The seat will also be evaluated on its 

response to multiple wave slam events.  
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Chapter 3.  Shock Mitigating Seats 

This chapter presents background information necessary in understanding the operation 

of shock mitigating seats. The information presented in this chapter is accumulated from 

a literature review of boat seat designs currently in use and in the design phase. The first 

section describes the three main types of suspension design. This is followed by a study 

of current shock mitigating seat designs. The section is then concluded with a 

comprehensive study of the Stidd 800v5 shock mitigating seat in which this research is 

based on.

3.1 Suspension Design 

There are multiple ways to reduce the amount of shock in which the occupants of high 

speed craft are exposed to. Options for controlling shock on high speed craft include the 

design of the vessel, control of the vessel and shock isolation of the occupants [29]. The 

most effective solution to isolating occupants on high-speed craft that are currently in 

service is to implement shock mitigating seats. Shock mitigating seats can be installed in 

place of standard boat seats with minimal modifications to the ship structure, resulting in 

a relatively low cost solution that ensures occupant safety while underway. Shock 

mitigating seats implement a shock isolation system to absorb and reduce the forces 

transmitted to the occupant. The shock isolation systems implemented by various 

manufacturers are similar to those implemented in automotive suspension applications. 

The system includes use of a spring to absorb motion and damper to absorb the energy 

input to the system in the form of motion; together they greatly reduce motion and shock. 

There are three types of shock isolation systems that can be implemented. The first and 

most commonly used of these systems is the passive isolation system. This includes the 

use of a spring and damper to absorb and dissipate motion. The damping coefficient of 

the damper in a passive system does not automatically adjust for varying environment 

conditions. A component diagram of a coil-over system is shown in Figure 3-1; this 

system setup is commonly used. A passive system is simple and effective at attenuating 

motion of specific conditions. From a ship design perspective, the shock isolation system 
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to have a linear characteristic since the spring diameter and coil spacing interval is 

constant throughout the spring. The data was plotted and a curve fit was conducted based 

on the data to determine the force curve of the spring. The data and line of best fit are 

shown in Figure 3-6 below. In Figure 3-6, the blue signal represents the data from the 

string potentiometer and the red signal represents the curve fit line that was given by 

Matlab’s polyfit command for a single degree polynomial. The equation given from the 

polyfit command is 109.45x + 32.99, this represents a spring coefficient of 109.45 

pounds per inch of spring displacement. The offset of 32.99 pounds could be caused from 

the fact that the spring had a slight preload set for optimum performance while at sea. 

The spring characteristic measured by the quasi-static test did match well with our 

hypothesis based on the physical geometry of the coils of the spring. 

Figure 3-6. Quasi-static data used to determine the spring characteristics. Notice the 
linear nature of the data and curve fit line
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Shock Disassembly and Testing 

During initial validation tests it was observed that a slight amount of oil was leaking from 

the damper. To fully determine the cause of the leaking oil the shock assembly had to be 

taken apart. This also creates a great opportunity to better understand the dynamics of the 

shock by examining the internal components. The coil over spring is first removed from 

the damper assembly to allow for easy disassembly of the damper. The rod, rod guide, 

and piston were removed as a single assembly from the shock cylinder body. This single 

assembly is shown in Figure 3-7.The rod and piston assembly was then taken apart to 

allow access to the rod seal which is predicted to require replacement. Figure 3-8 shows 

the components that were taken apart from the rod assembly. Looking at Figure 3-8 the 

green component located at the left of the figure attaches the top of the rod to the seat 

assembly by use of a spherical bearing. The orange disc placed to the left of the green top 

connector is the rubber bump stop which prevents metal to metal contact in the that the 

shock uses its entire displacement. The green metal cap is used to hold the nylon rod 

guide which is the white object to the right and seal housing assembly to the bottom 

shock cylinder which is not pictured. The cylinder assembly pictured in the right of the 

figure is the brass piston/valve which controls the dissipation of energy from the system. 

The piston has a spring loaded cover which closes the orifices in the piston during a high 

acceleration event on the compression stroke to increase the damping coefficient. 
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excite the seat in the vertical direction. The actuator is capable of simulating the high 

acceleration and shock that is experienced while underway in a high speed craft.  

Hydraulic Actuation System 

The test rig simulated ship motion with a hydraulic actuation system manufactured by 

Material Testing Systems (MTS). The hydraulic system is capable of simulating multiple 

types of events ranging from single frequency to multiple frequency waveforms. Force is 

introduced into the seat-testing rig by use of a hydraulic actuator pictured in Figure 4-3. 

The actuator used was a MTS model 242.09 actuator with a dynamic stroke of ±2 inches 

and a force capacity of ±2200 lbf. The MTS 242.09 is built with an internal load cell and 

Linear Variable Differential Transformer (LVDT) that allow accurate measurements of 

force and position. To avoid lateral loading on the actuator the attachment points at each 

end of the actuator are made with double revolute joints allowing complete freedom in 

the lateral direction.

Figure 4-3. MTS 242 series hydraulic actuator used for input excitation 

The actuator is controlled by the MTS 407 digitally supervised servo controller shown in 

Figure 4-4. The MTS 407 offers two modes of control, displacement or force, through a 
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single channel to the actuator. The controller is able to simulate a sine, square, triangle or 

external signal at various frequencies and amplitudes. All input signals to the actuator, 

whether it is an internal or external input, are sent through the MTS 407 controller. 

Figure 4-4. MTS 407 Controller used to control the displacement of the MTS 242 

actuator

The MTS 505.20 SilentFlo Hydraulic Power Unit was used to provide high pressure fluid 

to the actuation system. The hydraulic power unit used is shown in Figure 4-5. The power 

unit has a flow rate of 20 gal/min and an operating pressure of 3000 psi.
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Figure 4-5. MTS 505 series hydraulic power unit used to provide pressurized 

hydraulic fluid 

Pressure and flow of the hydraulic fluid from the MTS hydraulic power unit is regulated 

using the MTS model 263 hydraulic service manifold. The manifold used is pictured in 

Figure 4-6. A constant regulated flow is necessary to provide consistent and repeatable 

dynamic actuation of the actuator.  
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Figure 4-6. MTS hydraulic service manifold used to regulate fluid pressure and flow 

3.2 Data Acquisition System 

The data acquisition system is used to measure and record the signals coming from 

various sensors on the seat and test rig. Acceleration and displacement are measured 

using three accelerometers, an LVDT, a string potentiometer, a dSPACE digital signal 

processor, the MTS 407 hydraulic controller, and a laptop computer. The software used 

for the user interface was MATLAB/Simulink and dSPACE Control Desk. The following 

section is divided into two sections; one describes the hardware used for measurements 

while the second describes the software. 

Data Acquisition Hardware  

Multiple instruments are used to measure the response of the seat during testing. Three 

accelerometers are used to measure the acceleration of the seat floor, seat pan and mass 

of the seat. A PCB Micro-Electro-Mechanical Systems (MEMS) 3741D4HB10G 

accelerometer is used to measure the acceleration experienced at the seat floor or steel 

plate of the mobile seat testing rig inner carriage, the mounted accelerometer is shown in 

Figure 4-7. The accelerometer is mounted to the plate using vibration resistant superglue 

to ensure a strong hold while not introducing any unintended damping to the system. The 

MEMS accelerometer measures acceleration in only the vertical direction. A PCB 

3713D1FD20G tri-axial MEMS accelerometer is used to measure the acceleration of the 
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Signals from the accelerometers, string potentiometer, the internal load cell and LVDT of 

the actuator are connected to a DS2201ADC analog to digital converter then to the 

dSPACE AutoBox which is pictured in Figure 4-11. The AutoBox provides digital signal 

processing of all of the recorded signals measured rig. The AutoBox contains a DS 1003 

processor board with an I/O card with 20 inputs and 8 outputs which is used to collect 

data and output control signals.

Figure 4-11. dSPACE AutoBox used for digital signal processing 

The signal from the AutoBox is then sent to the laptop computer via Ethernet to be 

recorded and processed. Using Simulink a model for data acquisition and controller 

implementation is built for all inputs and outputs. The 20 input channels of the I/O card 

are multiplexed into 5 ports with 4 input channels per port; this data is then sent from the 

AutoBox to the PC computer. In the Simulink model the signals pass through a Demux 

that separates the incoming signals. Multiple block diagrams are used to specify and 

manipulate output controller signals and input sensor signals.

For real-time control and recording of the signals dSPACE Control Desk 3.0 software is 

used. The block diagrams created in Simulink are downloaded into the Control Desk 

software which communicates with the AutoBox. Control Desk provides a user friendly 

interface in which data can be viewed and model parameters can be changed in real-time. 

Various different displays can be used such as plots, numeric displays and indicators to 

create the user interface The Control Desk interface that was created to display the 

signals coming from the seat rig is pictured in Figure 4-12.
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4.4 Input Signals 

High Speed Craft motion can vary depending on various conditions similar to sea states. 

Due to the great variation in motion it is difficult to simulate all types with a singular 

input. For this reason multiple input signals were used to evaluate the characteristics of 

the Stidd 800v5 shock mitigating seat. Ship motion from a small, medium and large high 

speed planing craft was simulated. A half sine wave and square wave input were used to 

gain the free response of the system and also to measure the response of the seat to 

singular events. A chirp signal was created to measure the response of the seat at various 

frequencies. The input signals either were derived from integration of at-sea ship testing 

accelerometer data or created using MATLAB to get a desired response from the system. 

High Speed Planing Craft 

Acceleration data taken from at-sea testing of the Stidd 800v5 Shock mitigating seat was 

integrated to produce displacement data. The at-sea testing accelerometer was located at 

the base of the seat. Testing took place on an 89 foot high speed planing craft which 

represents fairly large ship. The displacement data is then filtered to isolate frequencies 

between 1.49 and 20 Hz so that the maximum displacement is ±2 inches. Figure 4-15 

shows the time response data that is used while testing.
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Figure 4-15. Sample of the data used to simulate an 89 foot high speed planing craft 

36 foot USN Planing Craft High Sea State Test Data 

Acceleration data taken from a 36 foot USN planing craft was also integrated to produce 

displacement data. Since the 36 foot USN is a small craft, the motion of the ship is fairly 

violent when compared to the larger 89 foot craft mentioned previously. There are also 

two different test files used, one is with the ship traveling so that the waves are impacting 

in a head direction and the other in the stern direction. The displacement data is then 

filtered to isolate frequencies between 2.1 and 70 Hz so that the maximum displacement 

is ±2 inches. Figure 4-16 shows the time response data of the head sea ship direction and 

Figure 4-17 is the time response data of the stern sea ship direction. 
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Figure 4-16. Sample of the data used to simulate a 36 foot USN craft in head seas 
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Figure 4-17. Sample of the data used to simulate a 36 foot USN in stern seas 

47-foot Motor Life Boat (MLB) 

Acceleration data taken from at-sea testing of a 47-foot Coast Guard Motor Life Boat 

(MLB) was integrated to produce displacement data. The accelerometer used for testing 

was located on the floor of the ship wheel house. The MLB is capable of being operated 

in extreme conditions due to its strong hull structure and self-righting characteristics. 

From the available at sea data the MLB would represent the medium size boats that the 

seat would be placed on. The displacement data is also filtered to isolate the data at 

frequencies between 1.3 and 12 Hz so that the maximum displacement is ±2 inches. 

Figure 4-18 shows the time response data used for testing. 
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Figure 4-18. Sample data used to simulate the motion of a 47 foot motor life boat 

Generated Signals

To produce the maximum shock possible from the test rig, input signals were created 

based on the abilities of the hydraulic system. To simulate the greatest amount of shock 

possible a square wave is created using the maximum amplitude of 2 inches in which the 

hydraulic actuator is able to produce at a frequency of 0.1 Hz. A sample square wave is 

shown in Figure 3-19. A half sine wave is also created at amplitude of 4 inches and a 

frequency of 1.5 Hz. This was tested to be the highest frequency in which the hydraulic 

system was able to fully complete the entire cycle. The generated half sine wave input is 

shown in Figure 3-20. To analyze the frequency response characteristics of the seat 

assembly a chirp input was created.  The chirp signal started at a frequency of 0.5 Hz and 

amplitude of 0.9 inches, it then progressed at a constant rate over a 120 second time span 

to a frequency of 15 Hz and amplitude of 0.05 inches. The chirp input signal can be seen 

in Figure 4-21.
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Figure 4-19. Square wave used for testing the largest and quickest drop event 

Figure 4-20. A half sine wave with amplitude of 1.5 Hz used to simulate the largest 

up and down event possible with the actuator 
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Figure 4-21. The chirps signal starting at a frequency of 0.5 hz and ending at 10 hz 

over a 2 minute time span 

0 20 40 60 80 100 120 140
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

D
is

pl
ac

em
en

t(i
n)



64

Chapter 5.  Test Repeatability 

The following chapter includes a detailed analysis of the repeatability of the 

experimental setup. The data set that was used for the analysis of repeatability 

was the data set derived from simulating the at-sea motion of an 89 foot high 

speed planing craft. To determine the extent of repeatability three different runs of 

the same base excitation were compared. The double integrated displacement 

occupant mass acceleration data was examined. This particular signal was chosen 

because the occupant mass data set would have the highest amount of variation 

when compared to the other recorded data sets. The sources of variations include 

the response of the coil over system, the response of the seat cushion and the 

variation in occupant mass location. The variation in occupant mass location is 

caused by the natural movement of the occupant mass due to the slack in the strap 

restraints. The slack in the traps is used to simulate a real at-sea situation where 

the human occupant would move around in the seat during large impacts.  

The occupant mass acceleration data from the three separate runs were first 

synchronized to ensure that each test started and stopped at the same time, this is 

accomplished by setting the zero time to when the first excitation event occurred. 

Then the three data sets were overlaid on the same plot axis, a portion of the 

overlaid time series data is shown in Figure 5-1. Visual examination of the 

overlaid plot of the time series data reveals a good amount of repeatability 

between the runs.
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Figure 5-2. Calculated differences between the three runs plotted. The blue trace is 

the differences between runs 1 and 2. The green trace is the differences between 

runs 1 and 3 

The data sets are further examined by calculating the probability density function of the 

two comparisons. The probability density function calculates the percentage of data 

points of the total test that fall into set difference intervals. This portion of the analysis 

was done using MATLAB’s histogram function which takes a data set and interval 

vector, and then calculates the amount of data points within each set interval. By dividing 

the histogram data by the total amount of data points a percentage of the overall data set 

is calculated. Using this process a probability density function of the difference between 

data sets 1 and 2, then data sets 1 and 3 was calculated. Figure 5-3 shows the probability 

density function of the difference between data sets 1 and 2. From the probability density 

function shown in Figure 5-3 it can be seen that 41.9 percent of the data points have a 
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difference of less than ±0.025 inches between the two runs and 79.2 percent of the data 

have a difference of less than ±0.075 inches between the two runs. 

Figure 5-3. Probability density function of the difference between data sets 1 and 2 

The probability density function of the difference between data sets 1 and 3 is shown in 

Figure 5-4. From probability density function 29.3 percent of the data had differences of 

less than ±0.025 inches between runs and 65.7 percent of the data had a difference of less 

than ±0.075 inches between the runs. When examining the differences and percentages 

between the three runs it is important to take into consideration that the overall stroke of 

the actuator is ± 2 inches and a difference of even 0.075 inches is only 3.75 percent of the 

stroke. Averaging the results from analyzing the three runs 35.6 percent of the data have 

differences less than ±0.025 inches and 72.5 percent of the data points have a difference 

of ±0.075 inches or less. When reviewing all the facts previously stated, the largest 

source of variability between tests only has a difference of ±0.075 inches about 72.5 

percent of the time during tests.  
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Figure 5-4. Probability density function of the difference between data sets 1 and 3 

To further support the high repeatability of the seat testing rig the statistical probability 

density function was calculated. The probability density function of a continuous random 

variable is a function that describes the relative likelihood for this random variable to 

occur at a given point. The variable of concern is the difference between two data sets 

using the same input excitation. The difference between data sets 1 and 3 was used since 

it had the largest differences. The calculated mean of the data set is -1.4903x10-5 inches 

and the standard deviation is 0.0769 inches. Using MATLAB the probability density 

function is calculated and shown below in Figure 5-5. The x axis represents the 

difference between data sets 1 and 3. When examining the data set, 1 standard deviation 

from the mean represents a 68.3% confidence level and 2 standard deviations from the 

mean represents a 95% confidence level. For purposes of this study this translates to 

having a 95% confidence level that the difference between two data sets being within 

±0.15 inches and also having a 68.3% confidence level that the difference will be within 

±0.0769 inches of each other.  
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Figure 5-5. Statistical probability density function of data sets 1 and 3 
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Chapter 6.  Effectiveness of Shock Mitigation 

The following chapter includes a detailed description of the comparison between the 

response of the seat with and without a shock mitigation system. The comparison was 

conducted by replacing the shock mitigation system with a solid aluminum bar. The 

chosen conditions for the shock mitigation system were a suspension preload of zero and 

an occupant mass weight of 200 pounds. The effectiveness of the shock mitigating 

system was calculated two ways. The first is by comparing the Dynamic Response index 

(DRI) between the shock mitigating seat with that of the non-shock mitigating seat from 

the same input excitation. The other method used to analyze the effectiveness of the 

system is to determine the magnitude of the 90th percentile of the acceleration values 

from each data set. 

6.1 Examination of the DRI 

The main objective when placing shock mitigating seats on high speed craft is to reduce 

the effect of extreme shock events on the craft occupants. Most injuries from at-sea 

voyages are a result of a few extremely large impacts. To gauge the effectiveness of the 

shock mitigating seat at reducing the shock and acceleration experienced by the occupant 

the Dynamic Response Index (DRI) was calculated since it is based on the largest 

singular event in a data set. DRI was created in the 1970’s by Payne to assess the effect 

of isolated shock events on the sitting human, mainly for jet ejection seats [34].  DRI is 

calculated using equation 6-1. 

(6 1)

Where  is the maximum displacement of the spine,  is the square of the natural 

frequency of the human modeled as a spring mass damper system and  is the 

acceleration of gravity. Essentially the numerator of the equation represents the peak 

acceleration that the human spine observes. This simplifies the equation to that shown in 

equation 6-2. 
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(6 2)

Using equation 6-2 and the peak acceleration of the occupant mass from each test the 

DRI values are calculated. The percentage reduction of the DRI due to implementing a 

shock mitigation system is shown in Table 6-1. The amount of reduction in DRI ranges 

from 39.4 to 64.2 percent. This range of reduction is fairly significant and can noticeably 

reduce the likelihood of injury. The Air Force has established that a DRI value of 5 

translates to a high likelihood of spinal damage and permanent injury [8]. By 

implementing a shock mitigating system the DRI value for the square wave input is 

reduced from an injuring value of 5.03 to a value of 1.80, greatly reducing the likelihood 

of personal injury.

Table 6-1. DRI values calculated using the peak acceleration from each test 

Test Input Shock Mitigating Non Shock Mitigating Percentage Reduction

USN Head 2.21 4.33 48.8

USN Stern 1.34 2.22 39.4

MLB 1.69 3.17 46.7

89 ft 1.63 3.19 49.0

Impulse 1.55 3.55 56.3

Square 1.80 5.03 64.2

6.2 Examination of the Acceleration Values Observed 

The examination of the DRI value is the main focus of the analysis since most injuries are 

due to a singular high impact event, represented well by the DRI value. To examine the 

effectiveness of the shock mitigation system when compared with a rigid mounted seat 

the acceleration data points are categorized into percentile groups based on the absolute 

value of their magnitudes. The experimental data that was chosen for this example was 

the 36 ft USN.  The percentile groups that exhibited a difference are shown in Table 6-2. 

The percentile groups below 70 are not shown because the differences between the two 

groups were minimal, mostly around 1%. What was noticed was that the main differences 
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between the two tests were truly at the 99 percentile or higher range. The 100 percentile 

group, representing the largest shock event, had a reduction of 48.8% in acceleration and 

the 99 percentile group had a 46.2% reduction in acceleration when the shock mitigation 

system was implemented. The reductions in acceleration became smaller for the lower 

percentile groups. For example, the 70th percentile group had a reduction of 14% while 

the 90 percentile group had a 29% reduction. The main purpose of shock mitigation seats 

is to reduce the harshness of the most extreme impacts. With that in mind the shock 

mitigation system provides significant shock reduction.  

           Table 6-2. Percentile groups of the occupant acceleration.

Percentile

70 80 90 95 98 99 100

Rigid 0.163 0.231 0.414 0.685 1.09 1.46 4.33

Shock 0.140 0.189 0.296 0.417 0.622 0.784 2.22
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Chapter 7.  Seat Response to Sea Input 

This section presents the analysis of the response of the seat to at-sea excitation inputs. 

The at-sea excitation inputs are divided into three different categories based on ship size. 

These sizes are small for the 36 foot USN planing craft, medium for the 47 foot Motor 

Life Boat (MLB) and large for the 89 foot high speed planing craft. All three ships were 

tested in similar high sea state conditions. The first of the three to be presented here is the 

USN. Then the data from the MLB is presented. This is then followed by the data 

collected running the 89 foot high speed planing craft. Each test is examined to determine 

the effect of varying weight and suspension preload had on the response of the seat to 

each excitation. The spring preload was set at values of 0, 1 and 2 inches and the 

occupant mass was changed to weights of 150, 200 and 250 pounds for every test, thus 

creating nine separate tests for each excitation file. The main comparison is based on the 

response of the occupant mass accelerometer data since the main concern of shock 

mitigating seats is to isolate the occupant from shock and vibration.  

7.1 Seat response to the 36 foot USN excitation 

The USN input excitation consists of a four minute duration test file that was partitioned 

into two smaller two minute files to be able to be run on the seat testing rig due to 

limitations of the computer hardware. Both two minute excitations were run on the seat 

testing rig to record the response of the seat to the entire excitation file. Each test was 

examined for any unique events such as a multiple wave impact or extremely high 

amplitude impacts. It was determined that the second two minutes of the total four 

minutes of excitation is representative of the entire data set and was used to characterize 

the response of the seat. 

Examination of the effects of suspension preload  

The criterion examined was the effect of suspension preload on the response of the seat. 

For each occupant weight the effect of different suspension preloads was examined. The 

DRI value for each test was determined based on the maximum acceleration value. This 



also a

DRI

the D

then

the D

the r

initia

of the

Figu

To d

data w

repre

mass 

patter

1.5

2

2.5

3

3.5

4

D
R

I

allows a qui

value for all

DRI value in

drops slightl

DRI value in

results from 

ally increase 

e ride with a

ure 7-1. Ana

etermine the

was conduct

sented by th

of 200 pou

rn with the 

0
5

2

5

3

5

4

ick examinat

l nine tests i

creases sign

ly when the 

creases with

analyzing

and then de

a direct relati

alysis of DR

e true nature

ted. The ent

he changes 

unds is exam

other two w

tion of the c

is plotted on

nificantly wh

preload is i

h a near linea

DRI values

ecrease the s

ionship.   

RI values pro

preload

e of the resp

tire two min

in DRI valu

mined since 

weight condi

74

changes in se

n Figure 7-1

hen the prelo

ncreased to 

ar trend whe

s an increas

everity of th

ovided incon

were exam

ponse a man

ute data set 

ues. The res

it was the 

tions. Since

1
Preload(in)

everity betw

. At weight

oad is increa

2 inches. A

en the preloa

se in suspen

he ride, or it 

nclusive tre

mined 

nual examin

was review

sponse of th

data set tha

 the main d

ween tests. T

s of 150 and

ased from 0 

At a weight o

ad is increas

nsion preloa

can increas

ends when t

nation of the

wed for trend

he seat with

at did not sh

discrepancy i

The calculate

d 250 pound

to 1 inch an

of 200 pound

sed. Based o

ad can eithe

e the severit

he effects of

e acceleratio

ds that are no

h an occupan

hare a simila

in question 

2

ed

ds

nd

ds

on

er

ty

f

on

ot

nt

ar

is 



75

the variation in trends of the DRI value, the event within which the DRI value is based on 

is shown in Figure 7-2 beginning at a time value of 57.3 seconds. The acceleration 

increased for this event as the preload is increased. The behavior of the response is fairly 

consistent at preload settings of 0 and 1 inch, with exception to the magnitude of the large 

impacts. However, at a preload setting of 2 inches the response is noticeably different 

than the other two settings. First, the acceleration during rebound did not increase 

substantially for most impacts when compared to that of the 1 inch preload. However, the 

acceleration during jounce did increase for most events and even more after larger 

rebound events. A prime example of this is shown in the event beginning at 56 seconds, 

the first minimum is increased in magnitude then the following local maximum is 

increased slightly in magnitude then the following minimum is greatly increased in 

severity when compared to the response of 0 and 1 inch preloads. Second important 

difference is that there is more oscillation in acceleration, meaning that the motion of the 

seat and the response is not as damped or smooth. These are very important changes that 

are not well represented by the changes in DRI values.  

Figure 7-2. Analysis of the acceleration resulted in the conclusion that ride severity 

increases with preload 
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By picking multiple events throughout the entire time span of the test and recording the 

peak acceleration in the positive and negative direction the average percentage change is 

found. The acceleration during rebound increases by 37% when the preload is changed 

from 0 to 1 inch, then further increases by 18.7% when the preload is changed from 1 to 2 

inches. However, the acceleration increases by 25.8% during jounce when the preload is 

changed from 0 to 1 inch and then increases by 63.8% when the preload is changed from 

1 to 2 inches. The acceleration during jounce increases by about 100% its value at 1 inch 

of preload compared to that of the preload at 2 inches.

Examination of the effects of occupant mass

The effect of varying the occupant weight was examined next to determine how the 

dynamics of the system are affected when a different occupant uses the seat. The first 

criterion examined was the DRI value of each test that was used previously in the 

examination of the effects of preload. The DRI values are plotted at three different 

weights to determine the trends; the plot is shown in Figure 7-3. Just as before, the DRI 

trends for the preload settings of 0 and 1 inch are fairly consistent in that the DRI value 

decreases for increasing weight. However, for a preload setting of 2 inches the trends are 

somewhat different. When the weight is increased from 150 to 200 pounds the DRI value 

is unchanged but when the weight is increased to 250 pounds the DRI value drops 

significantly.
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Figure 7-3. The DRI values from different occupant mass weights indicates that the 

ride severity decreases with weight 

By the examination of the DRI values at a preload of 2 inches it would seem like the 

dynamics of the system are unchanged for weights of 150 and 200 pounds while the ride 

harshness is decreased as weight is increased for preloads of 0 and 1 inch. The 

acceleration data from the occupant mass accelerometer was examined for changes in the 

response between the different weights. The plot of the impact event in which the DRI 

value is based on is shown in Figure 7-4. A detailed examination of the data revealed that 

there is a decrease in severity of most events when the occupant weight increases. At a 2 

inch preload there is a average decrease of 15.2% in severity when the occupant weight is 

increased to 200 pounds. The average decrease in severity of impacts, when the occupant 

weight increases from 200 to 250 pounds, is 21.5%. These percentages were calculated 

by examining the impacts which were affected by the change in weight during both 

rebound and jounce. The decrease in acceleration translates to less motion of the 

occupant mass and an increase in suspension travel.  This can be seen in the increased 
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7.2 Seat Response to the 47 foot Motor Lifeboat(MLB) Excitation 

The MLB test input file is a 14 minute test that was broken into 7 smaller two minute 

tests. When examining the entire data set it was found that four minutes of tests in the 

middle of the test was a good representation of the entire file since most of the high 

acceleration events and some of the smaller distinct motions are within this four minute 

time span.  

Examination of the effects of suspension preload 

As with the case of the analysis of the seat to the 36 foot USN craft input excitation, the 

response of the seat to the MLB input excitation was examined for changes in seat 

dynamics at different preload settings. The DRI value for each test was calculated and 

then examined to determine any trends, the values are plotted in Figure 7-5. Testing at all 

weight settings revealed a common trend, when the preload is increased from 0 to 1 inch 

the DRI value also increases. However, when the preload is increased from 1 to 2 inches 

the DRI value drops for the cases when the occupant mass is 200 and 250 pounds. 

However, the DRI value does increase for the case when the occupant mass is 150 

pounds. This does seem like a similar occurrence to the response of the tests to the RHIB 

input excitation. 
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Figure 7-6. When examining the acceleration data is was found that an increase in 

acceleration is observed when the preload is increased  

Examination of the effects of occupant mass on the response 

The effect of different occupant weights on the response of the system was then 

examined. The DRI values were first compared to determine the effects of varying 

occupant mass. The DRI values at different weights at a constant preload are plotted in 

Figure 7-7. All three preload settings observed a decrease in DRI value when occupant 

weight increased. This result would define a conclusive trend in decreasing DRI with 

increasing occupant weight. To verify that this trend a manual examination of the time 

series was executed.
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Figure 7-7. Analysis of the DRI values shows that there is a decrease in severity 

when occupant weight increases  

When examining the entire time series for inherent trends and confirming the conclusive 

trend from the analysis of the DRI the least conclusive data set of a 1 inch preload was 

examined. The plot of the responses with a preload of 1 inch is shown in Figure 7-8 

during the event in which the DRI value is based on. The event in which the DRI value is 

based on is fairly representative of the trends which occurred throughout the test. When 

the occupant weight increases from 150 to 200 pounds the acceleration during rebound 

dropped an average of 10.1% while the acceleration during jounce decreased in 

magnitude by an average of 24.6%. The trend at the first large local minimum shown in 

Figure 6.8 is not truly representative of the overall time span, the accelerations during 

jounce do decrease in magnitude when the occupant weight is increased. When the 

occupant weight is increased from 200 to 250 pounds the acceleration during rebound 

decreases by 20.9% and the acceleration during jounce decreases in magnitude by 14.6%. 

The response of the seat is also more damped in nature when weight is increased which 

can be seen by the rather damped nature of the motions of the occupant mass, this 
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7.3 Seat Response to the 89 foot High-Speed Planing Craft 
Excitation 

The input file used to simulate the motion of an 89 foot high speed craft is an 8 minute 

test that was partitioned to 4 separate files that are 2 minutes in duration. When all four 

tests were examined it was found that a majority of the events characteristic to the ship 

are evident in the second two minutes of testing. The results from this two minute 

segment were chosen to represent the response of the seat to an 89 foot high speed 

planning craft.

Examination of the effects of preload 

The seat response to changes in suspension preload were examined to determine any 

changes in dynamics when only the suspension preload is changed while the occupant 

weight remains constant. The DRI value was calculated to determine the change in ride 

harshness at different preloads. The plot of the DRI values at preloads of 0,1 and 2 inches 

is shown in Figure 7-9, where the test with 150, 200 and 250 pounds is represented by 

colors of blue, green and red respectively. From analyzing the DRI values calculated both 

the tests with 200 and 250 pound occupants revealed trends which have been observed in 

the USN and MLB testing described previously. Based on previous observations the ride 

harshness increases when the preload is increased. However, when the occupant weight 

was set at 150 pounds the DRI value decreased slightly and remains fairly consistent with 

the largest fluctuation being 0.04 as the preload is increased. This would normally be 

indicative of decreased or similar response severity.  
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disturbance when the system attempts to return to its steady state position. When multiple 

overshoot events are examined it is found that the overshoot increases by an average of 

63.5%.

Figure 7-10. There is an increase in acceleration when preload is increased and the 

results from a 1 inch preload can severe at parts, indicated by the green spikes in 

the data  
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Examination of the effects of occupant weight 

The effects of different occupant weights on the dynamics of the seat were then 

investigated. The DRI values from the tests were plotted to reveal any trends, the plot is 

shown in Figure 7-11. The results of the 0 inch preload case are as expected based on 

previous analysis of the USN and MLB tests in that the DRI and ride harshness decreased 

when the weight is increased. The trend when the preload is set to 1 inch is also similar to 

a previous test and is indicative of a decrease in ride harshness when occupant weight 

increases. The response to increased occupant weight for a 2 inch preload setting is 

unexpected, the DRI value drops when the weight is increased from 150 to 200 pounds, 

and then increases when the weight is increased to 250 pounds.

Figure 7-11. Examination of the DRI values for changes due to occupant weight 

increases revealed a very random nature in the trends 

150 200 250

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

Weight(lb)

D
R

I

0 inch Preload 
1 inch Preload
2 inch Preload



88

Since the DRI values revealed no conclusive trends the acceleration data was then 

reviewed for any new characteristics distinct to this test. The series of data that was 

reviewed was that of the 2 inch preload because it produced an uncharacteristic trend. 

The overlaid plot of varying weights at a 2 inch preload is shown in Figure 7-12 with 

weights of 150(blue), 200(green) and 250(red) pounds. The event in which the DRI value 

is based on is shown in Figure 7-12. As the weight increases from 150 to 200 pounds the 

response showed a reaction that was similar to that of increasing preload, the acceleration 

during jounce increased by an average of 42.4% while the acceleration during rebound 

remained fairly constant. When the weight is increased from 200 to 250 pounds the 

magnitude of the acceleration events are unexpectedly increased, contrary to previous 

analysis. The acceleration during jounce increased an average of 36.4% while the 

acceleration during rebound remains constant. Smaller motions, those with accelerations 

below the magnitude of 0.5 g, are well attenuated as can be seen in Figure 7-12 from 33.4 

to 34 seconds where the occupant almost experiences slight motion.

The results from analyzing the 2 inch preload data were not representative of all of the 

tests. The trends from the other data sets with a preload of 0 and 1 inch show a decrease 

in acceleration and motion when the weight is increased by an average amount of 13.9% 

when the weight is increased from 150 to 200 pounds and 19.6% when the weight is 

increased from 200 to 250 pounds. These trends agree with all of the previous results 

presented.
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Table 7-1. Changes in acceleration magnitudes for various preloads. 

Preload Change Direction USN (%) MLB (%) 89ft HSC (%) 

0 to 1 in Rebound 37.0 12.0 12.9 

0 to 1 in Jounce 25.8 31.6 42.6 

1 to 2 in Rebound 18.7 4.99 20.7 

1 to 2 in Jounce 63.8 65.6 20.7 

Since there are significant effects to the dynamics of the system due to an addition of a 

suspension preload the movement of the suspension is further investigated. The plot of 

the suspension displacement during the 36 foot USN input excitation with a 150 pound 

occupant and 2 inch preload is shown in Figure 7-15. When the preload is at 2 inches the 

suspension is only active for the large impact events and reacts much like a rigid system 

for most of the test with a majority of the compressions being less than half an inch. The 

nature of the motions is also really severe, the largest displacement event having a 

duration of 2 tenths of a second. This high frequency nature is the cause of the high 

oscillations in the occupant acceleration data observed earlier. 

The additional preload affects at 2 inches creates a non-linear nature within the spring. 

There is a greater amount of force that must be exerted on the spring during compression 

and then the spring exerts a larger force during rebound for movements near the top of 

the suspension stroke. The spring behaves more like a linear spring at greater 

compression displacements where the effects of preload are less apparent.  The overall 

response of the spring is similar to that of a non-linear spring. This could be a 

contribution to the differences in the trends when compared to preloads of 0 and 1 inch. 
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Figure 7-15. Suspension motion with a 150 pound occupant and 2 inch preload to a 

RHIB excitation 
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Chapter 8.  Seat Response to Created Inputs 

This section presents the analysis of the response of the seat to created input excitations. 

Three inputs were created to further characterize the seat dynamics. The first is a square 

wave with amplitude of 2 inches and frequency of 0.1 Hz. The goal of the square wave 

was to create the greatest amount of displacement at the fastest rate possible from the 

hydraulic system. The second is a half sine wave with amplitude of 4 inches and a 

frequency of 1.5 Hz. This is the fastest possible up and down motion utilizing the full 

dynamic stroke of the actuator. The third and last input was a chirp input with an 

amplitude beginning at 0.9 inches and frequency of 0.5 Hz, then ending with amplitude 

of 0.05 inches and a frequency of 15 Hz. This allows the analysis of the frequency 

response of the seat throughout the simulated frequency band. All three inputs are created 

in mind to obtain a unique response from the system.  

8.1 Response to a Square Wave 

This section presents the analysis of the response of the seat to the square wave input. 

The square wave input was first used to calculate the damping ratio of the coil over 

suspension. Then the response data was used to calculate the settling time of the system. 

Calculation of Damping Ratio 

The square wave produced the free response of the system from a step excitation. Since 

the frequency of the square wave was 0.1 Hz there was a 10 second pause between 

consecutive up and down motions of the seat. The first analysis was accomplished by 

using logarithmic decrement to determine the damping ratio of the suspension system. 

The damping ratio is calculated using the equations below and the response of the system 

to the square wave input. The logarithmic decrement  is first calculated using equation 

8-1.

(8 1)
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The damping ratio is calculated at all the different occupant weights and preload settings. 

The calculated damping ratios are shown in Table 8-1 with the corresponding test 

conditions. The damping ratio is consistent between the various test conditions and is not 

effected significantly by the changes in occupant weight and suspension preload. The 

average damping ratio of all of the tests was 0.261. Indicating that the system is under 

damped, shown by a damping ratio which is significantly less than a value of 1.

Table 8-1. The calculated damping ratios for the square wave input. 

Weight Preload Damping Ratio 

150 0 0.255 

150 1 0.255 

150 2 0.252 

200 0 0.285 

200 1 0.300 

200 2 0.250 

250 0 0.254 

250 1 0.280 

250 2 0.224 

Calculation of Settling Time 

The square wave input excitation was also used to calculate the settling time of the shock 

mitigating seat to a step input. Before determining the settling time from the square wave 

test data it is important to note the equation for the theoretical settling time to estimate 

what variables effect the resulting time. The equation for settling time is expressed as 

equation 8-3. 

(8-3)

Where  is the percent of the final steady state value,  is the critical damping ratio and 

 is the natural frequency. Of the two parameters being varied occupant weight should 
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cause an increase in settling as the occupant weight increases. An increase in occupant 

weight should decrease the natural frequency and thus cause the settling time to increase. 

The preload should not have an effect on the settling time since the damping ratio, spring 

rate and mass are the only variables that affect the settling time. 

The settling time for the experimental data was calculated by plotting the actuator motion 

and the displacement of the occupant mass on the same plot to compare the time values 

when the actuator motion ceased and when the seat motion settled to within 5% of its 

final value. The settling times calculated are shown in Table 8-2 at various test 

conditions. Most of the settling times were fairly consistent with a average time of 1.41 

seconds required for the system to settle within 5% of the steady state value. The three 

instances where the settling time varied significantly were when the occupant weight was 

at 200 pounds with a preload of 2 inches, when the occupant weight was 250 pounds with 

preload settings of both 1 and 2 inches. When the preload increases from 1 to 2 inches for 

the case of 200 and 250 pound occupant weights the settling time increased substantially, 

for a 200 pound occupant the settling time more than doubles. The settling time for the 

case of a 250 pound occupant and a 2 inch preload is indicated by a “~10?” in Table 8-2 

because the system did not fully settle within 5% of the final value within the 10 second 

interval between steps. When comparing the cases of 0 preload at various weights the 

settling time is fairly unaffected by the change in weight, the difference between the 

values is in the order of hundredths of a second. However, for the cases of 1 and 2 inch 

preloads the settling time fluctuates at higher occupant weights. With a 1 inch preload the 

settling time stays fairly constant when the weight is increased from 150 to 200 pounds 

but when the weight is increased to 250 pounds the settling time increases from 1.386 to 

1.549 seconds. With a preload of 2 inches the settling time increases when the weight 

changes from 150 to 200 pounds and then again when the weight is increased to 250 

pounds, to the point where the system does not settle within the 10 seconds between step 

actuations.
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Table 8-2. The calculated settling time for the square wave input. 

Weight Preload Settling Time(s) 

150 0 1.408 

150 1 1.427 

150 2 1.402 

200 0 1.422 

200 1 1.386 

200 2 3.016 

250 0 1.414 

250 1 1.549 

250 2 ~10? 

Based on the theoretical equation 8-3 used to calculate settling time previously 

mentioned, it would be expected that the occupant mass would affect the settling time. 

The occupant weight did not affect the settling time significantly when the preload was 

set at 0 or 1 inches. At a preload setting of 2 inches an increase in occupant weight also 

increases the settling time, as expected. 

8.2 Response to a Half Sine Impulse 

A half sine wave with amplitude of 4 inches and a frequency of 1.5 Hz was created to 

simulate the largest veritcal motion possible from the seat shake rig. This half sine wave 

is a close representation of a single wave impact event. The changes in the response of 

the seat from varying the preload and occupant weight can be measured without the 

effects of another subsequent wave, such as the situation when running a HSC 

simulation.  
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Effects of Varying Suspension Preload  

The first criterion that was examined was the effect of suspension preload on the response 

of the seat. For occupant weights of 150, 200 and 250 pounds the suspension preload was 

varied at settings of 0, 1 and 2 inch preload. The DRI value for these tests were 

calculated, the DRI value is a good method for characterizing the response of the half 

sine wave because it is a signal event. The DRI values at various preloads are overlaid in 

Figure 8-2 at weights of 150, 200 and 250 pounds. The plots of all three occupant weights 

indicate that when the preload is increased the DRI value also increases. The increase in 

DRI for a 200 pound occupant is almost linear in nature with respect to the DRI. After 

calculating the change in DRI over the change in preload it is found that the rate of 

change increases with the weight. For the 150 pound case the DRI increases by 0.4623, 

for the 200 pound case the increase is 0.5523 and for 250 pounds the increase is 0.6761. 

There are more significant changes in DRI when the preload is increased from 1 to 2 

inches between the different weights. At 150 pounds the amount of increase was by 

0.1222, at 200 pounds the increase was at 0.4052 and at 250 pounds the change was 

1.007. Overall, the data indicates clearly that additional preload does increase the DRI 

and thus the severity of the ride harshness. 
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Figure 8-3. Analysis of acceleration data revealed that there is an increasing trend 

when preload is increased 

Effects of Varying Occupant Weight 

Just as in the analysis of the effect of varying suspension preload the DRI was used for 

comparing the response between the occupant weights of 150, 200 and 250 pounds. The 

DRI at various preloads over weights of 150, 200 and 250 pounds are overlaid in Figure 

7-4. There are similar trends between preloads of 0 and 1 inch, the DRI decreases when 

the occupant weight increases from 150 to 200 pounds and then stays fairly constant with 

only a slight increase when the occupant weight increases to 250 pounds. The response 

with a 2 inch preload is completely different and almost opposite. The DRI increases 

when the occupant weight increases from 150 to 200 pounds and then decreases when the 

occupant weight increases to 250 pounds.
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Figure 8-4. Examination of the 2 inch preload data proved results opposite of others  

Since analysis of the DRI values provided minimal gains the acceleration data was 

examined similarly to the at-sea data. The acceleration response from the cases with 0 

preload is plotted at weights of 150, 200 and 250 pounds in Figure 8-5. The maximum 

peak acceleration decreases by 13.5 percent when the occupant weight increases from 

150 to 200 pounds and then decreases again by 30.2 percent when the occupant weight 

increases from 200 to 250 pounds. The minimum acceleration peak also decreased by 

7.07 percent when occupant weight increased from 150 to 200 pounds and decreased 

again by 6.49 percent when the occupant mass increases from 200 to 250 pounds. The 

overall curve does not change, only the magnitudes differ. The DRI values might not 

indicate a decrease in severity but on examination of the acceleration data does. This is 

the predicted outcome of this comparison based on the examination of the sea data 

excitation. When examining the suspension displacement when the occupant weight was 

increased there was an increase of 31.3 percent in jounce and an increase of 15.5 percent 

in compression when the occupant weight increases from 150 to 200 pounds. When the 

occupant weight increases from 200 to 250 pounds there is a increase of 32.2 percent in 
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where  is the stiffness of the spring and  is the mass of the system, or occupant and 

seat pan combined in the case of the seat. With a combined mass of 117.5 kg (258.8 lbf) 

and a spring stiffness of 1.92x104 N/m(109.4 lbf/in) the natural frequency of the system 

is 2.03 Hz. In theory the transmissibility plot of the system should have a peak around 

2.03 Hz and then decrease towards zero afterwards. The theoretical force transmissibility 

of the system can be calculated using equation 8-5. 

(8-5)

where  is the frequency ratio and  is the damping ratio. Using the damping ratio 

calculated with the square wave and the theoretical natural frequency of the system the 

transmissibility plot is created and shown in Figure 8-6.

Figure 8-6. Theoretical transmissibility plot created using the experimental damping 

ratio and the theoretical natural frequency 

To calculate force transmissibility the accelerometer data from the chirp test was 
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carriage of the seat shake rig, and the seat. The accelerometer data was then filtered to 

isolate the frequencies between 0.5 and 15 Hz, which are the frequencies in which the 

chirp signal swept through. A Fast Fourier Transform (FFT) was conducted on the 

filtered accelerometer data to convert the data into the frequency domain. The 

transmissibility was then calculated from the two FFT signals calculated. The 

experimental transmissibility is shown in Figure 8-7. The trend is similar to that of the 

theoretical transmissibility shown in Figure 8-6. The peak value occurs at a frequency of 

2.136 Hz, which is only 5.1% different from the theoretical value of 2.0325 Hz. The 

results of the experimental test validates the experimental calculation of the damping 

ratio by use of the free response of the system.  

Figure 8-7. Transmissibility plot of the response of the seat to a chirp input 
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Chapter 9.  Seat Simulation Model 

The following chapter includes a detailed description of the simulation analysis that was 

performed by using a Simulink model of the analytical model. This chapter starts with the 

required assumptions that were made to simplify the model. Then the analytical model is 

presented along with the free body diagram of the seat and the appropriate equations of 

motion. Following, the Simulink model is presented with an explanation of how the 

equations of motion and seat characteristics are implemented. The inputs used in the 

Simulink model are presented followed by an analysis of the results from simulation.  

9.1 Analytical Model 

To develop an analytical model of the Stidd 800v5 shock mitigating seat the entire seat 

assembly is represented by a spring-mass-damper system. Two sets of spring-mass-

damper systems are implemented to represent the entire 2-degree-of-freedom system. A 

visual representation of the entire system is shown below in Figure 9-1. X1 represents the 

base excitation or ship motion being input into the system. The spring and damper 

labeled as Ks and Cs respectively represents the shock mitigating coil over system of the 

seat. X2 represents the displacement of the seat pan assembly, while m represents the 

mass of the seat pan assembly. X3 represents the displacement of the occupant mass 

while M represents the mass of the occupant. The spring and damper labeled as K2 and 

C2 respectively represent the characteristics of the seat cushion in which the occupant 

mass lies on. 
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Table 9-1. Acceleration percentile values of the occupant mass for the model and 

experimental data. 

 Percentile Value 

 10 20 30 40 50 60 70 80 90 95 100 

Exp. 0.012 0.030 0.045 0.063 0.081 0.101 0.127 0.167 0.239 0.307 1.390 

Model 0.008 0.021 0.035 0.049 0.063 0.081 0.104 0.144 0.226 0.303 1.074 

9.4 Model Testing 

This section details the use of the model to further analyze the dynamics of the Stidd 

800v5 shock mitigating seat. The model is used to vary parameters that are not easily 

adjustable on seat during lab testing. The two parameters that were chosen to be 

examined with the model are the spring rate and damping coefficient. The simulation was 

run using the 89 foot high speed planing craft excitation while the spring rate and 

damping coefficient within the model was varied at values of 50%, 100% and 150% of 

their original values. 

Effects of different damping rates 

To examine the effects of different damping rates on the dynamics of the seat suspension 

the damping rate was changed to 50%, 100% and 150% of the original rate at constant 

spring rates of 50%, 100% and 150% also. The DRI value for the tests are shown in 

Figure 9-12. When the damping rate is increased from 50% to 100% the DRI value drops 

significantly by as much as 70.2% at a spring rate of 100%. This extreme drop is due to 

the damping force provided from the damper is extremely inadequate for the spring force 

placed on the system. With a damping ratio of 0.261 determined experimentally the 

model of the system would have a damping ratio of about 0.131, which is very low. 

When the damping is increased to 150% of the original value the results for the DRI 

change are different between the various spring rates. For the spring rate of 50% the DRI 

rose by 13.6% while for a spring rate of 100% the DRI rose by 7.94%. This is due to the 

damping rate being larger than optimal for the spring rates associated with them. For a 

spring rate of 150% of the original value the DRI actually decreased slightly by 1.61%. 
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spring rate the medium acceleration events experienced an increase of as much as 11% in 

amplitude when the damping rate is increased. When the damping rate is increased to 

150% the acceleration magnitudes of the medium and small impacts increases by as 

much as 21%. When examining the percentiles for a 100% spring rate the acceleration 

drops by as much as 16% when the damping rate is increased from 50% to 100% for 

small to medium impacts and then increase by as much as 11% when the damping is 

raised to 150%.  The case of 150% spring rate is when the harshness decreases when the 

damping rate is increased to 150%, which does not follow the trend at the other spring 

rates. The small to medium impacts  

           Table 9-2. Percentile groups for the acceleration experienced 

Percentile

Damper Spring 80 90 95 98 99 100

50 50 0.1274 0.1872 0.2593 0.3732 0.4515 1.3418

100 50 0.1383 0.2159 0.2877 0.3892 0.465 1.0246

150 50 0.1465 0.2259 0.3272 0.4592 0.5625 1.1639

50 100 0.1678 0.2541 0.3369 0.477 0.6206 4.0734

100 100 0.1447 0.2326 0.3106 0.4307 0.5235 1.2157

150 100 0.1485 0.2262 0.325 0.4644 0.5835 1.3122

50 150 0.1959 0.2958 0.3849 0.556 0.687 3.3137

100 150 0.153 0.2512 0.3423 0.4788 0.584 1.4001

150 150 0.1512 0.2296 0.3273 0.472 0.6056 1.377

To verify the results taken from the DRI and percentile examination the time series data 

of the occupant displacement was examined. This will also show how the trends in 

acceleration relate to those of the displacement. The time series displacement data with a 

spring rate of 50% at various damping rates are shown in Figure 9-13. The impact event 

at 112 seconds experienced the most change at the different damping rates. The amount 

of negative displacement decreased by 28.5% when the damping is increased from 50% 

to 100% of the original damping coefficient. The response of the system at small 

displacement motions, those with an amplitude smaller than 0.5 inches, experienced less 
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increase in spring rate. When the damping rate is at 50% and the spring rate is increased 

from 100% to 150%, there is a reduction of 18.7% in acceleration in the 100 percentile 

group. When the damping rate is held constant at 50% the acceleration levels increase by 

about 30% for all sized motions when the spring rate increases from 50% to 100% and 

then increases by 15% when the spring rate increases from 100% to 150%. The increase 

for the 100 percentile group was an outlier with an increase of 204% when the spring rate 

went from 50% to 100%. When the damping rate is held constant at 100% the 

acceleration increases by 18.7% for the 100 percentile group and 10% for the medium 

events and 6% for the small events when the spring rate is increased from 50% to 100%. 

When the spring rate is further increased to 150% the acceleration for the 100 percentile 

events increase by 15%, the medium events increase by 11% and the small events 

increase by 7%. When the damper is set to 150% the changes in acceleration when the 

spring rate is increased are much smaller. The 100 percentile group does experience a 

12.7% increase in acceleration when the spring rate is increased from 50% to 100%, 

while the medium and small events experience little to no change with the average 

increase being 1.1% throughout. When the spring rate increases to 150% the 100 

percentile group increases by 5%, the medium and small events increase by 2%.  

Table 9-3. Occupant acceleration data grouped into percentiles

Percentile

Damper Spring 80 90 95 98 99 100

50 50 0.1274 0.1872 0.2593 0.3732 0.4515 1.3418

50 100 0.1678 0.2541 0.3369 0.477 0.6206 4.0734

50 150 0.1959 0.2958 0.3849 0.556 0.687 3.3137

100 50 0.1383 0.2159 0.2877 0.3892 0.465 1.0246

100 100 0.1447 0.2326 0.3106 0.4307 0.5235 1.2157

100 150 0.153 0.2512 0.3423 0.4788 0.584 1.4001

150 50 0.1465 0.2259 0.3272 0.4592 0.5625 1.1639

150 100 0.1485 0.2262 0.325 0.4644 0.5835 1.3122

150 150 0.1512 0.2296 0.3273 0.472 0.6056 1.377
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From the analysis of the displacement data when studying the effects of different 

damping rates on the dynamics of the seat it was confirmed that the acceleration curve is 

representative of the displacement. The displacement data was reviewed for any under 

lying trends when the spring rate was changed. No under lying trends were found that 

would refute the trends found when examining the acceleration data using the DRI value 

and the percentile tables. The acceleration trends are representative of the dynamics of 

the seat. 

9.5 Model Testing Summary 

The analysis of the test data received from the Simulink model has proved beneficial. The 

Simulink model of the seat assembly created by implementation of the equations of 

motion replicated the response of the seat well. When compared to the experimental 

results the model results differed by only a few hundredths 95% of the time when 

examining the acceleration observed by the occupant mass. Once the model results were 

verified against the experimental data different spring rates and damping coefficients 

were tested. The spring rate and damping coefficient were varied at values of 50, 100 and 

150 percent of the original values to determine their effects on the system.

When the damping coefficient is varied while the spring rate is held constant it was found 

that the acceleration magnitudes observed by the occupant decrease when the damping 

rate is increased from 50% to 100%. The maximum acceleration values do increase 

slightly, for most of the spring rates, when the damping is increased to 150% as the 

damping force becomes larger than the spring rate. When the spring rate was set to 150% 

and the damping was increased from 100% to 150% the acceleration of a majority of the 

test was decreased slightly. The displacement data was examined and it was found that 

the reduction in accelerations found from analysis of the DRI value and percentile values 

translated to a reduction in motion for all the spring rates.

When the spring rate was varied while the damping coefficients were held at a constant 

value it was found that the accelerations observed by the occupant increase when the 

spring rate is increased. The only case where the acceleration decreased was with the 

100% spring rate 100 percentile group when the spring rate increased from 100% to 
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150%. The increase of 204% in acceleration when the spring rate was increased from 

50% to 100% should be considered an outlier because most of the increases in 

acceleration are typically consistent between all the data points.  
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Chapter 10.  Conclusion 

This chapter summarizes the work previously presented in this thesis. First a summary of 

the results obtained from testing by use of the seat shake rig and Simulink model are 

reviewed. Then suggestions for future work that should be performed in the field of 

shock mitigating seats to better the seat performance conclude the chapter. 

10.1 Summary 

A comprehensive analysis on the dynamics of a Stidd 800v5 shock mitigating seat was 

performed to determine the response of the seat to changes in occupant weights and 

adjustable preload, as well as changes to the spring rate and damping coefficient. A single 

axis seat shake rig designed specifically to simulate the extreme environment of high 

speed craft was built for testing. Accelerometer data from at sea testing of a 36 foot USN, 

47 foot MLB and 89 foot high speed planing craft were integrated and filtered to be used 

as input excitations to simulate a sea environment. A square wave, impulse half sine 

wave and chirp signal were also created and used to analyze specific dynamics of the 

seat. The system was then modeled as a two degree of freedom system with base 

excitation for modeling purposes. Equations of motion were derived and converted into a 

Simulink block diagram. The Simulink model was compared and validated to the 

experimental data obtained from the seat shake rig. The model was used to vary the non-

adjustable suspension parameters of spring rate and damping coefficient to analyze the 

response of the system if different suspension settings were used.  

The initial test results indicated that the seat shake rig provided accurate and repeatable 

tests. When multiple runs of the same input excitation with similar test conditions were 

taken the difference in the response of the seat was insignificant. When examining the 

differences between three consecutive test runs 35.6 percent of the data had zero 

differences and 72.5 percent of the data differed by 0.075 inches or less, proving a large 

level of repeatability was present. 
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Once the repeatability was established the seat was run on the testing rig with different 

weights and different suspension preloads, these being the only adjustable parameters of 

the system. The accelerometer data was analyzed to gauge the response of the system 

throughout the various changes; acceleration is directly related to force and also gives a 

good representation on the nature of the motion of the seat.  Overall it was found that as 

the occupant weight increases the acceleration levels decreased. This is indicated by a 

decrease in DRI, which is based on the largest singular impact event, as well as a 

decrease in overall peak magnitude levels of acceleration. The average reduction in 

magnitude was about 20 percent when an additional 50 pounds was added. The added 

mass did increase suspension displacement by about 50 percent per 50 pounds added.

When analyzing the effects of suspension preload it was found that the DRI value was 

not a good representation of the changes in seat dynamics. In general, an increase in 

preload resulted in an increase in acceleration observed by the occupant.  Increases in 

acceleration levels were observed when the spring preload was increased from 0, which is 

the suggested operating condition, to 1 or 2 inches were between 5 and 66 percent. The 

increased preload made the system respond similar to a rigid mounted seat. It was also 

found that an increase in acceleration resulted in a decrease in suspension displacement.  

The created input was used to analyze specific responses from the system. The square 

wave was used to calculate the damping ratio of the coil over system by implementing 

logarithmic decrement and analyzing the free response of the system. The damping ratio 

was fairly unaffected by changes in preload and occupant weight with an average value 

of 0.261. The 5 percent settling time of the system was found to be about 1.41 seconds. 

The impulse half sine wave was used to analyze the seat’s response to a singular impact 

event at different occupant weights and preload levels. The results were similar to that of 

the sea data analysis, as the preload increases the acceleration observed by the occupant 

increases and when the occupant weight increases the acceleration levels decrease. The 

response to a chirp input with frequencies ranging from 0.5 hz to 15 hz resulted in a 

transmissibility plot similar to a theoretical plot with a natural frequency of 2.03 hz.

The Simulink model was created and verified to with that of the experimental data 

obtained from the seat shake rig. The spring rates and damping coefficient within the seat 
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model were then varied from the original value to measure the effects. It was found that 

as the spring rate increases the acceleration levels increase. When the damping 

coefficient was set below its original value the DRI level increased, representing an 

increase in severity. However, the DRI increased when the damping coefficient was 

increased above its original value. A percentile data analysis proved that most of the 

changes were within the 90 percentile groups and higher.

10.2 Recommendation for Future Research 

While the results presented in this study are significant towards understanding shock 

mitigating seats and seat testing there are still opportunities for further improvement. One 

area for further research would be to test the same seat and instrumentation in an at sea 

test on one of the ships which the input acceleration data was provided. By using the 

same instrumentation variation in the response are reduced greatly so the laboratory and 

at sea data can be directly compared. This will confirm that the seat shake rig can be used 

to properly test a shock mitigating seat.  

Areas of improvement are revealed after an extensive data analysis was conducted. The 

first proposed change is to use an occupant mass that is more representative of a human 

occupant. This would provide a better representation of how the seat will be operated in a 

real at sea environment. A better representation of a human occupant would allow a more 

in-depth analysis of the effects of the seat cushion. 

The data analysis was mainly conducted in the time domain due to the simplicity of the 

analysis. The focus of this study was the evaluation of the seat shake rig and its ability to 

analyze the dynamics of a shock mitigating seat. Since the abilities to test in the time 

domain is now verified future research could be done in the frequency domain. Much 

research in vehicle dynamics is done in the frequency domain. This will also provide 

another tool to evaluate shock mitigating seat dynamics. 

The seat shake rig did not occur any failures during the duration of all tests conducted in 

this study. The system is extremely durable and reliable. With that mentioned, human 
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testing would provide a vast array of insight towards improving shock mitigating seats. 

By using a human for an occupant mass and having the test subject answer a simple 

survey it would be possible to correlate experimental test data to human subjective 

results. This could lead to improvements in testing procedures by further reducing the 

need for human testing if direct correlations are found.  
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Appendix A: MATLAB Code 

A.1 FFT Code 
function [frequencies,final] = MyFFT(FileName,option)
%Assign and open data file
open(FileName);
opened=ans;
displacement=opened.(option)'; %Add the filename after the "opened." 
for the data if structured

%Setting FFT window(bin) size
nfft=2^11; %Resolution is nsample/nfft

% Sample frequency
nsample=500;

% Create and adjust frequency axis
frequencies=0:nfft-1;
frequencies=frequencies*(nsample/nfft);

% Setting initial window
initial=fft(displacement(1:nfft));
previous=initial;

% Averages 2 windows at a time
N=floor((length(displacement)/nfft))-1;
for i = 2:N
    newData=fft(displacement(i*nfft+1:(i+1)*nfft));

    sum=previous+newData;
    average=sum/2;
    previous=average;
end
final=abs(average);

% Plot final results
figure('Name','Frequency Spectrum','NumberTitle','on')
plot(frequencies,final)
ylabel('Magnitude of X(omega)')
xlabel('Frequency (Hz)')
end
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A.2 Filtering and Plotting 
function [time, 
acceleration,velocity,displacement]=MyFilt(fname,option)
%% User interface
c=1;
test_num=1;

prompt = {'Enter High Pass Filter Frequency:','Enter low Pass Filter 
Frequency:'};
dlg_title = 'Data Selection';
num_lines = 1;
def = {'.5','7'}; % enter estimated values 
answer = inputdlg(prompt,dlg_title,num_lines,def);

highpass = str2double(answer(1));
lowpass = str2double(answer(2));

path = 'C:\Documents and Settings\Christopher 
Liam\Desktop\Accelerometer
calibration\SensorCalibration\7in5freqtest1\';
logger_tstart = '1732';
data_tstart = '0';
data_tend = '8';
offset = 0.3;
nn = 60;

%% sample time
n = str2double(data_tend) - str2double(data_tstart) + 1;
n_start = str2double(data_tstart); 
sampling_frequency = 500; % sampling frequency in Hz 
Starttime= 0; %seconds
Endtime = n* 60; %seconds of simulation to run
n_channel = 3;
data_length = sampling_frequency*nn; %data per minute
sample = 0:(data_length - 1);
time_array = [0:( 1 / sampling_frequency ):Endtime];
tsize = length(time_array);

%% Loading and decimating data
%Decimator = zeros(

for b = 1:n_channel
    Decimator{b} = sample*n_channel + b;
end

TimeOut = [];
DataOut = [];

%Data input
open(fname);
opened=ans;
DataOut = opened.(option)';%acceleration data. MAKE SURE DATA is in 
units of G
DataOut=double(DataOut);
Time = opened.Time';%time;
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%% Detrending and applying sensitivity for units

% 10 G Accel's
LF.Acc.Data.Raw = DataOut(:,1);

% Conversion to m/s^2 per accel sensitivity
LF.Acc.Data.Scale = LF.Acc.Data.Raw*9.81; %EDITTED for 32.3 ft/sec^2

% Detrending accel data for gravity DC offset
LF.Acc.Data.ZM = detrend(LF.Acc.Data.Scale);

%% Low Pass Filter (5th order butterworth @ 2.5 Hz) 

Fs = sampling_frequency; % 512 Hz sampling freq
Fn = Fs/2; % Nyquist Frequency

[b,a] = butter(5,lowpass/Fn,'low');

LF.Acc.Data.Filt = filtfilt(b,a,LF.Acc.Data.ZM);

%% Velocity Integration and Detrending

LF.Vel.Data.Scale = cumtrapz(LF.Acc.Data.Filt)/Fs;

[b,a] = butter(5,(highpass-0.0)/Fn,'high');
[bb,aa] = butter(5,(highpass+0.0)/Fn,'high');
[bbb,aaa] = butter(5,(highpass-0.0)/Fn,'high');

% Zero Phase Shift filtering scheme
LF.Vel.Data.ZM = filtfilt(bb,aa,LF.Vel.Data.Scale);

%% Displacement Integration and Detrending

LF.Disp.Data.Scale = cumtrapz(LF.Vel.Data.ZM)/Fs;

LF.Disp.Data.ZM = filtfilt(bbb,aaa,LF.Disp.Data.Scale);

%% Outputs for model
LF_Disp = LF.Disp.Data.ZM; %Raw displacement
LF_Vel = LF.Vel.Data.ZM; %Raw Velocity
LF_Acc = LF.Acc.Data.Filt; %Raw Acceleration

%% time
Time_Sim = 
linspace(0,1,length(LF_Disp))*length(LF_Disp)/sampling_frequency;

%% convert names
data_string = DataOut;
data_size = 13*length(data_string);

%% preallocate matrices
time_input = zeros(tsize,1);
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lp_lf_input = zeros(tsize,1);
n = zeros((data_size/13),1);
t = zeros((data_size/13),1); 
time_input(1) = 0;
lp_lf_input(1) = 0;

%%
%don't need this loop (using code above to populate matrix)
for i = 1:(data_size/13)
n(i) = ((i-1) * 13)+1;
t(i) = i; 
end
datamatrix = DataOut;

%% name data
%timeout = t / 512;
time=Time;
displacement=LF_Disp/0.0254;
velocity=LF_Vel/0.0254;
acceleration=LF_Acc/(0.0254*386.4);

%% Displacement Plot
figure('Name','input position vs time','NumberTitle','off')
plottools on
%plot(Time_Sim,StringDisp,'b')
hold on
plot(time,displacement,'r')
grid on
xlabel('Time (s)')
ylabel('Amplitude (inches)')
Title( 'Displacement')

%% Velocity Plot
figure('Name','input velocity vs time','NumberTitle','off')
plottools on
%plot(Time_Sim,StringVel,'b')
hold on
plot(time,velocity,'r')
grid on
xlabel('time(s)')
ylabel('amplitude inches or inches/sec')
Title( 'Velocity')

%% Acceleration Plot
figure('Name','input acceleration vs time','NumberTitle','off')
plottools on
%plot(Time_Sim,StringVel,'b')
hold on
plot(time,acceleration,'r')
grid on
xlabel('time(s)')
ylabel('acceleration(g)')
Title( 'Acceleration')

end


