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Machine Learning Approaches to Data–Driven Transition Modeling

Muhammad Irfan Zafar

(ABSTRACT)

Laminar–turbulent transition has a strong impact on aerodynamic performance in many
practical applications. Hence, there is a practical need for developing reliable and efficient
transition prediction models, which form a critical element of the CFD process for aerospace
vehicles across multiple flow regimes. This dissertation explores machine learning approaches
to develop transition models using data from computations based on linear stability theory.
Such data provide strong correlation with the underlying physics governed by linearized dis-
turbance equations. In the proposed transition model, a convolutional neural network–based
model encodes features from boundary layer profiles into integral quantities. Such automated
feature extraction capability enables generalization of the proposed model to multiple insta-
bility mechanisms, even for those where physically defined shape factor parameters cannot
be defined/determined in a consistent manner. Furthermore, sequence–to–sequence map-
ping is used to predict the transition location based on the mean boundary layer profiles.
Such an end–to–end transition model provides a significantly simplified workflow. Although
the proposed model has been investigated for two–dimensional boundary layer flows, the
embedded feature extraction capability enables their generalization to other flows as well.
Neural network–based nonlinear functional approximation has also been presented in the
context of transport equation–based closure models. Such models have been examined for
their computational complexity and invariance properties based on the transport equation
of a general scalar quantity. The data–driven approaches explored here demonstrate the
possibilities for improved transition prediction models.



Machine Learning Approaches to Data–Driven Transition Modeling

Muhammad Irfan Zafar

(GENERAL AUDIENCE ABSTRACT)

Surface skin friction and aerodynamic heating caused by the flow over a body significantly
increases due to the transition from laminar to turbulent flow. Hence, efficient and reliable
prediction of transition onset location is a critical component of simulating fluid flows in en-
gineering applications. Currently available transition prediction tools do not provide a good
balance between computational efficiency and accuracy. This dissertation explores machine
learning approaches to develop efficient and reliable models for predicting transition in a
significantly simplified manner. Convolutional neural network is used to extract features
from the state of boundary layer flow at each location along the body. These extracted
features are then processed sequentially using recurrent neural network to predict the am-
plification of instabilities in the flow, which is directly correlated to the onset of transition.
Such an automated nature of feature extraction enables the generalization of this model
to multiple transition mechanisms associated with different flow conditions and geometries.
Furthermore, an end–to–end mapping from flow data to transition prediction requires no user
expertise in stability theory and provides a significantly simplified workflow as compared to
traditional stability–based computations. Another category of neural network–based models
(known as ) is also examined which can learn functional mapping from input
variable field to output quantities. Such models can learn directly from data for complex set
of problems, without the knowledge of underlying governing equations. Such attribute can
be leveraged to develop a transition prediction model which can be integrated seamlessly
in flow solvers. While further development is needed, such data–driven models demonstrate
the potential for improved transition prediction models.
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Transition from laminar to turbulent flow significantly alters the fluid behavior, which can
have critical impact from a practical standpoint. Laminar flow is characterized by orderly
motion of fluid particles with little or no mixing. In contrast, turbulent flow is characterized
by chaotic changes, where unsteady vortices (known as eddies) of different sizes interact
with each other, consequently leading to enhanced mixing and increased viscous effects. The
transition process applies to nearly every type of fluid flow and is most often studied for
boundary-layer flow over a solid surface.

The aerodynamic performance of aerospace vehicles can be strongly impacted by laminar–
turbulent transition for a variety of applications across different flow regimes. Turbulent
boundary layers may have heating rates several times higher as compared to laminar bound-
ary layers. Even in the transitional region, heat transfer increases rapidly and can reach val-
ues higher than those in fully turbulent flow [1]. Such strong levels of aerodynamic heating
threaten the structural integrity of hypersonic re-entry vehicles. For commercial transport
aircraft, delaying transition to turbulent flow via various techniques of laminar flow control
typically leads to higher fuel efficiency due to reduced drag. Such performance improvement
has been central to the push towards greener technologies in the arena of aerospace research.
Boundary layer transition strongly influences the aerodynamic properties of wind turbine
blades, which can reduce the power output and energy capture significantly. Similarly, the
design of submarines, gas–turbine–engine blades, and subsonic and supersonic commercial
and military aircraft is strongly influenced by the boundary layer transition due to large
differences in aerodynamic properties between the laminar and fully turbulent regimes.

The significant differences between laminar and turbulent flow, both from a physics and
practical engineering standpoint, highlight the need to understand and accurately predict
the transition process. Consequently, efficient yet robust modeling of transition forms a
critical component in computational fluid dynamics (CFD) for simulating viscous flows [2].

Laminar–turbulent transition has been a subject of investigation for as long as the phe-
nomenon has been recognized, tracing back to the classical experiments conducted by Reynolds [3].
The transition process is often viewed as the outcome of the loss of stability of the laminar
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boundary layer, resulting in the amplification of disturbances generated via the interaction
of the boundary layer flow with its disturbance environment. Morkovin [4] categorized the
different paths to transition. When a laminar boundary layer develops along a body, tran-
sition to turbulence starts with the receptivity process where external disturbances excite
the instability modes. These forcing disturbances may exist in the freestream (turbulence
or noise) or be generated by the body itself (surface roughness, vibrations etc.). Depending
on the external disturbances, model geometry and the flow details, transition to turbulence
takes one of the paths [4], attributed as different transition mechanisms, which culminate
with the breakdown to fully turbulent flow. These transition mechanisms are categorized
and briefly introduced in this section.

Natural transition corresponds to a low freestream disturbance environment with freestream
turbulence intensity (Tu1) of less than 0:1% (typical flight conditions and wind tunnels with
well–conditioned flow) where slow amplification of unstable waves leads to transition. Under
benign disturbance environments, the process of natural transition can be subdivided into
three steps.

• where eigenmodes of a laminar boundary layer are excited as a result
of its interaction with the disturbance environment. These disturbances/fluctuations
provide the initial conditions for the eventual breakdown of laminar flow.

• The stage involves the amplification of the primary modes of instabil-
ities inside the boundary layer flow. The amplification in this stage is closely influenced
by the disturbance environment as well as the pressure gradient in the streamwise di-
rection. Sufficient amplification of the instability waves in this stage triggers secondary
and higher order instabilities.

• The last stage involves between instability modes resulting
in the onset of secondary and higher order instabilities, which excite wide range of
scales and frequencies in the flow, consequently leading to rapid breakdown to fully
turbulent flow. The breakdown process involves the development of turbulent spots,
which amplify to finally merge into a fully turbulent flow.

A visualization of a boundary layer flow undergoing natural transition has been shown in
the Fig. 1.1. Slow amplification of linear instability waves can be observed happening over a
long region (in the left half of the figure), successively followed by the occurrence of nonlinear
instability waves, the appearance of turbulent spots and breakdown to turbulence.
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Figure 1.1: Visualization of a flat plate boundary layer flow undergoing natural transition.
Contours show the wall–normal velocity perturbations. Figure adapted from Durbin [5] with
permission.

For two–dimensional boundary layers in subsonic flows, typical primary modes of instability
waves correspond to Tollmien-Schlichting (TS) waves. For three-dimensional boundary layer
flows, more complex mechanisms can be observed [6, 7]. For example, in case of a swept
wing, the transition process is known to be influenced by centrifugal instabilities on concave
walls, and by attachment line and crossflow instabilities. These instability mechanisms are
briefly introduced here.

are the streamwise viscous instabilities, travelling downstream as spanwise ori-
ented vorticity structures. TS waves were first theoretically studied by Tollmien [8] and
Schlichting [9] for the Blasius boundary layer, and experimentally observed for the first
time by Schubauer and Skramstad [10]. TS waves exist in zero or positive pressure gra-
dient regions where they experience exponential growth of instability waves corresponding
to some of the frequencies while decay for the rest. After undergoing slow amplification,
initially two–dimensional TS waves become three–dimensional, leading to the emergence of
turbulent spots and culmination into a fully turbulent flow. A favorable (negative) pressure
gradient has a stabilising effect on TS waves, which is used in designing natural laminar flow
airfoils [11]. TS waves are sometimes also referred to as .

instability is a feature of three–dimensional boundary layers which can develop
over swept wings or rotating disks due to presence of crossflow profiles. On swept wings, such
an instability arises due to the development of velocity component in the sweep direction.
Such velocity component results from the imbalance in the boundary layer flow between
constant pressure gradient and reduction of streamwise velocity near wall to zero [12]. An
inflection point exists in the crossflow profile, which is a necessary condition for the excitation
of crossflow instability. Such an instability becomes dominant as crossflow increases. Such
an effect can be observed on the swept wings for which the transition location moves forward
towards the leading edge as sweep angle of the wing increases.

are three–dimensional flow instabilities that can occur in boundary layers
of a rotating cylinder or a curved surface. They are named after the German physicist
Hermann Görtler, who first described the phenomenon in 1940 [13]. In a boundary layer,
fluid flows along a solid surface and slows down due to friction. The Görtler vortices arise
when the boundary layer flow is subject to a centrifugal force, as in the case of a curved
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surface with a convex curvature. The centrifugal force causes the fluid to move outward,
and this sets up a secondary flow that consists of a series of vortices that are oriented along
the surface. Görtler vortices can appear close to the leading edge stagnation point, where a
concave flow situation arises [14]. It seems unclear, however, whether Görtler vortices can
lead directly to transition in itself or can act only in aid with other instability mechanisms
for transition.

corresponds to the non-zero velocity at the leading edge of
the swept wings and vertical or horizontal stabilizers. Secondary and tertiary attachment
lines might also exist on the fuselage sides. Boundary layer flow due to this non–zero velocity
along the attachment line can be unstable, and can undergo transitional state.

At high-speed flows, where compressibility effect dominate, transition physics is consider-
ably more complex as compared to that in incompressible flows. As shown by Mack [15]
through compressible stability analysis, such added complexity can be attributed to three
major factors: dominance of three–dimensional viscous perturbations, presence of general-
ized inflection point and different acoustic modes (Mack modes) leading to rapid breakdown
to turbulence [16]. For supersonic flows with freestream Mach number less than 2, nonlinear
interplay between two oblique instability waves, with identical but opposing wave angles, can
lead to exponential growth of oblique instability. Such rapid mechanism leads to transition
earlier than the classical instability mechanisms. For hypersonic flows, transition process is
dominated by the first and second Mack modes [15]. Generally, the first mode dominates
in the lower range of Mach numbers and is analogous to TS waves by character and behav-
ior. Second mode dominates in the higher range of Mach numbers. The cross-over point
between the dominance of these two modes is dependent on the flow geometry and boundary
conditions.

Bypass transition corresponds to the strong disturbance environments (high surface rough-
ness, high freestream turbulence intensity (Tu1 > 1), etc.) [17]. In such cases, longitudinal
vortices are generated by freestream turbulence. Presence of longitudinal vortices in laminar
boundary layer can lead to rapid appearance of streamwise streaks. Transition to turbu-
lence occurs when the energy of the streaks grow significantly. Fig. 1.2 shows an example
of smoke visualization for a boundary layer flow over a flat plate with Tu = 6:6%, where
the streamwise streaks leading to transition are clearly visible. Classical processes of modal
interactions are bypassed and breakdown to turbulence under bypass transition can occur
at the Reynolds numbers lower than those predicted by the classical linear stability theory.
Roughness elements can also play a significant role in triggering streamwise streaks leading
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Figure 1.2: Boundary layer flow undergoing bypass transition. The contours show streamwise
velocity perturbations. Figure adapted from Durbin [5] with permission.

to transition. Bypass transition has been studied extensively, partly due to its relevance to
turbomachinery related flow and unavoidable noisy ground tests for aircraft.

In many cases, the boundary layer can often detach and go through a transitional phase
under the influence of a strong adverse pressure gradient. This occurs as the disturbances in
the unstable laminar layer amplifies. Transition to turbulence leads to enhanced mixing and
momentum transfer in the wall–normal direction, resulting in the elimination of reverse flow
and the reattachment of boundary layer. This whole phenomenon leads to the presence of a
re–circulation zone, referred to as . Primary instability in such a
case stems from the inflection velocity profile upstream of the separation point caused by the
adverse pressure gradient [18]. Separation–induced transition is strongly dependent on the
Reynolds number. Decreasing the Reynolds number has the influence of increasing viscous
damping effects, suppressing transition and, consequentially, delaying reattachment [19].

To cover all the possible transition mechanisms, two additional types are mentioned here.

phenomenon is associated to the contamination of flow due
to the existence of turbulence at the leading edge. Such phenomenon commonly occurs
around swept wings with large leading edge radius. It was observed for the first time during
experimentation of the swept wings in 1950s. In the swept wings, a strong velocity component
in the spanwise direction along the leading edge is induced by the geometrical sweep of the
wing. The streamwise component of the boundary layer flow can be strongly effected by
the presence of turbulence in the spanwise flow along the leading edge. The turbulence
at the leading edge can stem from turbulent attachment line, high freestream disturbance
environment or turbulent boundary layer around the fuselage [20]. Such contamination of
flow can effect the transition in chord-wise direction of the wing, unless disturbances are
suppressed by the strong presence of favorable pressure gradient [21, 22].

is the process of reverse transition process, where the flow undergoes
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transition from turbulent to laminar. Narasimha [23] categorizes relaminarization mecha-
nisms into three types. Reynolds number relaminarization can occur due to a decrease in
local Reynolds number based on the boundary layer edge velocity. Richardson relaminar-
ization can occur if a flow has to contend with buoyancy or curvature forces. Acceleration
relaminarization happens under the influence of strongly accelerated boundary layer flow [24].

Navier–Stokes equations completely describe the flow behavior through equations repre-
senting the conservation of mass, momentum and, if required, energy.

(DNS) refers to a solution obtained for the complete non-linear, time-dependent
Navier-Stokes equations through numerical methods. Such numerical solution does not in-
volve any model to resolve flow instabilities in pre–transition laminar region, their nonlinear
interactions in the transition region and finally the post–transition turbulent region. Con-
sequently, transition onset due to all possible mechanisms can be predicted through DNS
as it provides a complete space–time history of the flow field. The accuracy of DNS hinges
on the necessary condition to resolve spatial and temporal scales not only for the broad
spectrum of turbulence but also for the tiny–amplitude instabilities in the pre–transition
laminar region. Such stringent requirements of scales’ resolution necessitates immense com-
putational resources, which are impractical for most of the applications. However, DNS has
proven to be a valuable resource of data that has been used for the understanding of transi-
tion mechanisms, going back as early as 1980s, as discussed by Kleiser et al. [25]. Accurate
data from DNS has shown the ability to challenge classical transition theories and provide
new insights in flow physics, while having cheaper and better data acquisition than classical
experiments [26]. Furthermore, DNS data primarily serve as a valuable resource for the
calibration and validation of simplified transition models. Nevertheless, direct use of DNS
for transition prediction are significantly constrained by required computational resources
for foreseeable future, which necessitates the development of other methods for transition
prediction.

Large eddy simulation (LES) resolves only the important large scales, while the behavior of
small scales are using subgrid–scale models [27, 28]. As a result, this approach results
in considerably reduced computational cost, compared to DNS, due to less resolved grid. For
transitional wall–bounded flows, Piomelli [29] demonstrated that LES results on a grid of 23�
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48�24 points shows good agreement with the DNS results on a grid of 144�144�224 points.
Recently, Jee and coworkers have also demonstrated significant alleviation of computational
cost using the stability analysis in the pre–transition region [30, 31, 32, 33]. Although,
flow physics of large scale is preserved in LES, modeling of subgrid scale effects has its
consequence. Transition prediction using LES has shown significant sensitivity towards the
choice of subgrid–scale model. For example, the choice of Smagorinsky constant to determine
the subgrid eddy viscosity has signifcant effect on the predicted transition location [34, 35].
Other subgrid scale models [36, 37, 38] and different formulations of LES [39, 40] have been
proposed to overcome these challenges, many of which have shown their limitations as well.
Nevertheless, the computational cost of simulating transition using LES is still prohibitively
high for practical applications. Furthermore, specification of boundary conditions and initial
solution provides with further limitations towards the use of LES. Transition prediction is an
initial value problem and different freestream conditions (noise or turbulence) can strongly
effect the transition predictions.

eN

Linear stability theory (LST) involves tracking the linear amplification of instability waves
characterized by respective frequencies. The onset of transition occurs only after the am-
plitude of the most amplified wave has grown sufficiently. For two–dimensional boundary
layer flow in a curvilinear coordinate system (s; n), the governing equations of disturbances
(fluctuations) can be obtained from Navier–Stokes equations by decomposing flow variables
to mean-flow and fluctuating components and subtracting the undisturbed basic flow equa-
tions. Small amplitude, spatially evolving disturbances (u; v) to the mean flow (U; V ) can
be represented in a wave-form as:�

u
v

�
=

�
U(n)
V (n)

�
exp(i[’(s) � !t]) (1.1)

where ! and d’/ds = � represent the real–valued frequency and complex streamwise wave
number of the disturbance wave, respectively. i =

p
�1 is the imaginary unit. Substituting

the above representation in governing equations of disturbances and assuming
parallel flow (U � U(n) and V � 0) yields quasi–parallel form of disturbance equations.
For an incompressible flow, the quasi–parallel disturbance equations can be combined into
a well–known Orr–Sommerfeld equation, which can be represented in non–dimensionalized
form as:

(�U � !)
�
V 00 + �2V

�
� �U 00V =

�
V 0000 � 2�2V 00 + �4

�
/ (i Re�) (1.2)

where prime denotes the derivative with respect to the wall–normal coordinate (n) and Re�

represents momentum thickness–based Reynolds number. Orr–Sommerfeld equation has
been named after Orr [41, 42] and Sommerfeld [43] who independently studied the stability
theory of fluid dynamics and arrived at this equation in early 1900s. Equation 1.2, along
with appropriate boundary conditions, constitutes an eigenvalue problem to determine local
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N-factor 

envelope

Figure 1.3: N–factor curves (in red) for different frequencies and corresponding N–factor
envelope (in black) are plotted along the airfoil surface. Transition location (shown with
blue arrow) is related to a threshold value of N=9.

values of wave number � for each of the instability wave characterized by frequency parameter
!. These computed wavenumbers determines whether an instability wave will grow or decay,
and the local amplification rate of an instability wave is given as:

� = � Im(�(!; s))

where Im(: ) denotes the imaginary part of a complex quantity. Amplification rate of a
disturbance is then integrated along a streamline to obtain logarithmic amplification of the
disturbance amplitude as:

N(!; s) =

Z s

s0

�(!; ~s)d~s

where s0 represents a neutral station where the disturbance first started amplifying.

While the amplification of linear instabilities can be predicted by Orr-Sommerfeld equation,
prediction of transition onset requires some method based on these computed instabilities.
Smith and Gamberoni [44] and van Ingen [45] developed a method, known as the eN method,
which leverages the empirically defined thresholds for the most amplified instability wave, at
which location transition to turbulence occurs. Such illustration has been made in Fig. 1.3,
where N-factor curves corresponding to different frequencies are plotted and N-factor enve-
lope is defined by most amplified instability at each location.
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Low Reynolds-number turbulence models have shown certain ability to predict transition
process, especially bypass transition [46]. Such ability can be attributed to the mathemat-
ical nature of the turbulence model equations [47]. For k–! turbulence model, transport
equations of turbulent kinetic energy (k) and specific turbulence dissipation rate (!) con-
tain production and dissipation terms, sum of which represents the net production for each
turbulent quantity. Onset of transition can be correlated to the evolution of net production
term of turbulent kinetic energy (k) from negative to positive value. Similarly, transitional
region can be simulated as the net production of specific turbulence dissipation rate (!)
evolves from negative to position value. Such reasoning can be extended to other turbulence
models as well.

Savill [48, 49] analyzed low Reynolds number turbulence models for simulating bypass transi-
tion. Non–linear eddy viscosity models have been analyzed for bypass transition by Lardeau
et al. [50]. Reynolds stress models have also been analyzed for simulating bypass and
separation–induced transition [51, 52]. All these investigations, however, demonstrated that
these turbulence models, without special modifications, are not reliable to simulate transi-
tion process [16, 53]. Such behavior can be attributed to the fact that the ability of these
turbulence models to predict transition in specific cases is not based on the intrinsic physics
of transition. To some extent, these models are capable of predicting the statistical behavior
of transitional flows, instead of simulating transitional dynamics.

The earliest correlation methods for transition prediction were algebraic, based on local
quantities of interest. Such correlations are generally categorised as local–correlation meth-
ods which do not take into account the upstream flow information as required by LST or
PSE. Despite this, many of these correlation methods provide a reasonable approximations
of transition predictions for several instability mechanisms.

A frequently used correlation method, proposed by Abu–Ghannam and Shaw [54], correlates
the Reynolds number based on momentum thickness (Re�) with the freestream turbulence
intensity (Tu1) and local pressure gradient parameter (�). The correlation is given as:

Re�;t = 163 +

�
F (�) � F (�)

6:91
Tu1

�
(1.3)

F (�) =

(
6:91 + 12:75� + 63:64�2 if � � 0

6:91 + 2:48� � 12:27�2 if � > 0
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Transition is considered to occur as the computed Re� exceeds the value determined from
Eq. 1.3. Re� values are determined based on fully laminar solution, which is then used
to approximate the location of transition onset. Dependence on turbulence intensity of
freestream flow allows to account for bypass transition mechanism as well. Earlier, relatively
simpler correlations have also been proposed to predict transitional momentum thickness
Reynolds number as a function of streamwise Reynolds number [55], or as a function of local
pressure gradient and neutral stability location [56]. Correlation based on shape factor, a
scalar boundary layer parameter, has also been proposed by Wazzan et. al. [57].

Algebraic intermittency model has also been proposed which makes use of an empirical
correlation to describe the streamwise evolution of intermittency (
) [58]. Transitional flows
are characterized by intermittent behavior, where 
 is the fraction of time during which the
flow is turbulent; 
 = 0 corresponds to laminar flow and 
 = 1 corresponds to fully turbulent
flow. The empirical correlation for the evolution of intermittency is given as:


 =

(
1 � exp

h
�

�
�(x�xt)

2n�
U

�i
; (x ⩾ xt)

0; (x ⩽ xt)
(1.4)

where 
 is given as function of transition onset location xt, formation rate of turbulent spots
n, propagation rate �, and the freestream velocity U . Transition onset location xt can be
determined by additional correlations based on freestream turbulence intensity and momen-
tum thickness Reynolds number, few of which have been mentioned earlier. Intermittency
factor 
 is incorporated algebraically through its multiplication with eddy viscosity, which
results in modulation of turbulence through 
 in the transitional region. In this manner,
such intermittency model provides insight into the flow dynamics within the transitional
area, unlike other correlation methods which only predicts the location of transition onset.

Correlation-based methods are generally reliable for the instability mechanisms or flow
regimes for which they are calibrated, which limits their generalization capabilities. Fur-
thermore, functional dependence on � and Re� makes them difficult to integrate seamlessly
with CFD solvers.

PDE-based transport equation models for transition prediction have primarily been proposed
to work seamlessly with RANS CFD codes. These models tend to be locally correlated which
makes them amenable to parallelization as well as to unstructured mesh applications like
other CFD codes. Instead of describing the transition physics, these transport equation
models are purposed to mimic the statistical behavior of transitional process. Some of the
physics could instead be contained in such models through empirical correlation incorporated
in these models’ formulations. Such models are briefly introduced here.

• kL One of the first PDE-based transition model
was developed by Walters and Leylek [59] by bifurcating the turbulence kinetic energy
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(k) equation, in k–" turbulence model, to turbulent and laminar components of kinetic
energy. Laminar kinetic energy (kL) represents the streamwise fluctuations before
transition to turbulence. These streamwise fluctuations are structurally different from
turbulent fluctuations and their intensities can reach several times of freestream level.
This model has demonstrated the capability of predicting for both natural and bypass
transition with modifications in production terms of transport equations.

• This transition model, developed by Langtry and
Menter [17], is based on transport equations for two quantities; intermittency (
) and
transition onset momentum-thickness Reynolds number (Re�;t). Intermittency (
) in-
dicates the intermittent behavior of the flow in term of the fraction of time during
which flow is turbulent [58]. Intermittency transport equation provides distribution
of intermittency across the boundary layer leading to more accurate transition predic-
tions. Re�;t serves as a transition-triggering criterion. The combination of these two
transport equations are also referred to as 
–Re� model, whereas 
–Re� model cou-
pled with SST turbulence model is referred to as ’Langtry-Menter’ model. This model
makes use of many empirical correlation based on physical reasoning and has shown
considerable success in accurate predictions of transition process for wide range of
flows [17, 60]. One primary drawback of Langtry-Menter model is the lack of Galilean
invariance, as the correlations are explicitly based on velocity vectors [17], for which
modification has been proposed to render the model Galilean invariant [61]. Langtry-
Menter model has further been recast as one-equation transition model by eliminating
Re�;t equation, known as 
–model [62]. With additional modification, this model also
ensures Galilean invariance. Both 
–Re� model and 
–model have also been coupled
with Spalart-Allmaras turbulence model to reduce the computational expense [63, 64].

• This transition model [65, 66] is
based on the approximation of envelope eN method developed by Drela and Giles [67].
AFT models avoids the need for integration paths and nonlocal operations by using
correlation based on local pressure-gradient parameter HL. A single transport equation
based on the amplification factor (~n) is solved, which accounts for the for the upstream
flow history by approximating the growth of N-factor. The source term of the transport
equation is dependent on boundary layer shape factor H12 which is estimated by using
local parameter HL. AFT transition model has been adapted to be used with Spalart-
Allmaras and SST turbulence models.

Advances in high-performance computing and experimental measurement capabilities have
led to the availability of large amounts of data in fluid dynamics, and scientific inquiry has
gravitated from first principles towards data-driven approaches. Machine learning (ML)
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provides a wealth of modular and agile modeling techniques that can be used to extract
information from data and to augment domain knowledge about the underlying physics. In
the field of CFD, ML algorithms have shown potential benefits towards enhanced develop-
ment of reduced order models, improved turbulence modeling, and accelerated high-fidelity
simulations [68]. In this research work, similar ML advances are leveraged towards modeling
of laminar-turbulence transition.

Many challenges need to be addressed towards achieving a reliable and efficient transition
model which can be integrated seamlessly in CFD simulations. Desirable attributes associ-
ated with such transition model include its applicability to all relevant transition mechanisms,
automated transition prediction, suitability to multiple turbulence models, and compatibility
to unstructured grids and parallelizable CFD codes. To this end, transition prediction meth-
ods, discussed above, still need to overcome limitations associated with each of them. Linear
stability computations are computationally expensive and their non-robust nature requires
user expertise in stability theory. Hence they are difficult to integrate in an automated fash-
ion in CFD solvers. Many surrogate models developed are generally based on small set of
parameters and lack generalizability to multiple transition mechanisms. Transport-equation
based models can be integrated in RANS solvers, however these transition models have lim-
ited physics basis. Furthermore, they are designed for selected few transition mechanisms
and are suited to only one or two turbulence models.

Different neural network–based models are explored in this work to address a few of these
challenges in the context of stability based transition models so that they can be integrated
into CFD codes. To the extent that the LST allows direct estimates of the amplification
of instability waves via the linearized approximation to the Navier-Stokes equations, the
NN-based surrogate models have direct correlation with underlying physics of transition
mechanism. The proposed recurrent neural network based model has the potential to enable
transition prediction in an automated fashion with greatly simplified workflow.

This dissertation follows the format. The content of each chapter is as follows:

Introduces the transition problem, presents an overview of the transition mech-
anisms associated with different flow conditions and geometries, literature review of
different transition prediction methods/models, and summarizes the outline, content
and contributions of the dissertation.

Consists of a peer reviewed paper, titled
and published in Physical Review

Fluids (reproduced here with permission from American Physical Society). This paper
presents a convolutional neural network based model which processes mean boundary
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layer profiles in physics-consistent manner to predict the amplification of instability
waves, and uses that information to model the location of transition onset.

Consists of a peer reviewed paper, titled
and published in Data-Centric En-

gineering (reproduced here with permission from Cambridge University Press). This
paper presents an end-to-end, recurrent neural network based model which provides a
sequence–to–sequence mapping between mean boundary layer data and the amplifica-
tion of the most amplified instability modes. Such a model provides a greatly simplified
workflow for transition predictions, and it has been developed as well as analyzed by
using a large dataset for two-dimensional boundary layers over several airfoils.

Introduces neural operators and discusses their effectiveness in learning NN-
based functional representation, mimicking the behavior of transport-equation based
closure models for transition.

Consists of a peer reviewed paper, titled
and published in Communications in

Computational Physics (reproduced here with permission from Global Science Press).
This paper presents and examines two neural operators for their invariance properties
and computational complexity, based on approximating a transport PDE of a scalar
quantity.

The main contributions of this dissertation towards the goal of developing efficient and
reliable data–driven transition model are listed here:

• Proposed model has the ability to encode information from boundary layer profiles
into a set of integral quantities, which show strong correlation with the physically
defined shape factor parameter. This should enable the generalization of this model
to multiple instability mechanisms for which a shape factor cannot be evaluated in an
accurate manner.

• Proposed an end-to-end transition prediction model based on linear stability based cor-
relation, with a significantly simplified workflow requiring no user expertise in stability
theory.

• Investigated neural operators to mimic the behavior of transport PDE-based closure
models, especially with respect to their invariance properties and computational com-
plexity.
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