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Firm’s Optimal Resource Portfolio under Consumer Choice, and Supply

and Demand Risks

Weiping Chen

(ABSTRACT)

We study the optimal resource portfolio for a price-setter firm under a consumer choice
model with supply and demand risks. The firm sells two products that are vertically differ-
entiated, and has the option to invest in both dedicated and flexible resources. Our objective
is to understand the effectiveness of the two hedging mechanisms, resource flexibility and
demand management through production differentiation, under demand and supply risks.

We show that the presence of consumer-driven substitution does not always reduce the
need for the firm to offer differentiated products. In particular, when the firm faces demand
risk and differential production costs, it might invest in the flexible resource and offer dif-
ferentiated products for a wider range of parameters. Interestingly, more uncertainty (in
the form of additional supply risk) does not always make the firm more eager to adopt a
hedging mechanism. This depends on the relationship between resource risks, product at-
tributes, and resource investment costs. On the other hand, when the firm invests in the
flexible resource, this never completely replaces the dedicated resources, and always results
in a “diverse” resource portfolio. While this happens in the supply risk setting mainly due to
resource diversification advantage, it also happens in the demand risk setting due to the ver-
tical differentiation between the products. Finally, in the absence of differential production
costs, demand management by itself (without resource flexibility) becomes powerful enough
to hedge against the demand risk, but not the supply risk, due to the additional resource
diversification benefit of the flexible resource in the latter setting.
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Chapter 1

Introduction and Motivation

A major decision faced by firms producing “differentiated (substitutable)” products (i.e.,
products that serve similar consumer needs) is their resource investment decision. This
decision encompasses the firm’s technology choice (i.e., “product-dedicated” resources versus
a more expensive “flexible” resource1 that can produce multiple products simultaneously)
as well as the investment capacity for each type of resource. When making the resource
investment decision, the firm faces risks from both demand and supply sides. A major cause
of the demand side risk is the long lead times needed for resource acquisition, which force the
resource investment decision to be made long before market conditions are observed (see Van
Mieghem [25] for further discussion). The risk from the supply side may occur because the
usable resource capacity at the production stage may differ from the target investment level.
In this dissertation, we consider one form of this supply risk, that of resource disruption,
which may arise due to accidents (e.g., fire), natural disasters (e.g., earthquake, hurricane),
labor-related causes (e.g., labor strikes), or supply chain disruptions (see, for instance, Dada
et. al. [9], Snyder and Shen [20], Tomlin and Wang [23]), rendering the resource unavailable
for production.

A variety of hedging mechanisms can be used to mitigate the different supply and de-
mand risks. In this dissertation, our focus is on research flexibility and demand management
through product differentiation. Resource flexibility allows the firm to redistribute the ca-
pacity among the different products the resource can produce in response to how uncertainty
is resolved (“firm-driven substitution”). On the demand side, an integration of pricing and
product differentiation enables a powerful demand management, as it allows the firm to
induce consumers to switch – through appropriate pricing mechanisms – to the product it
wants to sell (“consumer-driven substitution”), based on how uncertainty is resolved. Al-
though demand management with product differentiation does not require resource flexibility,
its power can be enhanced by it, since then the firm can use a combined strategy of firm-
and consumer-driven substitution. This is yet another advantage of the flexible resource –

1This is also referred to as “product-mix flexibility” in the literature.
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Weiping Chen Chapter 1. Introduction 2

in addition to the well-studied risk pooling and contribution margin benefits (Van Mieghem
[24]). In the marketplace, firms that utilize product differentiation and resource flexibility
disjointly or together co-exist. For example, “Ford managed to earn $7.2 billion (in 1999),
more than any auto maker in history,” in part due to a new pricing strategy that helped
change the mix of vehicles it sells (Coy [8]). Consider Pontiac Aztek and Buick Rendezvous,
both built in GM’s Ramos, Mexico plant. “While the demand for Aztec was well less than
forecasted, the Rendezvous became very popular. Product-mix flexibility was key to meeting
demand and enhancing profitability in this situation. Nonetheless, price flexibility was also
an important lever in balancing supply and demand, as significant discounts were offered to
spark demand for Aztek”(Biller et al. [3]). During the Taiwan earthquake in 1999, Dell was
able to steer customers to buy computer configurations that Dell could make from the avail-
able components, by giving them either a free or cheap upgrade (Tomlin [22]). An important
question then is, when is product differentiation (in conjunction with pricing), by itself (i.e.,
without resource flexibility), sufficient to hedge against supply and demand risks, and when
it is not, so the firm has to acquire the more expensive flexible resource to empower or even
replace it?

Most research that studies the firm’s optimal resource portfolio with dedicated and
flexible resources considers that the flexible resource produces “independent” (i.e., neither
substitutable nor complementary) products; thus consumer-driven substitution does not exist
(e.g., Bish and Wang [4], Fine and Freund [10], Van Mieghem [24]). However, examples of
flexible resources producing vertically or horizontally differentiated products are abundant.
Sony can quickly shift from one model of camcorder to another (Nakamoto [18]). “Nissan’s
new Canton, Mississippi assembly plant can send a minivan, pickup truck, and sport-utility
vehicle down the same assembly line, one after the other, without interruption.” (Welch [26]).
“ Mazda’s plant in Hiroshima builds the RX-7 (a rear-wheel-drive sports car in standard and
convertible versions), the 929 (a rear-wheel-drive luxury car), the 121 (a front-wheel-drive
mini car), and the 323 (a front-wheel-drive compact car) on the same assembly line” (Goyal
et al. [11]). Ford’s plant in Norfolk, VA, builds eight different truck models on two platforms
(Mcmurray [14]). Another important question then is how producing differentiated products
(hence the existence of consumer-driven substitution) alters the firm’s hedging mechanism
under demand and supply risks?

To answer these questions, we consider a firm that can offer two “vertically differenti-
ated” products, and employs a responsive pricing strategy under which it delays its pricing
decision until after market conditions are observed (see Chod and Rudi [6] for further dis-
cussion on responsive pricing). Vertical differentiation occurs when different products can
be ranked according to some characteristic, such as quality. That is, if offered at the same
price, all consumers will rank the vertically differentiated products in the same way (i.e., a
higher quality product is always preferred to a lower quality product). We utilize a discrete
choice model, which deals with a group of consumers making mutually exclusive decisions
on a set of differentiated products, because this choice model is considered to be a realis-
tic framework for modeling the demands for differentiated products. It can also capture
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consumer preference and product characteristics explicitly (see, for instance, Anderson et al
[1]). The firm has the option to invest in two product-dedicated resources and/or one flexible
resource that can produce both products. On the risk side, we consider both the demand
risk, coming from the uncertainty in market size, and the supply risk, coming from imper-
fectly reliable resources. The effectiveness of product differentiation and resource flexibility
strategies depends, among other things, on the interplay between firm-driven substitution
and consumer-driven substitution, both of which we explicitly model. To isolate the effect
of product differentiation, we first consider a “dedicated-only setting,” in which the flexible
resource is not available to the firm as a technology choice. We then study the “flexible
setting,” in which both dedicated and flexible resources are an investment option.

Most previous research that studies the firm’s resource portfolio decision in the presence
of dedicated and flexible resource options considers only the demand risk and assumes a per-
fectly reliable supply, and, as stated above, either completely ignores the consumer-driven
substitution effect, or uses aggregate linear demand models that fail to accurately repre-
sent the complexities of the consumer choice process ( Lus and Muriel [13]). On the other
hand, the economics and marketing literature that more realistically models the demand
of differentiated products (using a discrete consumer choice process) typically assumes that
capacity is infinite (so there is no supply risk) (e.g., Moorthy [15], [16], Mussa and Rosen
[17]). Finally, research that studies the firm’s resource portfolio decision under both supply
and demand risks is very recent, and ignores the demand management aspect of the problem
(i.e., product differentiation and pricing) (Tomlin and Wang [23]). In that sense, our research
is one of the first to combine these different streams of research to study the firm’s optimal
resource portfolio, considering differentiated products, whose demands are derived from a
consumer choice process, under both supply and demand risks. As far as we are aware, there
is only one dissertation that studies the firm’s investment decision under a consumer choice
model (Kouvelis and Yu [12]), but considering only dedicated resources and demand risk.

Our contributions are as follows.

• Our consumer choice model gives rise to a multiplicative form of demand shock, as a
result of which demand uncertainty in the dedicated-only system does not affect the
resource mix in the optimal portfolio, but only their capacities. This makes the firm
partially immune to demand forecast errors (as long as the demand shock is multiplica-
tive; this result does not hold for additive demand shock). However, this immunity
disappears when there is supply uncertainty, or when there is demand uncertainty and
the flexible resource is an investment option.

• The presence of consumer-driven substitution does not always reduce the need for
the firm to offer differentiated products. In particular, when the firm faces demand
risk and differential production costs, it might invest in the flexible resource and offer
differentiated products for a wider range of parameters.

• More uncertainty (in the form of additional supply risk) does not always make the
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firm more eager to adopt a hedging mechanism (i.e., resource flexibility or enhanced
demand management through product differentiation), both in dedicated-only and
flexible settings. This depends on the relationship between resource risks, product
attributes, and resource investment costs.

• When the firm invests in the flexible resource, this never completely replaces the ded-
icated resources, and always results in a “diverse” resource portfolio. Thus, it is never
optimal to acquire a portfolio with the flexible resource only. While this happens in the
supply risk setting mainly due to the resource diversification advantage, it also happens
in the demand risk setting due to the vertical differentiation between the products.

• In the absence of differential production costs, demand management by itself becomes
powerful enough to hedge against the demand risk. Thus, a necessary condition for the
flexible resource in this setting is differential production costs. This finding is different
from the existing literature (e.g., Bish and Wang [4], Van Mieghem [24], both of which
study independent products, with no consumer-driven substitution), and arises due to
the presence of consumer-driven substitution in our model. This, however, no longer
holds in the supply risk setting due to the additional resource diversification benefit of
the flexible resource.

The remainder of this dissertation is organized as follows. We first introduce the nota-
tion and the discrete choice model in Chapter 2. In Chapter 3, we provide the mathematical
formulation of the problem and discuss our solution methodology. In Chapter 4, we study
the effectiveness of product differentiation considering dedicated-only system. We further
investigate the effectiveness of an integrated product differentiation and resource diversifi-
cation strategy in the flexible system in Chapter 5. We discuss the implications of relaxing
two of our major assumptions in Chapter 6, and provide the conclusions and future research
directions in Chapter 7. To improve the presentation, we delegate all proofs to the technical
Appendix.



Chapter 2

The Model

We consider a monopolist selling two “vertically differentiated” products that only differ
by a single attribute, such as quality, a higher level of which is preferred by all consumers.
(Representing each product by a single attribute is a simplification, since in reality products
will differ in several attributes. However, a single attribute representation is sufficient for
our purpose of gaining insights.) Consequently, if both products are offered at equal prices,
then there exists a natural ordering of products. However, the value of the attribute may be
different for different consumers.

To represent the price-demand relationship, we utilize a consumer choice (discrete choice)
model of vertical differentiation, commonly used in the economics and marketing literature
(e.g., Moorthy [16], Mussa and Rosen [17], Tirole [21]) as well as the operations management
literature (e.g., Choudhary et al. [7], Kouvelis and Yu [12], Rhee [19]). Specifically, let si

denote the attribute value of product i, i = 1, 2, and assume, without loss of generality
(wlog), that s2 > s1. Thus, while products are vertically differentiated, they are not perfect
substitutes. To present the consumer choice model, we follow the description in Moorthy
[16] and Tirole [21]. We consider a population (market) of N heterogenous consumers, and
model the distribution of consumer type, T , by a continuous uniform distribution having
support in [0, b], as commonly done in the related literature (e.g., Choudhary [7], Moorthy
[15] and [16], Rhee [19]). Let fT (.) and FT (.) respectively denote the probability density
function and cumulative distribution function of T . A consumer of type t has the following
preferences:

u ≡
{

ts− p, if the consumer buys a product with attribute value s at price p

0, otherwise,

where u can be thought of as the “utility surplus” the consumer derives from consuming the
particular product. Thus, the utility is separable in both attribute value and price. While
all consumers prefer a higher value of the attribute for a given price, a consumer with a
higher value of t will be willing to pay more for the same attribute. We assume there are no

5
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income effects in the utility functions of these consumers (i.e., each consumer’s expenditure
on the product is only a small amount of her total expenditure so that her choice does not
affect her marginal utility of income).

Each consumer buys at most one product from the monopolist’s product line, based on
the principle of maximization of her individual utility, that is, the consumer’s choice set is
given by {0, 1, 2}, where 0 corresponds to the “no purchase” option (from which, wlog, the
consumer derives a utility of zero), and i, i = 1, 2, corresponds to purchasing product i. Let
pi, i = 1, 2, denote the price of product i, and let di(p1, p2), i = 1, 2, and d0(p1, p2) respectively
denote the number of consumers who purchase product i, and who do not purchase any
product. Then, d0(p1, p2) = N Pr(Tsi − pi ≤ 0, i = 1, 2) and di(p1, p2) = N Pr(Tsi − pi ≥
max{Ts3−i− p3−i, 0}), for i = 1, 2. Thus, a direct implication of our consumer choice model
is that consumers may be induced to substitute the products with each other by the firm’s
pricing strategy (consumer-driven subsitution).

We assume that the monopolist’s product design (i.e., 0 ≤ s1 < s2) is exogenously de-
termined. Then, faced with the above consumer choice process, the monopolist’s problem
is to determine the “resource investment portfolio,” consisting of flexible and dedicated re-
sources, ex-ante, under demand and supply uncertainty, and production and pricing strategy,−→q = (q1, q2) and −→p = (p1, p2), ex-post. This represents the fact that resource investment
is a long-term decision, while production and pricing decisions can be made on a relatively

shorter term. We denote the resource portfolio by
−→
K = (K1, K2, Kf ), where Ki, i = 1, 2,

denotes the acquired capacity for dedicated resource i, and Kf denotes that for the flexible
resource. As mentioned in Chapter 1, demand side uncertainty arises in the form of market
size (N) uncertainty. We let fN(.) denote the probability density function of N , with support
in [0,∞). We make no distributional assumptions on N . On the supply side, we consider
uncertainty arising in the form of resource disruptions in which the failed resource becomes
completely unusable (as in Snyder and Shen [20] and Tomlin and Wang [23]). The supply
process may have a Bernoulli nature, due, for example, to labor strikes, natural calamities,
accidents (e.g., fires), or supply chain disruptions. To model this phenomenon, we associate a
Bernoulli random variable, Yi, for resource type i = 1, 2, f , where Yi = 1 with probability θi,
and Yi = 0 with probability 1− θi, where 0 < θi < 1. We assume Y1, Y2, Yf are independent

and define
−→
Y = (Y1, Y2, Yf ). Note that the supply uncertainty considered here is different

from yield uncertainty, which, in the context of our model, refers to the production capacity
of a resource differing from its investment capacity by a random amount (see Yano and Lee
[27] for a review of yield uncertainty).1 In Chapter 6.2, we discuss the implications of supply
disruptions versus yield uncertainty on our results.

On the financial side, the monopolist incurs a unit cost of ci, i = 1, 2, f, for investing
in resource type i, with max{c1, c2} < cf < c1 + c2 (this assumption is made to rule out
trivial solutions), and a unit production cost of αs2

i for product i, i = 1, 2, with α ≥ 0.

1Another form of supply uncertainty is lead time uncertainty (see Çakanyildirim and Bookbinder [5] for
a review), which is not relevant in our single-period production setting.
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(Both assumptions are common in the operations management and industrial organization
literature, see, for example, Bish and Wang [4], Fine and Freund [10], and Van Mieghem
[24] for the investment cost assumption; and Banker [2], Moorthy [16], and Rhee [19] for the
production cost assumption). The production cost that is convex increasing in the attribute
value can well capture the fact that it will be increasingly more expensive for the firm to
improve the attribute value (e.g., quality) by a certain amount, due, in part, to costs of
acquiring high quality raw material, operating high precision equipment, and additional
organizational training to produce a higher valued product (Banker [2]). Here, α represent
the production efficiency of the firm, where a low value of α means more efficient production
technology (Rhee [19]). We further assume that (s1 +s2) < b/α, that is, observing the upper
limit of consumer type and its production efficiency, the firm does not position its products
at a too high attribute level such that it is never optimal for the firm to produce the higher
attribute product even without any resource capacity constraints.

We model the monopolist’s decision problem as a two-stage stochastic programming

problem. In the first stage, the market size (N) and resource disruption vector (
−→
Y ) are ran-

dom variables, and the firm determines its optimal resource portfolio (
−→
K ) so as to maximize

its expected profit. Then, in the second stage, the firm observes the realization of the market
size (n) and usable resource capacities (yiKi, i = 1, 2, f), and sets product prices (−→p ) and
production quantities (−→q ) so as to maximize its profit subject to the resource capacity con-
straints imposed by its first stage decision. This two-stage framework leads to the following
mathematical formulation:

Problem P:

Stage 1 Problem P1:

max−→
K

V ≡ E
N,
−→
Y

[Π∗(
−→
K, N,

−→
Y )]−

∑

i=1, 2, f

ciKi (2.1a)

subject to Ki ≥ 0, i = 1, 2, f. (2.1b)

Stage 2 Problem P2:

Π∗(
−→
K,n,−→y ) ≡ max−→p ,−→q

Π(
−→
K, n,−→y ) = max−→p ,−→q

2∑
i=1

qi(pi − αs2
i ) (2.2a)

subject to

qi ≤ yiKi + yfKf , i = 1, 2 (2.2b)

q1 + q2 ≤ y1K1 + y2K2 + yfKf , (2.2c)

qi ≤ di(
−→p ), i = 1, 2 (2.2d)

pi ≥ 0, i = 1, 2 (2.2e)

qi ≥ 0, i = 1, 2, (2.2f)

di(
−→p ) ≥ 0, i = 1, 2. (2.2g)

In the above formulation, constraints (2.2b) and (2.2c) respectively ensure that the
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production quantity of each product, and the total production, do not exceed the respective
capacities. Constraint (2.2d) ensures that the production of each product does not exceed its
demand. Constraints (2.2e) - (2.2g) are the nonnegativity constraints for prices, production
quantities, and demands, respectively.

To understand the effect of the different demand and supply risks, we study several
variations of Problem P: with no uncertainty (the deterministic system), with demand
uncertainty only (DU), with supply uncertainty only (SU), and with both demand and supply
uncertainty ((S+D)U). When we say a property holds for the “general setting,” this means it
holds for variations DU, SU, and (S+D)U. In addition, we define the “dedicated-only system”
as one in which the flexible resource is not available to the firm as an investment option,
and the “flexible system” as one in which both dedicated and flexible resources are available

for investment. We let
−→
KD = (KD

1 , KD
2 ) denote the optimal portfolio in the dedicated-only

system and
−→
K ∗ = (K∗

1 , K
∗
2 , K

∗
f ) the optimal portfolio in the flexible system.



Chapter 3

Preliminaries: Properties of the
Optimal Resource Portfolio

In this Chapter, we first derive some properties of Problem P in the general setting, and
then characterize its optimal solution for the demand uncertainty only (DU) setting (i.e.,
when Yi = 1 with probability one, for i = 1, 2, f). The characterization gets quite complex
for supply uncertainty only (SU) and supply and demand uncertainty ((S+D)U) systems,
whose analysis we therefore limit to the α = 0 case.

Proposition 1. For the general setting, given n,−→y , and
−→
K , the optimal prices to Problem

P2, (p∗1, p
∗
2), satisfy 0 ≤ p∗1

s1
≤ p∗2−p∗1

s2−s1
≤ b, leading to

d1(p
∗
1, p

∗
2) = n Pr(

p∗1
s1

≤ T ≤ p∗2 − p∗1
s2 − s1

) =
n

b
(
p∗2 − p∗1
s2 − s1

− p∗1
s1

) and

d2(p
∗
1, p

∗
2) = n Pr(T ≥ p∗2 − p∗1

s2 − s1

) =
n

b
(b− (p∗2 − p∗1)

s2 − s1

).

Proof: See Appendix A.1. 2

Proposition 2. For the general setting, there exists an optimal solution to Problem P2 in

which q∗i = di(
−→
p∗), i = 1, 2 (i.e., constraints (2.2d) are tight).

Proof: See Appendix A.2. 2

Utilizing Propositions 1 and 21, the formulation for Problem P2 reduces to the following
equivalent formulation in which prices are the only decision variables:

1We note that Propositions 1 and 2 in fact hold for any arbitrary, continuous distribution of T .

9
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Stage 2 Problem P2:

Π∗(
−→
K, n,−→y ) = max−→p

n

b
[(

p2 − p1

s2 − s1

− p1

s1

)(p1 − αs2
1) + (b− (p2 − p1)

s2 − s1

)(p2 − αs2
2)](3.1a)

subject to
n

b
(
p2 − p1

s2 − s1

− p1

s1

) ≤ y1K1 + yfKf (3.1b)

n

b
(b− (p2 − p1)

s2 − s1

) ≤ y2K2 + yfKf (3.1c)

n

b
(b− p1

s1

) ≤ y1K1 + y2K2 + yfKf (3.1d)

pi ≥ 0, i = 1, 2 (3.1e)
p1

s1

≤ p2

s2

(3.1f)

p2 − p1

s2 − s1

≤ b. (3.1g)

We can show that constraints (3.1e) - (3.1g) are redundant, and hence can be dropped from
the formulation (see Appendix A.3). (Note that constraint (3.1f) comes from the relationship
that p2−p1

s2−s1
≥ p1

s1
⇔ p2

s2
≥ p1

s1
.)

We can show that the objective function of Problem P2 (given in (3.1a)) is strictly
jointly concave in p1 and p2. Then, since constraints (3.1b) - (3.1d) are linear, the first-order
Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for optimality, leading
to a characterization of the stage 2 optimal solution.

Proposition 3. For the general setting, given n,−→y , and
−→
K , the optimal solution to Problem

P2 is as follows:

(p∗1, p
∗
2) =





( bs1+αs2
1

2 ,
bs2+αs2

2
2 ), if Ω1,

(bs1 − bs1(y1K1+y2K2+yf Kf )
n , b(s1+s2)

2 − bs1(y1K1+y2K2+yf Kf )
n + α(s2

2−s2
1)

2 ), if Ω2,

( bs1+αs1s2
2 − b(y1K1+yf Kf )(s2−s1)s1

ns2
, (b+αs2)s2

2 ), if Ω3,

(bs1 − bs1(y1K1+y2K2+yf Kf )
n , bs2 − b(y1K1+yf Kf )s1

n − by2K2s2

n ), if Ω4,

( (b+αs1)s1

2 , b(s2 − s1)− b(y2K2+yf Kf )(s2−s1)
n + (b+αs1)s1

2 ), if Ω5,

(bs1 − bs1(y1K1+y2K2+yf Kf )
n , bs2 − b(yf K2+yf Kf )s2

n − by1K1s1

n ), if Ω6,
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where

Ω1 = {n ≤ 2b(y1K1 + yf Kf )

αs2
, n ≤ 2b(y2K2 + yf Kf )

b− α(s1 + s2)
, n ≤ 2b(y1K1 + y2K2 + y2Kf )

b− αs1
},

Ω2 = {n >
2b(y1K1 + y2K2 + yf Kf )

b− αs1
, n >

2by2K2

b− α(s1 + s2)
, n ≤ 2b(y2K2 + yf Kf )

b− α(s1 + s2)
},

Ω3 = {n >
2b(y1K1 + yf Kf )

αs2
, n ≤ 2b[y2K2s2 + (y1K1 + yf Kf )s1]

(b− αs2)s2
},

Ω4 = {n >
2b[(y1K1 + yf Kf )s1 + y2K2s2]

(b− αs2)s2
, n <

2by2K2

b− α(s1 + s2)
},

Ω5 = {n >
2b(y2K2 + yf Kf )

b− α(s1 + s2)
, n <

2b(y1K1 + y2K2 + yf Kf )

b− αs1
},

Ω6 = {n >
2b(y2K2 + yf Kf )

b− α(s1 + s2)
, n >

2b(y1K1 + y2K2 + yf Kf )

b− αs1
},

with Ωi ∩ Ωj = ∅, i, j = 1, ..., 6, i 6= j, and ∪6
i=1Ωi = Ω, where Ω denotes the universal

set.

Proof: See Appendix A.3. 2

Proposition 4. Depending on the relationship between y1K1 ≥ 0, y2K2 ≥ 0, and yfKf ≥ 0,
one of the following three regions is possible in stage 2 of the general setting:

Region I: If y1K1 ≥ αs2(y2K2+yf Kf )

b−α(s1+s2)
, then the sample space consists of events Ω1, Ω5, and Ω6

only, see Figure 3.1.

Region II: If αs2y2K2

b−α(s1+s2)
−yfKf ≤ y1K1 ≤ αs2(y2K2+yf Kf )

b−α(s1+s2)
, then the sample space consists

of events Ω1, Ω2, and Ω6 only, see Figure 3.2.

Region III: If αs2y2K2

b−α(s1+s2)
− yfKf ≥ y1K1, then the sample space consists of events Ω1,

Ω3, Ω4, Ω2, and Ω6 only, see Figure 3.3.

Proof: See Appendix A.4. 2

2 2

1 2

2 ( )

( )
f fb y K y K

b s sα

+

− +

1 1 2 2

1

2 ( )f fb y K y K y K

b sα

+ +

−

1Ω 5Ω 6Ω

n

Figure 3.1: The Sample Space of the Stage 2 Problem for Region I.

While the objective function of the stage 1 problem (V ) is continuous everywhere, Propo-

sition 4 indicates that it takes on different forms in the three regions of the feasible
−→
K -space.

Furthermore, our numerical study shows that V is not well-behaved everywhere in the fea-

sible
−→
K -space (i.e., it may have multiple local maxima). For this reason, in the remainder

of this Chapter we focus on the DU setting (i.e.,
−→
Y = (1, 1, 1) with certainty) for which

we are able to reduce the feasible set to a Pareto efficient set over which V is well-behaved
everywhere.
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2 2

1 2

2 ( )

( )
f fb y K y K

b s sα

+

− +

1 1 2 2

1

2 ( )f fb y K y K y K

b sα

+ +

−

1Ω 2Ω 6Ω

n

Figure 3.2: The Sample Space of the Stage 2 Problem for Region II.

2 2

1 2

2 ( )

( )
f fb y K y K

b s sα

+

− +

2 2 2 1 1 1

2 2

2 [ ( ) ]

( )
f fb y K s y K y K s

b s sα

+ +

−

1Ω
4Ω 6Ω

n
3Ω 2Ω

2 2

1 2

2

( )

by K

b s sα− +

1 1

2

2 ( )f fb y K y K

sα

+

Figure 3.3: The Sample Space of the Stage 2 Problem for Region III.

Theorem 1. Consider Problem P1 in the DU setting.

(i) For any solution with Kf > 0 in Region I (i.e., K1 ≥ αs2(K2+Kf )

b−α(s1+s2)
), there exists a

dominating solution with Kf = 0. Thus, any solution with Kf > 0 in Region I cannot
be in the Pareto efficient set.

(ii) For any solution with αs2K2

b−α(s1+s2)
−Kf < K1 ≤ αs2(K2+Kf )

b−α(s1+s2)
in Region II, there exists a

dominating solution with K1 + Kf = αs2K2

b−α(s1+s2)
. Thus, any solution with K1 + Kf >

αs2K2

b−α(s1+s2)
in Region II cannot be in the Pareto efficient set.

Proof: See Appendix A.5.

2 2
1

1 2( ) f

s K
K K

b s s

α

α
− <

− +

2 2
1

1 2

( )

( )
fs K K

K
b s s

α

α

+
≥

− +

2 2 2 2
1

1 2 1 2

( )

( ) ( )
f

f

s K K s K
K K

b s s b s s

α α

α α

+
> ≥ −

− + − +

Region I

Region II

Region III1K

2K

fK

(a) The Feasible Region.

0fK =Region I with
Region III

1K

2K

fK

(b) The Pareto Efficient Set.

Figure 3.4: The Different Regions in Stage 1 Depicted in the Unit Decision Space for the
DU Setting.

As Theorem 1 shows, the flexible resource is not beneficial in Region I, and any solution
in Region II is dominated by solutions on the boundary of Regions II and III. Consequently,
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the Pareto efficient set consists only of Region I with Kf = 0 and Region III with Kf ≥ 0 (see

Figure 3.4 for the feasible region and the Pareto efficient set in a unit
−→
K -space – limitation

to unit space is for illustration purposes only). Therefore, we study Region I (with Kf = 0)
and Region III (with Kf ≥ 0) problems separately (see Appendix B.2) and characterize their
optimal solutions. The best of these two optimal solutions then gives the global optimal
solution, as characterized in the subsequent Chapters.

In order to understand the impact of consumer-driven substitution (coming from our
consumer choice model of vertical differentiation), we also study a “no-consumer-driven-
substitution” version of Problem P under each of demand and supply risks, which we re-
fer to as Problems P−DU(NC) and P− SU(NC), respectively. Specifically, under no
consumer-driven substitution, we consider that the two products are independent (i.e., nei-
ther substitutable nor complementary), each having a market size of Ni, i = 1, 2. Thus, a
product i, i = 1, 2, consumer of type t will purchase product i only if tsi− pi ≥ 0, and under
no condition will she switch to the other product. Similar to our original model (Problem P),
we assume that the consumer type in each market follows a uniform distribution in [0, b]. All
other assumptions in our original model apply. Then, in Problem P−DU(NC), the only
uncertainty in stage 1 comes from Ni, i = 1, 2, whereas in Problem P− SU(NC), it comes
from Yi, i = 1, 2. Observe that in the dedicated-only system, both Problems P−DU(NC)
and P− SU(NC) decompose by product.

Our main focus in this dissertation is on the effectiveness of the two strategies, resource
flexibility and product differentiation, to hedge against supply and demand risks. Our agenda
in the remainder of the dissertation is as follows. In Chapter 4, we first isolate the effect
of product differentiation by studying dedicated-only systems in which resource flexibility
is not an option (i.e., flexible resource is not a technology choice). Then, in Chapter 5, we
study the additional effect of resource flexibility by considering flexible systems in which
both dedicated and flexible resources are available to the firm for investment.



Chapter 4

The Effectiveness of Product
Differentiation

In this Chapter, our objective is to understand when it is optimal for the firm to offer
differentiated products versus a single product to hedge against uncertainty, and how the
different demand and supply risks change this condition. Obviously, the firm’s resource mix
(i.e., the types of resources acquired) and product offering are interrelated, i.e., the resource
mix dictates the product offering capability. We are also interested in understanding how the
existence of consumer-driven substitution affects the firm’s product differentiation strategy
under the different risks. In order to isolate the impact of product differentiation, throughout
this Chapter we assume that the flexible resource is not available as a technology choice, and
consider the dedicated-only system under various settings with consumer-driven substitution
(Problem P) and without (Problem P−NC). As stated in Chapter 3, while we analyze the
DU setting for all α ≥ 0, we limit the analysis of SU and (S+D)U settings to α = 0 only as
the characterization gets quite complex otherwise.

Observe that in the absence of resource flexibility, the firm has to completely rely on
demand management (through pricing and/or product differentiation) to hedge against un-
certainty, so that it can take advantage of consumer-driven substitution and sell the con-
sumers what it wants to sell. Furthermore, the firm’s demand management can be enhanced
if it has the capability to produce both of the differentiated products (i.e., it invests in both
dedicated resources). This is because, in the case of demand risk, this allows the firm to
change its product mix in response to market conditions; and in the case of supply risk
where a resource might completely fail, it enables the firm to switch production to the other
resource (hence to the other product), in a way similar to a dual sourcing strategy. In the
following, we study each of these effects.

14
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4.1 Characterization of the optimal portfolio in the

dedicated-only system

We first characterize the optimal portfolio in the dedicated-only system both with and with-
out consumer substitution.

1c

2c

1 1( )s b sα−

2 2( )s b sα−

1 2( 0, 0)D DK K= =1 2( 0, 0)D DK K≥ =

1 2( 0, 0)D DK K= ≥

dA

dEdD

dC

(0,0)

1 2( 0, 0)D DK K≥ ≥

(a) Without Consumer-Driven Substitution.

1c

2c

1 1( )s b sα−

2 2( )s b sα−

1 2( 0, 0)D DK K= =
1 2( 0, 0)D DK K≥ =

2 2
1 2

1 2

( , 0)
( )

D
D Ds K

K K
b s s

α

α
≥ ≥

− +

2 2
1 1

1 2

( 0, )
( )

D
D Ds K

K K
b s s

α

α
≥ ≥

− +

2 1 1 2( )[ ( )]s s b s sα− − +

1 2 1( )s s sα −

1 2 2 1 1 2 2 1( )s c s c s s s sα= − −

2 2
2 1

1 1

( )

( )

s b s
c c

s b s

α

α

−
=

−

2 1 2 1 1 2( )[ ( )]c c s s b s sα= + − − +

1 2( 0, 0)D DK K= ≥

dA

dEdD

dB

dC

(0,0)

(b) With Consumer-Driven Substitution.

Figure 4.1: Structure of the Optimal Portfolio for the Dedicated-only DU System (α ≥ 0).

Proposition 5. For α ≥ 0, the optimal resource vector, (KD
1 , KD

2 ), in the dedicated-only
DU system is unique for both Problem P (with consumer-driven substitution) and Prob-
lem P−DU(NC) (without consumer-driven substitution), and can be characterized as in
Figures 4.1(a) and 4.1(b), respectively.

Proof: See Appendix B.3.

Proposition 6. Consider the dedicated-only system with α = 0.

(i) If there is consumer-driven substitution, then the optimal resource vector (KD
1 , KD

2 )
is unique for each of the deterministic, DU, SU, and (S+D)U settings, and can be
characterized as in Table 4.1 and Figures 4.2(a) and 4.2(b).

(ii) If there is no consumer-driven substitution, then the optimal resource vector (KD
1 , KD

2 )
is unique in the SU setting and can be characterized as in Figure 4.3.

Proof: See Appendix C.1 for part (i) and Appendix C.2 for part (ii). 2
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1c

2c

dC

dEdD

1 2( 0, 0)D DK K= ≥

1 2( 0, 0)D DK K≥ = 1 2( 0, 0)D DK K= =
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1 2( 0, 0)D DK K≥ ≥

1bs

2bs

2 1( )b s s−
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2 1 1 2s c s c=

(0,0)

(a) Deterministic and DU Settings.
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dA dC
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(b) SU and (S+D)U Settings.

Figure 4.2: Structure of the Optimal Portfolio for the Dedicated-only System (α = 0) with
Consumer-driven Substitution

1c

2c

1 1bsθ
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1 2( 0, 0)D DK K= =1 2( 0, 0)D DK K≥ =

1 2( 0, 0)D DK K= ≥
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(0,0)

1 2( 0, 0)D DK K≥ ≥

Figure 4.3: Structure of the Optimal Portfolio for the Dedicated-only SU System (α = 0)
without Consumer-driven Substitution.

4.2 The consumer-driven substitution effect

Not surprisingly, the existence of consumer-driven substitution reduces the need for product
differentiation (hence, the need for two dedicated resources) under both demand and supply
risks (compare region Ad+Bd in Figure 4.1(b) with Ad in Figure 4.1(a) for the DU setting, and
Ad

1 + Ad
2 in Figure 4.2(b) with Ad in Figure 4.3), since in some cost regions it might be more

beneficial for the firm to have the consumers switch (rather than investing in both dedicated
resources). Furthermore, the impact of consumer-driven substitution on the optimal resource
mix rises (further shrinking the product differentiation region) as either s2 − s1 decreases
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Table 4.1: Characterization of the Optimal Portfolio in the Dedicated-only System under
Various Settings (α = 0).

Deterministic Setting
Region KD

1 KD
2

Ad n(c2−s2)
2b(s2−s1)

n
2 [1− (c2−c1)

b(s2−s1)
]

Cd 0 n
2 (1− c2

bs2
)

Dd n
2 (1− c1

bs1
) 0

Ed 0 0
DU Setting

Region KD
1 , KD

2 are solutions to:∫∞
2(K1+K2)

bs1[1− 2(K1+K2)
n ]fN (n)dn = c1Ad ∫ 2(K1+K2)

2K2
b(s2 − s1)(1− 2K2

n )fN (n)dn +
∫∞
2(K1+K2)

[bs2 − 2b (K2s2+K1s1)
n ]fN (n)dn = c2

Cd KD
1 = 0,

∫∞
2K2

bs2(1− 2K2
n )fN (n)dn = c2

Dd
∫∞
2K1

bs1(1− 2K1
n )fN (n)dn = c1, KD

2 = 0
Ed KD

1 = 0,KD
2 = 0

SU Setting
Region KD

1 KD
2

Ad
1

n
2 [1− c1

θ(1−θ)bs1
] n

2 [1− c2
θb(s2−θs1)

]

Ad
2

ns2
2θs1

[1− θb(s2−θs1)−c2+θs1
θb(s2−θ2s1)

]− nc2
2θ2bs1

n[θb(s2−θs1)−c2+θc1]
2θb(s2−θ2s1)

Cd 0 n
2 (1− c2

θbs2
)

Dd n
2 (1− c1

θbs1
) 0

Ed 0 0
(S+D)U Setting

Region KD
1 , KD

2 are solutions to:
θ2

∫∞
2(K1+K2)

bs1[1− 2(K1+K2)
n ]fN (n)dn + θ(1− θ)

∫∞
2K1

bs1(1− 2K1
n )fN (n)dn = c1

θ2
∫ 2(K1+K2)

2K2
b(s2 − s1)(1− 2K2

n )fN (n)dn + θ2
∫∞
2(K1+K2)

[bs2 − 2b (K2s2+K1s1)
n ]fN (n)dnAd

1 or Ad
2

+(1− θ)θ
∫∞
2K2

bs2(1− 2K2
n )fN (n)dn = c2

Cd KD
1 = 0, θ

∫∞
2K2

bs2(1− 2K2
n )fN (n)dn = c2

Dd θ
∫∞
2K1

bs1(1− 2K1
n )fN (n)dn = c1, KD

2 = 0
Ed KD

1 = 0,KD
2 = 0

(i.e., products become less differentiated), or α increases (i.e., production costs become more
differentiated) because in the former case consumers will be more willing to substitute the
products with one another, and in the latter case, the firm will be less willing to produce
product 2 due to its much higher production cost, and attempt to save on production costs
by inducing consumers to switch to the other product.

What is interesting is, in the DU setting with independent products (markets), the firm’s
resource mix does not depend on the magnitude of demand uncertainty in either market,
but in the SU setting with independent products, it does. Similar results continue to hold
for the settings with consumer-driven substitution, as we discuss in detail below.

Unless otherwise noted, all models we study in the remainder of the dissertation consider
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the consumer-driven substitution (i.e., Problem P).

4.3 The demand risk versus supply risk effect(under

consumer-driven substitution)

Proposition 7. The existence of demand risk does not alter the resource mix in the opti-
mal portfolio (hence the firm’s product offering) in the dedicated-only system (for α ≥ 0).
However, the existence of supply risk does (for α = 0).

Proof: The first part follows because the optimal resource mix in the dedicated-only deter-
ministic setting also follows Figure 4.1(b); see Appendix C.3. The second part is a direct
consequence of Proposition 6 (ii). 2

Thus, demand and supply risks impact the optimal portfolio differently (with the supply
risk having a more significant effect). In particular, the demand risk affects only the resource
capacities and not the types of resources in the portfolio, making the firm partially immune
to forecast errors (i.e., the firm will always acquire the right resource mix) as long as the firm
estimates correctly that the demand shock is multiplicative. However, this partial immunity
disappears in the case of supply risk. This is because of our consumer choice model that leads
to a multiplicative demand shock, under which the cost thresholds for investment decisions
become independent of the distribution and parameters of the demand uncertainty, both
with and without consumer-driven substitution. (Not surprisingly, this result no longer
holds when the firm considers the flexible resource as an investment option, see Chapter
5.1.) In the additive demand shock case, a similar result holds only if production is always
“profitable,” independent of how demand uncertainty is resolved (e.g., the firm is a price-
taker with pi ≥ ci, i = 1, 2, see Van Mieghem [24]). On the other hand, if the demand shock
is additive and the profitability of production depends on market conditions (e.g., the firm is
a price-setter, that is, the optimal price charged for each product depends on the realization
of the demand curve, see Bish and Wang [4]), then the resource mix will be a function of
the demand distribution parameters.

On the other hand, supply risk affects both the resource mix and capacities in the
dedicated-only system. Furthermore, we can show, for some special cases, that this remains

true even when supply risk is in the form of yield uncertainty (i.e.,
−→
Y follows a continuous

distribution in [0, 1]; see Chapter 6.2 for discussion). Thus, whether uncertainty comes from
the market or from the firm’s own resources has a large effect on the firm’s resource portfolio.
This highlights an important advantage of offering differentiated products for a price-setter
firm when resource flexibility is not an option: Offering differentiated products that serve
a common population may make the firm partially immune to errors in demand forecasts
when the market size is uncertain. The existence of supply risk, however, eliminates this
advantage.
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The following proposition shows how changes in the supply risk alters the firm’s product
offering.

Proposition 8. For α = 0, the product differentiation region in both SU and (S+D)U
settings (Ad

1 + Ad
2 in Figure 4.2(b), corresponding to (KD

1 ≥ 0, KD
2 ≥ 0)) expands in θ1(θ2)

for θ1 < s2(2−θ2)
2s1

(θ2 < 2s2−θ1s1

2s2
), and shrinks in θ1(θ2) otherwise. When θ1 = θ2 = θ, if

s2 > 3s1, then the product differentiation region always expands in θ; otherwise, it first
expands, then shrinks in θ, reaching its maximum area at θ = 4s2

3(s1+s2)
.

Proof: See Appendix C.4. 2

As θi, i = 1 or 2, increases, dedicated resource i becomes more reliable. As a result, in
some cost regions (with medium ci) where the firm would originally invest only in the other
resource (3− i), the firm can now afford to invest in both resources to take advantage of an
enhanced demand management through product differentiation. On the other hand, in some
cost regions (with medium c3−i) where the firm would originally invest in both resources,
the firm invests in resource i only since the benefit from its higher reliability outweighs the
investment cost of product differentiation. The rates of change of these regions dictate that
the product differentiation region first expands, then shrinks.

When resources have the same risk level, θ, we can see how the degree of product
substitution plays a role in altering the resource mix. As θ increases, both dedicated resources
become more reliable, encouraging the firm to invest in both resources for a wider range
of (c1, c2) due to an enhanced demand management and dual sourcing capability (due to
resource diversification). As the resources get more reliable (hitting some reliability threshold
of 4s2

3(s1+s2)
), the benefits of a diversified portfolio reduce, and the firm becomes motivated

to move towards a single resource (single product) investment, with the hope of managing
demand through consumer-driven substitution only, which works well only when products
are not much differentiated. As a result, for low product differentiation (s2 < 3s1), product
differentiation region first expands, then shrinks in θ. For high differentiation (s2 > 3s1) on
the other hand, a higher value of θ cannot encourage the firm enough to move towards a single
product regime (due to a weak consumer-driven substitution), and the product differentiation
region expands for all values of θ. This again emphasizes that demand management capability
of product differentiation is valuable under both demand and supply risks.

We next study the effect of the supply risk in terms of how it forces the firm to switch
from product differentiation (PD) to no product differentiation (NPD), i.e., single product
offering, and vice versa. We first eliminate the effect of different resource risks and study
the case where θ1 = θ2 = θ (i.e., both dedicated resources have the same risk level). We
then consider different resource risks (θi < θj, i.e., resource j is less risky than resource i,
i, j = 1, 2, i 6= j).

Corollary 1. Consider the dedicated-only system. When both resources have the same risk
level (θ1 = θ2 = θ, 0 < θ < 1) and α = 0, the additional supply risk (in the SU versus
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deterministic settings, or in the (S+D)U versus DU settings) will force the firm to change
its product offering as follows (see Figure 4.41and Table 4.2):

(I) : No Product Differentiation → Product Differentiation (NPD → PD)

(a) K2 → (K1,K2) if c2 ≤ s2

s1
c1 and c1 ≤ θs1

s2
c2+θ(1−θ)bs1 (see regions PD in Figure

4.4(a) and PD1 in 4.4(b)).

(b) K1 → (K1,K2) if s2 < (1+ θ)s1, c2 ≤ θc1 + θb(s2− θs1), and c2 ≥ c1 + b(s2− s1)
(see region PD2 in Figure 4.4(b)).

(II) : Product Differentiation → No Product Differentiation (PD → NPD)

(a) (K1,K2) → K1 if c2 ≤ c1 + b(s2− s1), c2 ≥ θc1 + θb(s2− θs1), and c1 ≤ θbs1 (see
regions NPD in Figures 4.4(a) and 4.4(b)).

(III) : Investment → No Investment

(a) (K1,K2) → No Investment if c2 ≤ c1 + b(s2 − s1), c2 ≥ s2

s1
c1, and c1 ≥ θbs1.

(b) K2 → No Investment if c2 ≤ s2

s1
c1 and bs2 ≥ c2 ≥ θbs2.

(c) K1 → No Investment if c2 ≥ c1 + b(s2 − s1) and bs1 ≥ c1 ≥ θbs1.
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(a) High Product Differentiation (s2 ≥ (1 + θ)s1).
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(b) Low Product Differentiation (s2 < (1 + θ)s1).

Figure 4.4: Optimal Resource Mix for the Dedicated-only System in Deterministic and DU
Settings (solid line), and SU and (S+D)U Settings (dashed line) when θ1 = θ2 = θ and
α = 0.

One might think that in the absence of the resource flexibility option, more uncertainty,
in terms of the additional supply risk (in the SU versus the deterministic settings, or (S+D)U

1Figures 4.4(a) and 4.4(b) are in the same scale, with the only difference being the value of parameter
s2.
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Table 4.2: How Supply Risk Affects the Firm’s Product Offering when θ1 = θ2 = θ (α = 0).
High Product Differentiation Low Product Differentiation

(s2 ≥ (1 + θ)s1) (s2 < (1 + θ)s1)
K2 → (K1,K2)

K2 → (K1,K2) low c2
c1

ratio, low to medium c1, c2

low c2
c1

ratio, low to medium c1, c2 (see Figure 4.4(b) PD1)NPD → PD
(see Figure 4.4(a) PD) K1 → (K1,K2)

high c2
c1

ratio, low c1, c2

(see Figure 4.4(b) PD2)
(K1,K2) → K1

high c2
c1

ratio, low to medium c1,
(K1,K2) → K1

PD → NPD
medium to high c2

medium c2
c1

ratio, medium c1, c2

(see Figure 4.4(a) NPD)
(see Figure 4.4(b) NPD)

versus DU settings) will make the firm more eager to adopt product differentiation (equiv-
alently, a diversified portfolio), either due to enhanced demand management capability or
resource diversification advantage. However, Corollary 1 indicates that this is not always
the case. This depends on the relationship between resource risks, product attributes, and
resource investment costs. For the case of θ1 = θ2 = θ, when s2 < (1 + θ)s1 (low product
differentiation), the firm will move from NPD to PD when it faces a low c2

c1
ratio with low

to medium c1 and c2, or high c2
c1

ratio with low c1 and c2. On the other hand, when the
firm faces a medium c2

c1
ratio with medium c1 and c2, it will be better off by moving from

PD to NPD (acquiring the capacity to produce product 1 only). (Similar results hold for
high product differentiation, see Table 4.2.) The reason is that, with supply risk, the firm
becomes more sensitive to the investment cost because there is a positive probability that
a resource will be totally useless. As a result, for high enough investment costs, the firm
chooses to rely solely on limited demand management for a single product, and forgoes to
take advantage of product differentiation. Consequently, that the firm is a price-setter for
each product makes it easier to switch from a product differentiation (PD) to a single prod-
uct strategy (NPD) when resources are expensive, and a higher value of s2 encourages this
switch (to a single product strategy with the lower value product), as the firm can take less
advantage of consumer-driven substitution when s2 − s1 is large (compare the NPD region
in Figures 4.4(a) and 4.4(b)).

Finally observe that only when product differentiation is low (s2 < (1 + θ)s1), will the
additional supply risk force the firm to move from K1 to (K1, K2) (see cost region PD2
in Figure 4.4(b)); on the other hand, K2 → (K1, K2) shift is possible under all levels of
product differentiation. This, again, can be explained by the investment cost effect. With
high product differentiation (i.e., s2 ≥ (1 + θ)s1), product 2 is a more valuable product and
the firm is willing to pay a higher investment cost for its dedicated resource. Thus, the
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(KD
1 ≥ 0, KD

2 = 0) portfolio in the DU setting appears only when the investment cost, c2,
is very high, and at such a high value of c2, the optimal resource mix cannot change with
the additional supply risk (and is still comprised of dedicated resource 1 only). When s2

is lower (i.e., s2 < (1 + θ)s1), so is the threshold for investing in dedicated resource 2 in
DU, and additional supply risk may shift K1 → (K1, K2) for low enough c2 (i.e., in cost
region PD2). Also observe that for high product differentiation (Figure 4.4(a)), cost region
PD2 corresponds to product differentiation under both DU (dedicated) and SU ((S+D)U)
settings.

When resources have different risk levels, similar results to Corollary 1 can be obtained,
with the difference that now the firm may also change the types of resources acquired. More
specifically, facing additional supply risk, when θ2 > θ1 (θ2 < θ1), the firm may switch from
investing in dedicated resource 1(2) to dedicated resource 2(1) when it faces a medium c2

c1
ratio with medium c1 and c2. This is intuitive: When θ2 > θ1(θ2 < θ1), dedicated resource
2(1) is more reliable, hence more preferable to the firm under a certain cost structure. See
Tables C.3 - C.4 and Figures C.4 - C.3 in Appendix C.5 for details.



Chapter 5

The Effectiveness of an Integrated
Product Differentiation and Resource
Flexibility Strategy

When the firm invests in the flexible resource, it also acquires the product differentiation
capability, whereas product differentiation is obviously possible without the flexible resource.
Furthermore, while it may be optimal for the firm to adopt product differentiation even in
a deterministic setting (see Proposition 6), a necessary condition for the flexible resource
is the existence of uncertainty, either on the demand or supply side. Consequently, in this
section, we are interested in the following questions: Under what conditions is product
differentiation, by itself (i.e., through the dedicated resources), sufficient to hedge against
demand and supply risks, and under what conditions it is not (so the firm has to rely on
the more expensive strategy of acquiring the flexible resource)? For this purpose, we first
study the DU setting with α ≥ 0. Then, we restrict ourselves to the α = 0 case and study
the effect of the additional supply risk in the (S+D)U setting. In the presence of supply
risk, the value of the flexible resource highly depends on the risk level of the resources, with
the value increasing in its own reliability and decreasing in the reliability of the dedicated
resources. In order to eliminate the effect of different risk levels and focus solely on the
impact of investment costs and the type of risk on the optimal portfolio, in the (S+D)U
setting we assume that θ1 = θ2 = θf = θ (i.e., each resource faces the same disruption risk).

5.1 The demand risk effect

We first characterize the optimal portfolio in the flexible DU system (for α ≥ 0).

Proposition 9. The optimal resource portfolio in the flexible DU system with α ≥ 0 can be
characterized as in Figure 5.1 and Table 5.1, where ϕ ≡ s2(b−αs2)

s1(b−αs1)
+ αs2

b−α(s1+s2)
. (See Appendix

23



Weiping Chen Chapter 5. Product Differentiation and Resource Flexibility 24
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Figure 5.1: Structure of the Optimal Portfolio in the Flexible DU System (α ≥ 0).

D.1 for the optimality conditions.)

Proof: See Appendix D.1. 2

Table 5.1: The Optimal Resource Portfolio for the Flexible DU System (α ≥ 0).
Region Is Kf > 0 Possible? Condition Optimal Solution

K∗
1 = 0,K∗

2 > 0,K∗
f > 0cf < c3

f or K∗
1 > 0,K∗

2 > 0,K∗
f > 0Af Yes

cf ≥ c3
f K∗

1 ≥ 0,K∗
2 ≥ 0,K∗

f = 0
K∗

1 = 0,K∗
2 > 0,K∗

f > 0cf < c1
f or K∗

1 > 0,K∗
2 > 0,K∗

f > 0Bf Yes
cf ≥ c1

f K∗
1 ≥ 0,K∗

2 ≥ 0,K∗
f = 0

K∗
1 = 0,K∗

2 > 0,K∗
f > 0cf < c2

f or K∗
1 > 0,K∗

2 > 0,K∗
f > 0Cf

1 Yes
cf ≥ c2

f K∗
1 = 0,K∗

2 ≥ 0,K∗
f = 0

K∗
1 = 0,K∗

2 > 0,K∗
f > 0cf < c4

f or K∗
1 > 0,K∗

2 > 0,K∗
f > 0Df

1 Yes
cf ≥ c4

f K∗
1 ≥ 0,K∗

2 = 0,K∗
f = 0

Cf
2 No NA K∗

1 = 0,K∗
2 ≥ 0,K∗

f = 0
Df

2 No NA K∗
1 ≥ 0,K∗

2 = 0,K∗
f = 0

Ef No NA K∗
1 = 0,K∗

2 = 0,K∗
f = 0

It is never optimal to acquire the flexible resource in cost regions Cf
2 , Df

2 , and Ef ,
whereas in regions Af , Bf , Cf

1 , and Df
1 , flexible resource is valuable only if its investment
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cost is below a threshold, which is a complex function of demand distribution parameters,
dedicated resource investment costs, and attribute parameters. Thus, not surprisingly, when
the flexible resource is an option, the existence of demand risk does alter the resource mix
in the optimal portfolio, as opposed to the dedicated-only system (see Proposition 7). In
cost regions Cf

2 , Df
2 , and Ef , high investment costs prohibit the firm from using resource

flexibility and product differentiation; even when the firm invests, it does so to produce
a single product only (thus limiting its demand management capability). On the other
hand, in cost regions Af , Bf , Cf

1 , and Df
1 , the firm always adopts product differentiation,

which provides it with a more effective demand management capability. If, in addition, the
flexible resource is cheap enough (i.e., cf < cf ) in these regions, then the firm enhances its
demand management capability by acquiring the flexible resource, which enables it to alter
the production quantities of the products in response to how uncertainty is revealed so as
to pursue the maximum profit, that is, in these regions, the priority with which the firm
allocates the flexible resource to the products changes with demand realization, making the
flexible resource a valuable option (e.g., in region Bf , the firm acquires only a small capacity
(if any) of dedicated resource 1; then, it allocates the flexible resource to product 1 when
n is small (due to small K1), and to the more desirable product 2 when n is large. The
flexible resource can also be allocated to both products at the same time for certain demand
realizations).

Equally important is the result that the flexible resource never completely replaces the
dedicated resources. When K∗

f > 0, the optimal portfolio must be one of the following
forms: (i) (K∗

1 = 0, K∗
2 > 0, K∗

f > 0) or (ii) (K∗
1 > 0, K∗

2 > 0, K∗
f > 0) (see Table 5.1).

Thus, when the firm invests in the flexible resource, it always adopts resource diversification,
even in the absence of supply risk. In this setting with only demand risk, the value of
resource diversification comes from vertical differentiation. Product 2 is a more valuable
product and the firm is always willing to offer product 2, however its production quantity
depends on market conditions. Therefore, if the flexible resource is acquired, then it always
accompanies dedicated resource 2. This last result extends Theorem 4.2 in Bish and Wang [4]
and Proposition 2 in Van Mieghem [24] to the case where products are vertically differentiated
and the demand is driven by a consumer choice model.

For the special case with α = 0 (i.e., zero production costs), Proposition 9 leads to an
interesting result.

Corollary 2. For α = 0, it is never optimal for the firm to invest in the flexible resource in
the flexible DU setting, i.e., K∗

f = 0.

Thus, when α = 0, even when the firm has the option to acquire the flexible resource,
it is never optimal to do so. This is because when production costs are negligible (or the
same), demand management through product differentiation and responsive pricing is pow-
erful enough to hedge against the demand risk, and more importantly, is costless (i.e., the
firm does not lose, in terms of production costs, if it needs consumers to switch from prod-
uct 1 to product 2. This is no longer the case for α > 0, which implies a higher production
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cost for product 2). On the other hand, the flexible resource comes at an increased cost
(over dedicated resources). Hence, any portfolio with the flexible resource is dominated by
dedicated resources only, resulting in the firm’s solely relying on demand management. The
result that in the demand uncertainty case a necessary condition for the flexible resource is
differential production costs for the products comes from the presence of consumer-driven
substitution in our model. Both in Van Mieghem’s model [24] (two independent products
with exogenous, price-independent demands) and Bish and Wang’s model [4] (two inde-
pendent products with price-dependent demands and responsive pricing) flexible resource
still remains valuable to hedge against the demand uncertainty even when production costs
of the products are negligible or the same. This production cost effect exists because of
consumer-driven substitution.

Corollary 3. Consider the DU setting. For α = 0, the firm’s product offering does not
change with its technology choice, whereas for α > 0 it does.

Thus, when α = 0, neither the firm’s resource portfolio nor product offering changes
with its technology choice. However this result no longer holds in the case of differential
production costs. In particular, for α > 0, in regions Af and Bf , it invests in the capability
to produce both products in both dedicated-only and flexible systems (see Propositions 5 and
9). However, in region Cf

1 (Df
1 ), the firm invests only in the capability to produce product

2(1) in the dedicated-only system, but in the capability to produce both products in the
flexible system. This, again, follows due to investment cost effect, and highlights another
benefit of the flexible resource: a more effective demand management through the ability to
offer differentiated products.

Finally, comparing the structure of the portfolio in this setting (with consumer-driven
substitution) with that without consumer-driven substitution (Figures 5.1 and 4.1(a)), we
observe that it is no longer true that consumer-driven substitution reduces the need for
product differentiation (as was the case for the dedicated-only DU and SU settings, see
Chapter 4.1). In particular, this occurs when there is a production cost differential (α > 0),
and follows because product differentiation is now possible with an investment in the flexible
resource, which not only provides a more powerful demand management (as was the case
for the dedicated-only system), but brings the other benefits of flexible resource (firm-driven
substitution), making it more desirable.

5.2 The supply risk effect

In order to understand the effect of the additional supply risk, we next characterize the
optimal portfolio in the (S+D)U setting (for the case of α = 0).

Proposition 10. For α = 0, the optimal resource portfolio in the flexible (S+D)U system
is unique and can be characterized as in Figure 5.2 and Table 5.2.
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Proof: See Appendix D.2. 2
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Figure 5.2: Structure of the Optimal Portfolio for the Flexible (S+D)U System (α = 0).

Table 5.2: The Optimal Resource Portfolio in the Flexible (S+D)U System (α = 0).
Region Is Kf > 0 Possible? Condition Optimal Solution

K∗
1 = 0, K∗

2 > 0, K∗
f > 0cf < c1

f
or K∗

1 > 0, K∗
2 > 0, K∗

f > 0Af Yes

cf ≥ c1
f K∗

1 ≥ 0, K∗
2 ≥ 0, K∗

f = 0

cf < c2
f K∗

1 = 0, K∗
2 > 0, K∗

f > 0 1
Cf

1 Yes
cf ≥ c2

f K∗
1 = 0, K∗

2 ≥ 0, K∗
f = 0

Cf
2 No NA K∗

1 = 0, K∗
2 ≥ 0, K∗

f = 0

Df No NA K∗
1 ≥ 0, K∗

2 = 0, K∗
f = 0

Ef No NA K∗
1 = 0, K∗

2 = 0, K∗
f = 0

Note that when the firm acquires the flexible resource, the structure of its optimal
portfolio will be of the form (K∗

1 = 0, K∗
2 > 0, K∗

f > 0) or (K∗
1 > 0, K∗

2 > 0, K∗
f > 0), similar

to the DU setting but with α > 0, see Proposition 5. However, for α = 0, while the flexible
resource has no value in the DU setting (see Corollary 2), it becomes valuable with the
additional supply risk in the (S+D)U setting. Specifically, while in region Af the firm values
both the dual sourcing and product differentiation capabilities of the flexible resource, in
region Cf

1 the firm does not utilize its product differentiation capability, and always chooses
to allocate it to product 2 in stage 2, independent of how uncertainty is resolved (see Table
5.2). However, the product differentiation capability of the flexible resource, which also
exists in the DU setting, is not, by itself sufficient to make it valuable; it is the combination
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of this with its dual sourcing capability in the (S+D)U setting that now includes it in the
optimal portfolio.

Corollary 4. In the SU setting with α = 0, the firm’s product offering does not change
with its technology choice.

Observe that in terms of the product differentiation capability, the only difference be-
tween dedicated-only and flexible systems in the (S+D)U setting is region Cf

1 . Although in
this region the firm acquires the flexible resource, it does not utilize its product differentiation
capability, as stated above. Thus, how the technology choice affects product offering is sim-
ilar for demand and supply risks, see Corollary 3. This again follows due to the presence of
consumer-driven substitution, which enables a powerful (and costless) demand management
under both demand and supply risks.

We now study the effect of the additional supply risk on the firm’s resource portfolio. In
the following, RF -only PD-only, and (PD +RF ) respectively denote the resource flexibility
strategy only, the product differentiation strategy only (through dedicated resources), and
the integrated product differentiation and resource flexibility strategy.

Corollary 5. Consider the flexible system. When all resources have the same risk level
(θ1 = θ2 = θf = θ, 0 < θ < 1) and α = 0, the supply risk (in the (S+D)U versus DU
settings) will force the firm to change its product offering as follows (see Figure 5.3):

(I) : No Product Differentiation → Product Differentiation with Resource
Flexibility (NPD → (PD+RF))

(a) K2 → (K1,K2,Kf ) or (K2,Kf ) if cf ≤ c1
f , c2 ≤ s2

s1
c1, and s2c1 ≤ θs1c2 + θ(1 −

θ)bs1s2 (see region (PD + RF )1 in Figures 5.3(a) and 5.3(b));
(b) K1 → (K1,K2,Kf ) if cf ≤ c1

f , s2 < (1 + θ)s1, c2 ≤ θc1 + θb(s2 − θs1), and c2 ≥
c1 + b(s2 − s1) (see region (PD + RF )2 in Figure 5.3(b)).

(II) : No Product Differentiation → Product Differentiation Only
(NPD → PD-only)

(a) K2 → (K1,K2) if cf > c1
f , c2 ≤ s2

s1
c1, and s2c1 ≤ θs1c2 + θ(1− θ)bs1s2 (see region

(PD + RF )1 in Figures 5.3(a) and 5.3(b));
(b) K1 → (K1,K2) if cf > c1

f , s2 < (1 + θ)s1, c2 ≤ θc1 + θb(s2 − θs1), and c2 ≥
c1 + b(s2 − s1) (see region (PD + RF )2 in Figure 5.3(b)).

(III) No Product Differentiation → Resource Flexibility Only (NPD → RF-only)

(a) K2 → (K2,Kf ) if cf ≤ c2
f , c2 ≤ θbs2, s2c1 ≥ θs1c2 + θ(1 − θ)bs1s2, and c1 ≤

θc2 + θ(1− θ)bs2 (see region RF in Figures 5.3(a) and 5.3(b)).

1While the flexible resource offers the firm product differentiation capability, the firm does not utilize
this in region Cf

1 , and always uses the flexible resource to produce product 2 in stage 2, no matter how
uncertainty is resolved.
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(IV) : Product Differentiation → No Product Differentiation (PD → NPD)

(a) (K1,K2) → K1 if c2 ≤ c1 + b(s2− s1), c2 ≥ θc1 + θb(s2− θs1), and c1 ≤ θbs1 (see
regions NPD in Figures 5.3(a) and 5.3(b)).

(V) : Investment → No Investment

(a) (K1,K2) → No Investment if c2 ≤ c1 + b(s2 − s1), c2 ≥ s2

s1
c1, and c1 ≥ θbs1.

(b) K2 → No Investment if c2 ≤ s2

s1
c1 and bs2 ≥ c2 ≥ θbs2.

(c) K1 → No Investment if c2 ≥ c1 + b(s2 − s1) and bs1 ≥ c1 ≥ θbs1.
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Figure 5.3: Optimal Resource Mix for the Flexible DU (solid line) and (S+D)U (dashed line)
Systems when θ1 = θ2 = θf = θ (α = 0).

As discussed above, when α = 0, the firm’s product offering does not change with its
technology choice under either the demand or supply risk. Consequently, Corollary 5 (in
the flexible system) gives similar results to Corollary 1 (in the dedicated-only system), with
the difference of region RF . As explained above, in region RF the firm may acquire the
flexible resource in the (S+D)U setting, accompanied with dedicated resource 2, but uses
both resources to offer product 2 only, not changing its product offering over the DU setting.

Proposition 11. Consider the flexible system studied in Corollary 5. The K1 → (K1, K2, Kf )
region (see (PD + RF )2 in Figure 5.3) expands in θ for s2−s1

s1
< θ < s1+s2

3s1
, and shrinks in θ

for θ > s1+s2

3s1
.

Thus, even when the resource risk level increases, the firm may change from product
differentiation and resource flexibility to investing in a single resource. Other than resource
reliability, the firm’s product differentiation and resource flexibility decision also depends on
the cost structure and product and market characteristics.



Chapter 6

Discussion of Major Assumptions

In this chapter, we discuss the possible impact of the two assumptions that our analysis
relies on: uniform distribution of consumer type T and Bernoulli distribution of supply risk.
It is quite difficult to relax these assumptions analytically. Therefore, in what follows, we
relax them for some special cases so as to gain insights.

6.1 Uniform distribution of consumer type T

Although the assumption that T , consumer type, is uniformly distributed has been commonly
used in the marketing and operations management literature (e.g., Choudhary [7], Moorthy
[15] and [16], Rhee [19]), it may not be realistic for some items. For instance, the willingness
to pay for luxury products may be low for the majority of the population, and high for only
a small fraction of the population. In order to understand the effect of this assumption on
our findings, we now consider the DU setting with α = 0.

Proposition 12. Consider that T follows an arbitrary continuous distribution with support
in [0, b]. Then, for all distribution functions fT (t) such that fT (t) is:

(i) increasing in t, ∀t ∈ [0, b], or
(ii) concave decreasing in t, ∀t ∈ [0, b], or
(iii) strictly unimodal such that it is first increasing and then concave decreasing in t, ∀t ∈

[0, b],

K∗
f = 0 in an optimal solution to the flexible DU system with α = 0.

Proof: See Appendix E.1. 2

Thus, Proposition 12 states that Corollary 2 (which assumes that T is uniformly distributed)
in fact extends to a wide range of distributions of T . Furthermore, the following result
provides several examples of distribution functions that do not satisfy the conditions in
Proposition 12, but nevertheless yield the same result (i.e., K∗

f = 0). In fact, we have failed
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to find a counter-example in which it is optimal for the firm to invest in the flexible resource
in the flexible DU system with α = 0. We, therefore, speculate that this result holds for a
wider range of distributions than indicated by Propositions 12 and 13.

Proposition 13. Consider the flexible DU system with α = 0. K∗
f = 0 in an optimal

solution for the following family of distributions:

(i) fT (t) = a(γ + βt)−p, where a > 0, γ > 0, β > 0, p ≥ 2.
(ii) T = X|X < b, where X is Exponential with parameter λ, that is, T follows a truncated

exponential distribution.
(iii) T = X|X < b, where X is Normal with parameters µ and σ2, that is, T follows a

truncated normal distribution.

Proof: See Appendix E.2. 2

It is quite difficult to relax the uniform T assumption for the DU setting with α > 0 as well
as for the SU and (S+D)U settings. However, we speculate that most of our findings will
continue to hold for other continuous distributions of T .

6.2 Bernoulli distribution assumption of supply uncer-

tainty

As stated in Chapter 3, the forms of supply risk commonly used in the operations man-
agement literature include supply disruptions and yield uncertainty. In our analysis, we
consider supply disruptions and assume a Bernoulli distribution for resource availability. In
this section, we study the effect of modeling the supply risk as yield uncertainty.

For ease of analysis, we assume that the firm can invest in only the flexible resource, and
consider that Yf follows an arbitrary continuous distribution with support in [0,1]. Thus,
the flexible resource does not need to be completely “up” or “down;” it might be partially
available.

Proposition 14. Consider the case when the firm can invest in only the flexible resource.

(i) Consider the SU setting of Problem P.

(a) If Yf follows an arbitrary continuous distribution in [0,1], then the firm will invest
in the flexible resource if and only if cf < s2(b− αs2)E[Yf ].

(b) If Yf follows a Bernoulli distribution where Yf = 1 with probability θ, and Yf = 0
otherwise, then the firm will invest in the flexible resource if and only if cf <
s2(b− αs2)E[Yf ].

(ii) Consider the DU setting of Problem P. The firm will invest in the flexible resource if
and only if cf < s2(b− αs2).

(iii) Consider the deterministic setting of Problem P. The firm will invest in the flexible
resource if and only if cf < s2(b− αs2).
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Proof: See Appendix F.1. 2

Proposition 14 indicates that while the demand risk does not alter the investment deci-
sion (i.e., whether or not to invest), this decision depends on parameters of supply uncertainty
(i.e., its first moment) under both supply disruptions (see (i)-a) and yield uncertainty (see
(ii)-b), similar to the results we have obtained in Proposition 6. Moreover, the cost threshold
is the same under both types of supply uncertainty. Furthermore, we can show that in the
dedicated-only system, when Y1 and Y2 are continuous random variables in [0, 1], investment
thresholds continue to be functions of parameters of yield uncertainty (as was the case for
supply disruptions, see Proposition 6). Therefore, the fact that supply uncertainty has a
higher impact on the optimal portfolio than the demand uncertainty does not only hold for
supply disruptions, but also for yield uncertainty. Although it is quite difficult to extend our
analysis to the flexible system with all resources possible, we speculate that similar results
will hold in the general system as well.



Chapter 7

Conclusions and Future Research
Directions

We study the optimal resource portfolio for a price-setter firm under a consumer choice model
of vertical product differentiation, and with supply and demand risks. Our analysis shows
the effect of consumer-driven substitution, demand and supply risks, the firm’s technology
choice, as well as other environmental parameters (such as production and investment costs)
on the optimal resource portfolio and the hedging mechanism (i.e., product differentiation
versus resource flexibility).

One extension of our study would be to perform a comparative statics analysis on prod-
uct substitution and demand uncertainty. It is interesting to see how the firm’s optimal
investment level changes in terms of product substitution and demand uncertainty. For il-
lustration purposes, we next give two numerical examples by studying a Kf -only system
where the firm can only invest in a flexible resource, with the capability to produce both
products, under the demand risk only. We model the degree of product substitution by
s2 − s1, the difference between the attribute values of the two products. The magnitude
of demand uncertainty is measured by the variance of the market size, N . Let K∗

f be the
optimal resource investment in the Kf -only system.

Example 1. Let b = 10, s2 = 5, cf = 5. Figure 7.1 shows how the firm’s optimal
investment level, K∗

f , changes when s1 increases from 0.1 to 4.9, assuming N respectively
follows continuous Uniform (in [50, 100]), Gamma (with scale parameter 25 and shape pa-
rameter 3), and Normal (with mean 75 and variance 100) distributions, and α = 0.3, 0.5, 0.7,
and 0.9.

From Figure 7.1, we can see that when the degree of product substitution increases,
K∗

f increases first, then it decreases. This is because when s1 is small, the firm will benefit
from an expanding market share when s1 increases, and therefore, K∗

f increases. When s1 is
large (i.e., s1 is close to s2, hence product 1 and 2 are more substitutable), the production
cost and cannibalization effect between these two products dominate the market share effect.
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23
23.5

24
24.5

25
25.5

26
26.5

27
27.5

28

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Product Substitution

O
p

ti
m

al
 In

ve
st

m
en

t

Unifrom

Gamma

Normal

(b) α = 0.5.
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(c) α = 0.7.
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(d) α = 0.9.

Figure 7.1: Optimal Resource Investment for the Kf -only System in the DU Setting under
Various Product Substitution Levels.

Therefore, K∗
f decreases.

Example 2. Let b = 10, s1 = 3, s2 = 5, α = 0.5. Figure 7.2 shows how the firm’s
optimal investment level, K∗

f , changes under different investment cost levels as the variance
of random variable N increases from 100 to 5000, while maintaining a mean of 100. Gamma
and Normal distributions are considered for N , and (Low Cost, Medium Cost, High Cost)
are assumed to be (4, 7, 10) and (5, 10, 15), respectively, for these two distributions.

From Figure 7.2, we note that when demand variability increases, the optimal resource
investment changes differently under different resource investment cost levels: K∗

f increases
when cf is low, decreases when cf is high, and decreases first and then increases when cf is in
between. This is because if cf is high, the cost of unused resource (if the demand realization
is small) outweighs the gain from a large demand realization. On the other hand, the firm
can gain more from a large demand realization if cf is low. Similar results can be obtained by
studying how (KD

1 , KD
2 ) (for the dedicated-only system) and (K∗

1 , K
∗
2 , K

∗
f ) (for the flexible

system) are affected by the demand variability in the (S+D)U setting (see Example 3).

Example 3. Let b = 10, s1 = 4, s2 = 5, α = 0, θ = 0.8. Figures 7.3 and 7.4 respectively
show how (KD

1 , KD
2 ) and (K∗

1 , K
∗
2 , K

∗
f ) change under different investment cost levels as the

variance of Gamma random variable N increases from 100 to 5000, while maintaining a
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Figure 7.2: Optimal Resource Investment for the Kf -only System in the DU Setting under
Various Demand Variability Levels.

mean 100. We assume c1 = 1.5, c2 = 12, cf = 12.75 in the high c2/c1 ratio case, and
c1 = 6.4, c2 = 7, cf = 7.5 in the low c2/c1 ratio case.
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Figure 7.3: Optimal Resource Investment for the (S+D)U Dedicated-only System under
Various Demand Variability Levels.
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Figure 7.4: Optimal Resource Investment for the (S+D)U Flexible System under Various
Demand Variability Levels.
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Similar analyses can be performed on different models that we discussed in the dis-
sertation. Our numerical results provide different insights than those found in the extant
literature that uses aggregate linear demand models. Thus, the next step would be to com-
pare/contrast our results with the literature and explain why differences arise.

Furthermore, several other extensions of our models deserve further study. One obvious,
albeit difficult, extension will be to relax some of our modeling assumptions, such as the
uniform distribution of consumer type or the Bernoulli distribution of resource disruptions,
for the more complex models that we study here, and understand their effect on our results.
Although we are able to relax these assumptions in Chapter 6 for some of our simple models,
this is still a valuable direction. In our current model, the firm can acquire at most one
type of each resource (dedicated or flexible). As a result, if the firm wants a diverse resource
portfolio without resource flexibility, then it needs an investment in each of the two dedicated
resources, which also gives it the ability to produce differentiated products. Thus, another
important extension is to separate the product differentiation and resource diversification
strategies by allowing the firm to acquire multiple resources of the same type. This would,
in turn, require more complex, perhaps location-based, investment cost structure. In a
similar direction, the assumption that Y1, Y2, Yf are independent needs to be relaxed as
disruptions of resources in the same location may be correlated. Our model is developed
for vertically differentiated products. Another important extension would be to consider
horizontally differentiated products, or a mix of vertically and horizontally differentiated
line of products that the firm can select from. Finally, other interesting directions include
introducing competition in our framework, and incorporating measures of risk-averse or risk-
seeking behavior into the objective function (rather than the risk-neutral form of maximizing
the expected profit that we utilize here).
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Appendix A

Let H(A) denote the hessian matrix of A. Let Πi ≡ Π∗(
−→
K,n|n ∈ Ωi), i = 1, ..., 6, that is, Πi

is the conditional profit in stage 2 given that n ∈ Ωi, where Ωi is defined in Chapter 3 of the
main dissertation.

1. Proof of Proposition 1

Define Mi, the set of consumer types who purchase product i, i = 1, 2, as

Mi ≡ {t ∈ [0, b] : tsi − pi ≥ max{ts3−i − p3−i, 0}},
and the set of consumer types who do not purchase any product as

M0 ≡ {t ∈ [0, b] : tsi − pi ≤ 0, for i = 1, 2}.
Observe that when s2 > s1 and p2 ≥ p1, we have

p2

s2

≥ p1

s1

⇔ p2 − p1

s2 − s1

≥ p2

s2

.

Hence, to determine an optimal solution to Problem P2, it is sufficient to consider the fol-
lowing four cases of relationship between p1 and p2:

Case 1. 0 ≤ p1

s1
≤ p2−p1

s2−s1
≤ b ⇒ M0 = [0, p1

s1
], M1 = [p1

s1
, p2−p1

s2−s1
], and M2 = [p2−p1

s2−s1
, b].

Case 2. 0 ≤ p1

s1
≤ b ≤ p2−p1

s2−s1
⇒ M0 = [0, p1

s1
], M1 = [p1

s1
, b], and M2 = ∅.

Case 3. p2−p1

s2−s1
≤ p2

s2
≤ b ⇒ M0 = [0, p2

s2
], M1 = ∅, and M2 = [p2

s2
, b].

Case 4. p1

s1
≥ b and p2

s2
≥ b ⇒ M0 = ∅, M1 = ∅, and M2 = ∅.

Then, observing that each of Cases 2, 3, and 4 arises as a feasible solution to Case 1, which
leads to

d1(p
∗
1, p

∗
2) = n Pr(

p∗1
s1

≤ T ≤ p∗2 − p∗1
s2 − s1

) =
n

b
(
p∗2 − p∗1
s2 − s1

− p∗1
s1

),

d2(p
∗
1, p

∗
2) = n Pr(T ≥ p∗2 − p∗1

s2 − s1

) =
n

b
(b− (p∗2 − p∗1)

s2 − s1

).
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completes the proof. 2

2. Proof of Proposition 2

Utilizing Proposition 1, we can write d1(
−→p ) = n

b
(p2−p1

s2−s1
− p1

s1
) and d2(

−→p ) = n
b
(b− (p2−p1)

s2−s1
).

Suppose that in an optimal solution to Problem P2, we have d1(
−→p ∗) > q∗1 ≥ 0 and d2(

−→p ∗) =
q∗2 ≥ 0 (the cases where d2(

−→p ∗) > q∗2 and d1(
−→p ∗) = q∗1, and di(

−→p ∗) > q∗i , i = 1, 2, can

be proven similarly). Then Π∗(
−→
K ) =

∑2
i=1 q∗i (p

∗
i − αs2

i ). In what follows, we construct an

alternative feasible solution, (−→p ′
,−→q ′

) with profit Π
′
(
−→
K ), such that q

′
i = di(

−→p ′
), i = 1, 2, and

Π
′
(
−→
K ) > Π∗(

−→
K ). Let p

′
1 = p∗1 + ∆1 and p

′
2 = p∗2 + ∆2, such that

q
′
1 = q∗1 =

n

b
(
p∗2 + ∆2 − p∗1 −∆1

s2 − s1

− (p∗1 + ∆1)

s1

) = d1(
−→p ′

) < d∗1 =
n

b
(
p∗2 − p∗1
s2 − s1

− p∗1
s1

) (A.1)

q
′
2 = q∗2 =

n

b
(b− (p∗2 + ∆2 − p∗1 −∆1)

s2 − s1

) =
n

b
(b− (p∗2 − p∗1)

s2 − s1

) = d2(
−→p ′

) = d∗2. (A.2)

From (A.1) and (A.2),

∆1 = ∆2 =
s1(p

∗
2 − p∗1)

s2 − s1

− b

n
q∗1s1 − p∗1, and

∆1

s1

=
b

n
(d∗1 − q∗1) > 0 ⇒ ∆1 = ∆2 > 0.

Observe that (−→p ′
,−→q ′

) satisfies constraints (2.2b) - (2.2g), because q
′
i = q∗i ≤ yiKi+yfKf , i =

1, 2, q
′
1 + q

′
2 = q∗1 + q∗2 ≤ y1K1 + y2K2 + yfKf , p

′
i > p∗i , i = 1, 2, and q

′
i = di(

−→p ′
) = q∗i > 0, i =

1, 2.

Furthermore, we can show that (−→p ′
,−→q ′

) satisfies Proposition 1, that is

p
′
2

s2

≥ p
′
1

s1

⇔ p∗2 + ∆2

s2

≥ p∗1 + ∆1

s1

⇔ s1(p
∗
2 − p∗1)

s2(s2 − s1)
− bs1

ns2

q∗1 +
p∗2 − p∗1

s2

≥ p∗2 − p∗1
s2 − s1

− b

n
q∗1

⇔ q∗1
b

n
(1− s1

s2

) ≥ (p∗2 − p∗1)[
1

s2 − s1

− s1

s2(s2 − s1)
− 1

s2

] = 0

⇔ q∗1 ≥ 0, which holds since −→q ∗ is feasible to (2.2b) - (2.2g).

In addition, we have
(p
′
2−p

′
1)

s2−s1
=

(p∗2−p∗1)

s2−s1
≤ b. Therefore, (~p′ , ~q′) is a feasible solution to

Stage 2 Problem P2. In addition, observe that Π
′
(
−→
K ) =

∑2
i=1 q

′
i(p

′
i − αs2

i ) > Π∗(
−→
K ) =∑2

i=1 q∗i (p
∗
i − αs2

i ), since q
′
i = q∗i and p

′
i > p∗i , i = 1, 2. Thus, there exists an optimal solution
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to Problem P2 in which demand equals the production quantity of each product. 2

3. Proof of Proposition 3

We derive the Hessian matrix, H(Π(−→p )), with respect to (w.r.t.) p1 and p2:

H(Π(−→p )) =
2n

b

[ −s2

(s2−s1)s1

1
s2−s1

1
s2−s1

−1
s2−s1

]
.

Since s2 > s1, we know −s2

(s2−s1)s1
< 0, −1

s2−s1
< 0, and

−s2

(s2 − s1)s1

(
−1

s2 − s1

)− (
1

s2 − s1

)2 =
1

(s2 − s1)s1

> 0.

Therefore, the objective function (3.1a) is strictly, jointly concave in p1 and p2. Since con-
straints (3.1b) - (3.1g) are all linear, the first-order Karush-Kuhn-Tucker (KKT) conditions
are necessary and sufficient for optimality of the constrained problem. In what follows, we
first consider constraints (3.1b), (3.1c), and (3.1d) only, and obtain the optimal solution
using the first-order KKT conditions. Then, we show that these solutions always satisfy
constraints (3.1e) - (3.1g). Hence, (3.1e) - (3.1g) are redundant.

Define λ1, λ2, and λ3 as the KKT multipliers respectively corresponding to constraints
(3.1b), (3.1c), and (3.1d). The first-order KKT conditions are given as:

n

b
[
2(p2 − p1)

s2 − s1

− 2p1

s1

− αs2] + s2λ1 − λ2 + λ3 = 0 (A.3a)

n

b
[b− 2(p2 − p1)

s2 − s1

+ α(s1 + s2)]− s1λ1 + λ2 = 0 (A.3b)

λ1[p1s2 − p2s1 +
b

n
(y1K1 + yfKf )s1(s2 − s1)] = 0 (A.3c)

λ2[p2 − p1 − b(s2 − s1) +
b

n
(y2K2 + yfKf )(s2 − s1)] = 0 (A.3d)

λ3[p1 − bs1 +
b

n
(y1K1 + y2K2 + yfKf )s1] = 0 (A.3e)

λi ≥ 0, i = 1, 2, 3. (A.3f)

Observe that in an optimal solution, either λi > 0 or λi = 0, i = 1, 2, 3, leading to eight
potential solutions. Consider two of these solutions, given by (λ1 > 0, λ2 > 0, λ3 > 0), and
(λ1 > 0, λ2 > 0, λ3 = 0). Observe that if yfK

∗
f > 0, then neither of these solutions is feasible

(with respect to complementary slackness (A.3c) and (A.3d)), since constraints (3.1b) and
(3.1c) cannot be binding at the same time due to (3.1d). On the other hand, if yfK

∗
f = 0,

then one of (3.1b), (3.1c), and (3.1d) becomes redundant, and these solutions reduce to the
solution where (λi > 0, λ3−i = 0, λ3 > 0 for i = 1 or 2), respectively analyzed in Cases
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4 and 6. (When yfK
∗
f = 0, solutions to Cases 4 and 6 are identical.) Consequently, it is

sufficient to consider only the remaining six possible λ vector combinations. We characterize
the solution for each of these six λ vectors and determine the conditions under which each
solution satisfies primal feasibility (i.e., (3.1b) - (3.1g)), dual feasibility (i.e., (A.3a), (A.3b),
(A.3f)), and complementary slackness (i.e., (A.3c) - (A.3e)). See Table A.1 for the summary
of the results. 2

Table A.1: Optimal Solution for Stage 2 of the DU Dedicated-only System.

(λ1, λ2, λ3) −→p ∗ −→q ∗
p∗1 = bs1+αs2

1
2 q∗1 = nαs2

2bΩ1 (= 0, = 0, = 0)
p∗2 = bs2+αs2

2
2 q∗2 = nb−αn(s1+s2)

2b

p∗1 = bs1 − bs1(y1K1+y2K2+yf Kf )
n q∗1 = y1K1 + y2K2 + yfKf

Ω2 (= 0, = 0, > 0) p∗2 = b(s1+s2)
2 − bs1(y1K1+y2K2+yf Kf )

n − (nb−αn(s1+s2))
2b

+ α(s2
2−s2

1)
2 q∗2 = nb−αn(s1+s2)

2b

p∗1 = bs1+αs1s2
2 − b(y1K1+yf Kf )(s2−s1)s1

ns2
q∗1 = y1K1 + yfKfΩ3 (> 0, = 0, = 0)

p∗2 = (b+αs2)s2

2 q∗2 = n(b−αs2)
2b − (y1K1+yf Kf )s1

s2

p∗1 = bs1 − bs1(y1K1+y2K2+yf Kf )
n q∗1 = y1K1 + yfKfΩ4 (> 0, = 0, > 0)

p∗2 = bs2 − b(y1K1+yf Kf )s1

n − bK2s2
n q∗2 = y2K2

p∗1 = (b+αs1)s1

2 q∗1 = n(b−αs1)
2b − (y2K2 + yfKf )

Ω5 (= 0, > 0, = 0) p∗2 = b(s2 − s1)− b
n(y2K2 + yfKf )(s2 − s1) q∗2 = y2K2 + yfKf

+ (b+αs1)s1

2

p∗1 = bs1 − bs1(y1K1+y2K2+yf Kf )
n q∗1 = y1K1Ω6 (= 0, > 0, > 0)

p∗2 = bs2 − b(y2K2+yf Kf )s2

n − by1K1s1

n q∗2 = y2K2 + yfKf

4. Proof of Proposition 4

Case 1: y1K1 ≥ αs2(y2K2+yf Kf )

b−α(s1+s2)
: Let us first consider Ω5. For it to be a nonempty set, we

need

2b(y2K2 + yfKf )

b− α(s1 + s2)
< n ≤ 2b(y1K1 + y2K2 + yfKf )

b− αs1

⇒ y2K2 + yfKf

b− α(s1 + s2)
≤ y1K1 + y2K2 + yfKf

b− αs1

⇒ by1K1 ≥ αs1y1K1 + αs2(y1K1 + y2K2 + yfKf ). (A.4)
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When (A.4) holds, we have

2b(y1K1 + yfKf )

αs2

≥ 2b(y1K1 + y2K2 + yfKf )

b− αs1

⇒ b(y1K1 + yfKf )− αs1(y1K1 + yfKf ) ≥ αs2(y1K1 + y2K2 + yfKf )

⇒ b(y1K1 + yfKf ) > by1K1 + αs1yfKf ≥ αs1y1K1 + αs2(y1K1 + y2K2 + yfKf ) + αs1yfKf .

Also from (A.4), it is easy to see that Ω2 is an empty set.

For Ω3 to be nonempty, we need

2b(y1K1 + yfKf )

αs2

≤ y2K2s2 + (y1K1 + yfKf )s1

(b− αs2)s2

⇒ b(y1K1 + yfKf ) ≤ αs2(y1K1 + y2K2 + yfKf ) + αs1(y1K1 + yfKf ),

which is not true by (A.4).

For Ω4 to be nonempty, we need

2b[y2K2s2 + (y1K1 + yfKf )s1]

(b− αs2)s2

≤ 2by2K2

b− α(s1 + s2)

⇒ by2K2s2 + bs1(y1K1 + yfKf )− αy2K2s2(s1 + s2)− α(s1 + s2)s1(y1K1 + yfKf )

≤ y2K2s2(b− αs2)

⇒ b(y1K1 + yfKf ) ≤ αs2(y1K1 + y2K2 + yfKf ) + αs1(y1K1 + yfKf ),

which is not true by (A.4).

To summarize, if y1K1 ≥ αs2(y2K2+yf Kf )

b−α(s1+s2)
, the sample space consists of sets Ω1, Ω5, and Ω6

only, as shown in Figure 3.1.

Case 2: If
αs2(y2K2+yf Kf )

b−α(s1+s2)
≥ y1K1 ≥ αs2y2K2

b−α(s1+s2)
− yfKf , we know that Ω3, Ω4, and Ω5 are

empty sets, and Ω2 is nonempty with

2by2K2

b− α(s1 + s2)
<

2b(y1K1 + y2K2 + yfKf )
b− αs1

.

We also know

2b(y1K1 + y2K2 + yfKf )

b− αs1

<
2b(y1K1 + yfKf )

αs2

, and

2b(y2K2 + yfKf )

b− α(s1 + s2)
>

2b(y1K1 + y2K2 + yfKf )

b− αs1

.
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Hence, the sample space consists of sets Ω1, Ω2, and Ω6 only, as shown in Figure 3.2.

Case 3: If αs2y2K2

b−α(s1+s2)
− yfKf ≥ y1K1, we know that Ω2, Ω3, and Ω4 are nonempty, and Ω5

is empty. We further know

2b(y1K1 + yfKf )

αs2

≤ 2b(y1K1 + y2K2 + yfKf )

b− αs1

≤ 2by2K2

b− α(s1 + s2)
.

Hence, the sample space consists of Ω1, Ω3, Ω4, Ω2, and Ω6 only, as shown in Figure 3.3. 2

5. Proof of Theorem 1

(i) First note that for any solution with K
′
f > 0 in Region I, we must have K

′
1 > 0. Consider

such a solution, given by
−→
K

′
= (K

′
1 > 0, K

′
2 ≥ 0, K

′
f > 0) such that K

′
1 ≥

αs2(K
′
2+K

′
f )

b−α(s1+s2)
. We

can always find an alternative solution in Region I, given by
−→
Ka = (Ka

1 = K
′
1 > 0, Ka

2 =

K
′
2 + K

′
f > 0, Ka

f = 0), with Ka
1 ≥

αs2(Ka
2 +Ka

f )

b−α(s1+s2)
. We can show that qj(

−→
K

′
) = qj(

−→
K a), j = 1, 2,

in each set, and hence, Πi(
−→
K

′
) = Πi(

−→
K a), i = 1, 5, 6 (see Appendix B.1. for expressions for

the conditional profit functions in each set). Furthermore, Ωi(
−→
K a) = Ωi(

−→
K

′
), for i = 1, 5, 6,

i.e., the boundaries of sets Ω1, Ω5, and Ω6 do not change in
−→
K

′
and

−→
K a (see Figure 3.1). Thus,

we have EN [Π∗(
−→
K

′
)] = EN [Π∗(

−→
K a)] ⇒ V (

−→
Ka) > V (

−→
K

′
), since c2 < cf . This completes the

proof.

(ii) For any solution
−→
K

′
satisfying

αs2(K
′
2+K

′
f )

b−α(s1+s2)
≥ K

′
1 >

αs2K
′
2

b−α(s1+s2)
− K

′
f , we can always find

an alternative solution
−→
Ka in Region II that satisfies Ka

1 = K
′
1,

αs2Ka
2

b−α(s1+s2)
−Ka

f = Ka
1 , and

Ka
2 + Ka

f = K
′
2 + K

′
f . Note that

Ka
1 = K

′
1 ≥ 0,

Ka
2 =

(b− α(s1 + s2))(K
′
1 + K

′
2 + K

′
f )

b− αs1

> 0,

Ka
f = K

′
2 + K

′
f −Ka

2 =
αs2(K

′
2 + K

′
f )

b− αs1

− (b− α(s1 + s2))K
′
1

b− αs1

≥ (b− α(s1 + s2))K
′
1

b− αs1

− (b− α(s1 + s2))K
′
1

b− αs1

= 0.

Hence,
−→
Ka is a feasible solution. Similar to Part (i), we can show that qj(

−→
K

′
) = qj(

−→
K a), j =

1, 2, in each set Ω1, Ω2, and Ω6, leading to Πi(
−→
K

′
) = Πi(

−→
K a), i = 1, 2, 6. Since the boundaries

of sets Ω1, Ω2, and Ω6 do not change in
−→
K

′
and

−→
K a (see Figure 3.2), we have EN [Π∗(

−→
K

′
)] =

EN [Π∗(
−→
K a)] ⇒ V (

−→
Ka) > V (

−→
K

′
), since c2 < cf . 2
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1. Conditional Profit Functions and Their Derivatives

We first derive the first- and second-order derivatives for the conditional profit functions
in Stage 2 under DU setting with respect to K1, K2, and Kf for all six disjoint sets. These
derivations will be used in our subsequent proofs. We have

Ω1 : Π1 = nα(b−αs1)s1s2

4b
+ n(b−αs2)[b−α(s1+s2)]s2

4b

⇒ ∂Π1

∂Ki
= 0 for i = 1, 2, f .

Ω2 : Π2 = [bs1 − bs1(K1+K2+Kf )

n
− αs2

1][K1 + K2 + Kf − n(b−αs1−αs2)
2b

]

+ [ b(s2+s1)
2

− bs1(K1+K2+Kf )

n
+

α(s2
2−s2

1)

2
− αs2

2][
n(b−αs1−αs2)

2b
]

⇒ ∂Π2

∂K1
= ∂Π2

∂K2
= ∂Π2

∂Kf
= bs1 − αs2

1 − 2bs1(K1+K2+Kf )

n
∂2Π2

∂K2
1

= ∂2Π2

∂K2
2

= ∂2Π2

∂K2
f

= ∂2Π2

∂K1∂K2
= ∂2Π2

∂K1∂Kf
= ∂2Π2

∂K2∂Kf
= −2bs1

n
.

Ω3 : Π3 = [ (b+αs2)s1

2
− b(K1+Kf )(s2−s1)s1

ns2
− αs2

1](K1 + Kf )

+ [ (b+αs2)s2

2
− αs2

2][
n(b−αs2)

2b
− (K1+Kf )s1

s2
]

⇒ ∂Π3

∂K1
= ∂Π3

∂Kf
= αs1s2 − αs2

1 − 2b(K1+Kf )(s2−s1)s1

ns2

∂2Π3

∂K2
1

= ∂2Π3

∂K2
f

= ∂2Π3

∂K1∂Kf
= −2b(s2−s1)s1

ns2

∂Π3

∂K2
= ∂2Π3

∂K1∂K2
= ∂2Π3

∂K2∂Kf
= ∂2Π3

∂K2
2

= 0.

Ω4 : Π4 = [bs1 − bs1(K1+K2+Kf )

n
− αs2

1](K1 + Kf ) + [bs2 − bs1(K1+Kf )

n
− bK2s2

n
− αs2

2]K2

⇒ ∂Π4

∂K1
= ∂Π4

∂Kf
= bs1 − αs2

1 − 2bs1(K1+K2+Kf )

n

∂Π4

∂K2
= bs2 − αs2

2 − 2bs1(K1+Kf )

n
− 2bK2s2

n
∂2Π4

∂K2
1

= ∂2Π4

∂K2
f

= ∂2Π4

∂K1∂K2
= ∂2Π4

∂K1∂Kf
= ∂2Π4

∂K2∂Kf
= −2bs1

n

∂2Π4

∂K2
2

= −2bs2

n
.

46
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Ω5 : Π5 = [ (b+αs1)s1

2
− αs2

1][
n(b−αs1)

2b
− (K2 + Kf )]

+ [b(s2 − s1)− b(K2+Kf )(s2−s1)

n
+ (b+αs1)s1

2
− αs2

2](K2 + Kf )

⇒ ∂Π5

∂K2
= ∂Π5

∂Kf
= αs2

1 − αs2
2 + b(s2 − s1)− 2b(K2+Kf )(s2−s1)

n
∂Π5

∂K1
= ∂2Π5

∂K2
1

= ∂2Π5

∂K1∂K2
= ∂2Π5

∂K1∂Kf
= 0

∂2Π5

∂K2
2

= ∂2Π5

∂K2
f

= ∂2Π5

∂K2∂Kf
= −2b(s2−s1)

n
.

Ω6 : Π6 = [bs1 − bs1(K1+K2+Kf )

n
− αs2

1]K1 + [bs2 −− bs2(K2+Kf )

n
− bK1s1

n
− αs2

2](K2 + Kf )

⇒ ∂Π6

∂K1
= bs1 − αs2

1 − 2bs1(K1+K2+Kf )

n
∂Π6

∂K2
= ∂Π6

∂Kf
= bs2 − αs2

2 − 2bs2(K2+Kf )

n
− 2bK1s1

n
∂2Π6

∂K2
1

= ∂2Π6

∂K1∂K2
= ∂2Π6

∂K1∂Kf
= −2bs1

n
∂2Π6

∂K2
2

= ∂2Π6

∂K2
f

= ∂2Π6

∂K2∂Kf
= −2bs2

n
.

2. Formulation and Optimality Conditions of Region I and Region III Problems

We first give the formulation of the Region I and Region III problems for the DU only
setting. Then, Lemmas 1 and 2 establish the necessary and sufficient conditions for opti-
mality of the Region I (with Kf = 0) and Region III (with Kf ≥ 0) problems, respectively.
These results will be used in our subsequent proofs.

The formulation for the Region I problem, PI
1, with Kf = 0 reduces to:

PI
1(Kf = 0) : V ∗

I ≡ max
K1,K2

V = EN [Π∗(K1, K2, N)]−
∑

i=1, 2

ciKi (B.1a)

subject to

K1 ≥ 0 (B.1b)

K2 ≥ 0 ←− v2 (B.1c)

K1 − αs2K2

b− α(s1 + s2)
≥ 0, ←− va (B.1d)

where v2 and va denote the KKT multipliers respectively corresponding to constraints (B.1c)
and (B.1d). Observe that (B.1c) and (B.1d) imply (B.1b); hence, (B.1b) is redundant.

Lemma 1. An investment vector (K1, K2) ∈ R2
+ is the unique optimal solution to Problem

PI
1(Kf = 0) if and only if there exists a −→v = (v2, va) ∈ R2

+ that satisfies the following
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conditions:
∫ ∞

t2

s1(b− αs1)
n− t2

n
fN(n)dn = c1 − va (B.2a)

∫ t2

t1

(s2 − s1)[b− α(s1 + s2)]
n− t1

n
fN(n)dn

+

∫ ∞

t2

[bs2 − αs2
2 −

2b(K2s2 + K1s1)

n
]fN(n)dn = c2 − v2 +

αs2va

b− α(s1 + s2)
(B.2b)

v2K2 = 0 (B.2c)

va[K1 − αs2K2

b− α(s1 + s2)
] = 0 (B.2d)

v2, va ≥ 0, (B.2e)

where t1 ≡ 2bK2

b−α(s1+s2)
and t2 ≡ 2b(K1+K2)

b−αs1
.

Proof: Consider the Region I problem PI
1(Kf = 0), where K1 ≥ αs2K2

b−α(s1+s2)
(≥ 0), and

Kf = 0.

V (
−→
K) = EN [Π∗(

−→
K,N)]−

∑

i=1,2

ciKi =
6∑

i=1

∫

n∈ Ωi

Πi(n)fN (n)dn−
∑

i=1,2

ciKi

=
∫ 2bK2

b−α(s1+s2)

0

Π1(n)fN (n)dn +
∫ 2b(K1+K2)

b−αs1

2bK2
b−α(s1+s2)

Π5(n)fN (n)dn +
∫ ∞

2b(K1+K2)
b−αs1

Π6(n)fN (n)dn−
∑

i=1,2

ciKi

⇒ ∂V (
−→
K)

∂K1
=

∫ ∞

2b(K1+K2)
b−αs1

∂Π6(n)
∂K1

fN (n)dn− c1

∂V (
−→
K)

∂K2
=

∫ 2b(K1+K2)
b−αs1

2bK2
b−α(s1+s2)

∂Π5(n)
∂K2

fN (n)dn +
∫ ∞

2b(K1+K2)
b−αs1

∂Π6(n)
∂K2

fN (n)dn− c2

∂2V (
−→
K)

∂K2
1

=
∫ ∞

2b(K1+K2)
b−αs1

∂2Π6(n)
∂K2

1

fN (n)dn− 2b

(b− αs1)
∂Π6(n)
∂K1

fN (n)|
n=

2b(K1+K2)
b−αs1

= −2bs1

∫ ∞

2b(K1+K2)
b−αs1

1
n

fN (n)dn

∂2V (
−→
K)

∂K1∂K2
=

∫ ∞

2b(K1+K2)
b−αs1

∂2Π6(n)
∂K1∂K2

fN (n)dn− 2b

(b− αs1)
∂Π6(n)
∂K1

fN (n)|
n=

2b(K1+K2)
b−αs1

= −2bs1

∫ ∞

2b(K1+K2)
b−αs1

1
n

fN (n)dn
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∂2V (
−→
K)

∂K2
2

=
∫ 2b(K1+K2)

b−αs1

2bK2
b−α(s1+s2)

∂2Π5(n)
∂K2

2

fN (n)dn +
∫ ∞

2b(K1+K2)
b−αs1

∂2Π6(n)
∂K2

2

fN (n)dn

+
2b

b− αs1

∂Π5(n)
∂K2

fN (n)|
n=

2b(K1+K2)
b−αs1

− 2b

b− α(s1 + s2)
∂Π5(n)
∂K2

fN (n)|
n=

2bK2
b−α(s1+s2)

− 2b

(b− αs1)
∂Π6(n)
∂K2

fN (n)|
n=

2b(K1+K2)
b−αs1

= −2b(s2 − s1)
∫ 2b(K1+K2)

(b−αs1)

2bK2
b−α(s1+s2)

1
n

fN (n)dn− 2bs2

∫ ∞

2b(K1+K2)
b−αs1

1
n

fN (n)dn.

Let d ≡ ∫∞
2b(K1+K2)

b−αs1

1
n
fN(n)dn and e ≡ ∫ 2b(K1+K2)

b−αs1
2bK2

b−α(s1+s2)

1
n
fN(n)dn. Then, the Hessian of V (

−→
K ) with

respect to K1 and K2 is given by

H(V (
−→
K )) =

[ −2bs1d −2bs1d
−2bs1d − 2b(s2 − s1)e− 2bs2d

]
.

We know −2bs1d < 0 and −2b(s2 − s1)e− 2bs1d < 0. We also have
[ −2bs1d −2bs1d
−2bs1d − 2b(s2 − s1)e− 2bs2d

]
=

[ −2bs1d −2bs1d
0 − 2b(s2 − s1)(d + e)

]
.

Therefore, H(V (
−→
K )) is negative definite, and hence, V (

−→
K ) is strictly jointly concave in K1

and K2. Since the constraints are linear in K1 and K2, the result follows by the first-order
KKT conditions, which are necessary and sufficient for optimality of problem PI

1(Kf = 0). 2

Similarly, the formulation for the Region III (with Kf ≥ 0) problem, PIII
1 , is given as:

PIII
1 : V ∗

III ≡ max−→
K

V = EN [Π∗(
−→
K,N)]−

∑

i=1, 2, f

ciKi (B.3a)

subject to

K1 ≥ 0 ←− v1 (B.3b)

K2 ≥ 0 (B.3c)

Kf ≥ 0 ←− vf (B.3d)

αs2K2

b− α(s1 + s2)
−K1 −Kf ≥ 0, ←− va2 (B.3e)

where v1, vf , and va2 denote the KKT multipliers respectively corresponding to constraints
(B.3b),(B.3d), and (B.3e). Observe that (B.3b),(B.3d), and (B.3e) imply (B.3c), which is
redundant.

Lemma 2. An investment vector
−→
K = (K1, K2, Kf ) ∈ R3

+ is the unique optimal solution to
Problem PIII

1 if and only if there exists a −→v = (v1, vf , va2) ∈ R3
+ that satisfies the following
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conditions:
∫ t2

t1

γfN(n)dn +

∫ ∞

t2

βfN(n)dn = c1 − v1 + va2 (B.4a)

∫ t3

t2

ω1fN(n)dn +

∫ t4

t3

βfN(n)dn +

∫ ∞

t4

ω2fN(n)dn = c2 − αs2va2

b− α(s1 + s2)
(B.4b)

∫ t2

t1

γfN(n)dn +

∫ t4

t2

βfN(n)dn +

∫ ∞

t4

ω2fN(n)dn = cf − vf + va2 (B.4c)

v1K1 = 0 (B.4d)

vfKf = 0 (B.4e)

va2[
αs2K2

b− α(s1 + s2)
−K1 −Kf ] = 0 (B.4f)

v1, vf , va2 ≥ 0, (B.4g)

where

β ≡ bs1 − αs2
1 −

2bs1(K1 + K2 + Kf )
n

, γ ≡ αs1s2 − αs2
1 −

2b(K1 + Kf )(s2 − s1)s1

ns2
,

ω1 ≡ bs2 − αs2
2 −

2bs1(K1 + Kf )
n

− 2bK2s2

n
, ω2 ≡ bs2 − αs2

2 −
2bs2(K2 + Kf )

n
− 2bK1s1

n
,

t1 ≡ 2b(K1 + Kf )
αs2

, t2 ≡ 2b(K2s2 + (K1 + Kf )s1)
(b− αs2)s2

,

t3 ≡ 2bK2

b− α(s1 + s2)
, t4 ≡ 2b(K2 + Kf )

b− α(s1 + s2)
.

Proof: Consider the Region III problem, PIII
1 , where αs2K2

b−α(s1+s2)
− Kf ≥ K1. Let t1 ≡

2b(K1+Kf )

αs2
, t2 ≡ 2b[K2s2+(K1+Kf )s1]

(b−αs2)s2
, t3 ≡ 2bK2

b−α(s1+s2)
, and t4 ≡ 2b(K2+Kf )

b−α(s1+s2)
. We have

V (
−→
K) = EN [Π∗(

−→
K,N)]−

∑

i=1,2,f

ciKi =
∫ t1

0

Π1(n)fN (n)dn +
∫ t2

t1

Π3(n)fN (n)dn +
∫ t3

t2

Π4(n)fN (n)dn

+
∫ t4

t3

Π2(n)fN (n)dn +
∫ ∞

t4

Π6(n)fN (n)dn−
∑

i=1,2,f

ciKi

⇒ ∂V (
−→
K)

∂K1
=

∫ t2

t1

∂Π3(n)
∂K1

fN (n)dn +
∫ t3

t2

∂Π4(n)
∂K1

fN (n)dn

+
∫ t4

t3

∂Π2(n)
∂K1

fN (n)dn +
∫ ∞

t4

∂Π6(n)
∂K1

fN (n)dn− c1
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∂2V (
−→
K)

∂K2
1

=
∫ t2

t1

∂2Π3(n)
∂K2

1

fN (n)dn +
∫ t3

t2

∂2Π4(n)
∂K2

1

fN (n)dn +
∫ t4

t3

∂2Π2(n)
∂K2

1

fN (n)dn

+
∫ ∞

t4

∂2Π6(n)
∂K2

1

fN (n)dn− 2b

αs2

∂Π3(n)
∂K1

fN (n)|n=t1 +
2bs1

(b− αs2)s2

∂Π3(n)
∂K1

fN (n)|n=t2

− 2bs1

(b− αs2)s2

∂Π4(n)
∂K1

fN (n)|n=t2

= −2b(s2 − s1)s1

s2

∫ t2

t1

fN (n)
n

dn− 2bs1

∫ ∞

t2

fN (n)
n

dn

∂2V (
−→
K)

∂K1∂K2
=− 2bs1

∫ t3

t2

fN (n)
n

dn− 2bs1

∫ t4

t3

fN (n)
n

dn− 2bs1

∫ ∞

t4

fN (n)
n

dn = −2bs1

∫ ∞

t2

fN (n)
n

dn

∂2V (
−→
K)

∂K1∂Kf
=

∂2V (
−→
K)

∂K2
1

= −2b(s2 − s1)s1

s2

∫ t2

t1

fN (n)
n

dn− 2bs1

∫ ∞

t2

fN (n)
n

dn

∂V (
−→
K)

∂K2
=

∫ t3

t2

∂Π4(n)
∂K2

fN (n)dn +
∫ t4

t3

∂Π2(n)
∂K2

fN (n)dn +
∫ ∞

t4

∂Π6(n)
∂K2

fN (n)dn− c2

∂2V (
−→
K)

∂K2
2

=− 2bs2

∫ t3

t2

fN (n)
n

dn− 2bs1

∫ t4

t3

fN (n)
n

dn− 2bs2

∫ ∞

t4

fN (n)
n

dn

∂2V (
−→
K)

∂K2∂Kf
=− 2bs1

∫ t3

t2

fN (n)
n

dn− 2bs1

∫ t4

t3

fN (n)
n

dn− 2bs2

∫ ∞

t4

fN (n)
n

dn

∂2V (
−→
K)

∂K2
f

=− 2b(s2 − s1)s1

s2

∫ t2

t1

fN (n)
n

dn− 2bs1

∫ t3

t2

fN (n)
n

dn− 2bs1

∫ t4

t3

fN (n)
n

dn− 2bs2

∫ ∞

t4

fN (n)
n

dn.

Let d ≡ ∫ t2
t1

fN (n)
n

dn, e ≡ ∫ t3
t2

fN (n)
n

dn, h ≡ ∫ t4
t3

fN (n)
n

dn, g ≡ ∫∞
t4

fN (n)
n

dn. The Hessian of V (
−→
K )

w.r.t. K1, K2, and Kf is given by:

H(V (
−→
K)) =− 2b




s1(d + e + h + g)− s2
1

s2
d s1(e + h + g) s1(d + e + h + g)− s2

1
s2

d

s1(e + h + g) s2e + s1h + s2g s1e + s1h + s2g

s1(d + e + h + g)− s2
1

s2
d s1e + s1h + s2g s1(d + e + h) + s2g − s2

1
s2

d




=− 2b




s1(d + e + h + g)− s2
1

s2
d s1(e + h + g) s1(d + e + h + g)− s2

1
s2

d

0 s2e + s1h + s2g − s2
1(e+h+g)2

s1(d+e+h+g)− s21
s2

d
(s2 − s1)g

0 (s2 − s1)g (s2 − s1)g


 .
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Since s1d− s2
1

s2
d = s1(s2−s1)

s2
d > 0, we know s1(d + e + h + g)− s2

1

s2
d > s1(e + h + g). Hence,

s2e + s1h + s2g − s2
1(e + h + g)2

s1(d + e + h + g)− s2
1

s2
d

>s2e + s1h + s2g − s1(e + h + g)

=(s2 − s1)e + (s2 − s1)g
>(s2 − s1)g > 0

⇒ [s2e + s1h + s2g − s2
1(e + h + g)2

s1(d + e + h + g)− s2
1

s2
d
]·(s2 − s1)g − (s2 − s1)2g2 > 0.

We also know s1(d + e + h + g)− s2
1

s2
d > 0 and (s2− s1)g > 0. Then, V (

−→
K ) is strictly jointly

concave in K1, K2, and Kf . Since the constraints are linear in K1, K2, and Kf , the result
follows by the first-order KKT conditions, which are necessary and sufficient for optimality
of Problem PIII

1 .2

3. Proof of Proposition 5

(i) In the case of no consumer-driven substitution, the two-stage stochastic programming
problem formulation for product i becomes

Problem Pi
d

Stage 1 Problem Pi
d1:

max−→
K

Vi ≡ EN [Π∗(Ki, N)]− ciKi (B.5a)

subject to Ki ≥ 0. (B.5b)

Stage 2 Problem Pi
d2:

Π∗(Ki, n) = max−→p
n

b
(b− pi

si

)(pi − αs2
i ) (B.6a)

subject to
n

b
(b− pi

si

) ≤ Ki (B.6b)

b− pi

si

≥ 0. (B.6c)

The solution to the stage 2 problem directly follows from Proposition 3. For the stage 1
problem, we know the objective function (B.5a) is strictly concave in Ki and the first-order
KKT conditions for the stage 1 problem are given by

∫ ∞

2Ki

(bsi − αs2
i )(1−

2Ki

n
)fNi

(n)dn = ci − vi (B.7a)

Kivi = 0 (B.7b)

vi ≥ 0. (B.7c)
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When vi = 0, we need ci ≤ si(b − αsi) for Ki ≥ 0. Also, when vi > 0, we need
ci > si(b − αsi). Therefore, the structure of the optimal resource portfolio in this case can
be characterized as follows (see Figure 4.1(a)):

(Ad): If c1 ≤ bs1 − αs2
1 and c2 ≤ bs2 − αs2

2, then KD
1 and KD

2 are the unique solutions to:

∫ ∞

2K1

(bs1 − αs2
1)(1−

2K1

n
)fN1(n)dn = c1,

∫ ∞

2K2

(bs2 − αs2
2)(1−

2K2

n
)fN2(n)dn = c2.

(Cd): If c2 ≤ bs2 − αs2
2 and c1 > bs1 − αs2

1, then KD
1 = 0 and KD

2 is the unique solution to∫∞
2K2

(bs2 − αs2
2)(1− 2K2

n
)fN2(n)dn = c2.

(Dd): If c1 ≤ bs1 and c2 > bs2 − αs2
2, then KD

2 = 0 and KD
1 is the unique solution to∫∞

2K1
(bs1 − αs2

1)(1− 2K1

n
)fN1(n)dn = c1.

(Ed): If c1 ≥ bs1 − αs2
1 and c2 ≥ bs2 − αs2

2, then KD
1 = 0 and KD

2 = 0.

(ii) We study both Region I and III problems with Kf = 0, and compare the optimal so-

lution to each to determine the global optimal solution. We denote
−→
K I = (KI

1 , K
I
2 ) as the

optimal solution to Problem PI
1(Kf = 0), and

−→
K III = (KIII

1 , KIII
2 ) as the optimal solution

to Problem PIII
1 (Kf = 0).

Region I problem with Kf = 0 (PI
1(Kf = 0)):

Recall that v2 and va denote the KKT multipliers respectively corresponding to con-
straints (B.1c) and (B.1d). We study the optimality conditions in Lemma 1 and summarizes
the structure of the optimal solution for the Region I problem with Kf = 0 in Table B.1 (see
also Figure B.1(a)).

Region III problem with Kf = 0 (PIII
1 (Kf = 0)):

Let t1 ≡ 2bK1

αs2
and t2 ≡ 2b(K1s1+K2s2)

(b−αs2)s2
. The following conditions arise as a special case of
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Table B.1: Structure of the Optimal Solution for Problem PI
1(Kf = 0).

Feasible Region : K1 ≥ αs2K2
b−α(s1+s2) ≥ 0

Cases Solution Structure Necessary and Sufficient Conditions
c2 ≤ c1 + (s2 − s1)[b− α(s1 + s2)](v2 = 0, va = 0) I(1) KI

1 ≥ 0 and KI
2 ≥ 0

c2 ≥ s2(b−αs2)
s1(b−αs1)c1

c2 + αs2
b−α(s1+s2)c1 ≤ αs1s2(b−αs1)

b−α(s1+s2) + s2(b− αs2)(v2 = 0, va > 0) I(2) KI
1 = αs2K2

b−α(s1+s2) and KI
2 ≥ 0

c2 < s2(b−αs2)
s1(b−αs1)c1

c2 > c1 + (s2 − s1)[b− α(s1 + s2)](v2 > 0, va = 0) I(3) KI
1 ≥ 0 and KI

2 = 0
c1 ≤ s1(b− αs1)

c2 + αs2
b−α(s1+s2)c1 > αs1s2(b−αs1)

b−α(s1+s2) + s2(b− αs2)(v2 > 0, va > 0) I(4) KI
1 = 0 and KI

2 = 0
c1 > s1(b− αs1)

the optimality conditions in Lemma 2 (by setting Kf = 0).

∫ t2

t1

αs1(s2 − s1)
n− t1

n
fN(n)dn +

∫ ∞

t2

[bs1 − αs2
1 −

2b(K2 + K1)s1

n
]fN(n)dn = c1 − v1 + va2

(B.8a)∫ ∞

t2

[bs2 − αs2
2 −

2b(K1s1 + K2s2)

n
]fN(n)dn = c2 − αs2va2

b− α(s1 + s2)
(B.8b)

v1K1 = 0 (B.8c)

va2[
αs2K2

b− α(s1 + s2)
−K1] = 0 (B.8d)

v1, va2 ≥ 0, (B.8e)

where v1 and va2 respectively denote the KKT multipliers corresponding to constraints (B.3b)
and (B.3e). We analyze the Region III problem with Kf = 0 and summarizes the structure
of the optimal solution in Table B.2 (see also Figure B.1(b)).

The global optimal solution with Kf = 0:

Comparing the optimal solutions in each region (see Tables 2 and 3), we obtain the
global optimal solution as follows:

(Ad): If c2 ≤ c1 + (s2 − s1)[b − α(s1 + s2)] and c2 ≥ s2(b−αs2)
s1(b−αs1

c1, then the optimal solution

to Problem PIII
1 (Kf = 0) is given by Case III(2), which lies on the boundary of

K1 = αs2K2

b−α(s1+s2)
. Hence, in this region, the optimal solution to Problem PIII

1 (Kf = 0)

is feasible to Problem PI
1(Kf = 0), but not optimal for the latter. Therefore, the

optimal solution to Problem PIII
1 (Kf = 0) is dominated by the optimal solution to
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Table B.2: Structure of the Optimal Solution for Problem PIII
1 (Kf = 0).

Feasible Region : 0 ≤ K1 ≤ αs2K2
b−α(s1+s2)

Cases Solution Structure Necessary and Sufficient Conditions
s1c2 ≥ s2c1 − αs1s2(s2 − s1)(v1 = 0, va2 = 0) III(1) KIII

1 ≥ 0 and KIII
2 ≥ 0

c2 ≤ s2(b−αs2)
s1(b−αs1)

c1

c2 + αs2
b−α(s1+s2)

c1 ≤ αs1s2(b−αs1)
b−α(s1+s2)

+ s2(b− αs2)(v1 = 0, va2 > 0) III(2) KIII
1 = αs2K2

b−α(s1+s2)
and KIII

2 ≥ 0
c2 > s2(b−αs2)

s1(b−αs1)
c1

s1c2 < s2c1 − αs1s2(s2 − s1)(v1 > 0, va2 = 0) III(3) KIII
1 = 0 and KIII

2 ≥ 0
c2 ≤ s2(b− αs2)

c2 + αs2
b−α(s1+s2)

c1 > αs1s2(b−αs1)
b−α(s1+s2)

+ s2(b− αs2)(v1 > 0, va2 > 0) III(4) KIII
1 = 0 and KIII

2 = 0
c2 > s2(b− αs2)

1c

2c

I(1)

I(3)

I(2)

I(4)

1 1( )s b sα−

2 2( )s b sα−
2 2

2 1
1 1

( )

( )

s b s
c c

s b s

α

α

−
=

−

2 1 2 1 1 2( )[ ( )]c c s s b s sα= + − − +

2 1 1 2( )[ ( )]s s b s sα− − +

1 2( 0, 0)I IK K= =

1 2( 0, 0)I IK K≥ ≥

2 2
1 2

1 2

( , 0)
( )

I
I Is K

K K
b s s

α

α
= ≥

− +

1 2( 0, 0)I IK K≥ =

(a) Region I Problem with Kf = 0.

1c

2c

III(1)

III(3)

III(2)

III(4)

1 1( )s b sα−

2 2( )s b sα−

1 2( 0, 0)III IIIK K= =

`

1 2( 0, 0)III IIIK K= ≥

1 2( 0, 0)III IIIK K≥ ≥

2 2
1 2

1 2

( , 0)
( )

III
III IIIs K

K K
b s s

α

α
= ≥

− +

2 2
2 1

1 1

( )

( )

s b s
c c

s b s

α

α

−
=

−

1 2 1( )s s sα −

1 2 2 1 1 2 2 1( )s c s c s s s sα= − −

(b) Region III Problem with Kf = 0..

Figure B.1: The Structure of the Optimal Solution for the Region I and III Problems with
Kf = 0.

Problem PI
1(Kf = 0), which then is the optimal solution and KD

1 and KD
2 are the

unique solutions to:
∫ ∞

t2

s1(b− αs1)
n− t2

n
fN (n)dn = c1

∫ t2

t1

(s2 − s1)[b− α(s1 + s2)]
n− t1

n
fN (n)dn +

∫ ∞

t2

[bs2 − αs2
2 − 2b

(K2s2 + K1s1)
n

]fN (n)dn = c2,

where t1 ≡ 2bK2

b−α(s1+s2)
and t2 ≡ 2b(K1+K2)

b−αs1
.

(Bd): If c2 ≤ s2(b−αs2)
s1(b−αs1)

c1 and s1c2 ≥ s2c1−αs1s2(s2−s1), then the optimal solution to Problem

PI
1(Kf = 0) is given by Case I(2), which lies on the boundary of K1 = αs2K2

b−α(s1+s2)
.

Hence, in this region, the optimal solution to Problem PI
1(Kf = 0) is feasible to
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Problem PIII
1 (Kf = 0), but not optimal for the latter. Therefore, the optimal solution

to Problem PI
1(Kf = 0) is dominated by the optimal solution to Problem PIII

1 (Kf = 0),
which then is the global optimal solution and KD

1 and KD
2 are the unique solutions to:

∫ t2

t1

αs1(s2 − s1)
n− t1

n
fN (n)dn +

∫ ∞

t2

[bs1 − αs2
1 −

2b(K2 + K1)s1

n
]fN (n)dn = c1

∫ ∞

t2

[bs2 − αs2
2 −

2b(K1s1 + K2s2)
n

]fN (n)dn = c2,

where t1 ≡ 2bK1

αs2
and t2 ≡ 2b(K1s1+K2s2)

(b−αs2)s2
.

(Cd): If c2 ≤ s2(b − αs2) and s1c2 ≤ s2c1 − αs1s2(s2 − s1), then we need to consider two
subcases:

(i) If s1c2 ≤ s2c1 − αs1s2(s2 − s1) and c2 + αs2

b−α(s1+s2)
c1 ≤ αs1s2(b−αs1)

b−α(s1+s2)
+ s2(b − αs2),

then similar to (Bd), the optimal solution to Problem PI
1(Kf = 0) is feasible for

Problem PIII
1 (Kf = 0), but not optimal for the latter. Hence, in this region, the

optimal solution to Problem PI
1(Kf = 0) is dominated by the optimal solution to

Problem PIII
1 (Kf = 0).

(ii) If c2 ≤ s2(b−αs2) and c2+
αs2

b−α(s1+s2)
c1 ≥ αs1s2(b−αs1)

b−α(s1+s2)
+s2(b−αs2), then the optimal

solution to Problem PI
1(Kf = 0) is (KI

1 = 0, KI
2 = 0), which is dominated by the

optimal solution to Problem PIII
1 (Kf = 0).

Therefore, the global optimal solution is given by Case III(3). Then KD
1 = 0 and KD

2

is the unique solution to
∫∞

2bK2
b−αs2

(bs2 − αs2
2 − 2bK2s2

n
)fN(n)dn = c2.

(Dd): If c2 ≥ c1 +(s2− s1)[b−α(s1 + s2)] and c1 ≤ s1(b−αs1), then we need to consider two
subcases:

(i) If c2 ≥ c1+(s2−s1)[b−α(s1+s2)] and c2+ αs2

b−α(s1+s2)
c1 ≤ αs1s2(b−αs1)

b−α(s1+s2)
+s2(b−αs2),

then similar to (Ad), the optimal solution to Problem PIII
1 (Kf = 0) is feasible for

Problem PI
1(Kf = 0), but not optimal for the latter. Hence, in this region,

the optimal solution to PIII
1 (Kf = 0) is dominated by the optimal solution to

PI
1(Kf = 0).

(ii) If c1 ≤ s1(b − αs1) and c2 + αs2

b−α(s1+s2)
c1 ≥ αs1s2(b−αs1)

b−α(s1+s2)
+ s2(b − αs2), then the

optimal solution to Problem PIII
1 (Kf = 0) is (KIII

1 = 0, KIII
2 = 0), which is

dominated by the optimal solution to Problem PI
1(Kf = 0).

Therefore, the global optimal solution is given by Case I(3). Then KD
2 = 0 and KD

1 is
the unique solution to

∫∞
2bK1

b−αs1

(bs1 − αs2
1 − 2bK1s1

n
)fN(n)dn = c1.

(Ed): If c1 ≥ s1(b − αs1) and c2 ≥ s2(b − αs2), then the optimal solution in each region is
(KI

1 = KIII
1 = 0, KI

2 = KIII
2 = 0). Then KD

1 = 0 and KD
2 = 0. 2



Appendix C

Define Hij as the element on the ith row and jth column of matrix H. We also let det(H)
denote the determinant of matrix H. Define

Pr1 ≡ Pr{Y1 = 1, Y2 = 1, Yf = 1} = θ1θ2θ3,

P r2 ≡ Pr{Y1 = 1, Y2 = 1, Yf = 0} = θ1θ2(1− θ3),

P r3 ≡ Pr{Y1 = 1, Y2 = 0, Yf = 1} = θ1(1− θ2)θ3,

P r4 ≡ Pr{Y1 = 1, Y2 = 0, Yf = 0} = θ1(1− θ2)(1− θ3),

P r5 ≡ Pr{Y1 = 0, Y2 = 1, Yf = 1} = (1− θ1)θ2θ3,

P r6 ≡ Pr{Y1 = 0, Y2 = 1, Yf = 0} = (1− θ1)θ2(1− θ3),

P r7 ≡ Pr{Y1 = 0, Y2 = 0, Yf = 1} = (1− θ1)(1− θ2)θ3,

P r8 ≡ Pr{Y1 = 0, Y2 = 0, Yf = 0} = (1− θ1)(1− θ2)(1− θ3).

Also define Pri+j ≡ Pri + Prj, for i 6= j, i, j = 1, 2, ..., 8. Then, Pr1+2 = θ1θ2, P r3+4 =
θ1(1− θ2), P r5+6 = (1− θ1)θ2, and Pr7+8 = (1− θ1)(1− θ2).

The following results (Lemma 3 and Propositions 15 and 16) will be used in the subse-
quent proofs.

Lemma 3. An investment vector (K1, K2, Kf ) ∈ R3
+ is the unique optimal solution to

Problem P((S+D)U) if and only if there exists a −→v = (v1, v2, vf ) ∈ R3
+ that satisfies the

following conditions:

Pr1

∫ ∞

2(K1+K2+Kf )

bs1(1− 2(K1 + K2 + Kf )
n

)fN (n)dn + Pr2

∫ ∞

2(K1+K2)

bs1(1− 2(K1 + K2)
n

)fN (n)dn

+ Pr3

∫ ∞

2(K1+Kf )

bs1(1− 2(K1 + Kf )
n

)fN (n)dn + Pr4

∫ ∞

2K1

bs1(1− 2K1

n
)fN (n)dn = c1 − v1 (C.1a)

57
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Pr1

∫ 2(K1+K2+Kf )

2(K2+Kf )

b(s2 − s1)(1− 2(K2 + Kf )
n

)fN (n)dn

+ Pr1

∫ ∞

2(K1+K2+Kf )

[bs2 − 2b(K2s2 + Kfs2 + K1s1)
n

]fN (n)dn

+ Pr2

∫ 2(K1+K2)

2K2

b(s2 − s1)(1− 2K2

n
)fN (n)dn + Pr2

∫ ∞

2(K1+K2)

[bs2 − 2b(K2s2 + K1s1)
n

]fN (n)dn

+ Pr5

∫ ∞

2(K2+Kf )

[bs2 − 2bs2(K2 + Kf )
n

]fN (n)dn + Pr6

∫ ∞

2K2

[bs2 − 2bs2K2

n
]fN (n)dn = c2 − v2 (C.1b)

Pr1

∫ 2(K1+K2+Kf )

2(K2+Kf )

b(s2 − s1)(1− 2(K2 + Kf )
n

)fN (n)dn

+ Pr1

∫ ∞

2(K1+K2+Kf )

[bs2 − 2b(K2s2 + Kfs2 + K1s1)
n

]fN (n)dn

+ Pr3

∫ 2(K1+Kf )

2Kf

b(s2 − s1)(1− 2Kf

n
)fN (n)dn + Pr3

∫ ∞

2(K1+Kf )

[bs2 − 2b(Kfs2 + K1s1)
n

]fN (n)dn

+ Pr5

∫ ∞

2(K2+Kf )

[bs2 − 2bs2(K2 + Kf )
n

]fN (n)dn + Pr7

∫ ∞

2Kf

[bs2 − 2bs2Kf

n
]fN (n)dn = cf − vf (C.1c)

viKi = 0, i = 1, 2, f. (C.1d)

Proof: We derive

∂2V (
−→
K)

∂K2
1

= −2bs1Pr1

∫ ∞

2(K1+K2+Kf )

1
n

fN (n)dn− 2bs1Pr2

∫ ∞

2(K1+K2)

1
n

fN (n)dn

− 2bs1Pr3

∫ ∞

2(K1+Kf )

1
n

fN (n)dn− 2bs1Pr4

∫ ∞

2K1

1
n

fN (n)dn

< 0,

∂2V (
−→
K)

∂K2
2

= −2b(s2 − s1)Pr1

∫ 2(K1+K2+Kf )

2(K2+Kf )

1
n

fN (n)dn− 2bs2Pr1

∫ ∞

2(K1+K2+Kf )

1
n

fN (n)dn

− 2b(s2 − s1)Pr2

∫ 2(K1+K2)

2K2

1
n

fN (n)dn− 2bs2Pr2

∫ ∞

2(K1+K2)

1
n

fN (n)dn

− 2bs2Pr5

∫ ∞

2(K2+Kf )

1
n

fN (n)dn− 2bs2Pr6

∫ ∞

2K2

1
n

fN (n)dn

< 0,
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∂2V (
−→
K)

∂K2
f

= −2b(s2 − s1)Pr1

∫ 2(K1+K2+Kf )

2(K2+Kf )

1
n

fN (n)dn− 2bs2Pr1

∫ ∞

2(K1+K2+Kf )

1
n

fN (n)dn

− 2b(s2 − s1)Pr3

∫ 2(K1+Kf )

2Kf

1
n

fN (n)dn− 2bs2Pr3

∫ ∞

2(K1+Kf )

1
n

fN (n)dn

− 2bs2Pr5

∫ ∞

2(K2+Kf )

1
n

fN (n)dn− 2bs2Pr7

∫ ∞

2Kf

1
n

fN (n)dn

< 0,

∂2V (
−→
K)

∂K1∂K2
=

∂2V (
−→
K)

∂K2∂K1
= −2bs1Pr1

∫ ∞

2(K1+K2+Kf )

1
n

fN (n)dn− 2bs1Pr2

∫ ∞

2(K1+K2)

1
n

fN (n)dn,

∂2V (
−→
K)

∂K1∂Kf
=

∂2V (
−→
K)

∂Kf∂K1
= −2bs1Pr1

∫ ∞

2(K1+K2+Kf )

1
n

fN (n)dn− 2bs1Pr3

∫ ∞

2(K1+Kf )

1
n

fN (n)dn,

∂2V (
−→
K)

∂K2∂Kf
=

∂2V (
−→
K)

∂Kf∂K2
= −2b(s2 − s1)Pr1

∫ 2(K1+K2+Kf )

2(K2+Kf )

1
n

fN (n)dn

− 2bs2Pr1

∫ ∞

2(K1+K2+Kf )

1
n

fN (n)dn− 2bs2Pr5

∫ ∞

2(K2+Kf )

1
n

fN (n)dn.

Let

d ≡ Pr1

∫ ∞

2(K1+K2+Kf )

1

n
fN(n)dn, e ≡ Pr2

∫ ∞

2(K1+K2)

1

n
fN(n)dn,

r ≡ Pr3

∫ ∞

2(K1+Kf )

1

n
fN(n)dn, g ≡ Pr4

∫ ∞

2K1

1

n
fN(n)dn

h ≡ Pr1

∫ 2(K1+K2+Kf )

2(K2+Kf )

1

n
fN(n)dn, i ≡ Pr2

∫ 2(K1+K2)

2K2

1

n
fN(n)dn,

j ≡ Pr5

∫ ∞

2(K2+Kf )

1

n
fN(n)dn, k ≡ Pr6

∫ ∞

2K2

1

n
fN(n)dn,

l ≡ Pr3

∫ 2(K1+Kf )

2Kf

1

n
fN(n)dn, m ≡ Pr7

∫ ∞

2Kf

1

n
fN(n)dn.

Note that d, e, r, g, h, i, j, k, l, m ≥ 0. Then, the Hessian Matrix of the objective function
with respect to K1, K2, and Kf is given as

H(V(
−→
K)) = −2b




s1(d + e + r + g) s1(d + e) s1(d + r)

s2(d + e + h + i + j + k)s1(d + e)
−s1(h + i)

s2(h + d + j)− s1h

s2(d + r + h + j + m + l)s1(d + r) s2(h + d + j)− s1h −s1(h + l)



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= −2b




s1(d + e + r + g) s1(d + e) s1(d + r)

s2(d + e + h + i + j + k) s2(h + d + j)− s1h0
−s1(h + i)− s1(d+e)2

(d+e+r+g) − s1(d+e)(d+r)
(d+e+r+g)

s2(h + d + j)− s1h s2(d + r + h + j + m + l)
0

− s1(d+e)(d+r)
(d+e+r+g) −s1(h + l)− s1(d+r)2

(d+e+r+g)




.

Obviously, H11 = s1(d + e + r + g) > 0. We also know

H22 = s2(j + k) + (s2 − s1)(h + i) +
(s2 − s1)(d + e)2 + s2(d + e)(r + g)

(d + e + r + g)

> 0.

Similarly, we can show that

s2(d + r + h + l + j + m)− s1(h + l)− s1(h + r)2

(d + e + r + g)
> 0.

Notice that

H22 −H23 = (s2 − s1)i +
[s2k(d + e + r + g) + (s2 − s1)(d + e)e + s2e(r + g) + s1r(d + e)]

(d + e + r + g)

> 0.

Similarly,

H33 −H23 = (s2 − s1)l +
[s2m(d + e + r + g) + (s2 − s1)(d + e)r + s2r(r + g) + s1e(d + e)]

(d + e + r + g)

> 0.

Hence, det(H) > 0, and H(V(
−→
K )) is negative definite. Therefore, V (

−→
K ) is strictly, jointly

concave in
−→
K , and the first-order KKT conditions are necessary and sufficient for optimality.

The result follows. 2

Proposition 15. The unique optimal investment vector (KD
1 , KD

2 ) in the dedicated-only
(S+D)U system can be characterized as follows (see Figure 4.2(b)):
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(Ad): If c2 ≤ θ2c1 + θ2b(s2 − θ1s1) and c1 ≤ θ1s1

s2
c2 + θ1(1− θ2)bs1, then KD

1 and KD
2 are the

unique solutions to:

θ1θ2

∫ ∞

2(K1+K2)
bs1[1− 2(K1 + K2)

n
]fN (n)dn + θ1(1− θ2)

∫ ∞

2K1

bs1[1− 2K1

n
]fN (n)dn = c1

θ1θ2

∫ 2(K1+K2)

2K2

b(s2 − s1)(1− 2K2

n
)fN (n)dn + θ1θ2

∫ ∞

2(K1+K2)
[bs2 − 2b

(K2s2 + K1s1)
n

]fN (n)dn

+ (1− θ1)θ2

∫ ∞

2K2

bs2(1− 2K2

n
)fN (n)dn = c2.

(Bd): If c2 ≤ θ2bs2 and c1 > θ1s1

s2
c2 + θ1(1 − θ2)bs1, then KD

1 = 0 and KD
2 is the unique

solution to θ2

∫∞
2K2

bs2(1− 2K2

n
)fN(n)dn = c2.

(Cd): If c1 ≤ θ1bs1 and c2 > θ2c1 +θ2b(s2−θ1s1), then KD
2 = 0 and KD

1 is the unique solution
to θ1

∫∞
2K1

bs1(1− 2K1

n
)fN(n)dn = c1.

(Dd): If c1 ≥ θ1bs1 and c2 ≥ θ2bs2, then KD
1 = 0 and KD

2 = 0.

Proof: We have the following four cases.

Case 1. v1 = 0 and v2 = 0 (⇒ K1 ≥ 0 and K2 ≥ 0):

In this case, (C.1a) and (C.1b) reduce to

θ1θ2

∫ ∞

2(K1+K2)
bs1[1− 2(K1 + K2)

n
]fN (n)dn + θ1(1− θ2)

∫ ∞

2K1

bs1(1− 2K1

n
)fN (n)dn = c1 (C.2)

θ1θ2

∫ 2(K1+K2)

2K2

b(s2 − s1)(1− 2K2

n
)fN (n)dn + (1− θ1)θ2

∫ ∞

2K2

bs2(1− 2K2

n
)fN (n)dn

+ θ1θ2

∫ ∞

2(K1+K2)
[bs2 − 2b

(K2s2 + K1s1)
n

]fN (n)dn = c2. (C.3)

The left-hand-side (LHS) of (C.2) is strictly decreasing in K1. Then, from K1 ≥ 0, we
have

c1 ≤ θ1θ2

∫ ∞

2K2

bs1(1− 2K2

n
)fN(n)dn + θ1(1− θ2)bs1.

The LHS of (C.3) is strictly decreasing in K1. Then, from K1 ≥ 0, we have

θ2

∫ ∞

2K2

bs2(1− 2K2

n
)fN (n)dn ≥ c2.

Therefore,

c1 ≤ θ1s1c2

s2
+ θ1(1− θ2)bs1.
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The LHS of (C.2) is also strictly decreasing in K2. Then, from (C.2), we have

θ1

∫ ∞

2K1

bs1(1− 2K1

n
)fN (n)dn ≥ c1.

From (C.3) - (C.2), we have

θ1θ2

∫ ∞

2K2

b(s2 − s1)(1− 2K2

n
)fN (n)dn + (1− θ1)θ2

∫ ∞

2K2

bs2(1− 2K2

n
)fN (n)dn

− θ1(1− θ2)
∫ ∞

2K1

bs1(1− 2K1

n
)fN (n)dn = c2 − c1. (C.4)

Note that the left-hand-side of (C.4) is strictly decreasing in K2. Then, from K2 ≥ 0,
we have

c2 − c1 ≤ θ1θ2b(s2 − s1) + (1− θ1)θ2bs2 − θ1(1− θ2)
∫ ∞

2K1

bs1(1− 2K1

n
)fN (n)dn.

Therefore,

c2 − c1 ≤ θ1θ2b(s2 − s1) + (1− θ1)θ2bs2 − (1− θ2)c1

⇒ c2 ≤ θ2c1 + θ2b(s2 − θ1s1).

Case 2. v1 > 0 and v2 = 0 (⇒ K1 = 0 and K2 ≥ 0):

In this case, (C.1a) and (C.1b) become

θ1θ2

∫ ∞

2K2

bs1(1− 2K2

n
)fN (n)dn + θ1(1− θ2)bs1 + v1 = c1 (C.5)

θ2

∫ ∞

2K2

bs2(1− 2K2

n
)fN (n)dn = c2. (C.6)

From (C.5) and K2 ≥ 0, we have c2 ≤ θ2bs2 and

∫ ∞

2K2

(1− 2K2

n
)fN(n)dn =

c2

θ2bs2

.

Therefore, we have

v1 = c1 − θ1s1c2

s2
− θ1(1− θ2)bs1 > 0

⇒ c1 >
θ1s1c2

s2
− θ1(1− θ2)bs1.

Case 3. v1 = 0 and v2 > 0 (⇒ K1 ≥ 0 and K2 = 0):
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In this case, (C.1a) and (C.1b) become

θ1

∫ ∞

2K1

bs1(1− 2K1

n
)fN (n)dn = c1 (C.7)

θ1θ2

∫ 2K1

0
b(s2 − s1)fN (n)dn + θ1θ2

∫ ∞

2K1

(bs2 − 2bs1K1

n
)fN (n)dn + (1− θ1)θ2bs2 + v2 = c2.

(C.8)

From (C.7) and K1 ≥ 0, we have c1 ≤ θ1bs1 and

∫ ∞

2K1

(1− 2K1

n
)fN(n)dn =

c1

θ1bs1

.

Therefore, from (C.7) and (C.8), we have

v2 = c2 − θ2c1 + θ1θ2bs1 − θ2bs2 > 0
⇒ c2 > θ2c1 + θ2b(s2 − θ1s1).

Case 4. v1 > 0 and v2 > 0 (⇒ K1 = 0 and K2 = 0):

In this case, (C.1a) and (C.1b) become

θ1bs1 + v1 = c1

θ2bs2 + v2 = c2.

Therefore, from v1 > 0 and v2 > 0, we need c1 > θ1bs1 and c2 > θ2bs2. 2

Proposition 16. The unique optimal investment vector (KD
1 , KD

2 ) in the dedicated-only
SU system can be characterized as follows see Table 4.1 and Figure 4.2(b):

(Ad
1): If c1

θ(1−θ)bs1
+ c2

θb(s2−θs1)
< 1, then KD

1 = n
2
[1− c1

θ(1−θ)bs1
] and KD

2 = n
2
[1− c2

θb(s2−θs1)
].

(Ad
2): If c2 ≤ θc1 + θb(s2 − θs1), c1 ≤ θs1

s2
c2 + θ(1− θ)bs1, and c1

θ(1−θ)bs1
+ c2

θb(s2−θs1)
≤ 1, then

KD
1 = ns2

2θs1
[1− θb(s2−θs1)−c2+θs1

θb(s2−θ2s1)
]− nc2

2θ2bs1
and KD

2 = n[θb(s2−θs1)−c2+θs1]
2θb(s2−θ2s1)

.

(Cd): If c2 ≤ θbs2 and c1 > θs1

s2
c2 + θ(1− θ)bs1, then KD

1 = 0 and KD
2 = n

2
(1− c2

θbs2
).

(Dd): If c1 ≤ θbs1 and c2 > θc1 + θb(s2 − θs1), then KD
1 = n

2
(1− c1

θbs1
) and KD

2 = 0.

(Ed): If c1 > θbs1 and c2 > θbs2, then KD
1 = 0 and KD

2 = 0.
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Proof: The solution of the Stage 2 problem of P((S+D)U) dedicated-only system (see
Proposition 3) are giving as follows:

(p∗1, p
∗
2) =





( bs1

2
, bs2

2
), if Ω1,

( bs1

2
, b(s2 − s1)(1− y2K2

n
) + bs1

2
), if Ω5,

(bs1 − bs1(y1K1+y2K2)
n

, bs2 − by2K2s2

n
− by1K1s1

n
), if Ω6,

(q∗1, q
∗
2) =





(0, n
2
), if Ω1,

(n
2
− y2K2, y2K2), if Ω5,

(y1K1, y2K2), if Ω6,

where

Ω1 = {n ≤ 2y2K2},
Ω5 = {2y2K2 ≤ n ≤ 2(y1K1 + y2K2)},
Ω6 = {n ≥ 2(y1K1 + y2K2)}.

Therefore, with the realization of
−→
Y , we need to consider the following four cases:

Case I: (y1 = 1, y2 = 1)

(a) When K2 ≥ n
2
, Π1 = nbs2

4
;

(b) When K2 < n
2

and K1 + K2 ≥ n
2
, Π1 = nbs1

4
+ b(s2 − s1)(1− K2

n
)K2;

(c) When K1 + K2 < n
2
, Π1 = bs1(1− (K1+K2)

n
)K1 + (bs2 − bs2K2

n
− bs1K1

n
)K2.

Case II: (y1 = 0, y2 = 1)

(a) When K2 ≥ n
2
, Π2 = nbs2

4
;

(b) When K2 < n
2
, Π2 = bs2(1− K2

n
)K2.

Case III: (y1 = 1, y2 = 0)

(a) When K1 ≥ n
2
, Π3 = nbs1

4
;

(b) When K2 < n
2
, Π3 = bs1(1− K1

n
)K1.

Case IV: (y1 = 0, y2 = 0)
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(a) Π4 = 0.

Now we start to solve the stage 1 problem. With different values of K1 and K2, the
objective function has five different forms.

Case 1: K1 ≥ n
2
, K2 ≥ n

2

We have V (
−→
K ) = θnbs2

4
+θ(1−θ)nbs1

4
−c1K1−c2K2,

∂V
∂K1

= −c1 < 0, and ∂V
∂K2

= −c2 < 0.
Hence, the optimal solution is given by K1 = K2 = n

2
.

Case 2: K1 < n
2
, K2 ≥ n

2

We have

V (
−→
K) = θ

nbs2

4
+ θ(1− θ)bs1(1− K1

n
)K1 − c1K1 − c2K2,

∂V

∂K1
= θ(1− θ)bs1(1− 2K1

n
)− c1,

∂2V

∂K2
1

= −2θ(1− θ)bs1

n
< 0,

∂V

∂K2
= −c2 < 0.

Then, the optimal solution is given by K1 = n
2
[1− c1

θ(1−θ)bs1
], K2 = n

2
.

Case 3: K1 ≥ n
2
, K2 < n

2

We have

V (
−→
K) = θ

nbs1

4
+ θb(s2 − θs1)(1− K2

n
)K2 − c1K1 − c2K2,

∂V

∂K1
= −c1 < 0,

∂V

∂K2
= θb(1− 2K2

n
)(s2 − θs1)− c2,

∂2V

∂K2
2

= −2θb(s2 − θs1)
n

< 0.

Then, the optimal solution is given by K1 = n
2
, K2 = n

2
[1− c2

θb(s2−θs1)
].

Case 4: K1 < n
2
, K2 < n

2
, K1 + K2 ≥ n

2

We have

V (
−→
K) = θ2 nbs1

4
+ θb(s2 − θs1)(1− K2

n
)K2 + θ(1− θ)bs1(1− K1

n
)K1 − c1K1 − c2K2,

∂V

∂K1
= θ(1− θ)bs1(1− 2K1

n
)− c1,

∂2V

∂K2
1

= −2θ(1− θ)bs1

n
< 0,

∂V

∂K2
= θb(1− 2K2

n
)(s2 − θs1)− c2,

∂2V

∂K2
2

= −2θb(s2 − θs1)
n

< 0.
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Then, the optimal solution is given by K1 = n
2
[1− c1

θ(1−θ)bs1
], K2 = n

2
[1− c2

θb(s2−θs1)
].

Case 5: K1 < n
2
, K2 < n

2
, K1 + K2 < n

2

We have

V (
−→
K) = θ2[bs1 − bs1(K1 + K2)

n
]K1 + θ2[bs2 − bs2K2

n
− bs1K1

n
]K2

+ θ(1− θ)(bs2 − bs2K2

n
)K2 + θ(1− θ)(bs1 − bs1K1

n
)K1 − c1K1 − c2K2,

∂V

∂K1
= θbs1(1− 2K1

n
)− θ2 2bs1K2

n
− c1,

∂2V

∂K2
1

= −2θbs1

n
,

∂2V

∂K1∂K2
= −2θ2bs1

n
,

∂V

∂K2
= θbs2(1− 2K2

n
)− θ2 2bs1K1

n
− c2,

∂2V

∂K2
2

= −2θbs2

n
.

We derive the Hessian matrix, H(V(
−→
K )), with respect to (w.r.t.) K1 and K2:

H(V(
−→
K )) =

2bθ

n

[ −s1 −θs1

−θs1 −s2

]
.

Since s2 > s1, we know −s1 < 0, −s2 < 0, and s1s2 − θ2s2
1 > 0. Therefore, V (

−→
K ) is strictly,

jointly concave in K1 and K2. The optimal solution is given by

K1 =
ns2

2θs1
[1− θb(s2 − θs1)− c2 + θc1

θb(s2 − θ2s1)
]− nc2

2θ2bs1
, K2 =

n

2
[
θb(s2 − θs1)− c2 + θc1

θb(s2 − θ2s1)
].

Note that the optimal solutions of Cases 1, 2, and 3 lie on the boundary of Case 4.
Therefore, we just need to consider Cases 4 and 5 for solving the stage 1 problem. Next, we
will solve the stage 1 problem for Cases 4 and 5 separately, and then compare their solutions,
the better solution of which will be the global optimal solution.

The problem formulation of Case 4 is given as follows:

V (
−→
K) = θ2 nbs1

4
+ θb(s2 − θs1)(1− K2

n
)K2 + θ(1− θ)bs1(1− K1

n
)K1 − c1K1 − c2K2 (C.9a)

subject to

K1 ≤ n

2
←− v1 (C.9b)

K2 ≤ n

2
←− v2 (C.9c)

K1 + K2 ≥ n

2
←− v3 (C.9d)
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where v1, v2, and v3 denote the KKT multipliers respectively corresponding to con-
straints (C.9b),(C.9c), and (C.9d). The first-order KKT conditions are given as:

θ(1− θ)bs1(1− 2K1

n
)− v1 + v3 = c1 (C.10a)

b(s2 − θs1)(1− 2K2

n
)− v2 + v3 = c2 (C.10b)

v1(
n

2
−K1) = 0 (C.10c)

v2(
n

2
−K2) = 0 (C.10d)

v3(K1 + K2 − n

2
) = 0 (C.10e)

vi ≥ 0, i = 1, 2, 3. (C.10f)

We solve the Case 4 problem and characterize the optimal solution in Table C (see also
Figures C.1(a) and C.2(a)).

Table C.1: Optimal Solution for Case 4 of the SU Dedicated-only System.
Necessary and Sufficient Conditions Solution

c1 ≥ 0, c2 ≥ 0 K1 = n
2
[1− c1

θ(1−θ)bs1
]A4 c1

θ(1−θ)bs1
+ c2

θb(s2−θs1)
≤ 1 K2 = n

2
[1− c2

θb(s2−θs1)
]

c2 ≥ c1 − θ(1− θ)bs1

c2 ≤ c1 + θb(s2 − θs1)
K1 = n

2
[ c2−c1+θ(1−θ)bs1

θb(s2+s1−2θs1)
]B4

c1
θ(1−θ)bs1

+ c2
θb(s2−θs1)

> 1
K2 = n

2
[1− c2−c1+θ(1−θ)bs1

θb(s2+s1−2θs1)
]

c1 ≥ 0, c2 < 0 K1 = n
2
[1− c1

θ(1−θ)bs1
]C4

c1 ≤ θ(1− θ)bs1 K2 = n
2

c1 > θ(1− θ)bs1 K1 = 0D4
c2 < c1 − θ(1− ta)bs1 K2 = n

2

c1 < 0, c2 ≥ 0 K1 = n
2E4

c2 ≤ θb(s2 − θs1) K2 = n
2
[1− c2

θb(s2−θs1)
]

c2 > θb(s2 − θs1) K1 = n
2F4

c2 > c1 + θb(s2 − θs1) K2 = 0
G4 c1 < 0, c2 < 0 K1 = n

2
, K2 = n

2
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Similarly, the problem formulation of Case 5 is given as follows:

V (
−→
K) = θ2[bs1 − bs1(K1 + K2)

n
]K1 + θ2[bs2 − bs2K2

n
− bs1K1

n
]K2

+ θ(1− θ)(bs2 − bs2K2

n
)K2 + θ(1− θ)(bs1 − bs1K1

n
)K1 − c1K1 − c2K2 (C.11a)

subject to
K1 ≥ 0 ←− v1 (C.11b)
K2 ≥ 0 ←− v2 (C.11c)
n

2
− (K1 + K2) ≥ 0 ←− v3 (C.11d)

where v1, v2, and v3 denote the KKT multipliers respectively corresponding to con-
straints (C.11b),(C.11c), and (C.11d). The first-order KKT conditions are given as:

θbs1(1− 2K1

n
)− θ2bs1

2K2

n
+ v1 − v3 = c1 (C.12a)

θbs2(1− 2K2

n
)− θ2bs1

2K1

n
+ v2 − v3 = c2 (C.12b)

v1K1 = 0 (C.12c)

v2K2 = 0 (C.12d)

v3(
n

2
− (K1 + K2)) = 0 (C.12e)

vi ≥ 0, i = 1, 2, 3. (C.12f)

Table C.2: Optimal Solution for Case 5 of the SU Dedicated-only System.
Necessary and Sufficient Conditions Solution

θs1c2 ≥ s2c1 − θs1(1− θ)bs2

c2 ≤ θc1 + θb(s2 − θs1)
K1 = ns2

2θs1
[1− θb(s2−θs1)−c2+θc1

θb(s2−θ2s1)
]− nc2

2θ2bs1A5

c1
θ(1−θ)bs1

+ c2
θb(s2−θs1)

> 1
K2 = n

2
[ θb(s2−θs1)−c2+θc1

θb(s2−θ2s1)
]

c2 ≥ c1 − θ(1− θ)bs1

c2 ≤ c1 + θb(s2 − θs1)
K1 = n

2
[1− (c1−c2+θbs2−θ2bs1)

θb(s2+s1−2θs1)
]B5

c1
θ(1−θ)bs1

+ c2
θb(s2−θs1)

≤ 1
K2 = n

2
[ c1−c2+θbs2−θ2bs1

θb(s2+s1−2θs1)
]

c1 ≥ 0, c1 ≤ θbs1 K1 = n
2
(1− c1

θbs1
)C5

c2 > θc1 + θb(s2 − θs1) K2 = 0
D5 c1 < 0, c2 > c1 + θb(s2 − θs1) K1 = n

2
, K2 = 0

c2 ≥ 0, c2 ≤ θbs2 K1 = 0E5
θs1c2 ≤ s2c1 − θ2(1− θ)bs1s2 K2 = n

2
(1− c2

θbs2
)

F5 c2 < 0, c2 < c1 − θ(1− θ)bs1 K1 = 0, K2 = n
2

G5 c1 > θbs1, c2 > θbs2 K1 = 0, K2 = 0
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We solve the Case 5 problem and characterize the optimal solution in Table C.2 (see
also Figures C.1(b) and C.2(b)).

4A

4B

4C

4D
4E

4F

4G

1c

2c

1(1 )bsθ θ−

2 1( )b s sθ θ−

(0,0)

2 1 1(1 )c c bsθ θ= − −

2 1 2 1( )c c b s sθ θ= + −

(a) The Case 4 Problem.

5A

5B

5C

5D

5E

5F

5G

1c

2c

1(1 )bsθ θ−

2 1( )b s sθ θ−

(0,0)

2 1 1(1 )c c bsθ θ= − −

2 1 2 1( )c c b s sθ θ= + −

1bsθ

2bsθ

(b) The Case 5 Problem.

Figure C.1: Optimal Solution for the Dedicated-only SU System (α = 0) in the Cost-Space.

4A

4B

4C
4D

4E

4F

4G

2

n

2

n

1K

2K

(0,0)

(a) The Case 4 Problem.

2

n

2

n

1K

2K

(0,0)

5A

5B

5C

5D

5E

5F

5G

(b) The Case 5 Problem.

Figure C.2: Optimal Solution for the Dedicated-only SU System (α = 0) in the ~K-Space.

Compare Figures C.1 and C.2, we know A5 dominates B4, A4 dominates B5, C5 domi-
nates B4 and F4, E5 dominates B4 and D4, and G5 dominates B4 in their regions, respectively.
The result follows. 2

1. Proof of Proposition 6 Part (i)
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The results for the DU deterministic and dedicated-only systems with α = 0 follow
directly from Propositions 7. Similary, Propositions 15 and 16 characterize the optimal so-
lutions for the (S+D)U and SU dedicated-only systems. 2

2. Proof of Proposition 6 Part (ii)

The problem decomposes into two independent problems, one for each product. The
formulation for product i, i = 1, 2, is given as

Problem Pi
s

Stage 1 Problem Pi
s1:

max−→
K

Vi ≡ EYi
[Π∗(Ki, Yi)]− ciKi (C.13a)

subject to Ki ≥ 0. (C.13b)

Stage 2 Problem Pi
s2:

Π∗(Ki, ni) = max−→p
ni

b
(b− pi

si

)(pi − αs2
i ) (C.14a)

subject to
ni

b
(b− pi

si

) ≤ yiKi (C.14b)

b− pi

si

≥ 0. (C.14c)

The solution to the stage 2 problem directly follows from Proposition 3. We next solve
the stage 1 problem.

If Ki ≥ ni

2
, we have Vi = θnibsi

4
− ciKi and ∂Vi

∂Ki
= −ci < 0. Then, the optimal solution is

Ki = ni

2
.

If Ki ≤ ni

2
, we have Vi = θ(bsi − bsiKi

ni
)Ki − ciKi,

∂Vi

∂Ki
= θbsi(1 − 2Ki

ni
) − ci, and ∂2Vi

∂K2
i

=

−2bsi

ni
< 0. Then, the optimal solution is Ki = ni(θbsi−ci)

2θbsi
.

Therefore, for Ki ≥ 0, we need ci ≤ θbsi. 2

3. Proof of Proposition 7



Weiping Chen Appendix C 71

In the deterministic case, the formulation of the problem becomes:

Π∗(
−→
K) = max−→p

n

b
[(

p2 − p1

s2 − s1
− p1

s1
)(p1 − αs2

1 − c1) + (b− (p2 − p1)
s2 − s1

)(p2 − αs2
2 − c2)](C.15a)

subject to
n

b
(
p2 − p1

s2 − s1
− p1

s1
) ≥ 0 (C.15b)

n

b
(b− (p2 − p1)

s2 − s1
) ≥ 0 (C.15c)

pi ≥ 0, i = 1, 2. (C.15d)

Similar to the Stage 2 problem in Proposition 3, the objective function (C.15a) is strictly
jointly concave in p1 and p2. Therefore, the first-order conditions are necessary and sufficient
for optimality and we can characterize the optimal solution as follows:

(Ad or Bd): If c2s1 ≥ c1s2 − αs1s2(s2 − s1) and c2 ≤ c1 + [b− α(s1 + s2)](s2 − s1),

p∗1 =
bs1 + αs2

1 + c1

2
, p∗2 =

bs2 + αs2
2 + c2

2

KD
1 =

n

b
[
αs2

2
+

c2 − c1

2(s2 − s1)
− c1

2s1
], KD

2 =
n

b
[
b− α(s1 + s2)

2
− c2 − c1

2(s2 − s1)
].

(Cd): If c2s1 ≤ c1s2 − αs1s2(s2 − s1) and c2 ≤ bs2 − αs2
2,

p∗1 =
(bs2 + αs2

2 + c2)s1

2s2
, p∗2 =

bs2 + αs2
2 + c2

2

KD
1 = 0, KD

2 =
n

b
(
bs2 − αs2

2 − c2

2s2
).

(Dd): If c2 ≥ c1 + [b− α(s1 + s2)](s2 − s1) and c1 ≤ bs1 − αs2
1,

p∗1 =
bs1 + αs2

1 + c1

2
, p∗2 =

bs1 + αs2
1 + c1

2
+ b(s2 − s1)

KD
1 =

n

b
(
bs1 − αs2

1 − c1

2s1
), KD

2 = 0.

(Ed): If c2 ≥ bs2 − αs2
2 and c1 ≥ bs1 − αs2

1,

p∗1 = bs1, p∗2 = bs2, KD
1 = 0, KD

2 = 0.2

4. Proof of Proposition 8

The area of the (KD
1 ≥ 0, KD

2 ≥ 0) region is given by RD ≡ b2(s2−s1)s1

2
in the determinis-

tic and DU settings (see Figure 4.2(a)) and by RS ≡ θ1θ2b
2s1(s2 − 1

2
θ1s1 − 1

2
θ2s2) in the SU
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and (S+D)U settings (see Figure 4.2(b)). Observe that RS|θ1=θ2=θ = RD. Then, the proof

follows because ∂RS

∂θ1
> 0 for θ1 < s2(2−θ2)

2s1
, and ∂RS

∂θ1
< 0 otherwise. Similarly, ∂RS

∂θ2
> 0 for

θ2 < 2s2−θ1s1

2s2
, and ∂RS

∂θ2
< 0 otherwise. Finally, when θ1 = θ2 = θ, ∂RS

∂θ
> 0 for θ < 4s2

3(s1+s2)
,

and ∂RS

∂θ
< 0 otherwise, with 4s2

3(s1+s2)
> 1 when s2 > 3s1. 2

5. Summary of strategies to hedge against supply risk when θ2 > θ1 or θ2 < θ1

(see Tables C.3 and C.4, and Figures C.4 and C.3).

Table C.3: Strategies to Hedge Against Supply Uncertainty when θ2 > θ1.

High Product Diff. Medium Product Diff. Low Product Diff.

s2 ≥ (1−θ1θ2)s1

1−θ2

(1−θ1)s1

1−θ2
< s2 < (1−θ1θ2)s1

1−θ2
s2 ≤ (1−θ1)s1

1−θ2

K2 → (K1,K2) K2 → (K1,K2)
K2 → (K1,K2) low c2

c1
ratio, low c1, c2 low c2

c1
ratio, low c1, c2

NPD low c2
c1

ratio, low c1, c2 (see Figure C.4(b) PD1) (see Figure C.4(c) PD1)

→ PD (see Figure C.4(a) PD) K1 → (K1,K2) K1 → (K1,K2)
high c2

c1
ratio, low c1 high c2

c1
ratio

medium c2 low to medium c1, c2

(see Figure C.4(b) PD2) (see Figure C.4(c) PD2)
(K1,K2) → K2 (K1,K2) → K2

medium c2
c1

ratio low to medium c2
c1

ratio (K1,K2) → K2

medium c1, c2 medium c1, c2 low to medium c2
c1

ratio

PD (see Figure C.4(a) NPD1) (see Figure C.4(b) NPD1) medium to high c1

→ NPD (K1,K2) → K1 (K1,K2) → K1 low to medium c2

high c2
c1

ratio, low c1 medium to high c2
c1

ratio (see Figure C.4(c) NPD)

medium to high c2 low c1, medium c2

(see Figure C.4(a) NPD2) (see Figure C.4(b) NPD2)
K1 → K2

medium c2
c1

ratioPC NA NA
medium c1, c2

(see Figure C.4(c) PC)
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Table C.4: Strategies to Hedge Against Supply Uncertainty when θ2 < θ1.
High Product Differentiation Low Product Differentiation

s2 ≥ (1 + θ)s1 s2 < (1 + θ)s1

K2 → (K1,K2)
K2 → (K1,K2) low c2

c1
ratio, low to medium c1, c2

low c2
c1

ratio, low to medium c1, c2 (see Figure C.3(b) PD1)NPD → PD
(see Figure C.3(a) PD) K1 → (K1,K2)

high c2
c1

ratio, low c1, c2

(see Figure C.3(b) PD2)
(K1,K2) → K1

high c2
c1

ratio, low to medium c1,
(K1,K2) → K1

PD → NPD
medium to high c2

medium c2
c1

ratio, medium c1, c2

(see Figure C.3(a) NPD)
(see Figure C.3(b) NPD)

K2 → K1 K2 → K1

medium c2
c1

ratio, medium c1, medium c2
c1

ratio, medium c1, c2PC
medium to high c2 (see Figure C.3(b) PC)

(see Figure C.3(a) PC)

1bs1 2 1(1 )bsθ θ−
1 1b sθ

2 2bsθ

2 2 1 1( )b s sθ θ−

dA

dB

dDdC

1 2( 0, 0)D DK K≥ ≥

1 2( 0, 0)D DK K= ≥

1 2( 0, 0)D DK K≥ = 1 2( 0, 0)D DK K= =

PD

NPD

2bs

2 1( )b s s−

1c

2c

PC

(a) High Product Differentiation.

1bs1 2 1(1 )bsθ θ− 1 1b sθ

2 2bsθ

2 2 1 1( )b s sθ θ−

dA

dB

dDdC

1 2( 0, 0)D DK K≥ ≥

1 2( 0, 0)D DK K= ≥

1 2( 0, 0)D DK K≥ = 1 2( 0, 0)D DK K= =

1PD

NPD2bs

2 1( )b s s−

1c

2c

2PD
PC

(b) Low Product Differentiation.

Figure C.3: Optimal Resource Mix for the Dedicated-only System in Deterministic and DU
Settings (solid line), and SU and (S+D)U Settings when θ2 < θ1.



Weiping Chen Appendix C 74

1bs1 2 1(1 )bsθ θ− 1 1b sθ

2 2bsθ

2 2 1 1( )b s sθ θ−

dA

dB

dDdC

1 2( 0, 0)D DK K≥ ≥

1 2( 0, 0)D DK K= ≥

1 2( 0, 0)D DK K≥ = 1 2( 0, 0)D DK K= =

PD

1NPD

2NPD

2bs

2 1( )b s s−

1c

2c

(a) High Product Differentiation.

1bs
1 2 1(1 )bsθ θ− 1 1bsθ

2 2bsθ

2 2 1 1( )b s sθ θ−

dA

dB

dDdC

1 2( 0, 0)D DK K≥ ≥

1 2( 0, 0)D DK K= ≥

1 2( 0, 0)D DK K≥ = 1 2( 0, 0)D DK K= =

1PD

1NPD

2NPD

2bs

2 1( )b s s−

1c

2c

2PD

(b) Medium Product Differentiation.

1bs1 2 1(1 )bsθ θ− 1 1b sθ

2 2bsθ

2 2 1 1( )b s sθ θ−

dA

dB

dD
dC

1 2( 0, 0)D DK K≥ ≥

1 2( 0, 0)D DK K= ≥

1 2( 0, 0)D DK K≥ =
1 2( 0, 0)D DK K= =

1PD

NPD

2bs

2 1( )b s s−

1c

2c

2PD
PC

(c) Low Product Differentiation.

Figure C.4: Optimal Resource Mix for the Dedicated-only System in Deterministic and DU
Settings (solid line), and SU and (S+D)U Settings (dashed line) when θ2 > θ1.
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1. Proof of Proposition 9
The proof follows from the necessary and sufficient optimality conditions given in Lemmas

1 and 2. Recall that
−→
KD = (KD

1 ≥ 0, KD
2 ≥ 0, KD

f = 0) denotes the optimal solution to the
dedicated-only system.

Case 1. c2 ≤ s2(b−αs2)
s1(b−αs1)

c1 and s1c2 ≥ s2c1 − αs1s2(s2 − s1) (see Bf in Figure 5.1):

The optimal dedicated-only solution (KD
1 , KD

2 ) is given by Case III(1) of Proposition 7,

which satisfies
αs2KD

2

b−α(s1+s2)
−KD

1 ≥ 0, KD
f = 0, and va2 = 0. From (B.4c),

∫ t2

t1

γfN(n)dn +

∫ t4

t2

βfN(n)dn +

∫ ∞

t4

ω2fN(n)dn = cf − vf = c1
f , (D.1)

where β, γ, ω2, t1, t2, t3, t4 are as defined in Lemma 2 with Kf = 0. Observe that when

cf < c1
f ,
−→
KD cannot be optimal since (D.1) cannot hold with a nonnegative vf . Thus, if

cf < c1
f , then we must have K∗

f > 0. Otherwise (cf ≥ c1
f ), the optimal investment vector has

the form (K∗
1 ≥ 0, K∗

2 ≥ 0, K∗
f = 0).

Case 2. c2 ≤ s2(b− αs2) and s1c2 ≤ s2c1 − αs1s2(s2 − s1):

The optimal dedicated-only solution (KD
1 , KD

2 ) is given by Case III(3) of Proposition 7,
which satisfies KD

1 = 0, KD
2 ≥ 0, KD

f = 0, and va2 = 0. From (B.4c), we have

∫ t2

t1

γfN(n)dn +

∫ t4

t2

βfN(n)dn +

∫ ∞

t4

ω2fN(n)dn = cf − vf = c2
f , (D.2)

where β, ω2, t1, t2, t3, t4 are as defined in Lemma 2 with K1 = Kf = 0. From (B.4a), we know

∫ t2

t1

γfN(n)dn +

∫ ∞

t2

βfN(n)dn = c1 − v1.

75
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Hence, we have

c1 ≥ c2
f

⇒
∫ t2

t1

γfN(n)dn +

∫ ∞

t2

βfN(n)dn + v1

≥
∫ t2

t1

γfN(n)dn +

∫ t4

t2

βfN(n)dn +

∫ ∞

t4

ω2fN(n)dn

⇒ v1 ≥
∫ ∞

t4

(ω2 − β)fN(n)dn = (s2 − s1)(b− α(s2 + s1))

∫ ∞

t4

n− t4
n

fN(n)dn

⇒ v1 ≥ (s2 − s1)(b− α(s1 + s2)), since t4 ≥ 0.

In this case, we have s2v1 = s2c1 − s1c2 − αs1s2(s2 − s1). Therefore, c2
f ≤ c1 ⇒ s2c1 ≥

s1c2 + s2(s2 − s1)(b− αs2). We need to consider two subcases:

Case 2.1. c2 ≤ s2(b − αs2), s1c2 ≤ s2c1 − αs1s2(s2 − s1), and s2c1 ≤ s1c2 + s2(s2 −
s1)(b−αs2) (see Cf

1 in Figure 5.1): Observe that when cf < c2
f ,
−→
KD cannot be optimal since

(D.2) cannot hold with a nonnegative vf . Thus, if cf < c2
f , then we must have K∗

f > 0.
Otherwise (cf ≥ c2

f ), the optimal investment vector has the form (K∗
1 = 0, K∗

2 ≥ 0, K∗
f = 0).

Case 2.2. c2 ≤ s2(b − αs2) and s2c1 ≥ s1c2 + s2(s2 − s1)(b − αs2) (see Cf
2 in Figure

5.1): We have c2
f ≤ c1, and hence, cf < c2

f cannot hold since we must have cf > c1 by as-
sumption. Therefore, the optimal investment vector is of the form (K∗

1 = 0, K∗
2 ≥ 0, K∗

f = 0).

Case 3. c2 ≥ s2(b−αs2)
s1(b−αs1)

c1 and c2 ≤ c1 + (s2 − s1)[b− α(s1 + s2)] (see Af in Figure 5.1):

In this case, the optimal dedicated-only solution
−→
KD is given by Case I(1) of Proposition

7. From Lemma 1, we know that a solution with Kf > 0 cannot be optimal in Region I.
Hence, for the flexible system, we need to study the Region III problem with Kf ≥ 0 in this
case and compare its solution with the Region I problem. Note that V ∗

III is a nonincreasing

function of cf . Define c3
f ≡ min{cf ≥ 0 : V ∗

I (
−→
KD) = V ∗

III(
−→
K ∗, cf )}. (Note that c3

f may not
exist.) Hence, if c3

f exists, then for cf < c3
f , K∗

f > 0. Otherwise (cf ≥ c3
f ), the optimal

investment vector has the form (K∗
1 ≥ 0, K∗

2 ≥ 0, K∗
f = 0).

Case 4. c1 ≤ s1(b− αs1) and c2 ≥ c1 + (s2 − s1)[b− α(s1 + s2)]:

In this case, the optimal dedicated-only solution
−→
KD is given by Case I(3) of Proposition 7.

Similar to Case 3, we need to study the Region III problem with Kf ≥ 0 and compare its
solution with the Region I problem. We consider the following subcases:
Case 4.1. c1 ≤ s1(b−αs1) and c2 + αs2

b−α(s1+s2)
c1 ≥ αs1s2(b−αs1)

b−α(s1+s2)
+s2(b−αs2) (see Df

2 in Figure

5.1):

In this subcase, (KI
1 = 0, KI

2 = 0) is the optimal solution to Case III(4) in Proposition
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7, which is dominated by the optimal solution to Case I(3) (KIII
1 ≥ 0, KIII

2 = 0). Hence, it
cannot be optimal to invest in the flexible capacity and the global optimal investment vector
has the form (K∗

1 ≥ 0, K∗
2 = 0, K∗

f = 0).

Case 4.2. c2 ≥ c1 +(s2− s1)[b−α(s1 + s2)] and c2 + αs2

b−α(s1+s2)
c1 ≤ αs1s2(b−αs1)

b−α(s1+s2)
+ s2(b−αs2):

In this subcase, any dedicated-only solution to the Region III problem is of the form
αs2KIII

2

b−α(s1+s2)
= KIII

1 , KIII
2 ≥ 0. We first analyze the conditions under which the dedicated-

only solution is optimal to Region III problem in the flexible system (i.e., with Kf ≥ 0).
Optimality conditions (B.4a) and (B.4b) reduce to

s1(b− αs1)

∫ ∞

t1

n− t1
n

fN(n)dn = c1 + va2

s2(b− αs2)

∫ ∞

t1

n− t1
n

fN(n)dn = c2 − αs2va2

b− α(s1 + s2)
.

Solving the above equations for va2, we get

va2 = [c2 − s2(b− αs2)

s1(b− αs1)
c1]/[

s2(b− αs2)

s1(b− αs1)
+

αs2

b− α(s1 + s2)
].

Let ϕ ≡ s2(b−αs2)
s1(b−αs1)

+ αs2

b−α(s1+s2)
. From (B.4c), we have

∫ ∞

t1

s2(b− αs2)
n− t1

n
fN(n)dn− [c2 − s2(b− αs2)

s1(b− αs1)
c1]

1

ϕ
= cf − vf = c4′

f . (D.3)

When cf < c4′
f ,
−→
KD cannot be optimal to Region III problem since (D.2) cannot hold with

a nonnegative vf . Thus, if cf < c4′
f , then we will have Kf > 0 for the Region III problem.

Further, observe that c4′
f ≤ s2(b− αs2)− [c2 − s2(b−αs2)

s1(b−αs1)
c1]

1
ϕ
. Thus,

s2(b− αs2) +
s2(b− αs2)c1

s1(b− αs1)ϕ
≤ c2(1 +

1

ϕ
) ⇒ c4′

f ≤ c2. (D.4)

If (D.4) holds, then cf < c4′
f cannot hold, since cf > c2 by assumption. Then, we will have

Kf = 0 in the optimal solution to the Region III problem. Define l1(c2) ≡ [s2(b − αs2) +
s2(b−αs2)c1
s1(b−αs1)ϕ

]/(1+ 1
ϕ
) and l2(c2) ≡ c1+(s2−s1)[b−α(s1+s2)]. We have l1(s1(b−αs1)) = l2(s1(b−

αs1)) = s2(b − αs2), and l1(0) = s2(b − αs2)/(1 + 1
ϕ
) and l2(0) = (s2 − s1)[b − α(s1 + s2)]).

We further know

s2(b− αs2)− (s2 − s1)[b− α(s1 + s2)](1 +
1

ϕ
)

=
s2
1(b− αs1)

3

s2[(b− αs2)2 + αs1(s2 − s1)]
> 0

⇒ s2(b− αs2)/(1 +
1

ϕ
) > (s2 − s1)[b− α(s1 + s2)].

⇒ l1(0) > l2(0).



Weiping Chen Appendix D 78

Therefore, we need to consider two subcases:

Case 4.2.1. c2+ αs2c1
b−α(s1+s2)

≤ αs1s2(b−αs1)
b−α(s1+s2)

+s2(b−αs2) and s2(b−αs2)+
s2(b−αs2)c1
s1(b−αs1)ϕ

≤ c2(1+ 1
ϕ
)

(see Df
2 in Figure 5.1):

We have Kf = 0 in an optimal solution to the Region III problem. Hence, in this
case, the optimal solution to Region III problem will always be dominated by the Region I
problem (with Kf = 0) by Proposition 7. Then, the global optimal solution has the form
(K∗

1 ≥ 0, K∗
2 = 0, K∗

f = 0).

Case 4.2.2. s2(b− αs2) + s2(b−αs2)c1
s1(b−αs1)ϕ

> c2(1 + 1
ϕ
) and c2 ≥ c1 + (s2 − s1)[b− α(s1 + s2)] (see

Df
1 in Figure 5.1):

Define c4
f ≡ min{cf ≥ 0 : V ∗

I (
−→
KD) = V ∗

III(
−→
K ∗, cf )}. (Note that c4

f may not exist.) Then,
similar to Case 3, we can argue that if c4

f exists, then for cf < c4
f , K∗

f > 0 in the global optimal
solution. Otherwise (cf ≥ c4

f ), the optimal solution has the form (K∗
1 ≥ 0, K∗

2 = 0, K∗
f = 0).

Case 5. c1 ≥ s1(b− αs1) and c2 ≥ s2(b− αs2) (see Ef in Figure 5.1):

At solution
−→
KD = (KD

1 = 0, KD
2 = 0, KD

f = 0), optimality conditions (B.4a) - (B.4c) reduce
to:

bs1 − αs2
1 = c1 − v1 + va2

bs2 − αs2
2 = c2 − αs2va2

b− α(s1 + s2)

bs2 − αs2
2 = cf − vf + va2.

Solving for va2, vf , and v1, we get

va2 =
b− α(s1 + s2)

αs2

[c2 − s2(b− αs2)] ≥ 0

v1 = c1 − s1(b− αs1) + va2 ≥ 0

vf = cf − s2(b− αs2) + va2 ≥ 0 ⇒ (B.4g) is satisfied.

In addition, (B.4d) - (B.4f) are satisfied. Therefore,
−→
K∗

f = (K∗
1 = 0, K∗

2 = 0, K∗
f = 0) is the

global optimal solution.

The optimal conditions in each region are given as follows:

(Af ) If c2 ≥ s2(b−αs2)
s1(b−αs1)

c1 and c2 ≤ c1 + (s2 − s1)[b − α(s1 + s2)], then K∗
f > 0 if and only if

cf < c3
f , where c3

f ≡ min{cf ≥ 0 : V ∗
I (
−→
KD) = V ∗

III(
−→
K ∗, cf )}. (Note that c3

f may not
exist.)

Otherwise (if cf ≥ c3
f ),

−→
K ∗ =(K∗

1 ≥ 0, K∗
2 ≥ 0, K∗

f = 0).
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(Bf ) If c2 ≤ s2(b−αs2)
s1(b−αs1)

c1 and s1c2 ≥ s2c1 − αs1s2(s2 − s1), then K∗
f > 0 if and only if

cf < c1
f ≡

∫ t2
t1

γf(n)dn +
∫ t4

t2
βf(n)dn +

∫∞
t4

ω2f(n)dn, where β, γ, ω2, t1, t2, t3, t4 are as
defined in Lemma 2 with Kf = 0.

Otherwise (if cf ≥ c1
f ),

−→
K ∗ = (K∗

1 ≥ 0, K∗
2 ≥ 0, K∗

f = 0).

(Cf
1 ) If c2 ≤ s2(b−αs2), s1c2 ≤ s2c1−αs1s2(s2− s1), and s2c1 ≤ s1c2 + s2(s2− s1)(b−αs2),

then K∗
f > 0 if and only if cf < c2

f ≡
∫ t2

t1
γf(n)dn+

∫ t4
t2

βf(n)dn+
∫∞

t4
ω2f(n)dn, where

β, γ, ω2, t1, t2, t3, t4 are as defined in Lemma 2 with K1 = 0 and Kf = 0.

Otherwise (if cf ≥ c2
f ),

−→
K ∗ = (K∗

1 = 0, K∗
2 ≥ 0, K∗

f = 0).

(Df
1 ) If s2(b − αs2) + s2(b−αs2)c1

s1(b−αs1)ϕ
≥ c2(1 + 1

ϕ
) and c2 ≥ c1 + (s2 − s1)[b − α(s1 + s2)], then

K∗
f > 0 if and only if cf < c4

f , where c4
f ≡ min{cf ≥ 0 : V ∗

I (
−→
KD) = V ∗

III(
−→
K ∗, cf )}.

(Note that c4
f may not exist.)

Otherwise (if cf ≥ c4
f ), then

−→
K ∗ = (K∗

1 ≥ 0, K∗
2 = 0, K∗

f = 0).

(Cf
2 ) If c2 ≤ s2(b− αs2) and s2c1 ≥ s1c2 + s2(s2 − s1)(b− αs2), then

−→
K ∗ = (K∗

1 = 0, K∗
2 ≥

0, K∗
f = 0).

(Df
2 ) If s2(b−αs2) + s2(b−αs2)c1

s1(b−αs1)ϕ
≤ c2(1 + 1

ϕ
) and c1 ≤ s1(b−αs1), then

−→
K ∗ = (K∗

1 ≥ 0, K∗
2 =

0, K∗
f = 0).

(Ef ) If c1 ≥ s1(b− αs1) and c2 ≥ s2(b− αs2), then
−→
K ∗ = (K∗

1 = 0, K∗
2 = 0, K∗

f = 0),

where ϕ ≡ s2(b−αs2)
s1(b−αs1)

+ αs2

b−α(s1+s2)
.

Note that for Kf ≥ 0, we need αs2K2

b−α(s1+s2)
≥ K1+Kf (see constraint (B.4f) of the Region

III (with Kf ≥ 0) problem, PIII
1 ). Hence, when K∗

2 = 0 in the optimal solution, we must
have K∗

1 = K∗
2 = 0. Therefore, the optimal solution has the form of K∗

1 = 0, K∗
2 > 0, K∗

f > 0
or K∗

1 > 0, K∗
2 > 0, K∗

f > 0. 2

2. Proof of Proposition 10.

The proof follows from the necessary and sufficient conditions given in Lemma 3. Recall

that
−→
K = (KD

1 ≥ 0, KD
2 ≥ 0, KD

f = 0) denotes the optimal solution to the dedicated-only
system.

Case 1. c2 ≤ θc1 + θb(s2 − θs1) and c1 ≤ θs1

s2
c2 + θ(1− θ)bs1 (see Af in Figure 5.2):
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The optimal dedicated-only solution (KD
1 , KD

2 ) is given by Case 1 of Proposition 16.
From (C.1c),

θ3

∫ 2(K1+K2)

2K2

b(s2 − s1)(1− 2K2

n
)fN (n)dn + θ3

∫ ∞

2(K1+K2)
(bs2 − 2b(K1s1 + K2s2)

n
)fN (n)dn

+ θ2(1− θ)
∫ ∞

2K1

bs1(1− 2K1

n
)fN (n)dn + θ2(1− θ)

∫ ∞

2K2

bs2(1− 2K2

n
)fN (n)dn

+ θ(1− θ)b(s2 − θs1) = cf − vf = c1
f (D.5)

Observe that when cf < c1
f ,
−→
KD cannot be optimal since (D.5) cannot hold with a

nonnegative vf . Thus, if cf < c1
f , we must have K∗

f > 0. Otherwise, the optimal investment
vector has the form (K∗

1 ≥ 0, K∗
2 ≥ 0, K∗

f = 0).

Case 2. c2 ≤ θbs2 and c1 > θs1

s2
c2 + θ(1− θ)bs1:

The optimal dedicated-only solution (KD
1 , KD

2 ) is given by Case 2 of Proposition 16,
which satisfies KD

1 = 0, KD
2 ≥ 0, KD

f = 0, and θ
∫∞

2K2
bs2(1 − 2K2

n
)fN(n)dn = c2. From

(C.1c),

θ2

∫ ∞

2K2

bs2(1− 2K2

n
)fN(n)dn + θ(1− θ)bs2 = cf − vf = c2

f (D.6)

⇒ c2
f = θc2 + θ(1− θ)bs2.

From c2
f > c2, we need

θc2 + θ(1− θ)bs2 > c2 ⇒ c2 < θbs2,

which is satisfied in this case.

From c2
f > c1, we need θc2 + θ(1− θ)bs2 > c1. Thus, we need to consider two subcases:

Case 2.1. c2 ≤ θbs2, c1 > θs1

s2
c2 + θ(1 − θ)bs1, and θc2 + θ(1 − θ)bs2 > c1 (see Cf

1 in

Figure 5.2): Observe that when cf < c2
f ,
−→
KD cannot be optimal since (D.6) cannot hold

with a nonnegative vf . Thus, if cf < c2
f , we must have K∗

f > 0. Otherwise (cf ≥ c2
f ), the

optimal investment vector has the form (K∗
1 = 0, K∗

2 ≥ 0, K∗
f = 0).

Case 2.2. c2 ≤ θbs2 and c1 ≥ θc2 + θ(1 − θ)bs2 (see Cf
2 in Figure 5.2): It cannot be

optimal to invest in the flexible capacity and the global optimal investment vector has the
form (K∗

1 = 0, K∗
2 ≥ 0, K∗

f = 0).

Case 3. c1 ≤ θbs1 and c2 > θc1 + θb(s2 − θs1) (see Df in Figure 5.2):

The optimal dedicated-only solution (KD
1 , KD

2 ) is given by Case 3 of Proposition 16,
which satisfies KD

1 ≥ 0, KD
2 = 0, KD

f = 0, and θ
∫∞

2K1
bs1(1 − 2K1

n
)fN(n)dn = c1. From
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(C.1c),

θ2

∫ ∞

2K1

bs1(1− 2K1

n
)fN (n)dn + θ3b(s2 − s1) + θ2(1− θ)bs2 + θ(1− θ)b(s2 − θs1) = cf − vf = c3

f

(D.7)

⇒ c3
f = θc1 + θb(s2 − θs1).

From c3
f > c2, we need θc1 + θb(s2 − θs1), which cannot hold in this region. Therefore,

in this case, it cannot be optimal to invest in the flexible capacity and the global optimal
investment vector has the form (K∗

1 ≥ 0, K∗
2 = 0, K∗

f = 0).

Case 4. c1 ≥ θbs1 and c2 ≥ θbs2 (see Ef in Figure 5.2):

From (C.1c), we have θbs2 = cf − vf = c4
f . Since c2 ≥ θbs2 and cf > c2, cf < c4

f cannot
hold in this region. Thus, the global optimal investment vector has the form (K∗

1 = 0, K∗
2 =

0, K∗
f = 0).

To summarize, the optimal investment portfolio in the flexible (S+D)U system can be
characterized as follows (see Figure 5.2):

(Af ): If c2 ≤ θc1 + θb(s2 − θs1) and c1 ≤ θs1

s2
c2 + θ(1− θ)bs1, then K∗

f > 0 if and only if

cf < c1
f ≡ θ3

∫ 2(K1+K2)

2K2

b(s2 − s1)(1− 2K2

n
)fN (n)dn

+ θ3

∫ ∞

2(K1+K2)
(bs2 − 2b(K1s1 + K2s2)

n
)fN (n)dn

+ θ2(1− θ)
∫ ∞

2K1

bs1(1− 2K1

n
)fN (n)dn + θ2(1− θ)

∫ ∞

2K2

bs2(1− 2K2

n
)fN (n)dn

+ θ(1− θ)b(s2 − θs1).

Otherwise (if cf ≥ c1
f ),

−→
K ∗ = (K∗

1 ≥ 0, K∗
2 ≥ 0, K∗

f = 0).

(Cf
1 ): If c2 ≤ θbs2, c1 > θs1

s2
c2 + θ(1 − θ)bs1, and θc2 + θ(1 − θ)bs2 > c1, then K∗

f > 0 if and

only if cf < c2
f ≡ θc2 + θ(1− θ)bs2.

Otherwise (if cf ≥ c2
f ),

−→
K ∗ = (K∗

1 = 0, K∗
2 ≥ 0, K∗

f = 0).

(Cf
2 ): If c1 ≤ θbs1 and c2 > θc1 + θb(s2 − θs1), then

−→
K ∗ = (K∗

1 ≥ 0, K∗
2 = 0, K∗

f = 0).

(Df ): If c2 ≤ θbs2 and c1 ≥ θc2 + θ(1− θ)bs2, then
−→
K ∗ = (K∗

1 = 0, K∗
2 ≥ 0, K∗

f = 0).

(Ef ): If c1 ≥ θbs1 and c2 ≥ θbs2, then
−→
K ∗ = (K∗

1 = 0, K∗
2 = 0, K∗

f = 0).
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Next we study the optimal portfolio mix when it is optimal for the firm to invest in
the flexible resource. When Kf > 0 in an optimal solution, the solution must be one of the
following forms:

−→
KF = (K1 = 0,K2 = 0,Kf > 0),
−→
K1F = (K1 > 0,K2 = 0, Kf > 0),
−→
K2F = (K1 = 0,K2 > 0, Kf > 0),
−→
KA = (K1 > 0, K2 > 0,Kf > 0).

If solution
−→
KF is an optimal solution, there must exist a −→v = (v1 > 0, v2 > 0, vf = 0) that

satisfies the following conditions:

θ2

∫ ∞

2Kf

bs1(1− 2Kf

n
)fN (n)dn + θ(1− θ)bs1 = c1 − v1 (D.8)

θ2

∫ ∞

2Kf

bs2(1− 2Kf

n
)fN (n)dn + θ(1− θ)bs2 = c2 − v2 (D.9)

θ2

∫ ∞

2Kf

bs2(1− 2Kf

n
)fN (n)dn = cf (D.10)

From (D.9)-(D.10), we have

c2 − v2 − cf

= −θ(1− θ)

∫ ∞

2Kf

bs2(1− 2Kf

n
)f(n)dn + θ(1− θ)bs2

> −θ(1− θ)bs2 + θ(1− θ)bs2 = 0

⇒ c2 − v2 > cf ,

which contradicts with c2 < cf and v2 > 0. Therefore,
−→
KF cannot be the optimal solution.

Similarly, if solution
−→
K 1F is an optimal solution, there must exist a −→v = (v1 = 0, v2 >

0, vf = 0) that satisfies the following conditions:

θ2

∫ ∞

2(K1+Kf )
bs1[1− 2(K1 + Kf )

n
]fN (n)dn + θ(1− θ)

∫ ∞

2K1

bs1(1− 2K1

n
)fN (n)dn = c1 (D.11)

θ3

∫ 2(K1+Kf )

2Kf

b(s2 − s1)(1− 2Kf

n
)fN (n)dn + θ3

∫ ∞

2(K1+Kf )
[bs2 − 2b(K1s1 + Kfs2)

n
]fN (n)dn

+ θ2(1− θ)
∫ ∞

2K1

bs1(1− 2K1

n
)fN (n)dn + θ2(1− θ)

∫ ∞

2Kf

bs2(1− 2Kf

n
)fN (n)dn

+ θ2(1− θ)b(s2 − s1) + θ(1− θ)2 = c2 − v2 (D.12)

θ2

∫ 2(K1+Kf )

2Kf

b(s2 − s1)(1− 2Kf

n
)fN (n)dn + θ2

∫ ∞

2(K1+Kf )
[bs2 − 2b(K1s1 + Kfs2)

n
]fN (n)dn

+ θ(1− θ)
∫ ∞

2Kf

bs2(1− 2Kf

n
)fN (n)dn = cf (D.13)
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From (D.12)-(D.13), we have

c2 − v2 − cf

= −θ2(1− θ)
∫ ∞

2Kf

b(s2 − s1)(1− 2Kf

n
)fN (n)dn− θ(1− θ)2

∫ ∞

2Kf

bs2(1− 2Kf

n
)fN (n)dn

+ θ2(1− θ)
∫ ∞

2K1

bs1(1− 2K1

n
)fN (n)dn− θ2(1− θ)

∫ ∞

2(K1+Kf )
bs1(1− 2(K1 + Kf )

n
)fN (n)dn

+ θ2(1− θ)b(s2 − s1) + θ(1− θ)2bs2

> −θ2(1− θ)b(s2 − s1)− θ(1− θ)2bs2 + θ2(1− θ)b(s2 − s1) + θ(1− θ)2bs2 = 0
⇒ c2 − v2 > cf

which contradicts with c2 < cf and v2 > 0. Hence,
−→
K 1F cannot be the optimal solution.

Therefore, when the firm acquires the flexible resource, the structure of its optimal portfolio
will be of the form (K∗

1 = 0, K∗
2 > 0, K∗

f > 0) or (K∗
1 > 0, K∗

2 > 0, K∗
f > 0).

Furthermore, for the solution of (K1 > 0, K2 > 0, Kf > 0), (C.1a) and (C.1b) become

θ3

∫ ∞

2(K1+K2+Kf )

bs1(1− 2(K1 + K2 + Kf )
n

)fN (n)dn + θ2(1− θ)
∫ ∞

2(K1+K2)

bs1(1− 2(K1 + K2)
n

)fN (n)dn

+ θ2(1− θ)
∫ ∞

2(K1+Kf )

bs1(1− 2(K1 + Kf )
n

)fN (n)dn + θ(1− θ)2
∫ ∞

2K1

bs1(1− 2K1

n
)fN (n)dn = c1 (D.14)

θ3

∫ 2(K1+K2+Kf )

2(K2+Kf )

b(s2 − s1)(1− 2(K2 + Kf )
n

)fN (n)dn

+ θ3

∫ ∞

2(K1+K2+Kf )

[bs2 − 2b(K2s2 + Kfs2 + K1s1)
n

]fN (n)dn

+ θ2(1− θ)
∫ 2(K1+K2)

2K2

b(s2 − s1)(1− 2K2

n
)fN (n)dn + θ2(1− θ)

∫ ∞

2(K1+K2)

[bs2 − 2b(K2s2 + K1s1)
n

]fN (n)dn

+ θ2(1− θ)
∫ ∞

2(K2+Kf )

[bs2 − 2bs2(K2 + Kf )
n

]fN (n)dn + θ(1− θ)2
∫ ∞

2K2

[bs2 − 2bs2K2

n
]fN (n)dn = c2

(D.15)
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We have

s2c1 − θs1c2

=

< 0︷ ︸︸ ︷
θ3bs1(θs1 − s2)(

∫ ∞

2(K2+Kf )

[1− 2(K2 + Kf )
n

]fN (n)dn−
∫ ∞

2(K1+K2+Kf )

(1− 2(K1 + K2 + Kf )
n

)fN (n)dn)

+

< 0︷ ︸︸ ︷
θ2(1− θ)bs1(θs1 − s2)(

∫ ∞

2K2

(1− 2K2

n
)fN (n)dn−

∫ ∞

2(K1+K2)

(1− 2(K1 + K2)
n

)fN (n)dn)

+ θ2(1− θ)bs1s2

∫ ∞

2(K1+Kf )

(1− 2(K1 + Kf )
n

)fN (n)dn + θ(1− θ)2bs1s2

∫ ∞

2K1

(1− 2K1

n
)fN (n)dn

< θ2(1− θ)bs1s2

∫ ∞

2(K1+Kf )

(1− 2(K1 + Kf )
n

)fN (n)dn + θ(1− θ)2bs1s2

∫ ∞

2K1

(1− 2K1

n
)fN (n)dn

< θ2(1− θ)bs1s2 + θ(1− θ)2bs1s2 = θ(1− θ)bs1s2

⇒ s2c1 − θs1c2 < θ(1− θ)bs1s2.

Therefore, (K1 > 0, K2 > 0, Kf > 0) can not be feasible in Cf
1 which has the constraint

of s2c1 − θs1c2 ≥ θ(1 − θ)bs1s2. On the other hand, when cf < c2
f , the optimal solution in

region Cf
1 must be in the form of (K∗

1 = 0, K∗
2 > 0, K∗

f > 0).

For the solution of (K1 = 0, K2 > 0, Kf > 0), (C.1a) - (C.1c) become

θ3

∫ ∞

2(K2+Kf )
bs1(1− 2(K2 + Kf )

n
)fN (n)dn + θ2(1− θ)

∫ ∞

2(K2)
bs1(1− 2K2

n
)fN (n)dn

+ θ2(1− θ)
∫ ∞

2Kf

bs1(1− 2Kf

n
)fN (n)dn + θ(1− θ)2bs1 = c1 − v1 (D.16)

θ2

∫ ∞

2(K2+Kf )
bs2(1− 2(K2 + Kf )

n
)fN (n)dn + θ(1− θ)

∫ ∞

2K2

bs2(1− 2K2

n
)fN (n)dn = c2 (D.17)

θ2

∫ ∞

2(K2+Kf )
bs2(1− 2(K2 + Kf )

n
)fN (n)dn + θ(1− θ)

∫ ∞

2Kf

bs2(1− 2Kf

n
)fN (n)dn = cf (D.18)

We have

cf − c2 = θ(1− θ)
∫ ∞

2Kf

bs2(1− 2Kf

n
)fN (n)dn−

∫ ∞

2K2

bs2(1− 2K2

n
)fN (n)dn > 0

⇒
∫ ∞

2Kf

(1− 2Kf

n
)fN (n)dn >

∫ ∞

2K2

(1− 2K2

n
)fN (n)dn

⇒ Kf < K2.
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We also have

c2 − (c1 − v1)

= θ2b(s2 − θs1)
∫ ∞

2(K2+Kf )
(1− 2(K2 + Kf )

n
)fN (n)dn + θ(1− θ)b(s2 − θs1)

∫ ∞

2K2

(1− 2K2

n
)fN (n)dn

− θ2(1− θ)bs1

∫ ∞

2Kf

(1− 2Kf

n
)fN (n)dn− θ(1− θ)2bs1

< θ2b(s2 − θs1)
∫ ∞

2K2

(1− 2K2

n
)fN (n)dn + θ(1− θ)b(s2 − θs1)

∫ ∞

2K2

(1− 2K2

n
)fN (n)dn

− θ2(1− θ)bs1

∫ ∞

2K2

(1− 2K2

n
)fN (n)dn− θ(1− θ)2bs1

= [θb(s2 − θs1)− θ2(1− θ)bs1]
∫ ∞

2K2

(1− 2K2

n
)fN (n)dn− θ(1− θ)2bs1.

Note that θb(s2−θs1)−θ2(1−θ)bs1 > 0 since θb(s2−θs1) > θ2(1−θ)bs1 ⇔ s2

s1
> 2θ−θ2,

which holds because 2θ − θ2 < 1 ⇔ (θ − 1)2 > 0.

Then, c2− (c1−v1) < θb(s2−θs1)−θ2(1−θ)bs1−θ(1−θ)2bs1 = θb(s2−s1) < b(s2−s1).
Therefore, for the region that satisfies c2 ≥ c1 + b(s2 − s1) in Af , there will not exist a
positive v1 such that the KKT conditions holds. Hence, the optimal solution can not have
a form of (K1 = 0, K2 > 0, Kf > 0) in this region. On the other hand, when cf < c1

f ,

the optimal solution must be in the form of (K∗
1 > 0, K∗

2 > 0, K∗
f > 0) in region Af with

c2 ≥ c1 + b(s2 − s1). 2

3. Proof of Proposition 11

The area of region (PD + RF )2 (see Figure 5.3(b)) is given by R(PD+RF )2 = 1
2
(1 −

θ)[(1 + θ)bs1 − bs2]
2. Note that we assume s2 < (1 + θ)s1 in this case. Then,

∂R(PD+RF )2

∂θ
=

1
2
[(1 + θ)bs1 − bs2][(1− 3θ)bs1 + bs2] > 0 when s2−s1

s1
< θ < s1+s2

3s1
, and

∂R(PD+RF )2

∂θ
< 0 when

θ > s1+s2

3s1
. The result follows. 2



Appendix E

In what follows, we will first consider the “uncapacitated stage 2 problem” (i.e., without
constraints (3.1b) - (3.1d)), and based on this analysis we will draw conclusions on when
the flexible capacity will be beneficial. Assume, wlog, that the total number of customers
(market size) realized in Stage 2, n, is 1. We denote the uncapacitated Stage 2 Problem as
Pu

2 , whose formulation is given by:

Problem Pu
2 : Πu ≡ max−→p p1

∫ p2−p1
s2−s1

p1
s1

fT (t)dt + p2

∫ b
p2−p1
s2−s1

fT (t)dt (E.1a)

subject to b ≥ p2−p1

s2−s1
≥ p1

s1
≥ 0. (E.1b)

Let t1 ≡ p1

s1
and t2 ≡ p2−p1

s2−s1
. Let −→p u = (pu

1 , p
u
2), or alternatively,

−→
t u = (tu1 , t

u
2) denote the

optimal solution to Problem Pu
2 . We also let gT (x) ≡ xfT (x) + FT (x), x ∈ [0, b].

Proposition 17. The optimal solution to Problem Pu
2 can occur either in the interior of

the feasible region, given by b ≥ p2−p1

s2−s1
≥ p1

s1
≥ 0, or on the boundary line p1s2 = p2s1.

Proof: Consider the feasible region, b ≥ p2−p1

s2−s1
≥ p1

s1
≥ 0, see Figure E.1, which corresponds

to:
p1 ≥ 0, p1 ≤ p2s1

s2

, and p2 − p1 ≤ b(s2 − s1).

(i) First consider all boundary points of the feasible region, given by (p1, p2) = (0, 0), (0, b(s2−
s1)), and (bs1, bs2). Observe that each of these points yields a profit of zero (see (E.1a)).
However, Πu > 0, since one feasible solution is (p1 = bs1

2
, p2 = bs2

2
) , with a profit of

p2

∫ b
b
2
fT (t)dt > 0. Hence, these boundary points cannot be optimal.

(ii) Consider points on the boundary line p1 = 0, which are of the form (p1 = 0, p2 ∈
(0, b(s2 − s1))), with t̄1 ≡ p1

s1
= 0, t̄2 ≡ p2−p1

s2−s1
> 0, and profit Π̄. Then, consider an

alternative solution on the line p2s2 = p2s1 with t̂1(=
p̂1

s1
) = t̂2(=

p̂2−p̂1

s2−s1
) = t̄2, where

p̂1 > p̄1 = 0, which implies p̂2 > p̄2, since p̂2 − p̂1 = p̄2 − p̄1. Hence, we have a profit

86
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1p

2p

1bs

2bs

2 1( )b s s−

(0,0)

feasible 
region

Figure E.1: Feasible Region of the Uncapacitated Problem Pu
2 .

of Π̂ = p̂2

∫ b

t̂2
fT (t)dt > Π̄ = p̄2

∫ b

t̄2
fT (t)dt. Thus, for any solution on the boundary line

p1 = 0, we can always find a dominating solution on the line p1s2 = p2s1. Therefore, a
solution on this boundary line cannot be optimal.

(iii) Consider points on the boundary line p2 − p1 = b(s2 − s1), which are of the form
(p1 ∈ (0, bs1), p2 = p1 + b(s2 − s1)). We can show, following a similar reasoning to
(ii), that there always exists a dominating solution on the line p1s2 = p2s1. Hence, the
result follows. 2

Proposition 18. The first order conditions (FOC) are always satisfied on the boundary line
s2p1 = s1p2.

Proof: We first determine the first-order derivatives of Πu with respect to p1 and p2:

∂Πu

∂p1

=

∫ p2−p1
s2−s1

p1
s1

fT (t)dt +
1

s2 − s1

fT (
(p2 − p1)

s2 − s1

)(p2 − p1)− p1

s1

fT (
p1

s1

)

∂Πu

∂p2

=

∫ b

p2−p1
s2−s1

fT (t)dt− (p2 − p1)

s2 − s1

fT (
p2 − p1

s2 − s1

).

Observe that the first-order conditions, ∂Πu

∂p1
= 0, ∂Πu

∂p2
= 0, reduce to:

∫ t2

t1

fT (t)dt = t1fT (t1)− t2fT (t2) and

∫ b

t2

fT (t)dt = t2fT (t2)

⇒
∫ b

t1

fT (t)dt = t1fT (t1) and

∫ b

t2

fT (t)dt = t2fT (t2),
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or equivalently, to any x ∈ [0, b] satisfying

∫ b

x

fT (t)dt = xfT (x)

⇒ 1− FT (x) = xfT (x)

⇒ gT (x) = xfT (x) + FT (x) = 1. (E.2)

Observe that one FOC point is given by t1 = t2 = x∗, where x∗ is a solution to (E.2), which
implies

p1

s1

=
p2 − p1

s2 − s1

= x∗ ⇒ p1 =
p2s1

s2

.

Hence, the result follows. 2

Note that the objective function (E.1a) is continuous and differentiable with respect to
p1 and p2 everywhere in the feasible region. Therefore, from Propositions 17 and 18, a global
maxima occurs either at an interior point, or on the line p1s2 = p2s1, and satisfies the FOC.
Thus, it is sufficient to consider only the FOC points.

Lemma 4. Let m be the number of solutions to gT (x) ≡ xfT (x) + FT (x) = 1. Then, there

exist m(m+1)
2

FOC points to the objective function (E.1a) in the feasible region b ≥ p2−p1

s2−s1
≥

p1

s1
≥ 0.

Proof: The FOC points are of the form 0 ≤ t1 ≤ t2 ≤ b satisfying (E.2). Let m be the
number of solutions in [0, b] satisfying (E.2). Thus, if m = 1, then t1 = t2 = x∗, where x∗ is
the unique solution to (E.2), is the unique FOC point to the objective function (E.1a), and
it lies in the feasible region (on the boundary line p1 = p2s1

s2
). If there exist m ≥ 2 solutions,

x∗i , i = 1, 2, ..., m, to (E.1a), then there are m FOC points with t1 = t2 = x∗i , i = 1, 2, ...,m,
and

(
m
2

)
FOC points with t1 = x∗i , t2 = x∗j for i, j ∈ 1, 2, ..., m, and x∗i < x∗j . Furthermore, all

FOC points are in the feasible region. Then, the total number of FOC points in the feasible
region is given by m +

(
m
2

)
= m(m+1)

2
. 2

Proposition 19. Consider that T follows an arbitrary continuous distribution with support
in [0, b]. Then, if

(i) gT (t) is nondecreasing in t over [0, b] and strictly increasing at g−1
T (1), or

(ii) gT (t) is strictly unimodal in t over [0, b],

K∗
f = 0 in an optimal solution to the flexible system.
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Proof: (i) We first determine the second-order derivatives of Πu with respect to p1 and p2:

∂2Πu

∂p2
1

= − 2

s2 − s1

fT (
p2 − p1

s2 − s1

)− 2

s1

fT (
p1

s2

)− (p2 − p1)

(s2 − s1)2
f

(1)
T (

p2 − p1

s2 − s1

)− p1

s2
1

f
(1)
T (

p1

s1

)

∂2Πu

∂p2
2

= − 2

(s2 − s1)
fT (

p2 − p1

s2 − s1

)− (p2 − p1)

(s2 − s1)2
f

(1)
T (

p2 − p1

s2 − s1

)

∂2Πu

∂p1∂p2

=
∂2Πu

∂p2∂p1

=
2

s2 − s1

fT (
p2 − p1

s2 − s1

) +
p2 − p1

(s2 − s1)2
f

(1)
T (

p2 − p1

s2 − s1

).

We also know g
(1)
T (x) = 2fT (x) + xf

(1)
T (x). Hence, we have

∂2Πu

∂p2
1

=
−1

s2 − s1

g
(1)
T (t2)− 1

s1

g
(1)
T (t1),

∂2Πu

∂p2
2

=
−1

s2 − s1

g
(1)
T (t2),

and

det(H) =
1

(s2 − s1)s1

g
(1)
T (t1)g

(1)
T (t2).

Notice that gT (0) = 0 and gT (b) = bfT (b) + 1 ≥ 1. Since gT (x) is nondecreasing in x over
[0, b] and strictly increasing at g−1

T (1), there exists a unique point, x∗ ∈ (0, b], satisfying

gT (x∗) = 1 such that g
(1)
T (x)|x=x∗ > 0. Consequently, by Lemma 4, there exists only one

possible FOC point,
−→
t = (t1 = x∗, t2 = x∗), which must be the global maxima. If fT (b) > 0,

then x∗ ∈ (0, b) (i.e., an internal point), leading to d0 > 0, d1 = 0, and d2 > 0. If fT (b) = 0,
then x∗ = b, leading to d0 = 1 and d1 = d2 = 0.

(ii) We consider two cases:

(a) If fT (b) > 0, then gT (b) = bfT (b) + 1 > 1. Since gT (x) is continuous and strictly
unimodal in x over [0, b], there must exist a unique point, x∗ ∈ (0, b), satisfying gT (x∗) =

1 and g
(1)
T (x∗) > 0. Then, by Lemma 4,

−→
t = (t1 = x∗, t2 = x∗) gives the unique local

maximum solution.

(b) If fT (b) = 0, then gT (b) = bfT (b)+1 = 1. Hence, there exist exactly two points, x∗ and
b, with gT (x∗) = gT (b) = 1. Then, from Lemma (4), there must exist three FOC points
to the objective function in the feasible region: (t1, t2) = (x∗, x∗), (x∗, b), and (b, b).

(1) For
−→
t = (x∗, x∗), we know g

(1)
T (x∗) > 0. Then

∂2Π

∂p2
1

|−→t =(x∗,x∗) = −(
1

s2 − s1

+
1

s1

)g
(1)
T (x∗) < 0,

∂2Π

∂p2
2

|−→t =(x∗,x∗) =
−1

s2 − s1

g
(1)
T (x∗) < 0,

det(H)|−→t =(x∗,x∗) =
1

(s2 − s1)s1

[g
(1)
T (x∗)]2 > 0.
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Thus,
−→
t = (t1 = x∗, t2 = x∗) is a local maxima.

(2) For
−→
t = (x∗, b), we have g

(1)
T (x∗) > 0 and g

(1)
T (b) < 0. Then,

det(H) =
1

(s2 − s1)s1

g
(1)
T (x∗)g(1)

T (b) < 0.

Hence,
−→
t = (x∗, b) is a saddle point, and is neither a local maxima nor a local

minima.

(3) For
−→
t = (b, b), since g

(1)
T (b) < 0, we have

∂2Π

∂p2
1

|−→t =(b,b) = −1(
1

s2 − s1

g
(1)
T +

1

s1

)g
(1)
T (b) > 0,

∂2Π

∂p2
2

|−→t =(b,b) =
−1

s2 − s1

g
(1)
T (b) > 0,

and det(H)|−→t =(b,b) =
1

(s2 − s1)s1

[g
(1)
T (b)]2 > 0,

and
−→
t = (b, b) is a local minima.

Therefore,
−→
t = (x∗, x∗) is the global maximum solution in both case (i) and (ii) (with

x∗ ∈ (0, b)), leading to d0 > 0, d1 = 0, d2 > 0. 2

1. Proof of Corollary 12

(i) The proof follows from Proposition 19(i) by noting that when f
(1)
T (x) > 0, g

(1)
T (x) =

2fT (x) + xf
(1)
T (x) > 0 for x ∈ (0, b], gT (x) becomes increasing in x over (0, b].

(ii) Note that gT (0) = 0 and gT (b) = bfT (b) + 1 ≥ 1, with g
(1)
T (x)|x=0 ≥ 0 and

∂2gT (x)

∂x2
= 3f

(1)
T (x) + xf

(2)
T (x) < 0, ∀x ∈ [0, b].

Let x̂ ≡ arg minx
∂gT (x)

∂x
= 0. Note that x̂ may not exist in (0, b). There are two cases:

(a) x̂ ∈ (0, b). Then, ∂2gT (x)
∂x2 |∂gT (x)/∂x=0 < 0 ⇒ gT (x) is strictly unimodal in x and the

result follows from Proposition 19(ii).

(b) Otherwise (i.e., x̂ does not exist in (0, b)), gT (x) is strictly increasing in x and the
result follows from Proposition 19(i).

(iii) Let x̄ denote the mode of fT (x). We have g
(1)
T (x) = 2fT (x) + xf

(1)
T (x) > 0, for

x ∈ [0, x̄]. There are two cases. If g
(1)
T (x) > 0, for x ∈ [x̄, b], then the result follows
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from Proposition 19(i). If g
(1)
T (x̄) = 0 for some x̂ ∈ (x̄, b], since we have f

(1)
T (x̂) <

0, f
(2)
T (x̂) < 0, and

∂2gT (x)

∂x2
|x=x̂ = 3f

(1)
T (x̂) + x̂f

(2)
T (x̂) < 0,

then the result follows from Proposition 19(ii). 2

2. Proof of Corollary 13

(i) We know g
(1)
T (x) = 2fT (x) + xf

(1)
T (x) = a(γ + βx)−p−1[2γ + βx(2− p)].

(a) For p = 2, g
(1)
T (x) > 0.

(b) For p > 2, gT (x) is increasing in x for x < 2γ
β(p−2)

, and decreasing for x > 2γ
β(p−2)

.

If b ≤ 2γ
β(p−2)

, then gT (x) is increasing in x over [0, b]. If b > 2γ
β(p−2)

, then gT (x) is

increasing in x in [0, 2γ
β(p−2)

) and decreasing in ( 2γ
β(p−2)

, b]. Hence, gT (x) is strictly

unimodal over [0, b].

Hence in both cases it follows, from Proposition (19), that there exists a unique FOC
point t1 = t2 = x∗ with x∗ = g−1

T (1).

(ii) The pdf of T is given as

fT (t) = fX|X<b(t) =

{
λe−λt

1−e−λb , if t ≤ b;

0, otherwise.

We know g
(1)
T (x) = λe−λx(2−λx)

1−e−λb , for x ∈ [0, b]. Hence, gT (x) is increasing in x for x < 2
λ

and decreasing for x > 2
λ
. Consequently, for b ≤ 2

λ
, gT (x) is an increasing function,

and for b > 2
λ
, g(x) is strictly unimodal. Then, from Proposition (19), there exists a

unique FOC point t1 = t2 = x∗ with gT (x∗) = 1 for x∗ ∈ (0, b).

(iii) The pdf of T is given as

fT (x) = fX|X<b(t) =

{
1

a
√

2πσ2
e−

(t−µ)2

2σ2 , if t ∈ [0, b];

0, otherwise,

We know g
(1)
T (x) = fT (x)(−x2+µx+2σ2

σ2 ), for x ∈ [0, b]. Note that for
µ−
√

µ2+8σ2

2
≤

x ≤ µ+
√

µ2+8σ2

2
, we have −x2 + µx + 2σ2 ≥ 0, and for x >

µ+
√

µ2+8σ2

2
, we have

−x2 + µx + 2σ2 < 0. Noting that
µ−
√

µ2+8σ2

2
≤ 0 ≤ µ+

√
µ2+8σ2

2
, we have





if b ≤ µ+
√

µ2+8σ2

2
, g(1)(x) > 0;

if b <
µ+
√

µ2+8σ2

2
, g(x) is strictly unimodal.
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Hence, from Lemma (4), there exists a unique FOC point t1 = t2 = x∗ with gT (x∗) = 1
for x∗ ∈ (0, b). 2



Appendix F

1. Proof of Proposition 14.

(i) The problem formulation in this case is given as follows:

Problem Pc(SU):

Stage 1 Problem Pc
1(SU):

max
Kf

V ≡ EY [Π∗(Kf , Y )]− cfKf (F.1a)

subject to Kf ≥ 0. (F.1b)

Stage 2 Problem Pc
2(SU):

Π∗(
−→
K, n) ≡ max−→p

n

b
[(

p2 − p1

s2 − s1

− p1

s1

)(p1 − αs2
1) + (b− (p2 − p1)

s2 − s1

)(p2 − αs2
2)] (F.2a)

subject to

yKf − n

b
(b− p1

s1

) ≥ 0 (F.2b)

n

b
(
p2 − p1

s2 − s1

− p1

s1

) ≥ 0 (F.2c)

n

b
(b− (p2 − p1)

s2 − s1

) ≥ 0 (F.2d)

Solving the second stage problem, we obtain the optimal solution:

(p∗1, p
∗
2) =





( (b+αs1)s1

2
, (b+αs2)s2

2
), if Ω1,

(bs1(1− yKf

n
), b(s1+s2)

2
− bs1yKf

n
+

α(s2
2−s2

1)

2
), if Ω2,

(bs1(1− yKf

n
), bs2(1− yKf

n
)), if Ω6,

93
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(q∗1, q
∗
2) =





(nαs2

2b
, n(b−α(s1+s2))

2b
), if Ω1,

(yKf − n[b−α(s1+s2)]
2b

, n[b−α(s1+s2)]
2b

), if Ω2,

(0, yKf ), if Ω6,

where Ω1 = {1 ≥ y ≥ n(b−αs1)
2bKf

}, Ω2 = {n(b−αs1)
2bKf

≥ y ≥ n(b−α(s1+s2))
2bKf

}, Ω6 = {n(b−α(s1+s2))
2bKf

≥
y ≥ 0}.

Then, the objective function of stage 1 problem and its first- and second-order derivatives
are given as

V =
∫ [b−α(s1+s2)]n

2bKf

0
Π6fY (y)dy +

∫ (b−αs1)n
2bKf

[b−α(s1+s2)]n
2bKf

Π2fY (y)dy +
∫ 1

(b−αs1)n
2bKf

Π1fY (y)dy − cfKf

∂V

∂Kf
=

∫ [b−α(s1+s2)]n
2bKf

0

∂Π6

∂Kf
fY (y)dy +

∫ (b−αs1)n
2bKf

[b−α(s1+s2)]n
2bKf

∂Π2

∂Kf
fY (y)dy − cf

=
∫ [b−α(s1+s2)]n

2bKf

0
(bs2 − αs2

2 −
2bs2yKf

n
)yfY (y)dy

+
∫ (b−αs1)n

2bKf

[b−α(s1+s2)]n
2bKf

(bs1 − αs2
1 −

2bs1yKf

n
)yfY (y)dy − cf

∂2V

∂K2
f

=
∫ [b−α(s1+s2)]n

2bKf

0
−2bs2y

2

n
fY (y)dy +

∫ (b−αs1)n
2bKf

[b−α(s1+s2)]n
2bKf

−2bs1y
2

n
fY (y)dy < 0.

Hence, the optimal solution is given by

∂V

∂Kf
= 0 ⇒

∫ [b−α(s1+s2)]n
2bKf

0
(bs2 − αs2

2 −
2bs2yKf

n
)yfY (y)dy

+
∫ (b−αs1)n

2bKf

[b−α(s1+s2)]n
2bKf

(bs1 − αs2
1 −

2bs1yKf

n
)yfY (y)dy = cf (F.3)

Note that the LHS of (F.3) is strictly decreasing in Kf . Then, for Kf ≥ 0, we need

cf ≤
∫ 1

0
(bs2 − αs2

2)yfY (y)dy = (b− αs2)s2E[Y ].

(ii) The problem formulation in this case is similar to the one in (i), while Y follows a
Bernoulli distribution with Pr(Y = 1) = θ. Then, when y = 1, we need to consider three
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cases for the Stage 1 problem:

Case 1: Kf ≥ n(b−αs1)
2b

We have V = nα(b+αs1)s1s2

4b
+ n(b−α(s1+s2))(b+αs2)s2

4b
− cfKf and ∂V

∂Kf
= −cf < 0. Then, the

optimal solution is given by Kf = n(b−αs1)
2b

.

Case 2: n(b−αs1)
2b

≥ Kf ≥ n(b−α(s1+s2))
2b

We have

V = θbs1(1− Kf

n
)(Kf − n[b− α(s1 + s2)]

2b
)

+ θ[
b(s1 + s2)

2
− bs1Kf

n
+

α(s2
2 − s2

1)
2

][
n[b− α(s1 + s2)]

2b
]− cfKf

∂V

∂Kf
= θ(bs1 − αs2

1 −
2bs1Kf

n
)− cf

∂2V

∂K2
f

= −2θbs1Kf

n
< 0.

The optimal solution is given by ∂V
∂Kf

= 0 ⇒ Kf =
(θbs1−θαs2

1−cf )n

2θbs1
.

Case 3: Kf ≤ n(b−α(s1+s2))
2b

We have V = bs2(1 − Kf

n
)Kf − cfKf ,

∂V
∂Kf

= θ(bs2 − αs2
2 − 2bs2Kf

n
) − cf , and ∂2V

∂K2
f

=

−2θbs2Kf

n
< 0. Then, the optimal solution is given by ∂V

∂Kf
= 0 ⇒ Kf =

(θbs2−θαs2
2−cf )n

2θbs2
.

Comparing the above three cases, we obtain the optimal solution to the Stage 1 problem:

(1) If θαs1s2 ≤ cf ≤ θ(bs2 − αs2
2), K∗

f =
(θbs2−θαs2

2−cf )n

2θbs2
;

(2) If cf ≤ θαs1s2, K∗
f =

(θbs1−θαs2
1−cf )n

2θbs1
.

Therefore, when cf ≤ θ(bs2 − αs2
2), we have K∗

f ≥ 0.

(iii) The problem formulation in the case is given as follows:

Problem Pc(DU):

Stage 1 Problem Pc
1(DU):
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max
Kf

V ≡ EN [Π∗(Kf , N)]− cfKf (F.4a)

subject to Kf ≥ 0. (F.4b)

Stage 2 Problem Pc
2(DU):

Π∗(
−→
K, n) ≡ max−→p

n

b
[(

p2 − p1

s2 − s1

− p1

s1

)(p1 − αs2
1) + (b− (p2 − p1)

s2 − s1

)(p2 − αs2
2)] (F.5a)

subject to

Kf − n

b
(b− p1

s1

) ≥ 0 (F.5b)

n

b
(
p2 − p1

s2 − s1

− p1

s1

) ≥ 0 (F.5c)

n

b
(b− (p2 − p1)

s2 − s1

) ≥ 0 (F.5d)

Solving the second stage problem, we obtain the optimal solution:

(p∗1, p
∗
2) =





( (b+αs1)s1

2
, (b+αs2)s2

2
), if Ω1,

(bs1(1− Kf

n
), b(s1+s2)

2
− bs1Kf

n
+

α(s2
2−s2

1)

2
), if Ω2,

(bs1(1− Kf

n
), bs2(1− Kf

n
)), if Ω6,

(q∗1, q
∗
2) =





(nαs2

2b
, n(b−α(s1+s2))

2b
), if Ω1,

(Kf − n[b−α(s1+s2)]
2b

, n[b−α(s1+s2)]
2b

), if Ω2,

(0, Kf ), if Ω6,

where Ω1 = {0 ≤ n ≤ 2bKf

b−αs1
}, Ω2 = { 2bKf

b−αs1
≤ n ≤ 2bKf

b−α(s1+s2)
}, Ω6 = { 2bKf

b−α(s1+s2)
≤ n}.

Then, the objective function of stage 1 problem and its first- and second-order derivatives
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are given as

V =
∫ 2bKf

b−αs1

0
Π1fN (n)dn +

∫ 2bKf
b−α(s1+s2)

2bKf
b−αs1

Π2fN (n)dn +
∫ ∞

2bKf
b−α(s1+s2)

Π6fN (n)dn− cfKf

∂V

∂Kf
=

∫ 2bKf
b−α(s1+s2)

2bKf
b−αs1

∂Π2

∂Kf
fN (n)dn +

∫ ∞
2bKf

b−α(s1+s2)

∂Π6

∂Kf
fN (n)dn− cf

=
∫ 2bKf

b−α(s1+s2)

2bKf
b−αs1

(bs1 − αs2
1 −

2bs1Kf

n
)fN (n)dn

+
∫ ∞

2bKf
b−α(s1+s2)

(bs2 − αs2
2 −

2bs2Kf

n
)fN (n)dn− cf

∂2V

∂K2
f

=
∫ 2bKf

b−α(s1+s2)

2bKf
b−αs1

−2bs1

n
fN (n)dn +

∫ ∞
2bKf

b−α(s1+s2)

−2bs2

n
fN (n)dn < 0.

Hence, the optimal solution is given by

∂V

∂Kf
= 0 ⇒

∫ 2bKf
b−α(s1+s2)

2bKf
b−αs1

(bs1 − αs2
1 −

2bs1Kf

n
)fN (n)dn

+
∫ ∞

2bKf
b−α(s1+s2)

(bs2 − αs2
2 −

2bs2Kf

n
)fN (n)dn = cf . (F.6)

Note that the LHS of (F.6) is strictly decreasing in Kf . Then, for Kf ≥ 0, we need
cf ≤

∫∞
0

(bs2 − αs2
2)fN(n)dn = (b− αs2)s2. 2
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