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GENERALIZED HILL CLIMBING ALGORITHMS
FOR DISCRETE OPTIMIZATION PROBLEMS

by
Alan W Johnson
Sheldon H. Jacobson, Chair
Industrial and Systems Engineering

(ABSTRACT)

Generalized hill climbing (GHC) algorithms are introduced, as a tool to address
difficult discrete optimization problems. Particular formulations of GHC algorithms
include simulated annealing (SA), local search, and threshold accepting (TA), among
others. A proof of convergence of GHC algorithms is presented, that relaxes the sufficient
conditions for the most general proof of convergence for stochastic search algorithms in
the literature (Anily and Federgruen [1987]).

Proofs of convergence for SA are based on the concept that deteriorating (hill
climbing) transitions between neighboring solutions are accepted by comparing a
deterministic function of both the solution change cost and a temperature parameter to a
uniform (0,1) random variable. GHC algorithms represent a more general model, whereby
deteriorating moves are accepted according to a general random variable.

Computational results are reported that illustrate relationships that exist between
the GHC algorithm’s finite-time performance on three problems, and the general random
variable formulations used. The dissertation concludes with suggestions for further

research.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Many discrete optimization (minimization) problems belong to a class of problems
that are difficult to solve, i.e., the class of NP-complete problems (Garey and Johnson
[1979, pg 13]). There is no known polynomial-time algorithm that can solve any problem
in this class. One classical example is the traveling salesman problem (Garey and Johnson
[1979, pg 4]). Given a list of J nodes, the problem is to find a Hamiltonian circuit of
minimum cost. (Note that a solution is an ordering of the J nodes, with total cost equal to
the sum of the costs of the corresponding (J +1) arcs connecting the nodes. The total
number of solutions is of order (J-1)!.)

Since the NP-complete class of problems contains many examples of practical
interest, heuristic methods have been developed that efficiently find near-optimal solutions.
Sangiovanni-Vincentelli [1991] separates heuristic methods into two conceptual classes: a
class that computes the best solution constructively starting from raw data, and a class
that iteratively improves upon an existing solution. Constructive methods tend to exploit
specific features of the problem to be solved and are therefore difficult to generalize,
while iterative methods are more flexible. Iterative methods all share the same basic
structure: starting from an initial solution, a sequence of solutions are generated until a

termination criterion is satisfied. Iterative algorithms are specified by the rules for



generating and accepting new solutions, and by termination criteria. Greedy iterative
algorithms select only those solutions whose costs are less than or equal to the cost of the
incumbent solution, and therefore generally become trapped in local optima. One
particular greedy iterative algorithm is local search (Papadimitriou and Steiglitz [1982]).
Stochastic hill climbing algorithms have the ability to probabilistically accept candidate
solutions with higher cost than that of the incumbent solution, in an effort to escape local
optima.

1.2 Research Goals

This research explores how generalizing the solution acceptance function model of
stochastic hill climbing algorithms can improve their performance on hard discrete
optimization problems. A frequently used stochastic hill climbing algorithm for discrete
optimization is simulated annealing (SA) (Eglese [1990]). SA exploits the analogy of
discrete optimization to the physical annealing of crystalline solids, in which a solid is
cooled very slowly from some elevated temperature and thereby allowed to relax toward
its low energy states. The appeal of SA derives from its guarantee of asymptotic
convergence to a global extremum.

A key feature of stochastic hill climbing algorithms is their potential to escape local
optima. For example, proofs of convergence of SA are based on the concept that
deteriorating (hill climbing) transitions between solutions are probabilistically accepted by
comparing a deterministic function of both the solution change cost and a temperature

parameter to a uniform (0,1) random variable. This research examines a more general



acceptance probability model, titled generalized hill climbing (GHC), where deteriorating
moves are accepted according to a general random variable.

One limitation of SA is that traditional SA convergence theory fixes the random
variable as an exponential function. Anily and Federgruen [1987] present an SA
convergence theory that addresses more general acceptance probability functions, but their
theory requires a restrictive sufficient condition that is very difficult to verify; furthermore,
they do not provide computational results to address whether different acceptance
probability functions would affect SA’s finite-time performance (in terms of solution
quality versus algorithm execution time). In essence, no unifying convergence theory has
been developed that provides sufficient conditions on any acceptance probability
distribution function, for stochastic hill climbing algorithms to achieve asymptotic
convergence to a global extremum.

Another limitation of SA is that the convergence behavior is asymptotic. Thus
global optimality is obtained only after an infinite number of algorithm iterations.
Although the asymptotic behavior of SA has been extensively studied, it is the finite-time
behavior that interests practitioners (Romeo and Sangiovanni-Vincentelli [1991], Strenski
and Kirkpatrick [1991], and Tovey [1988]).

The contributions from this research focus on two areas: first, a new method of
proving convergence of stochastic hill climbing algorithms is presented, that relaxes the
sufficient conditions found in the literature. This result creates a large body of convergent

stochastic hill climbing algorithms where only SA existed previously. Second, tests of the



performance of selected probability distributions for the general random variable on
specific problems are conducted. These tests empirically study which probability
distributions enhance the GHC algorithm’s finite-time performance (in terms of solution
quality versus algorithm execution time) on these problems.

1.3 The Generalized Hill Climbing Algorithm

Define a discrete optimization minimization problem as a three-tuple (€Q, %,c) where:
1. Qs a finite solution space composed of card(£2) elements, where card(€2)
is the cardinality of Q,
2. ¥:Q -2 5 a neighborhood function of ,

3. cQ—> R is a non-negative objective function.
Generalized Hill Climbing (GHC) algorithms (depicted in pseudo-code in Figure 1.1) are

initialized with solution i €2, having objective function value ¢;. The total number of

Initialization: specify (€, #,c), and select initial solution i € Q
While stopping criterion not met:
Set the outer loop counter k=0
While iteration k # K :
Set the inner loop counter m =0
While m+ M :
Generate j € V(i) according to probability g, ; (k)

Calculate the change in objective function value 4, ; = ¢; —¢,
accept solution j (i <= ) if R, (7,/) 2 3,

mem+1
k<k+1

Figure 1.1. The Generalized Hill Climbing algorithm.



outer loop iterations K the total number of inner loop iterations M, a nonnegative random
variable R, (i, ) such that i,j €Q, j e N(i), and k €K ; and a stopping criterion must
all be specified.
1.4 Research Questions

Two research questions are investigated.

1) Asymptotic Optimality: Given (at iteration k) a solution i Q) and a neighbor
J € N(i), where solution j is generated with probability g, ;(k), and the transition from

i to j occurs if
Rk (i’j) 2 Ai,j
what are sufficient conditions on R, (i, j) such that

lim Pr(solution J €{set of globally optimal solutions of Q}) =17 (1. 1)

2) Finite-Time Performance: Is there a connection between selected probability
distribution functions for R,(i,j) and the finite-time performance (in terms of solution
quality versus algorithm execution time) of the GHC algorithm on a specified set of

problems? (1.2)



CHAPTER 2: LITERATURE REVIEW

Chapter 2 reviews the probabilistic hill climbing algorithm literature. Section 2.1
addresses convergence properties and finite-time behavior of the simulated annealing
algorithm. Section 2.2 discusses the threshold accepting algorithm, while Section 2.3

addresses probabilistic tabu search, the noising method, and genetic algorithms.
2.1 Simulated Annealing

2.1.1 Overview

Simulated annealing (SA) is a local search algorithm with the capability to escape
from local optima. It is often used to solve nonconvex discrete optimization problems.
Four recent survey articles that provide a good overview of SA's theoretical development
and application are Eglese [1990], Fleischer [1995], Koulamas et al. [1994], and Romeo
and Sangiovanni-Vincentelli [1991]. Aarts and Korst [1989] and Laarhoven and Aarts
[1987] devote entire books to the subject. Fox [1995] shows that selected methods of
improving the finite-time performance of SA do not detract from its asymptotic

convergence properties. The SA algorithm is depicted in Figure 2.1.

This section reviews the basic SA algorithm, its convergence properties, and its
finite-time behavior. Note that although a substantial literature exists for the application of

SA to problems with continuous variables, this review focuses only on discrete problems.



Initialization: specify (€, #,c), a temperature parameter ¢,, k=0,1,...,
and select an initial solution i € Q)
While stopping criterion not met:
Set the outer loop counter k=0
While iteration k # K :
Set the inner loop counter m =0
While m# M :
Generate j € & (i) according to probability g, (k)

Calculate the change in objective function value 4, ; = ¢, —¢,
If 4, ; <0, then accept solution j (i <=)
Else, generate a random number U ~U(0,1)

IfU< exp(—-A,J. /t, ), then (i <)

Else, (i i)
mem+1
k<k+1

Figure 2.1. The Simulated Annealing algorithm.

SA is so named because of its analogy to physical annealing with solids, in which a
crystalline solid is heated and then allowed to cool very slowly until it achieves its most
regular possible crystal lattice configuration (i.e., its minimum lattice energy state), and
thus is free of crystal defects. SA establishes the connection between this type of
thermodynamic behavior and the search for the global minimum of an objective function in
a discrete optimization problem; and further, it provides an algorithmic means for
exploiting the connection. SA is based on the Metropolis acceptance criterion (Metropolis

et al. [1953]) which models how a thermodynamic system moves from its current solution



(state) to a candidate solution, in which the energy content is being minimized. The
probability of making such a move is

exp(-a,, /t,) a,,>0

2.1
1 a,,<0 @1

Pr{Accept candidate j as next solution}={

where Q is a finite solution space, i, j€£2 are the current and candidate solutions of the

system, respectively, and ¢, is the temperature parameter at (outer loop) iteration &, such

that

t, >0 forall kand lim t, =0. 2.2)

Let 4,;, =c; —c,;, where ¢, and c; denote the energies associated with solutions J/ and j,
respectively. The candidate solution j is chosen at random from among the set of
neighbors of solution i, defined by Mi), and becomes the current solution, based on the
acceptance probability in (2.1). This acceptance probability is the basic element of the

search mechanism in SA. If the probability of generating a candidate solution j from the

neighbors of solution i is g, ;(k), where

>g,0)=1, forallieQ k=12,. (2.3)

Jjen ()

then a nonnegative square stochastic matrix P(k) can be defined with transition

probabilities



g'J(k)exp(—Au /1) JEN@, j+i

P ;(k)=40 JENQ), j=i (24)
1- YR,k j=i
Iex )
I=i
for all solutions i €€}, and all k=12,.. . These transition probabilities define an

inhomogeneous Markov chain (Romeo and Sangiovanni-Vincentelli [1991]). Note that
boldface type indicates matrix/vector notation, and all vectors are row vectors, unless

otherwise indicated.

The key characteristic of SA is that it provides a means of escaping from local
optima by allowing hill climbing moves (i.e., moves which may worsen the objective
function value). As the temperature parameter ¢, is decreased to zero, hill climbing
moves occur less frequently, and the solution distribution associated with the
inhomogeneous Markov chain converges to a form in which all the probability is

concentrated on the set of globally optimal solutions.

2.1.2 Homogeneous Markov Chain Theory

Convergence proofs are grouped into two approaches: homogeneous and
inhomogeneous. The homogeneous Markov chain approach (Aarts and Laarhoven
[1985], Faigle and Kern [1991], Granville et al. [1994], Lundy and Mees [1986], Mitra et

al. [1986], and Rossier et al. [1986]) assumes that each temperature ¢, is held constant for

a sufficient number of iterations m for the stochastic matrix P(k) to approach its stationary



probability distribution x(k). (Note that in the interest of simplifying notation as much as
possible, the inner loop index m is suppressed. However, the reader should interpret the
index k as the double index k,m, where a sequence of m=12,..., M SA iterations occur
for each fixed £.) The existence of stationary distributions for each temperature is based
on the following theorem. (Note: to ensure that Theorem 2.1 is consistent with the SA

algorithm depicted in Figure 2.1, without loss of generality, let #, be a function only of

each outer loop iteration £, and let the respective number of inner loop iterations M and
outer loop iterations K each approach infinity).

Theorem 2.1: Let F, (k) be the probability of going from solution i to solution j
in one step at iteration k, and let P,_(j")(k) be the probability of going from solution i to
solution j in m steps. If a Markov chain is irreducible and aperiodic with finitely many

solutions, then li_ng,f,”(k): n,(k) exists for all i,jeQ and iterations k .

Furthermore, n (k) is the unique strictly positive solution of

=, (k) =D m, (k)P ,(k), forall jeQ, (2.5)
ieQ
and
> om,(k)=1. (2.6)

Proof: Define Cinlar’s [1975, pg 153] result as a function of each iteration k, and the

result follows. [

10



Key requirements for the existence of stationary distributions and for convergence of the

sequence of ®(k) vectors include:

a) transition matrix irreducibility (for every finite iteration X, the transition matrix

assigns a path of nonzero probability between any two solutions i, j €Q),
b) aperiodicity (starting at solution j € Q, it is possible to return to j in any
number of inner-loop iterations m),

Cc) a stationary transition matrix probability distribution (which, when & goes to

infinity, is nonzero only at globally optimal solutions).

Note that all SA proofs of convergence in the literature that are based on
homogeneous Markov chain theory, either explicitly or implicitly require the sufficient

condition of reversibility (also called detailed balance) (Ross [1993, pg 172]), defined as
n, (k)P (k) ==, (k)P (k), foralli,jeQ,and alliterations k. 2.7
The reversibility condition is sufficient for a unique solution to exist for (2.5) and (2.6) at

each iteration £. Ross [1993, pg 177] shows that a necessary condition for reversibility is

multiplicativity (i.e., for any three solutions A,i, j €2 such that ¢, <¢, <c,, and for all

iterations k,
ah,j(k,bu,j)=ah,f(k’Au)a1,j(k:At.j) (2.8)
where a, ,(k,s,,) is the probability of accepting the transition from solution 4 to solution i

at iteration k). Reversibility is enforced by assuming conditions of symmetry on the

11



solution generation probabilities and by either directly expressing the acceptance

probability as the exponential form, or by requiring the multiplicative condition (2.8).

The homogeneous proofs of convergence in the literature (implicitly or explicitly)
require condition (2.8) for the acceptance function, and then address the sufficient
conditions on the solution generation matrix. For example, the original homogeneous
proofs of convergence (Aarts and Laarhoven [1985] and Lundy and Mees [1986]) require
the multiplicative condition for the acceptance function, and then assume that the solution
generation function is symmetric and constant for all iterations k. Rossier et al. [1986]
partition the solution space into blocks composed of neighboring solutions of equal
objective function value, and then require only that the solution generation probabilities be
symmetric between the blocks. They express the acceptance function as a ratio of the
stationary distribution probabilities (discussed in Section 2.1.3). Faigle and Schrader
[1988] and Faigle and Kern [1991] use a graph theoretic approach to relax the solution
generation function symmetry condition. However, they require that the solution

acceptance probability function satisfies (2.8).

Granville et al. [1994] propose an SA procedure for filtering binary images, where
the acceptance function is based on the probability of the current solution, instead of the
change in objective function value as in basic SA. Their probability function for accepting
a candidate solution at (outer loop) iteration k is based on the ratio of the stationary

probability of the incumbent solution from iteration k — 1, versus the stationary probability

12



of an initial solution (which is based on a maximum likelihood estimate). Their acceptance

probability is
&(k) = (qm,(0)/ =, (k - 1))**®
where g = ig n, /supm; (g must also be estimated), and ¢(k) is a slowly increasing
i je

function. Therefore, the probability of a solution transition does not consider the objective
function value of the candidate solution. They provide a proof of asymptotic convergence
of this approach, but note that their proof methodology does not show that the set of
globally optimal solutions are asymptotically uniformly distributed.
2.1.3 Origins of the Simulated Annealing Homogeneous Theory

SA and its homogeneous convergence theory are based on the work of Metropolis
et al. [1953], who address problems in equilibrium statistical mechanics (Hammersley and
Handscomb [1964, pg 117]). To see the relationship, consider a system in thermal
equilibrium with its surroundings, in solution (state) S with energy F(S). The probability

density in phase space of the point representing S is proportional to
exp(-BF(S)), (2.9)

where @ =(zt)™', z is Boltzmann’s constant, and ¢ is the absolute temperature of the

surroundings. Therefore the proportion of time that the system spends in solution S is
proportional to (2.9) (Hammersley and Handscomb [1964]), and so the equilibrium

probability density for all S eQ is

13



. i) I (2.10)
" [exp(-aF(S))ds

The expectation of any valid solution function f{(S) is thus

[ 7S exp(-aF(S))dS

Elf]=1 Texpl-ar S5 (2.11)

The problem is that for many solution functions, (2.11) cannot be evaluated analytically.
Hammersley and Handscomb [1964] note that one could theoretically use naive Monte
Carlo techniques to estimate the value of the two integrals in (2.11), but this fails in
practice because the exponential factor means that the significant portion of the integrals
are concentrated in a very small region of the phase space 2. The remedy is to use
importance sampling (Bratley, Fox, and Schrage [1987, chapter 2]), by generating
solutions with probability density (2.10). This approach would also seem to fail, because
of the integral in the denominator of (2.10). However, Metropolis et al. [1953] solve this
problem by first discretizing the solution space, such that the integrals in (2.10) and (2.11)

are replaced by summations over discrete solutions j€{). They then construct an

irreducible aperiodic Markov chain with transition probabilities 7, ; such that

=, =y mB,, foral jeQ, (2.12)
ieQ

where

14



_ _exp(-@BF()) .
n, = Zexp(—(BF(t)) , forall j Q. (2.13)

ieQ

Note that to compute the equilibrium distribution x, the denominator of (2.13) (a

normalizing constant) does not need to be calculated. Instead, the ratios =,/ x, need

only be computed and a transition matrix P defined that satisfies (2.12). Metropolis et al.
[1953] accomplish this by defining P as the product of symmetric solution generation

probabilities g, ;, and the equilibrium ratios =, / &, as

'3

8.,%;I®, if m,/m <1, j#i
Px‘.j =ng,j if n,/n, 21 j#i (2.19)
.+ Zgi-b(l—(nb/ni)) if j=i
beld

5
x, <K,

where

8,20 0 g =ladg =g, foralijeQ. (2.15)
jeQ

The use of stationary probability ratios to define the solution acceptance probabilities,
combined with symmetric solution generation probabilities, enable Metropolis et al. [1953]
to use the reversibility condition (2.7) to show that (2.14) and (2.15) satisfy (2.12).
2.1.4 Limitations of the Reversibility Condition

Homogeneous proofs of convergence for SA become more difficult when the

reversibility condition is not met. Note that existence of a unique stationary distribution

15




































































































































































































































































































































