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A kinetic formulation of the three-dimensional quantum 
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Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012 
(Received 18 July 1977) 

The behavior of a three-dimensional, nonrelativistic, quantum mechanical harmonic oscillator is 
investigated under the influence of three distinct types of randomly fluctuating potential fields. 
Specifically, kinetic (or transport) equations are derived for the corresponding stochastic Wigner equation 
(the exact equation of evolution of the phase-space Wigner distribution density function) and the stochastic 
Liouville equation (correspondence limit approximation) using two closely related statistical techniques, the 
first-order smoothing and the long-time Markovian approximations. Several physically important averaged 
observables are calculated in special cases. In the absence of a deterministic inhomogeneous potential field 
(randomly perturbed, freely propagating particle), the results reduce to those reported previously by 
Besieris and Tappert. 

1. INTRODUCTION 

In a previous paper, 1 referred to in the sequel as 
Paper I, kinetic equations were derived for the stochas­
tic Wigner equation (the exact equation of evolution of 
the phase-space Wigner distribution density function) 
and the stochastic Liouville equation (correspondence 
limit approximation) associated with the quantized non­
relativistic motion of a particle described by a stochas­
tic Schrodinger equation having a deterministic back­
ground potential field independent of the space and time 
coordinates. It is our purpose in this paper to lift the 
latter restriction and investigate specifically the be­
havior of a three-dimensional quantum mechanical 
harmonic oscillator experiencing a random perturbation. 

Consider the stochastic Schrodinger equation 

iPift ljJ(x, t; a) = Hop (x, - iii :x' t; a) ljJ(x, t; a), 

i'>lo, xcR 3, (l.la) 

(1. Ib) 

(1. I c) 

Here, the Hamiltonian Hop is a self-adjoint, stochastic 
operator depending on a parameter a EO: A; (A, F, P) 
being an underlying probability measure space, In acjdi­
tion, ljJ(x, t; a), the complex random wavefunction, is an 
element of an infinitely dimensional vector space H, 
and V(x, t; 0) is the potential field which is assumed to 
be a real, space- and time-dependent random function. 

In the course of this work we shall deal explicitly with 
the following three distinct categories of the potential 
field: 

(i) V(x, I; a) = ~1?x2 + oV(x, I; a), (l,2a) 

(ii) V(x, t; a) = ~!?x2[1 + oG(t; all, (L 2b) 

(iii) V(x, t; a) = ~1?[x- aoH(t; a)]2, (1. 2c) 

where x = I x I, 1? is a positive real constant number, and 
a is a fixed vector quantity, The first category corre-

sponds to a linear harmonic oscillator immersed in a 
zero-mean, space- and time-dependent, random poten­
tial field 0 V(x, I; a); the second one is the case of a 
harmonic oscillator whose frequency is modulated by 
the zero-mean, time-dependent, random field /lG(t; a); 
finally, the third type of potential is assoc iated with a 
harmonic oscillator whose equilibrium position is per­
turbed via the zero-mean, time-dependent, random 
function oH(t; a). (This is also closely linked to the 
Brownian motion arising from a randomly forced 
harmonic oscillator, ) 

The random quantum mechanical harmonic oscillator 
problem corresponding to potential fields of types (ii) 
and (iii) has already been investigated extensively by 
several workers under specific restrictive assumptions 
regarding the random processes oC(t; a) and oH(t; 0). We 
cite here the early treatment of the Brownian motion of 
a quantum oscillator by Schwinger,2 and the quantum 
theory of a randomly modulated harmonic oscillator by 
Crosignani ct al. 3 and Mollow.4 A more complete ac­
count of the statistical analysis of the quantum mechani­
cal oscillator, with applications to quantum optics, can 
be found in the recent review article by Agarwal. 5 

Besides its generic significance in quantum mechan­
ics, the random harmonic oscillator is of fundamental 
importance in other physical areas since it provides a 
dynamic model incorporating salient features common 
to all of them. For example, Schrodinger-like equations 
of the form (1. I) and (L 2) playa significant role in 
plane and beam electromagnetic and acoustic wave 
propagation. They are usually derived from a scalar 
Helmholtz equation within the framework of the 
parabolic (or small-angle) approximation. Statistical 
analyses of optical wave propagation in randomly per­
turbed lenslike media have been undertaken by 
Vorob'ev,6 Papanicolaou ct al., 7 McLaughlin, 8 Beran 
and Whitman, 9 and Chow. 10 Along the same vein, start­
ing from a space-time parabolic approximation to the 
full wave equation, Besieris and Kohlerl1 have recently 
considered the problem of underwater sound wave prop­
agation in the presence of a randomly perturbed 
parabolic sound speed profile. 
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It is our intent in this paper to present a unified 
stochastic kinetic analysis of the random harmonic 
oscillator, which is equally applicable to the three 
types of potential field in (1.2), without imposing physi­
cally unjustifiable restrictions on the random processes 
15 V, I5G, and I5H. Special emphasis will be placed on the 
additional effects contained in our formulation as com­
pared with previously reported results. Finally, it 
should be pOinted out that although the discussion in this 
paper is restricted to the quantum mechanical random 
harmonic oscillator, the main results are also applica­
ble to other physical problems by virtue of the state­
ments made in the previous paragraph. 

2. THE STOCHASTIC WIGNER DISTRIBUTION 
FUNCTION 

The phase-space analog of the equal-time, two-point 
density function for a pure state, 

(2.1) 

is provided by the Wigner distribution function which is 
defined as follows 12 : 

fix, p, t; a) = (27Tnt3 i~3dy exp(ip· y/ll) 

xp(x+iy,x- ~y,t;aL (2.2) 

This quantity is real, but not necessarily positive 
everywhere. It can be shown (cf. Appendix A; also Ref. 
13), in general, that If(x, p, l; a) I '" (n7Tt3 for any 
realization 0' Eo A. Provided that fix, p, t; a) is normal­
ized (to unity), this means that the Wigner distribution 
function is different from zero in a region of which thE' 
volume in phase space is at least equal to (n7T)3. Hence, 
fix, p, t;a) can never be sharply localized in x and p. 
This situation is a reflection of the uncertainty 
principle. 14 

The total wave energy and wave action are given in 
terms of the Wigner distribution function as follows: 

E= iR3dxjR3dpH(X,p, t; a)f(X,p, I; a), 

A = i R3 dx i R3 dpf(x, p, t; a), 

(2.3a) 

(2,3b) 

Here, H(x, p, t; a) is the Weyl transform of the operator 
Hop and is given explicitly as 

H(x,p, t; a) = 2~ p2 + V(x, I; a), p= [p[, (2.4) 

The total wave energy is not conserved since the poten­
tial field is assumed to be time dependent. On the other 
hand, the total wave action is conserved because of the 
self-adjointness of the Hamiltonian operator, a proper­
ty satisfied by the three types of potential fields in 
(1. 2), 

The time evolution of the Wigner distribution function 
is governed by the equation 

Cl at fix, p, l; a) = Lf(x, p, t; a), (2.5a) 

Lf(x p t· a) = - ~ p. ~ f(x, p, t; a) + af(x, p, t; a). , , , m ax 

(2,5b) 

The potential-dependent term on the right-hand side of 
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(2. 5b) can be cast into the following three useful 
representations: 

(i) af(x, p, t; a) = i R3 dp' K(x, p - p', t; a)f(x, p', t; a), 

K(x, p, t; a) = (iflt1(27Tnt3 iR3dy exp(ip, yin) 

x[V(x- ~y,t;a)- V(x+~y,t;al1; 

(ii) af(x, p, t; a) = (ifft1 (27T1l)-3 i R3 dy exp(ip , y Ill) 

xp(x + iy, x- h, t; a) 

(iii) 

x[V(x- ~y, t; a) - V(x+ h, l; 0')1; 

2 
8f(x, p, t; a) = V(x, t; a) fr 

XSin[!!.(a 01 \If(X p t· a). 
2 Clx apjJ ", 

We shall refer to the exact equation of evolution of 
f(x,p, t; ad as the stochastic Wigner equation. 

(2,6a) 

(2.6b) 

(2.6c) 

It is seen from (2. 6c) that in the correspondence limit 
(fl-O), 

W(x, p, t; a) = :x V(x, t; a) . :p fix, p, t; a) + O(fl2). 

(2.7) 

Within the limits of this approximation, we shall refer 
to (2.5) as the stochastic Liouville equation. 

We shall next list the specific realization of 
W(x,p, t; a) corresponding to the three choices of the 
potential field V(x,t;a) in (1.2): 

(i) 8f(X,P,t;a)= (kX' :p + a: OV(x, I; a») 

Xf(x,p,t; a) +oW); (2.8a) 

(ii) 8f (X,P,t;a)=(kX' :p +kG(t;a)x' :p) 
Xj{x,p,l;a); 

(iii) 8j{x,p, I; a) = (kX' :p - kI5H(t; a)a' :p) 
Xf(x,p, t; a). 

It should be noted that the last two expressions for 

(2.8b) 

(2.8c) 

W(x, p, t; a) are exact. This is due to the special forms 
of the representations for V(x, t; a) in (1. 2b) and (1. 2c). 

3. GENERAL EQUATIONS FOR THE MEAN 
WIGNER DISTRIBUTION FUNCTION 

The stochastic Wigner distribution function f and the 
operator L [cf. Eq, (2. 5a)] are next separated into 
mean and fluctuating parts: 

fix, p, I; a) = E{j(x, p, t; a)} + I5f(x, p, I; a), (3. 1a) 

L=E{L}+I5L. (3.1b) 

On the basis of the first-order smoothing approxima­
tion,17-19 one obtains the following general kinetic equa­
tion for the ensemble average of f: 
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(:t -E{L})E{f(X,p,t;a)} 

-It dT E{OL(t) exp[TE{L} loL(t - T)}E{j(x, p, f - T; a)}. 
o 

(3.2) 

In deriving (3.2) it has been assumed that of(x,p, 0; a) 
= 0 and that E{L} is independent of the time variable. 
[The latter condition is satisfied for the three types of 
potential fields prescribed in (1. 2) J. This kinetic equa­
tion is uniformly valid in time. The right-hand side of 
(3.2) contains generalized operators (nonlocal, with 
memory) in phase space. 

Various levels of simplification can be obtained by 
introducing additional constraints. For example, the 
long-time Markovian results in the simpler kinetic 
equation 

(:t -E{L})E{f(x,p,t;a)} 

["'dT E{oL(t) exp[T E{L} JoL(t - T)} 
o 

Xexp[ - TE{L} ]E{f(x,P, t; a)}. (3.3) 

This particular functional form is due to Van Kampen. 20 

It should be pOinted out, however, that this expression 
is identical to Eq. (303) of Paper I. A detailed discus­
sion of the long-time Markovian approximation can be 
found in Refs. 20 and 21. Here, we mention simply that 
in addition to the usual assumptions entering into the 
first-order smoothing approximation (cf. Refs. 17 -19), 
the derivation of (3.3) presupposes that E{f} vary slow­
lyon the scale of the correlation time of oL. 

Having established an expression for the mean Wigner 
distribution function by solving either of the above 
kinetic equations, physical observables, such as the 
average probability density, the average probability 
current density, the centroid of a wavepacket, the 
spread of a wavepacket, etc., can be found by taking 
appropriate phase -space moments (cf. Paper I). 

If the mean Wigner distribution function is normalized 
to unity, i. e. , 

fR3dxfR3dpE{f(x,p,t;a)}=I, (3.4) 

the following general relationship holds: 

D2(t) '= (2rr 1t}3 fR3 dx fR3 dp [E{f(x, p, t; a)}J2!S 1. (3.5) 

[A proof of (3.5) is outlined in Appendix B. J Equality 
holds if and only if E{f} is a "pure" state. OtherWise, 
E{f} is said to represent a "mixed" state, and D (which 
we shall call the degree of coherence) is less than unity. 

4. KINETIC THEORY FOR THE STOCHASTIC 
WIGNER EQUATION 

The results of the previous section are speCialized 
here to the stochastic Wigner equation (2.5) correspond­
ing to the potential field given in (1. 2a), viz., Vex, t; a) 
= tkx2 + 0 vex, t; a). It is convenient to use for this 
purpose the representation (2. 6a) for W(x, p, t; a). 

A. The first-order smoothing approximation 

The mean and fluctuating parts of the operator L in 
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(2.5) are given explicitly as follows: 

1 a a 
E{L} = - mP' ax +kx' ap' (4.1) 

oL = fR3dP' oK(x,p -p', t; a)('), (4.2a) 

oK(x, p, t; a) = (ili)-1(2rrllt3 fR3 dy exp(ip· y /Il) 

x [OV(x - ty, t; a) - OV(x + ty, t; a)]. 

(4.2b) 

Introducing (4.1) and (4. 2a) in (3.2), we determine the 
following equation for the ensemble average of the 
Wigner distribution function within the framework of 
the first-order smoothing approximation: 

(a 1 a a) at + m P ' ax -kx· ap E{f(x,p, I; a)}= 8E{/(x,p, t; a)}, 

8E{j(X,p,t; a)} 

= fot dT fR3 dp' fR3 dp" E{ oK(x, p - p' , t; a) 

x oK[x coswoT - (p' /mwo) sinwoT, xmwo sinwo T 

+ p" COSWoT - p" ,t - T; a nE{f [x COSWo T 

- (p' /mwo) sinwoT, p", t - T J}, 

(4.3a) 

(4.3b) 

where wo= (k/m)1/2. In deriving this equation we have 
made use of the well-known propagator property 

exp rT(_ ~p, ~ + kx, ~)JJ;(X p) L m ax (lp , 

= g[x COSWoT - (p/mwo) sinwoT ,xmwo sinwoT + p coswoT J. 
(4.4) 

For the sake of simplicity, we shall assume that 
oV(x, I; a) [which enters into (4. 3b) via the defining 
equation (4. 2b) J is a spatiallv homogeneous, wide -sense 
stationary random process, viz., 

r(y, T)=E{OV(X, I; a) 6V(X-y,t-T;a)}. (4.5) 

The correlation function is even in both y and T. In our 
subsequent work we shall require the spectrum [i. e. , 
the space -time Fourier transform of r(y, T)], viz., 
f(p,u)=F4{r(y, Tn. It is related to the space-time 
Fourier transform of 6V(x, t; a), viz., <5 V(p, u) 
=F4{oV(x,t; a)} in the following manner: 

E{OV(p, u) 0 V(p', u')}= 6(p + p')6(u + u')f(p, u). (4.6) 

It should be noted that t(p, u) is real, nonnegative, and 
even in both p and u. 

The operator 8 on the right-hand side of (4.3a) can 
now be evaluated explicitly. The resulting kinetic equa­
tion for the mean Wigner distribution function assumes 
the following form: 

(~ + ~p. ~ -kx· ~)E{f(X p t· a)} at 111 ax ap , , , 

=~ ~dP' .ifdTQ(X,P,P"T)(E{f[XCOSWoT-t(p+p/) 

x _1_ sinwoT, -t(p -p') +xmwosinwoT + t(P +P') 
111Wo 

XcoswoT, t - T; a]} -E{r[X COSWoT -t(p + p') 
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1. 1 
X mwo smwoT, + 2(P - p') + xmwo sinwoT + ~(p + p') 

XCOSWoT,I-T,aJ}), (4.7a) 

Q(x, p, p' , T) == (21Tti)-3 f dy r(y, T) 
~3 

x COS [Y . (p - p') / 11+ (p - p') 

X (x coswo T _ ~(p + p') _1 - sinwo T _ X)l lfi]. 
mwo V' 

(4.7b) 

This rather formidable integrodifferential equation con­
stitutes a uniform approximation, valid for any value 
of time, from which short and long time limiting cases 
can be considered. (The latter will be dealt with in de­
tail in the following subsection.) The right-hand side of 
(4.7) contains a generalized operator (nonlocal, with 
memory) in phase space due to the presence of random 
fluctuations in the potential field, as well as to the in­
teraction of these random inhomogeneities with the de­
terministic profile of the potential field. No special as­
sumptions concerning the scale lengths of the potential 
fluctuations have been made in deriving (4.7). The only 
condition (which is implicit in the first-order smoothing 
approximation) is that the potential fluctuations be suf­
ficiently small. Finally, it should be noted that in the 
limit Wo - 0 (absence of deterministic inhomogeneities), 
(4.7) coincides with Eq. (4.5) of Paper 1. 

B. The long-time Markovian approximation 

By imposing additional restrictions, the kinetic equa­
tion (4.7) can be Simplified considerably. The long­
time Markovian approximation [cf. Eq. (3 0 3) J yields the 
following expression: 

-+ _po - -l?x. ~ E{f(X p I' a)} 
(

(1 1 2 ;:» 

a I III rJX ap" , , 

== J dp' W(x, p, p')[E{r(x,p', I; a)} -E{r(X, p, I; a)i 1, 
R3 

(4.8a) 

W(x,p,p')== ;2 [~dTf'(P-P"T)COS[(P-P'),(xcoswoT 
(4.8b) 

where r(p, T) is the spatial Fourier transform of the 
correlation function r(y, T). 

Equation (4.8) has the form of a radiation transport 
equation, or a Boltzmann equation for waves (quasi­
particles in phase space). The expression for the 
transition probability [cf. Eq. (4. 8b) 1 is space-depen­
dent (in contradistinction to the case of a potential field 
having a constant deterministic part), and obeys the 
principle of detailed balance, viz., W(x, p, p') 
== W(x,p' ,pl. The latter implies conservation of prob­
ability (total mean action). 

The integration over T on the right-hand side of 
(4.8b) can be carried out explicitly resulting in the 
following more revealing form for the transition 
probability: 

362 J. Math. Phys., Vol. 19, No.2, February 1978 

~ 

W(x,p,p')== .0 Wn(x,p,p'), 
n=-oo 

Wn(X,p,p')== ?; J"(~)cos(* -n~){costl(O+ ~)J 
x f(p - p', nfiwo) - sin~l (0 + ~)] 

r H(P - p' , nfiwo) }, 

a == {[X· (p _ p') 12 + [(j)2 _ j)'2)/(2mwO)j2]'/2, 

b == x . (p - p' ), 

0= tan- 1 [ -2mwulJ/(p2 _p,2) I. 

(4.9a) 

(4.9b) 

(4.9c) 

(4.9d) 

(4. ge) 

I n in (4.9b) denotes an ordinary Bessel function of the 
nth order, and r~p - p', n fiwo) is the Hilbert transform 
of the spectrum r(p -p' ,11fiwo) with respect to the sec-
0nd argument, viz., 

• 1 f~ h· w) 
rH(',nnwo)==-P dw iz 0 

1T _0< W - 11 2"-'0 
(4.10) 

The representation of the transition probability W in 
(4.9a) as an infinite sum is a manifestation of the dis­
crete nature of the quantum mechanical stochastic 
harmonic oscillator. The term W n , for example, can 
be interpreted as the transition probability of the scat­
tering event that changes the energy of the particle by 
an amount equal to nfiwo• 

If the correlation function r(y, T) decreases rapidly in 
T, so does the spectrum r(p, u) in 11, and its Hilbert 
transform {-H(P, u) with respect to its second argument. 
Under these conditions, since the Bessel functions and 
the sinusoidal terms in (4. 9b) are bounded, it is possi­
ble to approximate the transition probability Win (4.9a) 
by a sum of the first few terms, i. e. , 

N 

w== 6 W n, (4.11) 
n-=-N 

where the integer N can be estimated from our knowl­
edge of the correlation time of the random process 
oV(x,t;a). 

It is clear from (4. 8b) that in the limiting case Wo - 0 
(stochastically perturbed free particle), 

2 f~ - [(p2 P'2) ] W(p, p') == fi2 0 dT r(p - p', T) cos T 2m - 2m fi, 

(4.12) 

which, upon integration, yields the following expression 
for the transition probability, 

21T A ~ /J2 /)'2) W(p p')= - r p-p' - --, fi '2m 2m 
(4.13) 

[cf. Eq. (4.7), Paper Ij. The same result can be also 
obtained from (4.9) provided that the operations limwo • o 
and infinite summation are not interchanged. 

We shall close this subsection with the following re­
mark: If the lower limit in the integral on the right­
hand side of (4.8b) were replaced by _00 (this corre­
sponds to the speCification of initial data at t == - 00 in­
stead of 1=0), the expression for Wn in (4.9b) would 
be modified as follows: 
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Wn(x,p,p') = ~1T In(;)cos(i -n~ cos[n(o + n] 
xr(p-p',nnwo)' (4.14) 

The terms in (4. 9b) proportional to the Hilbert trans­
form r\(p-p',nnwo), which are absent in (4.14), can 
be interpreted as representing the effect of "switching 
on" the interaction between the random fluctuations of 
the potential field and the inhomogeneous deterministic 
background at the finite time t = O. In the special case of 
a potential field with a constant deterministic part, one 
has the relationship 

(4.15) 

for the transition probabilities corresponding to initial 
data prescribed at to = 0 and to = - co, respectively. 
(LTMA is an abbreviation for the term long-time 
Markovian approximation.) 

C. Kinetic equations in special cases 

We shall derive here the explicit form of the kinetic 
equation in the long-time Markovian approximation 
limit for several special types of the random function 
oV(x, I; a). 

Case (i): oV(x, t; a) has o-function correlations in 
time. 

Let r(y, T) = y(y)O(T). It follows, then, that rep, u) 
= yep), where yep) is the Fourier transform of y(y). The 
transport equation (4.8) specializes in this case to 

(
ill (! a) - + -p . - - kx . - E{j(x p by.)} at m ax ap , , , 

= 1 dp' W(p,p')[E{j(x,p', t; a)} -E{j(x,p, t; cd}], 
R3 

(4. 16a) 

W(p,p')= ;2 yep -p'). (4. 16b) 

The right-hand side of (4.16a), with W given in (4. 16b), 
is identical to Eq. (5.1) of Paper I. It is, therefore, 
due solely to the random fluctuations of the potential 
field. The terms in the more general kinetic equation 
(4.8) arising from the interaction of the deterministic 
profile and the random fluctuations of the potential field 
are completely eliminated in this special case. 

The spectrum yep) is real, nonnegative, and even. As 
a consequence, the transition probability W(p,p') [cf. 
Eq. (4. 16b)] is real, nonnegative, and obeys the 
(detailed balance) property W(p,p')= W(p' ,pl. The 
latter implies conservation of probability (total mean 
action). On the strength of the principle of detailed 
balance, together with the nonnegativity of the transi­
tion probability, it follows, also, that the degree of 
coherence introduced in Sec. 3 is a monotonically de­
creasing function of time, viz., (d/dt)D(t) <:: 0. 22 

The scattering rale (also called the extinction coef­
ficient or collision frenquency) is defined in general as 

(4.17) 

In the case under consideration here, the scattering 
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rate is independent of p and is given by 

1 
v= II2 yeO). (4.18) 

Using this result, (4.16) can be rewritten in the follow­
ing form: 

- + -p' - -kx, - + .. 2 yeO) E{j(x,p,t; a)} (
a 1 a a 1 ) 
at m ax ap n 

= :21 dp'Y(p - p')E{j(x,p', t; a)}. 
R3 

(4.19) 

Starting from the convolution-type integro-differential 
equation (4.19), with the prescribed initial condition 
E{j(x,p,O; a)}=!o(x,p), it is possible to determine a 
Green's function G(x,x' ,p,p', t) such thae4 

E{j(X,p, t; 0')}= JR3dx' iR3dP' G(x,x' ,p,p' ,l)fo(x' ,p'). 

(4.20) 

This is a useful expression because, for specific statis­
tics y(y) [or, equivalently, Y(p)] and initial datafo(x,p), 
physically important averaged observables can be found 
directly from (4.20) by taking phase-space moments, 
without having to solve first explicitly for the mean 
Wigner distribution function. (This procedure is illu­
strated in Appendix C. ) 

It can be shown by means of the Donsker-Furutsu­
Novikov26

-
28 functional method that for a potential field 

fluctuation 0 Vex, t; a) which constitutes a 0 -correlated 
(in time), homogeneous, wide-sense stationary, Gauss­
ian random process, the kinetic equation (4.16) for the 
mean Wigner distribution function is the exact statisti­
cal equation. (The proof will not be presented here 
since it is similar to that given in the Appendix of Paper 

.r. ) 
Case (ii): 0 Vex, t; a) has no time dependence. 

Assuming that r(y, T)=Y(Y), we have r(p,u)=y(p)o(u). 
The transition probability W becomes 

W( ,) 2 A( ,) j- d (a sin(woT+ 0) - b) x,P,P = 1f2 YP-P TCOS If ' 
o 

(4.21) 

where a, b, and 0 are defined in Eqs. (4. 9c)-(4. ge). 
It must be pointed out that the condition for the applica­
bility of the long-time Markovian approximation [i. e. , 
E{j} should vary slowly on the scale of the correlation 
time of oV(x,t; a)] is clearly violated in this case. In 
this sense, (4. 21) should be considered only as a for­
mal result. Finally, in the limit as Wo - 0, (4.21) re­
duces to Eq. (5.4) of Paper I, viz., 

W(p p')= - y(p-p')o - _ - . 21T (P2 P'2) 
'If 2m 2m (4.22) 

Case (iii): OV(x,t; a) has o-function correlations in 
space. 

• Let r(y,T)=(21Tnyo(y)y(T). It follows, then, that 
r(p,u)= y(u), where Y(u) denotes the time Fourier 
transform of yeT). The mean Wigner distribution func­
tion evolves in time according to (4. 8a), with the 
transition probability given by 
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W(x,p,p')= 6 Wn(x,p,p'), (4.23a) 
n="'--

Wn(x,p,p') = !rr In(~)cOS(H - ni){cos [n (0 + i) ] 

x Y(nnw o) - sin r' (0 + i) ]yH(nnw O)}' 

(4.23b) 

YH(nnw O) stands for the Hilbert transform of the tem­
poral spectrum y(nnwo) [cf. , also, Eq. (4.10)]. 

5. KINETIC THEORY FOR THE STOCHASTIC 
LIOUVILLE EQUATION 

The results of Sec. 3 will now be specialized to the 
stochastic Liouville equation, i. e., Eq. (2.5), with the 
specific realizations of ef(x,p, t; (l') given in (2. 8a)­
(2.8c). 

A. V(x, t;a) = 1/2kx2 + 8 V(x, t;a) 

The mean part of the operator L in (2. 5) is given in 
(4. 1). On the other hand, the fluctuating part of L as­
sumes the following form, 

oL = ~ 0 V(x t-cr)· ~ + 0(n2) 
ax " ap . 

(5.1) 

On the basis of the first-order smoothing approximation 
only [cf. Eq. (3.2)], one has the kinetic equation 

(i. + ~p, 3.- _ kx. 3.-) Ef >(x p t· a)} at m ilx 2p v , , , 

= ~. [It dT E{~ oV(x t· cl'l_o- oV(x' t - T" ']I)} ap 0 ax ,. ox' , , 

x a~,E{J(X' ,p' ,t - T; ali], (5.2) 

where 

x' = x coswo T - (1/ mwo)p sinwo T, 

p' = P coswo T + mwox sinwo T. 

(5.3a) 

(5.3b) 

By virtue of the homogeneity and stationarity of the 
random function 0 V(x, t; a) (cf. Sec. 4 A), 

{ 
2 a } 22 

E axOV(x,l;a)ax' oV(x',t -T;a) =- oyoy r(y,T), 

(5.4) 

where 

y = x - x' = x(1 - COSWoT) + (1/ mwo)p sinwo T. (5.5) 

Finally, Eq. (5.2) can be written as follows: 

(~+-.!...P·~-kX'~)E{J(X p I'a) of m ax ilp , , , 

= a~ . [l~ dT ~ dy 0 (y - x(1 - coswo T) + m~o p sinwo T) 

x ( ___ 2_ r(y T)\ . (SinWoT ~ cosw T~) 
ay oy ') mwo ax 0 ap 

XE{f(xCOSWoT- ~wpsinwoT,pcoswoT 

+ mwoxsinwoT, t - T; a)}l (5.6) 
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For random fluctuations which are statistically homo­
geneous, wide-sense stationary, and 6 correlated in 
time [r(y,T)=y(y)O(T)], the time integration on the 
right-hand side of (5.6) can be carried out explicitly, 
with the result 

(~ + ~p, ~ -kX'~) E{f(x p t· a)} at m ax ap , , , 

= a~ .[D. a~E{J(X,p,t;a)}], 
D= -1lim(~ y(y)). 

y-O ilyay 

(5.7a) 

(5.7b) 

The right-hand side of this transport equation is identi­
cal to that in Eq. (6.2) of Paper I, which was obtained 
under the assumption that wo= O. This shows that there 
is no interaction between the deterministic potential 
field profile and the random variations under the pres­
ently specified statistical properties. It should also be 
noted that if, in addition to the prescribed properties, 
OV(x, t; a) is a Gaussian process, the kinetic equation 
(5.7) is the exact statistical equation for the mean 
Wigner distribution function within the stochastic 
Liouville approximation. (The proof of an analogous 
statement can be found in the second part of the 
Appendix in Paper I. ) 

Equation (5,7) is a variant of the equation of Kra­
mers. 29 A fundamental solution for it can be found by a 
method introduced by Wang and Uhlenbeck. 30 Equation 
(5.7) can be also obtained from (4.19) or, equivalently, 
from the three-dimensional analog of (C1a) (cf. 
Appendix C). If, in the latter, the ter m y(nu) is expand­
ed to order n2, and an inverse Fourier transform is 
performed with respect to variables u and q [cf. Eq. 
(C 2)], the ensuing transport equation is identical to 
(5.7). As a result, the expressions for the first- and 
second-order averaged observables listed in Appendix 
C remain unchanged. However, third- and higher-order 
observables calculated on the basis of (Cl) will contain 
terms of at least first order in n, which will be absent 
in the corresponding Liouville approximation. 

In the long-time Markovian approximation, (5.2) 
simplifies to 

(~ + ~p, ~ - kx· ~) E{J(x p t· a)} at In (lx ap , , , 

a (D(l)(X p). ~ +D(2)(X p). 3.-)Ef >(x p t· a)}. - 2p 'ap 'ox V , , , 

(5.8) 

This is a Fokker-Planck equation in phase space. The 
space- and momentum-dependent dyadic diffusion coef­
ficients are given by 
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x (_ ~ r( T))SinwoT. 
ayay y, mwo (5.9b) 

Equation (5.8) can be derived by applying the long­
time Markovian approximation directly to the stochastic 
Liouville equation. Alternatively, it can be derived 
from the transport equation corresponding to the long­
time Markovian approximation of the stochastic Wigner 
equation [cf. Eq. (4.8)] under the restriction that 
oV(x,t; 11') varies slowly in space. This can be done by 
following the method used by Landau to derive the 
Fokker-Planck equation for a plasma from a Boltzmann 
equation (cf. Paper I and Ref. 31). 

B. V(x, t;exl = 1/2kx 2 [1 H G (t;exl] 

The exact stochastic Wigner equation assumes in this 
case the form 

(a 1 a a) - + -p. - - kx' - f(x p t· a) 
at m ax ap '" 

a 
= kOG(t; a)x· ap f(x, p, t; ex). 

One has, then, in the first-order smoothing 
approximation, 

(i. + ...! p' ~ -kx. ~) E{j(x p t· a)} ilt m ax ap , , , 

(5.10) 

=k2~. [[dTr(T)xX,.-a_E{J(X' p' t-T'a)}] 
ap 0 ap"'" 

(5.11) 

where r(T)=E{oG(t; a)oG(t - T; a)}, and x' ,p' are given 
in (5.3). The kinetic equation (5.11) can be rewritten as 
follows: 

- + -p . - - kx . - E{j(x p t· a)} (
a 1 a c) 

at m ax ap , , , 

2 a =k -. 
ap 

• (Si;::T a~ +COSWOT :p)E{r(XCOSWOT 

- _1_ psinwoT, PCOSWoT + mwoxsinwoT, t - T; a)}. 
mwo 

(5.12) 

For a harmonic oscillator whose frequency is modula­
ted by a wide-sense stationary, o-correlated random 
process, viz., r(T)=Do(T), where D is a constant, the 
integration on the right-hand side of (5.11) can be per­
formed explicitly, yielding32 

(a 1 a a) -+-p·--kX·- E{j(x p t'a)} at m ax ap , , , 

=k
2
D(X' a~rE{j(X,p,t; a!)}. 

The one-dimensional version of this equation was 
derived previously by Mollow (cf. Ref. 4). 
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(5.13) 

Equation (5.13) corresponds to a Fokker-Planck 
equation in phase space, with a quadratic diffusion 
coefficient. The latter is due entirely to the presence of 
random fluctuations. No exact fundamental solution for 
(5.13) seems to be possible to the general case. How­
ever, closed systems of equations for moments of any 
order can be obtained. For example, since 

E{x(t; a)}= iR3 dx JR3 dpxE{j(x,p, t; a)}, 

E{P(t; a)}= J ~ dx JR3 dppE{j(x,p, t; a)}, 

(5. 14a) 

(5. 14b) 

one derives from (5.13) the following equations of 
motion: 

d 1 
dtE{x(t; a)}= mE{P(t; a)}, (5.15a) 

d 
dt E{P(t; a)}= - kE{x(t; (l!)}. (5.15b) 

The initial conditions required for their solution are 
obtainable from (5.14), viz., 

E{x(O; a)}= JR3 dx JR3 dp xE{j(x,p, 0; a)}= xo, (5.16a) 

E{P(O; a)}= JR3dxJR3dppE{j(x,p,0; a)}=po' 

It then readily follows that 

E{x(t; QI)}=xocoswot + (k/m)-1/2posinwot, 

E{P(t; a)}=pocoswot - (k/m)1/2Xasinwot, 

(5. 16b) 

(5. 17a) 

(5.17b) 

where wo=(k/m)1/2. We next note the following: (1) The 
random perturbation oG(t; 1)1) in this case has no effect 
whatsoever at the level of the first two moments. (This, 
of course, is not the case for higher moments); (2) 
Equation (5.17) gives the expressions for the position 
and momentum of a classical harmonic oscillator 
characterized by a frequency WOo This is due to the fact 
that the stochastic Liouville equation (5.10) is identical 
to the equation governing the classical distribution 
function fc(x, p, t; (l') = o[x - x(t; (l' )]o[p - p(t; 1)1)], 
fc(x,p,O;QI)=o(x-xo)o(p-po), where (d/dt)x(t;QI) 
= (l/m)p(t; a), (d/ dt)p(t; QI) = - k[l + oG(t;a )]x(t; a), and 
x(O; QI)=xo, p(O; a)=po' 

In the long-time Markovian approximation, (5.11) 
simplifies to the Fokker-Planck equation 

- + -p. - -kx· - E{f(x p t-rx)} (
a 1 a a) 

at m ax ap , , , 

= -. DO)(x pl· - + - 'D(2)(X p).-(
a a a a) 

ap 'ap ap 'ax 

XE{j(x,p,t; I)I)}. 

The two dyadic diffusion coefficients are given as 
follows: 

D(l)(x,p)= [k2 ~- dTr(T) COS2WOT] xx 

-(2~:O ~- dTr(T)Sin2WoT)XP, 

D(2)(X, p) = -K~:) 2 ~~ dTr(T) sin2WoT]x P 

+(2~:o [ dTr(T)sin2 WoT)xx. 
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In general, no exact solution to (5.18) seems to be 
possible. Nevertheless, closed systems of equations 
for moments of any order can be obtained by taking 
appropriate phase-space moments. For example, using 
the definitions of the average position and momentum 
[cf. Eq. (5.14)], the following equations of motion can 
be readily derived from (5.18): 

d { 1 - E x(t; ry)}= -E{P(t; ry)} 
dt 111 ' 

(5.20a) 

d {p fit E (t: ry)} = - kE{x(t; ry)} + cjE{X(t; a)} - c 2E{P(t; O')}, 

(5.20b) 

with the constant coefficients c 1 and c 2 given by 

(5.21) 

c =(,~-) 2f~ dTr(T) sin2w T. (5.22) 
2 mW l1 0 0 

The la!ter one may be expressed in terms of the spec­
trum r(u) as follows, 

c 2 =( ~~J 2i [r(0) - r(2w o))' (5.23) 

On the other hand, the former one may be written as 

e 1f ~ 
c 1=-2- -2 r H (2wO)' (5.24) 

mwo 

where 

(5.25) 

is the Hilbert transform of r(ll). 

Eliminating E{PV: a)} between (5. 20a) and (5. 20b), 
we obtain the second-order equation 

~ { d (C) dt2 E x(t; a)} + c2 dt E{x(t; I}')} + w; 1 - wl E{x(L; a)} 

= 0 (5.26) 

for the mean position vector. It is clear from this ex­
pression that the presence of random fluctuations has a 
significant effect, even at the level of the first statisti­
cal moment. The average position is damped by an 
amount proportional to c 2 • According to (5.23), this 
damping may be negative when the fluctuations are 
particularly strong at twice the unperturbed frequency. 
Furthermore, a shift in the oscillator frequency arises, 
which is determined by the Hilbert transform of the 
spectrum of the correlation function reT). Identical re­
sults have been reported recently by Van Kampen (d. 
Ref. 20) who applied the long-time Markovian approxi­
mation directly to the equations of motion of one-dimen­
sional classical harmonic oscillator. The coincidence of 
his results with ours is not surprising at all since the 
mean trajectory of the quantum mechanical oscillator is 
exactly the same with the path traversed by a classical 
harmonic oscillator. [More generally, this statement is 
valid whenever the potential field Vex, t; a) in (1. 1) is 
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such that the exact Wigner equation is of the form of a 
Liouville equation. ) 

C. V(x,t;a) = 1/2k[x-aoH(t;cdP 

The Wigner distribution function is governed in this 
case exactly by the stochastic Liouville equation 

(
(1 1 (1 iJ) -+-p·--kx·- J(x p t'ry) 
at m ax ap '" 

=k6H(t; a)a· ~J(X p t· a). ap ". (5.27) 

The corresponding kinetic equation for the mean Wigner 
distribution function in the first-order smoothing ap­
proximation has the form 

(
2 1 a iJ) at + m p' ax -kx· ap E{j(x,p,t; a)} 

=k2.i!.-.. [ftdTr(T)aa' (~inwoT ~+coswoT~) 
?p 0 mwo ax (lp 

x E{J(X coswo T - _1_ P sinwo T, P coswo T 
I( mwo 

+ nlwoxsinwoT,t - T: I}')}J, 
where r( T) = E{oH(I: f}/ )6[1(1 - T; a)}. 

(5.28) 

For a random process oH(t; a) which is wide-sense 
stationary and 0 correlated in time, viz., r(T)=Do(T), 

where D is a constant, the time integration in (5.28) can 
be carried out explicitly. The resulting transport equa­
tion is 

(~ + l..p. J... -kx. ~)E{j(X p t; ')1)( at m ilx ap , , 

=k2D(a. ()~rE{j(X'p,/; f}/H· (5.29) 

If, in addition to the above assumptions oH(I; I}') is a 
Gaussian random process, (5.29) is thE; exact statisti­
cal equation for E{j(x,p,I; f}/)}. 

The stochastic Liouville equation (5.27) is identical 
to the equation governing the classical distribution 
function Je(x, p, t; ry) = o[x - x(l; ry )]o[p - p(t; 'Y)], 
Je(x, p, 0; 0') = 15 (x - Xo)o(p - Po) associated with the 
Brownian motion of a simple, classical, harmonic 
oscillator, viz., (d/dt)x(i; 0') = (1/m)p(t; 0'), (d/dt)p(t; 0') 
=-kx(t; 1}')+aoH(t; a), withx(O;0')=xo, p(O;ry)=Po' 
Equation (5.29) has an exact fundamental solution since, 
except for the initial condition, it is identical to the 
equation satisfied by E{je (x, p, t; I)' n, and the latter has 
been studied extensively (d. Ref. 30). 

In the long-time Markovian apprOXimation, (5.28) 
reduces to the simpler transport equation 

(~ + l..p. _.a -kx. ~)E{j(X P t; a)} at m ax ap , , 

=(~ ·D(l)· ~ + ~ 'D(2).~) E{j(x p t, a)l 
ilp 'lp?p oX ' ,. f • 

(5.30) 

The dyadic diffusion coefficients are given by the ex­
pressions 
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(5. 31a) 

(5. 31b) 

They can be easily written in terms of the spectrum 
i'(u) and its Hilbert transform t H(U) as follows: 

n(lJ =1Tk2aar(wo)/2, 

n(2J = 1Tk2a ar H(WO)/(2mwo)' 

(5. 32a) 

(5. 32b) 

Since both n(lJ and n(2J are constant, it is possible to 
determine a general fundamental solution for the 
Fokker-Planck equation (5.30). 

APPENDIX A: THE UNCERTAINTY PRINCIPLE 
IN PHASE SPACE 

On the basis of the Schwartz inequality, 

If(X, p, t; a) 12 "" (21Tm-6[ k3 dy 11)!*(x +~y, t; 0') 12] 

X[iR3iYI1)!(x-~y,t;ev)12]. (AI) 

Consider the integral 

1.= iR3 dyl1)!*(x+ ~y, t; ev) 12 =6 iR3dX1)! 1 (x, t; a) 12, (A2) 

The total action, however, is conserved for every 
realization a EA, and is assumed to be normalized to 
unity (cf. Sec. 2). Therefore, I. = 6. Similarly, 

I_=iR 3 dY 11)!(x-~y,t;aW=6. (A3) 

Using these results in (AI) we obtain, finally, 

If(x,p,t;a)1 ""(n1T)-3, VaEA. 

APPENDIX B: DEGREE OF COHERENCE 

Given a wavefunction 1)!(x, t; a), the degree of co­
herence, n(t), is defined as follows: 

n2 (I) = (21Tm3 iR3 dx iR3 dp[ E{r(x, p, t; a)}]2 

(A4) 

=iR3dX2iR3dxt IE{1)!*(x2,t;a)1)!(xt,t;anI 2. (Bl) 

This quantity is intimately linked with the irreversible 
loss of information (coherence) due to the statistical 
fluctuations. 

The degree of coherence is characterized by the 
property 

n2(t) "" 1, (B2) 

the equality holding for the case of a purely coherent 
state. To show this we note that in the absence of ran­
dom fluctuations (B1) reduces to 

n2(t) = k3 dX2 k3 dxt 11)!*(Xz, t)1)!(xt, t) 12 

= [iR3 dXz 11)!(x2, t) 12][ ~3 dxt 11)!(xt, t) 12] = 1, (B3) 

the final equality following because of the conservation 
of the total action. 

To prove the inequality D2(t) < 1, which holds for a 
partially coherent (mixed) state, we use the Cauchy­
Schwartz inequality, 33 viz. , 

1 E{<p*(x, t; a)<p(xt, t; a)} 12 

""E{I <p(Xz, t; a) 12}E{1 </J(xt, t; 0') 12}, (B4) 

in conjunction with (Bl). We then have 
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n 2(t) "" [~3 dXz E{ 1 <p(Xz, t; a) 12} ]UR3 dxt E{ 1 </J(xt, t; 0') 12}] 

= 1, (B5) 

the last equality following from the fact that the total 
mean action is conserved and is normalized to unity. 

APPENDIX C: INTEGRATION OF THE KINETIC 
EQUATION (4.19) 

We shall integrate here the transport equation (4.19) 
and use the result to determine several averaged ob­
servables. For simplicity, we shall restrict the dis­
cussion to the one-dimensional case. 

Taking a double Fourier transform of (4.19), we ob­
tain the initial value problem 

{
a 1 a a 1 } A 

at - mqau -ku aq +!f2'[Y(O)-y(nu)] E{r(q,u,t;O')}=O, 

(CIa) 

E{j(q,u,O;an=jo(q,u), (Clb) 

where 

E{j (q, u, t; an 

= (21T)-2 {: dx {: dp exp[- i(qx +up)]E{r(x,p, t; a)}. 

(C2) 

We next introduce a new function 

g(q, u, t) = exp(vf)E{j (q, u, t; a)}, (C3) 

together with a new set of variables (r, ¢), defined by 
the relations 

u = (mk)-1/2 r cos¢, 

q =r sin¢. 

(C4a) 

(C4b) 

The equation for the time evolution of g(¢, t) =g[r sin¢, 
(mk)-1/2rcos¢, t] now takes the following form, 

(iJ~ + Wo ,}J¢ - ~ :y(¢~g(¢, t) = 0, 

jj(¢, 0) =go(cp), 

where y(¢) =Y[('11k)-1/2nrcoscp J. 

(C5a) 

(C5b) 

The solution of (C5) can be found by the method of 
characteristics. It is given by 

g(rp, t) ={ exp~ It d6(rp - WOT) } ,fio(rp - wof). (C6) 

Returning to the original variables, we finally have 

E{j(q, u, t; a)} 

= exp [- vt + ~2 ~t dT y ~IU coswo T + ~~o sinwo T) ] 

xJo(qcoswot- rnWollsinwot,ucoswot+ -q- sinwol). 
mwo 

(C7) 

Many important averaged physical observables can be 
found directly from (C7), making use of the fact that the 
moments of E{j(x1 p, t; a)} can be expressed in terms of 
derivatives of E{j(q, u, t; a)}. For example, the aver­
aged total energy of the system is given by the formula 
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2( 1 0
2 

{A =- (21T) -2 ~E f(q,u,t;cx)} 
m vU 

1 0
2 

{A ) +2k--azE f(q,u,t;n)} , 
q .=U=o 

(ca) 

Substituting (C7) into the above expression, we obtain 

E{E(t)}= E{E(O)}- y"(0)t/2m. (C9) 

Since y"(O) < 0, we can see immediately that this mOdel 
predicts amplification of the energy of the particle due 
the stochastic variations of the potential field. The 
formula (C9) is also valid for the case of free propaga­
tion (wo - 0). For the three-dimensional case, (C9) is 
replaced by 

E{E(t)}= E{E(O)}- 3y"(O)t/2m. (C10) 

Expressions for other physical averaged observables 
are listed below: 

(i) Mean centroid of a wavepacket: 

E{xc(t)} = E{xc(O)} coswot+ _1_ E{pc(O)} sinwot; 
mwo 

(ii) Mean momentum: 

(iii) SPatial spread of a wavepacket: 

(iv) Momentum spread of a wavepacket: 

E{a; (t)}= E{a; (0)}cos2wot + (mwo)2 E{a~(O)} 

x sin2wot - mWoE{a~p(O)} sin2wot 

_ y"(O)(%+ Si~::ot). 

(Clla) 

(Cllc) 

(Clld) 

In the limit as Wo - 0 (free propagation), these results 
simplify as follows: 

(i) (C12a) 

(ii) (C12b) 

_1..E{a2 (O)}t- .iJQ). t3 • 
m ,,/> 3m'" 

(C12c) 
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(iv) E{a;(t)}=E{a;(O)}- y"(O)t. (C12d) 

It is interesting to note that the average spread of a 
wavepacket grows with time due to the presence of 
stochastic fluctuations. The growth is proportional to 
the first power of time for a particle in the field of an 
elastic force, and to the third power of time for a free­
ly propagating particle. On the other hand, the spread 
of momentum grows linearly with time in both cases. 
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