AN INVESTIGATION OF THE EFFECT OF THE

FUEL BED DEPTH ON THE PERFORMANCE OF BOILER NO. 6

Kingston P Pena

by

and

Pu-Jen Tou

Thesis submitted to the Graduate Faculty of the

Virginia Polytechnic Institute

in candidacy for the degree of

MASTER OF SCIENCE

12

Power and Fuel Engineering

APPROVED:

APPROVED:

Graduate Studies

neerin

Head Department

Committee Che

GARINE BEAMAGE

June 1, 1951

Blacksburg, Virginia

LD 5655 1855 1951 9879 N.J. 3 P463 · 这些"有些意义的是' 通常的公司 C.2

enter a conserva

leas -

50° 865-08

Taris achiel te ba Conteste Sault, ef the Paris achieved to Conteste Pariste

to serve and the passifier of all

Setuentine Iss' has sayed

atessatus.

and the second sec My Mada (1d alarn) In A do sal tronte

1943 19998

S-MARINE ST N THE R. T.

10 A

100.1 .L. s. 1. 1. 1. 1. 1.

 153267

-2-

TABLE OF CONTENTS

e e e e E e e e	에 물통을 가지 물지 못하는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 같은 것은 같은 것이 같은 것이 같은 것이 같은 것이 있는 것이 있는 것이 같은 것이 같은 것이 없는 것이 없는 것이 같은 것이 없는 것이 같은 것이 없다. 것이 있는 것이 없는 것이 없는 것이 있는	Page
1.	Introduction	• 3
II.	The Review of Literature	. 5
III.	The Investigation	. 8
na An Anna Nachtainn an Ríog	(1) Object of Investigation	. 8
	(2) Proposed Method of Procedure	. 8
	(3) Apparatus	. 9
	(4) Procedure	. 12
	(5) Composite Result Sheet	. 15
	(6) Curves	. 17
IV.	Discussion of Results	. 55
٧.	Summery	. 26
VI.	Recommendations	. 28
VII.	Acknowledgments	. 29
VIII.	Bibliography	. 30
IX.	V118	. 32
Χ.	Appendices	• 34
	(1) Deta Sheets	• 35
	(2) Sample Calculations	• 53
	(3) Method to Calculate Boiler Efficiency Based	-
	On Average Ash Content	. 65

INTRODUCTION

1

In 1949, a new Edge Moor boiler, Boiler No. 6, was put into operation in the Virginia Folytechnic Institute Heating and Power Plant. The 5 boiler was designed to burn Virginia semi-anthracite culm coal having an ash content of 19.6 percent. At the present time, the Merrimac Mine located five miles from the plant supplies a large amount of culm for the plant, which has an ash content as high as 24 percent. Early operating experience with the boiler showed that the use of Merrimac culm alone presented big problems in coal handling, ash disposal, unsatisfactory combustion, and inability to maintain load above 45,000 pounds of steam per hour. Later a mixture of Merrimac culm and bituminous coal was burned in this unit in an effort to overcome these difficulties. The results were favorable.

In the spring of 1950, Messrs. O. Coplon, G. E. Cottingham, and J. D. Murphy made an extensive investigation to select the most economical mixture of Merrimac culm and bituminous coal for the boiler. Their selection was based on boiler tests as well as the costs of operation and coals used. They concluded that*: (1) the 4-1 mixture of Merrimac culm

*Coplon. C., Cottingham, G. R., and Murphy, J. D., <u>Determination</u> of <u>Mixture of Merrimac Culm and Bituminous Coal for No. 6 Boiler</u>, Thesis, V. P. I., 1950.

-3-

and bituminous coal was proved to be the most economical mixture in their first series of tests; and (2) the 6-1 mixture was proved to be more economocial than the 4-1 mixture in their second series of tests. The 4-1 mixture is defined as the mixture in which four scoops of Merrimac culm are mixed with one scoop of bituminous coal, and the 6-1 mixture as the mixture in which six scoops of Merrimac culm are mixed with one scoop of bituminous coal.

Their tests were based on a constant load of 45,000 pounds of steam per hour. Because of the high percentage of Merrimac culm in the 6-1 mixture and increased ash handling when the coal is wet and load is above 45,000 pounds of steam per hour, it was decided to burn the 4-1 mixture in Boiler No. 6. Furthermore, with such a wide range of mixture to be tested and the time limitation for their investigation, it was possible for them to test each mixture at only one set of operating conditions. Since there are many factors affecting the operation of a boiler, the conditions they picked may not be optimum and the results may not be representative for each mixture. Therefore, the authors feel that further investigation of the 4-1 mixture would be desirable.

It is the authors' intention to investigate the effect of the fuel bed depth on the performance of Boiler No. 6 by burning the 4-1 mixture at a load of 50,000 pounds of steam per hour. The reason for picking 50,000 pounds of steam per hour as the test load is that it represents the average load carried by No. 6 Boiler during the winter season.

4

THE REVIEW OF LITERATURE

-5-

Boiler No. 6 is equipped with a Detroit Rotograte stoker having a forward moving grate which discharges refuse continuously over the front end of the grate into the ash pit. The coal is thrown out from the coal hoppers into the furnace by the revolving paddles at the front. The fine particles are partly burned in suspension, and the larger particles are consumed on the grate. Therefore, the Rotograte stoker uses the combined principles of suspension and grate burning. The main advantages of these principles are the ability to burn satisfactorily a wide range of coals and quicker response to load variation than any other stoker. The best performance is obtained with coal of good quality and uniform size. This method of firing, however, was developed primarily to burn those lower grades of non-clinkering coals which have high ash contents and low ashfusion temperatures.

Most of the combustion process occurs on the grate. The fuel bed of the stoker consists of a relatively thin, level layer of coal on top of a uniform layer of ash. The fuel bed is non-agitated but intensively active. Under proper operating conditions, there is never more than a few minutes' supply of coal on the grate. This thin layer of coal lies on a cooled ash bed, and as a result of these conditions even though the ash fusion temperature may be low, few or no clinkers are formed. Furthermore,

11

this protective layer of ash, together with uniform air flow through all portions of the grate, keeps the grate to within 50 degrees F of the air supply temperature.

Fuel burned efficiently on a grate depends on a number of factors which are so interconnected that sometimes they cannot be separated from one another. The fuel physical characteristics, composition and size of furnace, method of firing, general operating conditions of boiler and its equipment exert a marked influence on the boiler economy and efficiency. As to the method of firing, maintaining the proper depth of fuel bed is one of the variables of great importance.

In general, the best combustion results are obtained with a fuel bed that has the lowest possible resistance to air flow which will permit the sir and fuel to combine completely and leave a small proportion of excess oxygen remaining in the products of combustion. Low resistance to air flow fundamentally means low air velocity which in turn minimizes the amount of fuel and ash blown upward into the furnace. Low resistance should produce a fairly uniform condition over the entire stoker.

The resistance of the fuel bed to the air flow through it is a function of at least three factors: (1) the thickness of the fuel bed; (2) the proportion of coke to green coal; and (3) the amount and characteristics of ash present. Considering the three factors, we find that it is necessary to correlate all three in order to produce suitable resistance. As most of the oxygen from the primary air is consumed in the first four inches of fuel bed measured from the grate, it is not necessary with the ordinary rates of combustion to run a fuel bed thicker than four to

-6-

six inches. The rate of gasification of coal depends on the amount of air that can be passed through the fuel bed. The thicker the fuel bed, the higher is its resistance to the flow of air through it, and the less air can be passed through with a given available draft. A thick fuel bed, therefore, reduces the rate of combustion and thus reduces the capacity of the boiler.

A thick fuel bed is further undesirable because it increases the tendency of the coal to form troublesome clinkers. On the other hand, a thin fuel bed gives less resistance for air to pass through. But, when the boiler is carrying a high load, a thin fuel bed causes difficulty in maintaining constant pressure and requires close attention to prevent holes being burned in spots.

A test" to determine the effect of the depth of fuel bed on the efficiency of a boiler has been conducted on a 350-horsepower Stirling Boiler equipped with a chain grate stoker at the power plant of the Armour Institute of Technology of Chicago. The fuel bed thickness was varied from two to seven inches. The result showed that 4.25 inches of fuel bed gave the highest boiler efficiency.

For a given furnace and boiler, quality and size of coal, and intensity of draft, a certain depth of fuel bed will give maximum efficiency. On account of the number of considerations upon which the proper thickness depends, it can be determined only by actual test.

*Gebhart, F. G., Steen Power Plant Ingineering, New York: John Wiley and Sons, Inc., 1917, p. 93.

-7-

THE INVESTIGATION

III

(1) Object of Investigation

The object of this investigation is to study the effect of the depth of fuel bed on the performance of Boiler No. 6 at a load of 50,000 pounds of steam per hour by using the 4-1 mixture of Merrimac culm and bituminous coal, and to determine the optimum depth of fuel bed at these conditions.

(2) Proposed Method of Procedure

Boiler tests will be conducted with three different depths of fuel bed at a load of 50,000 pounds of steam per hour by using the 4-1 mixture of Merrimac culm and bituminous coal. The three depths of fuel bed shall be 2-3/4, 4 and $5\frac{1}{5}$ inches. For each fuel bed depth, two boiler tests will be run in order to obtain a check of the results. The other operating factors for the boiler will be held as constant as possible throughout the entire investigation.

The boiler tests will, whenever possible, conform to the <u>A.S.M.E.</u> <u>Power Test Code for Stationary Steam-Generating Units</u>. The duration of each test shall be five hours. Although the Power Test Code recommends the duration of test should be at least twenty-four hours or not less than ten hours for stoker fired units, the authors feel justified to reduce the duration of test to five hours with the Rotograte stoker. The reasons are

-8-

that the coal burns either in suspension or within a short time after it falls on the bed, and the weight of coal in the furnace does not vary to any great extent from the start to the end of a test. Also the facilities of the plant demanded short tests.

In addition to the boiler tests, a coal sample for each boiler test will be collected to determine the proximate analysis. From the proximate analysis, Evans' Empirical Relations will be applied to determine the higher heating value of coal, and total carbon and hydrogen in coal. For each boiler test, a refuse sample will be collected. A combustible analysis will be run on each refuse sample to determine the percentage of combustible in refuse.

From the test data, the boiler efficiency and heat losses will be determined.

The results of this investigation should serve as an operating guide for the power plant when the 4-1 mixture is used and the load is around 50,000 pounds of steam per hour.

(3) Apparatus

The equipment used in this investigation consisted of the following:

<u>Steem Generator</u>: The steam generator was designed and erected by Edge Moor Iron Works. It is a cross-drum bent-tube boiler having two drums. Its specification and dimensions of various parts are as follows:

1. 2. 3.	Maximum evaporation Operating pressure Total temperature	60,000 Lb of steam 250 paig 506 deg. F.	ı per 1	20 U T
4.	Heating surface:			
	Boiler	603 ¹	i sa. 1	Et.
	Water walls	1120) sq. 1	£t.
	Superheater	479	j sa. f	£t.
	Air preheater		sq. t	Ft.

5.7.8.	Dismete Length Dismete Length	er of top of top (er of bot of botto	o drum Irum tom drum om drum		· • • • • • • • • • • • • • • • • • • •	 	* * * * * * * *	• •	• • • • • • • • • • • • • • • • • • • •	54 15 36 14.6	inches feet inches feet
9.	TUDES;	Boiler Water wi Superhei	alls	592 46 26	tubes tubes tubes	• • • •	2 in. 3.25 1.875	dia. in. di in. di	1 a 1 a 9	2 BWG O BWG BWG	

2.	Length		*******	 ******	********	. 12 ft. 8 in.
3.	Effective	grate	surface	 	********	. 116.9 sq. ft.
4.	Effective	length		 	*******	. 11 ft.

<u>Dust Collector</u>: The dust collector is Thermix tubular type manufactured by the Pratt-Daniel Corporation. It was designed to handle 83,000 pounds of flue gas per hour at 500 deg. F.

<u>Forced Draft Fan</u>: The forced draft fan was manufactured by W. H. Sturtevant, B. F. Sturtevant Company Division. It delivers 20,800 cubic feet of air per minute at sea level, and is driven by a 30-horsepower Westinghouse Induction Motor.

Induced Draft Fan: The induced draft fan was manufactured by Pratt-Daniel Corporation. It is driven by a 75-horsepower motor through an American Blower hydraulic coupling. The capacity of the fan is 36,000 cubic feet per minute at 425 deg. F.

<u>Cinder Return Fan</u>: The cinder return fan was manufactured by the Buffalo Forge Company. It is driven by a 15-horsepower General Electric Motor. Auxiliary Air Fan: The auxiliary air fan was manufactured by the Clarage Fan Company. It is driven by a 2-horsepower General Electric Moto.

<u>Ash System</u>: The plant is equipped with a vacuum type ash system, which was designed and installed by the United Conveyor Corporation. The vacuum is maintained by means of a steam jet. The ash system will draw the ash from the ash pit after the ashes are pulled from the ash hopper, from the dust collector hoppers, and also from the downspouts of the dust collector as desired.

Boiler Feed Water Pump: The boiler feed water pump is a multistage centrifugal pump and is driven by a 50-horsepower Westinghouse Induction Motor. Its capacity is 100 gallons per minute.

<u>Auxiliary Boiler Feed Water Pump</u>: The auxiliary boiler feed water pump is a multi-stage centrifugal pump manufactured by American Marsh Pumps, Inc., and is driven by a steam turbine manufactured by Whiton Machine Company. Its capacity is 135 gallons per minute.

<u>Combustion Control</u>: The boiler is equipped with and controlled by a Hays Combustion Control system. The master control is governed by the steam pressure. The master control actuates the forced draft fan control, then in turn acts on the coal feed control. The induced draft fan is actuated by the furnace draft. The fan changes its speed thus holding the furnace draft to the required setting. The damper is set on this installation and is not changed except for changes in fuel type or extreme changes in firing conditions.

Miscellaneous Equipment: Pressure gages, thermometers, Orsat apparatus, platform scales, weigh larry, steam flow meter, blow down meter,

-11-

automatic recorders for temperature and pressure, draft gages.

(4) Procedure

In order to investigate the effect of the depth of fuel bed on the performance of Boiler No. 6 by using the 4-1 mixture of Merrimac culm and bituminous coal, and to obtain test results as an operating guide, boiler tests were run under conditions similar to everyday plant operation. However, some variables were held as constant as possible in order to obtain comparative results on different depths of fuel bed. Throughout the entire investigation, the variables held constant were the test load, the duration of test, the firing method, the method of mixing the coals, and the methods of sampling coal and refuse.

These tests conformed to the <u>A.S.M.E.</u> Power Test Code for Stationary <u>Steam Generating Units</u> whenever possible. Two five-hour tests were run with the 4-1 mixture for each depth of fuel bed at a load of 50,000 pounds of steam per hour. The duration of test was cut short for the reasons previously stated in the Proposed Method of Procedure. The depths of fuel bed were 2-3/4, 4 and 5 $\frac{1}{2}$ inches, measured under the front arch of the stoker.

Before starting the test, the overhead storage bins were emptied and then filled with the 4-1 mixture of Merrimac culm and bituminous coal to be tested. A payloader having a twenty cubic foot scoop was employed to mix the coals. Four scoops of Merrimac culm and one scoop of bituminous coal were first unloaded on the ground near the screw conveyor. Then the whole mass of the coals was pushed through the grate to the screw conveyor and was delivered to the storage bins by the coal handling system. The test fuel was burned in the furnace for about two hours before the actual start of the boiler test, in order to allow the furnace and fuel bed to reach the required, stable operating conditions. The load was adjusted to 50,000 pounds of steam per hour by regulating the load on one of the plant's steam turbo-generators and by varying the amount of steam bled to the low pressure line. The instantaneous load was showed by a pointer on the Cochrane steam flow meter, and the total steam flow was obtained by getting the difference in the integrator readings at the beginning and at the end of each test. This meter was calibrated to give the correct reading at a pressure of 250 psig and total temperature of 506 degrees F. For conditions other than those for which the meter was calibrated, a correction factor was applied to the reading to give the correct smount of steam flow. The correction factor was the ratio of the specific volume of steam at calibrated conditions to the specific volume of steam at the average pressure and temperature of each test.

The per cent of 602, as noted on the 602 recorder, was kept within the range of 10 to 12 per cent by adjusting the fuel feed control. The fuel bed was held at the desired thickness as constant as possible by adjusting the grate speed. The flyash was returned to the furnace for reburning. The furnace combustion was closely watched to be sure that a sufficient amount of fuel was burned at the back end of the grate. The speed of the revolving paddles was adjusted in order that the fuel would be thrown to the back end of the grate in case unsatisfactory combustion was noticed.

Before each test, the Orsat apparatus was checked and its solutions were renewed, the soot was removed from the tubes by the soot blowers, the

-13-

boiler was blown down, the flyash was removed from the down-spouts, and the ash pit was cleaned.

At the beginning and the end of each test, the furnace hoppers were filled, the integrator reading was taken, the blow-down flow meter was read, and the boiler drum water level was checked and marked. During each test, the majority of the meter and gage readings were taken at fifteen minute intervals except those noted on the data sheets.

Each time the furnace hoppers were filled, a coal sample was collected and kept in air-tight jars. The sample for each test was then prepared for the proximate analysis. The methods of sampling, preparation, and the proximate analysis were those of the <u>A.S.T.M. Standards on Coal and</u> <u>Goke</u>.

The ash sample was collected from the ash pit whenever the ashes were pulled. The sample was then prepared for the combustible analysis. By using the result from the combustible analysis, the amount of refuse was calculated. The method of calculation is shown in the sample calculations.

Before and after this investigation, the pressure gages were calibrated by using a dead weight tester. The thermometers were calibrated against a resistance thermocouple. Corrections were applied to all readings before calculating the results.

		N	M	4	ur	Q
Date of test, 1951	Feb.16	Peb.16	Feb.27	Feb.27	Nar.6	Mar.
Duration of test, hours	5	5	in.	ŝ	ın	5
Depth of fuel bed, inches	æ			1 C	2 3/4	R R
bituminous coal at the retio of			÷	h.1	t:4	1:4
Coal as fired						
Noisture, per cent	r:	30 30 30	£.9	6.8	6 .0	0.2
Folatile matter, per cent	n. E	r.ř	12.0	13.6	12.2	12.9
Ash content, per cent	6	19.61	24.8	5h.µ	30.6	22.6
Fixed carbon, per cent	8.8	8.3	56.9	55.0	2.2	51.2
Higher heating value, Btu par 10	11.730	11.720	10.840	10.820	9,960	11.1%
Carbon, per cent		8.8	8.9	61.5	56.9	63
Brdrogen, per cent	1.5	4.95	3.34	3.43	3.75	3.50
Refuse analysis						
Combustible, per cent	r.ak	32.2	5.0	30.0	27.0	2
Coal burned, 1b. per hour	6.451	6.112	7.276	8.143	8.125	7.045
Stean generated. 1b. per hour	45.220	k7.12	49.100	48.650	48.700	50.000
Nvaporation. 1b. steam/1b. of coal	7.45	1.7	6.75	5.3	5.03	1.10
Weight of refuse, 1b. per hour	1.990	1.72	3.698	5.69	3,560	2.044
Blowdown, Ib. par hour	1.5¥	1,475	633	598	1.505	1.405
Temperatures, degree Fahrenheit						
	3	6.9	1.0	78.3	76.3	20.02
"et-outo	- M.O	8.64	6.16	1.6	59.2	1.12
	4.4	71.6	80.6	6.18	75.5	78.1
Gas to air heater	680	613	582	580	585	598
Gas from air heater	132.5	435 1	436.6	137.5	435	1H
Air to air heater	8.5	66.4	84.3	82.7	78.0	70.7
Air from eir heater	316	A28	326	329	324	222
reductor	227.5	223.0	229.3	225.0	228.7	224.4
Superheater inlet	- 107 - 107	- HOR	100	80f	f og	tot.
Sunatheater anti at						

(5) COMPOSITE RESULT SHERE

-15-

(5) CONFOSITE RESULT SHERE

(Continued)

0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	g	N	~	* -	ŝ	9
Zressures. psig Steam drun	8	50	259	258	267.6	ş
Superhester outlet	246.5	52	187	247.5	21.6) 22 22
Berometric pressure, in. 22.	28.4¢	8. 8	27.96	27.96	28.14	28.24
Draft gage readings, in. of water		5				
Air in air bester	3.45	2.56	3.03	2.8	3.26	6
Windbox	19.T	3.7	1.74	20 7	1.1	5
Junaçe	-0.27	6.9	-0.16	-0.22	6.0-	-0.27
Lest Pass	8.1-	-1.8	-1.42	.1. ⁴ .L-	.1.8	1.4.1
Air heater outlet	-3.00	ei N	-2.63	-2.55	100.00	-2.76
Induced draft fen	-6.00	-h.	-5.01	4.68	-5.36	-5.39
Analysis of flue ges, per cent in volume						
	10.63	12.00	9°.6	10.26	10.70	10.25
	R.	6.77	9.27	6.7	8.1k	8.48
8	0.01	0.05	0.08	0.06	0.02	C
	82.06	61.16	61.15	80.90	81.1k	81.27
Excess air, per cent	51.0	6 .5	70.0	69.0	6.19	65.5
Reat Balance, per cent						
Heat absorbed by unit	68.10	69.80	66.80	65.15	61.50	68.40
Loss due to dry flue gas	10.52	8	10.39	10.72	9.16	10.16
Loss due to moisture in coal	0.58	0.61	0.20	0.76	0.73	0.76
Loss due to water from combustion of H	s.90	3.34	3. 74	3.44	-12	3.42
Loss due to moisture in eir	- 0.07	0.08	0.0	0.05	0.12	0.06
Loss due to cerbon monoride	0.34	9.9	0.10	0.30	0.0	0
Loss due to cerbon in refuse	55.11	3.1	16.42	13.67	16.55	12.15
Loss due to blovdova	0.38	0.41	0.15	0.14	0.74	0.36
Loss due to rediction	,#	1.1	4 7 .7	41.1	1.14	
Unaccounted-for losses	3.4	3.99	0.47	t. h	3.43	S.S.
	100.0	0.001	100.0	100.0	100.0	100.00
Boller efficiency, per cent	68.YO	6.69	66.80	65.15	9.'S	68.HO
	1					

(6) Curves

Fig. 1: The curve on this figure shows the boiler efficiency against the fuel bed depth. The boiler efficiency at each fuel bed depth has been converted to 23.53 per cent of the ash content in the coal mixture, which is the average ash content of the coal mixture for the six boiler tests. The reason for this conversion is explained in the Discussion of Results, and the method of calculation is shown in Appendix (3).

Fig. 2: The curves plotted on this figure show heat losses at various fuel bed depths.

Fig. 3 end 4: The curves plotted on these figures illustrate the test results at various fuel bed depths.

DISCUSSION OF RESULTS

IT

The maximum fuel bed depth that can be obtained in Boiler No. 6 is limited by the distance between the grate and the front arch of the stoker. This distance was designed to be seven inches. But it was detrimental to the stoker as the fuel bed was increased above $\frac{51}{2}$ inches. When the depth of the fuel bed was high, clinkers were formed. Because of such a narrow space between the fuel bed and the front arch, the clinker formed at a fuel bed above $\frac{51}{20}$ inches had the tendency to stick on the front arch. The refractory on the front arch was likely to be damaged. On the other hand, the fuel bed could not be lower than 2-3/4 inches at the load of 50,000 pounds of steam per hour, because of the difficulty in maintaining the pressure at 250 psig. Therefore, the boiler tests were run at 2-3/4, 4, and $\frac{51}{20}$ inches fuel bed depth.

The proximate analyses of the coal mixture for the six boiler tests showed that the ash content was in the range of 19.2 to 30.6 per cent. With such a wide range of ash content, it was not justified to compare the boiler efficiencies at various depths of fuel bed. As stated in <u>Fuels and</u> <u>Combustion Handbook</u>^{*}, for each one per cent increase in ash content, the

*Johnson, A. J. and Auth, G. H., Fuels and Combustion Handbook, 1st Edition, New York: McGraw-Hill Book Company, Inc., 1951, p. 40.

-22-

boiler efficiency decreases about one third of one per cent or greater in cases where the loss of carbon in refuse is not carefully controlled, and where the coal is of such poor quality that appreciably greater draft is required to maintain the load. The test results of this investigation agreed with these reference values. Therefore, in order to obtain a true comparison of the effect of the fuel bed depth on the boiler efficiency, the curve in Figure 1, showing the boiler efficiency against the fuel bed depth, has been drawn for the boiler efficiencies based on the ash content of 23.53 per cent. This percentage ash content is the average ash content of the coal mixture for the six boiler tests.

The curve in Figure 1 illustrates that the boiler efficiency remains approximately constant between 2-3/4 and 4 inches of the fuel bed depth, and decreases as the fuel bed depth is increased above 4 inches.

In performing the boiler tests at a 2-3/4 inches fuel bed depth, close attention was necessary to keep the pressure at 250 psig. This was due to the fact that the amount of the fuel on the bed was considerably less and the quality of the coal mixture was not uniform. In case the quality of the coal mixture was poor, the boiler pressure would drop. Since the fuel bed was thin, there was comparatively low resistance to the flow of air through the fuel bed. Under this condition, the mixing of air and fuel was more complete, and as a result, the combustion in the furnace was better. Because the grate speed was so high less time was available for the fuel to burn on the grate. This resulted in a large amount of the carbon being lost in the refuse. As shown in Figure 2, the heat loss due

-23-

to carbon in the refuse was the highest loss at this depth among the three depths of fuel bed tested.

During the boiler tests at a 4 inches fuel bed depth, it was relatively easy to hold the boiler pressure at 250 psig, since the grate speed was lower than that at the 2-3/4 inches fuel bed depth, and the time for the fuel to burn on the grate was longer, the heat loss due to carbon in the refuse was reduced appreciably as shown by the curve in Figure 2.

For the boiler tests at a $5\frac{1}{2}$ inches fuel bed depth, the grate speed was low and the fuel had more time to burn on the grate. The test results showed that the heat loss due to carbon in the refuse was the lowest loss at this depth among the three fuel bed depths tested. When the fuel bed was thick, it was difficult for air to flow through it. Under this condition, the temperature of the fuel bed was high. Because of this high temperature in the fuel bed, clinkers were formed. In general, the combustion in the furnace was poor at this fuel bed depth.

The size of the bituminous coal used in the coal mixture was larger than that of the Merrimac culm. Consequently, the size of the coal particles in the mixture was not uniform. After being thrown out of the coal hoppers by the revolving paddles, the large lumps of bituminous coal fell near the front end of the grate. There was little time for them to burn on the grate. The result was that the loss of carbon in the refuse was generally high. The combustible analyses of the refuse from the six boiler tests showed that the percentage of carbon in the refuse was in the range of 27 to 32.9 per cent. These large losses could be lowered if the bituminous coal were crushed to a uniform size as Merrimac culm.

24

Another effect of the non-uniform size of the coal mixture was the size segregation. When the coal mixture was dumped from the coal handling system to the storage bins, and from the weigh larry to the coal hoppers, the large lumps of the bituminous coal had a tendency to separate themselves from the rest of the fine coal. As the coal mixture burned in the furnace, there was a large amount of the bituminous coal at one time and a small amount at the other. Because of this intermittent change of the coals fed into the furnace, the combustion was greatly affected. For this reason, close attention was necessary to adjust the fuel feed in order to hold the boiler at desirable conditions.

SUMMARY

In attempting to use the 4-1 mixture for Boiler No. 6 in the Virginia Polytechnic Institute Heating and Power Plant, the problem of maintaining proper depth of fuel bed had arisen. This problem seemed to warrant an investigation, which was subsequently made.

The fuel bed depth that will give the best results for a boiler depends on many factors, and it is best determined by boiler tests. Therefore, the authors decided to investigate the effect of the fuel bed depth on the boiler performance and to determine the optimum fuel bed depth, when the 4-1 mixture was used and the load was 50,000 pounds of steam per hour.

This investigation consisted of the collection and evaluation of data obtained from the boiler tests at various fuel bed depths. During the boiler tests, some of the variables were held as constant as possible in order to obtain comparative results. The fuel bed depths tested were 2-3/4, 4, and $5\frac{1}{5}$ inches. The optimum depth of fuel bed is that fuel bed which would give the highest boiler efficiency and good boiler control.

The results of the tests showed that the boiler efficiency remained approximately constant between 2-3/4 and 4 inches of the fuel bed depths and decreased as the fuel bed depth was increased above 4 inches. But, at 2-3/4 inches of the fuel bed, close attention was necessary to control the

-26-

boiler, whenever the load swung, or there was a change of the quality of fuel fed into the furnace. The authors, therefore, conclude that Boiler No. 6 should have a fuel bed depth between 3 and 4 inches deep when the 4-1 mixture is used and the load is about 50,000 pounds of steam per hour.

RECOMMENDATIONS

It is recommended that:

(1) The fuel bed depth be maintained between 3 and 4 inches for Boiler No. 6 when the 4-1 mixture is used and the load is about 50,000 pounds of steam per hour.

(2) Bituminous coal used in the 4-1 mixture for Boiler No. 6 be crushed to as uniform a size as Merrimac culm.

(3) Investigations be made to determine the fuel bed depth to be maintained in Boiler No. 6 at loads other than 50,000 pounds of steam per hour when the 4-1 mixture is used.

(4) A higher percentage of bituminous coal be used in the coal mixture for Boiler No. 6 in case the coals are very wet and the load is about 50,000 pounds of steam per hour.

VI

X 1

-28-

ACKNOWL. EDGMENTS

It is difficult to reflect in words the measure of indebtedness that the authors feel to Prof. C. H. Long, Prof. R. F. Glazebrook, Jr., and Mr. L. A. Padis, of the Mechanical Engineering Department, whose helpful suggestions and constructive criticism have made this thesis possible.

Sincere appreciation is extended to Prof. J. B. Jones, Head of the Mechanical Engineering Department, for his aid in the organization of our thesis. Gratitude goes to Mr. C. F. DeBusk, Utility Engineer of Virginia Polytechnic Institute, who has given many helpful suggestions and has made the arrangement for the boiler tests; to Prof. F. M. Morris, of the Mining Engineering Department, who has given helpful suggestions in connection with the coal sampling and the coal analysis; to Prof. F. H. Fish, of the Ghemistry Department, who has given helpful suggestions in preparing the solutions for the Orsat apparatus; to Mr. O. Coplon, instructor in Mechanical Engineering, who has made many suggestions.

Our indebtedness is extended to all graduate students in Power and Fuel Engineering for their cooperation and encouragement throughout this investigation; to the plant personnel for their cooperation during the boiler tests.

For valuable assistance in typewriting this thesis, grateful acknowledgment is expressed to Mrs. R. M. Bottoms.

VII

-29.

BIBLIOGRAPHY

VILI

- (1) A.S.M.N. Power Test Code on Stationary Steam-Generating Units, 1946.
- (2) A.S.T.M. Standards on Coal and Coke, 1949.
- (3) Barnard, W. N., Ellenwood, F. O., and Hirshfeld, C. F., <u>Heat-Power</u> Engineering, Third Edition; New York: John Wiley and Sons, 1930.
- (4) Garman, E. F. and Reid, W. T., "Ignition Through Fuel Bed on Travelingor Chein-Grate Stokers", <u>A.S.M.E. Transactions</u>, August, 1945.
- (5) Finding and Stopping Waste in Modern Boiler Room, Cochrane Corporation, Philadelphia, Pa., 1935.
- (6) Coplon, O., Cottingham, G. R., and Murphy, J. D., <u>Determination of Mix-</u> <u>ture of Merrimac Culm and Bituminous Coal for No. 6 Boiler</u>, Thesis, Virginia Polytechnic Institute, 1950.
- (7) de Lorenze, O., <u>Combustion Engineering</u>, New York: Combustion Engineering-Superheater, Inc., 1949.
- (8) de Lorenze, O., <u>Study of Stoker Fuel Beds</u>, A.S.N.E. Advance Paper,
 no. 44 S 17 for meeting of April 3-5, 1944.
- (9) Diamond, W. F. and DeBusk, C. F., The <u>Effect of Depth of Fuel Bed on</u> the Operating Characteristics of the Keeler 500-Hp Boiler in the Virginia Polytechnic Institute Central Heating and Power Plant, Thesis, Virginia Polytechnic Institute, 1940.

- 30-

- (10) Dutton, H. W., Hood, Jr., J. G., and Kilby, C. W., <u>An Investigation</u> to Determine the Most Economical Culm Coal for No. 6 Boiler of the <u>Virginia Polytechnic Institute Central Reating and Power Plant</u>, Thesis, Virginia Polytechnic Institute, 1950.
- (11) Foresman, R. A., "Maintaining Proper Stoker Fuel Beds," <u>National Engineer</u>, September, 1947.
- (12) Gebhart, G. R., <u>Steam Power Plant Engineering</u>, Fifth Edition, New York: John Wiley and Sons, Inc., 1917.
- (13) Johnson, A. J. and Auth, G. H., Fuels and Combustion Handbook, First Edition, New York: McGraw-Hill Book Co., Inc., 1951.
- (14) Keisinger, H., Oritz, F. K., and Augustine, C. E., <u>Combustion in Fuel</u> <u>Bed of Hand-fired Furnaces</u>, The Department of Interior, Bureau of Mines, Technical Paper 137, 1916, Washington, D. C.
- (15) Marks, L. S., <u>Mechanical Engineers' Hendbook</u>, Fourth Maition, New York: McGraw-Hill Book Co., Inc., 1941.

Kingston Fu Peng was born on October 15, 1918, in Hsianying, Hunan, Ohina. He was reared and educated in Ohangsha, Hunan, from his childhood.

VITA

After his graduation from the National Hunan University with a B.S. degree in Mechanical Engineering, he worked as a junior engineer in locomotive design about six months before he went to the Chinese Air Force to take candidate officer's training.

Commissioned as a second lieutenant early in 1943 after completion of the training, he was then assigned as an aircraft armament and gunnery instructor for a period of one year and half. While on staff duty in the CAF Headquarters in Chungking, the war-time capitol of the Republic of China, he was transferred to the United States to command a group of Chinese air cadets who were to receive their training in this country in 1945.

In 1947, he was assigned to Washington, D. C., as a procurement officer and aircraft inspector. This duty enabled him to travel extensively in the United States and Canada.

Later in 1949, after seven years of service, he was honorably discharged from the Air Force of the Republic of China with the rank of captain.

He came to the Virginia Polytechnic Institute to pursue graduate study in Mechanical Engineering in January, 1950. Later in September, he received

-32-

a Power and Fuel Engineering Fellowship. At present he is a candidate for the degree of Master of Science in Power and Fuel Engineering.

Pu-Jen Tou was born in Kunming, Yunnen, China, on March 5, 1922. He attended various public schools in Kunming and graduated from Kunhua Technic High School in June, 1940. After graduation, he was employed by the National 21st Arsenal of China.

After passing the examination conducted by the Yunnan Provincial Government in 1943, he was awarded a four-year scholarship for studying in the United States of America.

On August 2, 1945, he landed at New York City after one month of travel. He took his under-graduate studies in Mechanical Engineering at Cornell University. In June, 1949, he received the degree of Bachelor of Mechanical Engineering from Cornell University.

In September, 1949, he entered the Virginia Polytechnic Institute for graduate studies. During the next year, he received a research fellowship in Power and Fuel Engineering from the Virginia Polytechnic Institute. At present he is a candidate for the degree of Master of Science in Power and Fuel Engineering.

TEST NO. 1 SUMMARY OF DATA

Test Coal Mixture: Test Load: Duration of Test:4:1 50,000 lb. steam per hour buration of Test:Proximate Analysis: MoistureAir-dry 0.45 15.50As Fired 14.3 18.9Proximate Analysis: MoistureO.45 0.45 15.505.7 19.2Volatile Matter Nath Content Ash Content Oarbon Mired Carbon Air-dry LossAs Fired 0.6840 0.6840Combustible 5.7Garbon and Hydrogen: Oarbon WydrogenAs Fired 0.0311Stuper lb. As FiredHigher Heating Value: 10.63 10.6311,730 Btu per lb. As FiredRefuse: Bolier Drum Pressure, psig Superheater Outlet Pressure, psig Superheater Cutlet Pressure, psig Superheater Cutlet Pressure, psig Superheater Cutlet Temperature, oF Superheater Cutlet Temperature		Depth of Fuel Bed:	51 inches	
Test Load: Duration of Test:50,000 lb. steam per hour 5 hoursProximate Analysis: MoistureAir-dry 0.45As Fired 5.7Combustible 0.45Nolsture Volatile Matter0.455.718.9Ash Content Ash Content20.2519.218.9Fixed Carbon Ash Carbon63.8060.881.1Air-dry Loss5.235.235.23Carbon and Hydrogen: As Fired Carboa HydrogenAs Fired 0.6840Higher Heating Value: Hydrogen11,730 Btu per lb. As FiredRefuse: Boiler Drum Pressure, psig Superheater Cutlet Pressure, psig Superheater Cutlet Temperature, oF Superheater Cutlet Temperature, oF Superheater Cutlet Temperature, oF Superheater Cutlet Temperature, oF Superheater Cutlet Temperature, oF Fue Gas Temperature from Air Heater, oF Hue Gas Temperature from Air Heater, oF Hue Sa Steam Generated, lbs. Steam Generated, lbs.32.373Steam Generated, lbs. Naporation, lbs.32.373		Test Coal Mixture:	4:1	
Duration of Test:5 hoursProvinate Analysis:Air-dryAs FiredCombustibleMoisture0.455.718.9Ash Content20.2519.218.9Ash Content20.2519.251.1Air-dry Loss5.2360.881.1Air-dry Loss5.2352.351.1Garbon and Hydrogen:As Fired0.6640Hydrogen0.031111.730 Btu per 1b. As FiredRefuse:Per Cent RefuseCarbon in Refuse28.3532.3Average Orsat Analysis:GO202CONo 637.30.0752.00Average Data:ItemCorrected ReadingBoliter Drum Pressure, psig248.5Barimetric Pressure, in. Hg.227.5Superheater Outlet Pressure, oF514.0Dry-bulb Temperature, OF227.5Wet-bulb Temperature, OF47.0Flue Gas Temperature, OF44.0Wet-bulb Temperature, OF74.4Weight of Coal, 1bs.32.373Steam Generated, 1bs.241.100Hyaporation, 1bs. of steem/1b. of coal7.45		Test Load:	50,000 1b.	steam per hour
Proximate Analysis:Air-dryAs FiredCombustibleMoisture0.455.7Volatile Matter15.5014.318.9Ash Content20.2519.2Fixed Carbon63.8060.881.1Air-dry Loss5.235.235.235.235.23Carbon and Hydrogen:As FiredS Fired85.23Garbon and Hydrogen:As Fired0.6640411.730Higher Heating Value:11.730Btu per 1b. As Fired8Refuse:Per Cent RefuseCarbon in Refuse28.3532.332.3Average Oraat Analysis:CO20200M210.637.30.0752.00Average Data:ItemCorrected ReadingBoiler Drun Pressure, psig260248.5Barimetric Pressure, in. Hg.28.4854.5Feedwater Temperature, oF514.027.5Superheater Outlet Temperature, oF514.0Dry-bulb Temperature, oF47.0Flue Ges Temperature, oF47.0Flue Ges Temperature, oF47.0Flue Ges Temperature, oF44.4Weight of Coal, 1bs.32.373Steam Generated, 1bs.241.100Hysporation, 1bs. of steem/1b. of coal7.45		Duration of Test:	5 hours	
Proximate Analysis:Air-dryAs FiredCombustibleMoisture0.455.7Volatile Matter15.5014.318.9Ash Content20.2519.215.918.918.9Ash Content20.2519.211.118.9Air-dry Loss5.235.235.235.11Garbon and Hydrogen:As Fired0.68405.75.7Garbon and Hydrogen:0.68400.684011.7308Higher Heating Value:11.730Btu per 1b. As Fired8Refuse:Per Cent RefuseCarbon in Refuse28.3532.332.3Average Orsat Analysis:CO2O2COM210.637.30.0752.00Average Data:ItemCorrected ReadingBoiler Drun Pressure, psig246.5Barimetric Pressure, in. Hg.28.48Feedwater Temperature, oF514.0Dry-bulb Temperature, oF47.0Flue Gas Temperature, oF47.0Vet-bulb Temperature, oF74.4Weight of Coal, 1bs.32.373Steam Generated, 1bs.241.100Hyaporation, 1bs. of steem/1b. of coal7.45Blowdown, 1bs.7.45				
Average Data: Item Consultation Consultation Moisture 0.45 5.7 Volatile Natter 15.50 14.3 18.9 Ash Content 20.25 19.2 Fixed Carboa 63.80 60.6 61.1 Air-dry Loss 5.23 5.23 Carbon and Hydrogen: As Fired 0.6540 Higher Heating Value: 11,730 Btu per 1b. As Fired Negative 11.730 Btu per 1b. As Fired Refuse: Per Cent Refuse Carbon in Refuse 28.35 32.3 Average Orsat Analysis: CO2 O2 CO M2 10.63 7.3 0.07 82.00 Average Data: Item Corrected Reading Boiler Drun Pressure, psig 248.5 5 Superheater Cutlet Pressure, psig 248.5 5 Superheater Temperature, OF 514.0 10.7.0 Dry-bulb Temperature, OF 514.0 10.7.0 Provelb Temperature, OF 47.0 14.2.8 Fuel Temperature, OF 47.0 14.2.8 Fuel Temperature, OF 44.2.8 7.44 Weight of Coal, 1bs. </td <td>Dun mit marks the strength as</td> <td>h it was to uncern</td> <td>t</td> <td></td>	Dun mit marks the strength as	h it was to uncern	t	
Volatile Matter 15.50 14.3 18.9 Ash Content 20.25 19.2 14.3 18.9 Fixed Carbon 63.80 60.8 81.1 Air-dry Loss 5.23 5.23 60.8 81.1 Carbon and Hydrogen: As Fired 0.6840 60.8 81.1 Higher Heating Value: 11,730 Btu per 1b. As Fired 18.9 10.0311 Higher Heating Value: 11,730 Btu per 1b. As Fired 18.9 Refuse: Per Cent Refuse Carbon in Refuse 28.35 32.3 32.3 Average Orsat Analysis: CO2 O2 CO N2 10.63 7.3 0.07 62.00 Average Data: Item Corrected Reading Boiler Drun Pressure, psig 248.5 5 Barinetric Pressure, in Hg. 248.5 5 Superheater Outlet Temperature, °F 514.0 17.0 Dry-bulb Temperature, °F 514.0 17.0 Pre-Dub Temperature, °F 47.0 14.2 Wet-bulb Temperature, °F 47.0 Flue Gas Temperature from Air Heater,	Med at the	Alf-dry a	s alred	COMPRELIDIS
Ash Content 20.25 19.2 Fixed Carbon 65.80 60.6 81.1 Air-dry Loss 5.23 5.23 51.1 Carbon and Hydrogen: As Fired 65.40 60.6 81.1 Higher Heating Value: 11,730 Btu per 1b. As Fired 65.40 60.6 81.1 Higher Heating Value: 11,730 Btu per 1b. As Fired 62.35 52.3 52.3 Average Orsat Analysis: CO2 02 CO N2 10.63 7.3 0.07 62.00 Average Data: Item Corrected Reading 260 848.5 5 5 Barimetric Pressure, psig 248.5 248.5 5	Volotia Watta	15 50	.2.1	10 M
Air contentEC.2319.2Fixed Carboa63.8060.881.1Air-dry Loss5.235.23Carboa0.6840Hydrogen0.0311Higher Heating Value:11,730 Btu per 1b. As FiredRefuse:Per Cent RefuseCarboa in Refuse28.3532.3Average Orsat Analysis:CO2O210.637.50.07801er Drun Pressure, psig248.5Barinetric Pressure, in. Hg.28.48Feedwater Temperature, OF227.5Superheater Outlet Temperature, OF514.0Dry-bulb Temperature, OF47.0Fuel Temperature, OF47.0Fuel Temperature, OF47.0Fuel Temperature, OF74.4Weight of Coal, 1bs.32.373Steam Generated, 1bs.241.100Hydrogen7.45Blowdown, 1bs.7.720	Vap Contant	19. 90 90 95	14.3	10.7
Air-dry Loss 5.23 Garbon and Hydrogen: As Fired Garbon 0.6840 Hydrogen 0.0311 Higher Heating Value: 11,730 Btu per 1b. As Fired Refuse: Per Cent Refuse Carbon in Refuse 28.35 32.3 Average Oract Analysis: CO2 CO N2 10.63 7.3 0.07 52.00 Average Data: Item Corrected Reading Boiler Drum Pressure, psig 245.5 25.35 Superheater Cutlet Pressure, psig 245.5 Rerimetric Pressure, in. Hg. 25.45 Superheater Outlet Temperature, OF 514.0 Bry-bulb Temperature, OF 62.1 Wet_bulb Temperature, OF 47.0 Fue Gas Temperature from Air Heater, OF 44.0 Weight of Coal, 1bs. 32.373 Steam Generated, 1bs. 241,100 Kraporation, 1bs. of steen/1b. of coal 7.45 Blowdown, 1bs. 7.45	Tirad Combon	67 80	17.6 60 g	Ø4 1
Alt-dry Loss 9.23 Carbon and Hydrogen: As Fired Carbon 0.6840 Hydrogen 0.0311 Higher Heating Value: 11,730 Btu per 1b. As Fired Refuse: Per Cent Refuse Carbon in Refuse 28.35 32.3 Average Orsat Analysis: CO2 CO N2 10.63 7.3 0.07 52.00 Average Data: Item Corrected Reading Boiler Drun Pressure, psig 260 248.5 Barimetric Pressure, in. Hg. 28.48 260 Superheater Outlet Pressure, psig 248.5 Barimetric Pressure, in. Hg. 28.48 Feedwater Temperature, OF 514.0 Dry-bub Temperature, OF 514.0 Dry-bub Temperature, OF 47.0 Flue Gas Temperature from Air Heater, OF 442.8 Fuel Temperature, OF 74.4 Weight of Coal, 1bs. 32.373 Steam Generated, 1bs. 241,100 Steam Generated, 1bs. 7.45 Blowdown, 1bs. 7.45	AS TO JUNE TO A	03.00	00.0	O.L. L
Carbon and Hydrogen: As Fired Carbon 0.6840 Hydrogen 0.0311 Higher Heating Value: 11,730 Btu per 1b. As Fired Refuse: Per Cent Refuse Carbon in Refuse 28.35 32.3 Average Orsat Analysis: CO2 CO N2 10.63 7.3 0.07 82.00 Average Orsat Analysis: CO2 CO N2 10.63 7.3 0.07 82.00 Average Data: Item Corrected Reading Boiler Drun Pressure, psig 248.5 Barimetric Pressure, in. Hg. 28.48 Feedwater Temperature, OF 227.5 Superheater Outlet Temperature, OF 514.0 Dry-bulb Temperature, OF 62.1 Wet-bulb Temperature, OF 47.0 Fue Gas Temperature from Air Heater, OF 442.8 Fuel Temperature, OF 74.4 Weight of Coal, lbs. 32.373 Steam Generated, lbs. 241.100 Fueporation, lbs. of steen/lb. of coal 7.45	AIP-ITY LOBS	9.23		
Carbon Hydrogen0.6840 0.0311Higher Heating Value:11,730 Btu per 1b. As FiredRefuse:Per Cent Refuse 28.35Carbon in Refuse 32.3Average Orsat Analysis:CO2 20 10.63O2 	Carbon and Hydrogen:	As Fired		
Hydrogen0.0311Higher Heating Value:11,730 Btu per 1b. As FiredRefuse:Per Cent Refuse 28.35Carbon in Refuse 32.3Average Orsat Analysis:CO2 20 10.63O2 7.3CO 2.00Average Data:ItemCorrected Reading 260Boller Drun Pressure, psig Superheater Outlet Pressure, psig Barimetric Pressure, in. Hg.28.48 248.5 514.0Feedwater Temperature, °F Fuel Temperature, °F214.0 514.0Dry-bulb Temperature, °F Fuel Temperature, °F47.0 74.4Weight of Coal, 1bs. Steam Generated, 1bs.32.373 241.100 7.45Blowdown, 1bs.Of steem/1b. of coal 7.45	Carbon	0.6840		
Higher Heating Value:11,730 Btu per 1b. As FiredRefuse:Per Cent Refuse 28.35Carbon in Refuse 32.3Average Orsat Analysis:CO2 10.63O2 7.3CO 92.00Average Data:ItemCorrected Reading 260Boiler Drun Pressure, psig Superheater Outlet Pressure, psig Barimetric Pressure, in. Hg.260 248.5Berimetric Pressure, in. Hg.227.5Superheater Outlet Temperature, OF Met-bulb Temperature, OF514.0 47.0Fuel Gas Temperature, OF Fuel Temperature, OF47.0 74.4Velght of Coal, 1bs.32.373 7.3Steam Generated, 1bs.32.373 7.720	Hydrogen	0.0311		
Average Data:ItemCorrected ReadingBoiler Drun Pressure, psig260Superheater Outlet Pressure, psig248.5Barimetric Pressure, in. Hg.26.48Feedwater Temperature, °F227.5Superheater Outlet Temperature, °F514.0Dry-bulb Temperature, °F62.1Wet-bulb Temperature, °F47.0Flue Gas Temperature, °F74.4Weight of Coal, 1bs.32.373Steam Generated, 1bs.241.100Evaporation, 1bs. of steam/1b. of coal7.45Blowdown, 1bs.7.720	Average Orsat Analys		00 00	" ^N 2
Average Data:ItemCorrected ReadingBoiler Drun Pressure, psig260Superheater Outlet Pressure, psig248.5Barimetric Pressure, in. Hg.28.48Feedwater Temperature, °F227.5Superheater Outlet Temperature, °F514.0Dry-bulb Temperature, °F62.1Wet-bulb Temperature, °F47.0Flue Gas Temperature from Air Heater, °F142.8Fuel Temperature, °F74.4Weight of Coal, 1bs.32.373Steam Generated, 1bs.241.100Evaporation, 1bs. of steam/1b. of coal7.45Blowdown, 1bs.7.720		10.05 (.5	0.07	82.00
Superheater Dutlet Pressure, psig248.5Superheater Outlet Pressure, in. Hg.28.48Feedwater Temperature, °F227.5Superheater Outlet Temperature, °F514.0Dry-bulb Temperature, °F62.1Wet-bulb Temperature, °F47.0Flue Gas Temperature, °F47.0Fuel Temperature, °F74.4Weight of Coal, 1bs.32.373Steam Generated, 1bs.241.100Evaporation, 1bs. of steam/1b. of coal7.45Blowdown, 1bs.7.720	Rollow Drum Drosen	l Gem	VOFTEC	ted negating
Barimetric Pressure, in. Hg.28.48Feedwater Temperature, °F227.5Superheater Outlet Temperature, °F514.0Dry-bulb Temperature, °F62.1Wet-bulb Temperature, °F47.0Flue Gas Temperature, °F47.0Flue Gas Temperature, °F74.4Weight of Coal, 1bs.32.373Steam Generated, 1bs.241.100Evaporation, 1bs. of steam/1b. of coal7.45Blowdown, 1bs.7.720	Superheater (utlei	Presente nele	ے ہ	ha e
Feedwater Temperature, °F227.5Superheater Outlet Temperature, °F514.0Dry-bulb Temperature, °F62.1Wet-bulb Temperature, °F47.0Flue Gas Temperature, °F442.8Fuel Temperature, °F74.4Weight of Coal, 1bs.32.373Steam Generated, 1bs.241.100Evaporation, 1bs. of steam/1b. of coal7.45Blowdown, 1bs.7.720	Barlmatric Prosent	e in No	£	no. 7 90 he
Superheater Outlet Temperature, °F514.0Dry-bulb Temperature, °F62.1Wet-bulb Temperature, °F47.0Flue Gas Temperature from Air Heater, °F442.8Fuel Temperature, °F74.4Weight of Coal, 1bs.32.373Steam Generated, 1bs.241.100Evaporation, 1bs. of steam/1b. of coal7.45Blowdown, 1bs.7.720	Reductor Remoral	\mathbf{O}	9	50.70 97 E
Dry-bulb Temperature, °F62.1Wet-bulb Temperature, °F47.0Flue Gas Temperature from Air Heater, °F442.8Fuel Temperature, °F74.4Weight of Coal, 1bs.32.373Steam Generated, 1bs.241.100Evaporation, 1bs. of steam/1b. of coal7.45Blowdown, 1bs.7.720	Superheater Outlet	t Mammaratura OR		
Wet-bulb Temperature, °F47.0Flue Gas Temperature from Air Heater, °F442.8Fuel Temperature, °F74.4Weight of Coal, 1bs.32.373Steam Generated, 1bs.241.100Evaporation, 1bs. of steam/1b. of coal7.45Blowdown, 1bs.7.720	Dru-hulh Wennerst	ma OW	2	69 1
Flue Gas Temperature from Air Heater, OF442.8Fuel Temperature, OF74.4Weight of Coal, lbs.32.373Steam Generated, lbs.241.100Evaporation, lbs. of steem/lb. of coal7.45Blowdown, lbs.7.720	Vet_hulh Temporatu	ire Or		117 A
Fuel Temperature, OF74.4Weight of Coal, 1bs.32.373Steam Generated, 1bs.241.100Evaporation, 1bs. of steam/1b. of coal7.45Blowdown, 1bs.7.720	Fille Ges Temnerst	ire from Air Hester	0章 11	19 g
Weight of Coal, 1bs. 32.373 Steam Generated, 1bs. 241.100 Evaporation, 1bs. of steam/1b. of coal 7.45 Blowdown, 1bs. 7.720	Fuel Temperature.	op		71 1
Steam Generated, lbs. 241,100 Evaporation, lbs. of steem/lb. of coal 7.45 Blowdown, lbs. 7.720	Weight of Coal, 11	35.	22 3	77
Evaporation, 1bs. of steem/1b. of coal 7.45 Blowdown, 1bs. 7.720	Steam Generated. 1	be.	241 1	00
Blowdown, 1bs. 7.720	Evaporation. 1bs.	of steem/1b. of coal	6000 · · · · · · · · · · · · · · · · · ·	7.45
	Blowdown, 1bs.		7.7	20

TEST NO. 1 DATA SHENT

2-16-51

					T KM	PERATU	ris (°	F)			
ant.	DRY BULLS	RIUS TRV	MM	GAS TO HEATER (RECORDER)	CAS FROM HEATER (ENCORDER)	AIR TO HEATER (RECORDER)	AIR PROM HEAPER (RECORDER)	AIR PROM HEAFES (PHERMO.)	FREIMATER (RECORDER)	INLET SUPERHEAT ER (THERMO.)	OUTLET SUPERHEATER (THERMO.)
6: 30	64	48	80	619	440	69	338	320	225	402	511
6:45	63	48		619	440	70	330	315	225	398	518
7:00	63	48	81	625	450	70	340	320	225	401	515
7:15	63	48		626	450	69	340	322	226	400	515
7:30	63	48	75	623	450	69	340	321	226	401	517
7:45	63	48		620	450	68	334	320	223	402	518
8:00	62	47	74	620	448	69	342	320	226	402	516
8:15	63	48		621	449	69	340	318	227	402	518
8:30	62	47	74	622	449	69	332	318	230	402	518
8:45	62	47		622	450	68	338	321	230	401	516
9:00	62	47	74	620	443	69	336	318	230	402	516
9:15	62	47	untio an	620	440	69	336	315	230	402	516
9:30	61	46	74	620	440	69	334	315	230	402	510
9:45	61	46		620	440	69	324	315	230	402	510
10:00	59	46	73	620	445	69	340	320	230	402	513
10:15	60	46		620	445	69	340	321	230	402	510
10:30	59	46	72	620	440	69	340	320	230	402	512
10:45	61	47		620	440	68	340	318	225	401	512
11:00	60	46	70	620	440	65	340	318	225	401	510
11:15	59	46		620	438	65	330	318	227	401	510
11:30	60	46	72	618	440	65	336	318	230	401	510
Ave.	62.1	47	74.4	620	442.8	68.5	337	318 2	27.5	401	514

TEST NO. 1 DATA SHEET

				PI	ressu	R III					ORS	AT	
The	BARONITER IN. HC.	DRUM PRESS. PSIG	S. H. PRESS. PSIG	AIR IN HEATER IN. HEO	NINDBOX IN. H2O	FURNAC E IN. H2O	LAST PASS IN. H ₂ 0	OUTLAT AIR HEATER IN. E20	I. D. FAU IN. Red	60 2	62	8	n2 M2
6:30	28.47	265	258	3.2	1.7	-0.23	-1.5	-3	-5.8	11.2	6.7	0.1	81.0
6:45		260	250	4.0	2.2	-0.21	-1.4	-3	-6			-	_
7:00		265	254	3.5	1.9	-0.12	-1.5	-3	-6	11.8	6.3	0.1	80.8
7:15		265	253	3.5	1.9	-0.31	-1.5	-3	-6	10.4	8.0	0.2	81.4
7:30	28.48	263	253	3.5	1.9	-0.35	-1.5	-3	-6	8.2	7.8	0	84.0
7:45		265	253	3.3	1.7	-0.45	-1.5	-3	-6	10.6	8.0	0.2	81.2
8:00		262	254	4.0	2.2	-0.30	-1.5	-3	-6	10.6	7.6	0.2	81.6
8:15		204	252	4.0	2.1	-0.26	-1.5	-3	-6	8.8	9.7	0.1	81.4
8:30	28.48	264	255	4.1	2.1	-0.22	-1.5	-3	-6	9.8	7.8	0	82.4
8:45		265	255	3.5	1.8	-0.33	-1.5	-3	-6			_	
9:00		265	255	3.4	1.8	-0.27	-1.5	-3	-6	9.8	8.0	0.1	82.1
9:15		265	255	3.6	2.0	-0.24	-1.5	-3	-6	9.4	6.8	0.1	83.7
9:30	28.48	265	255	3.2	1.7	-0.30	-1.5	-3	-5.9	15.2	6.8	0.1	77.9
9:45		265	256	3.6	1.9	-0.13	-1.5	-3	-5.9	9	8.6	0	82.4
10:00		266	255	3.1	1.7	-0.30	-1.5	-3	-5.9	10.8	7.3	0.1	81.6
10:15		266	259	3.0	1.6	-0.30	-1.5	-3	-5.8	11.1	7.5	0	81.4
10:30	28.48	266	254	3.4	1.8	-0.23	-1.5	-3	-6	11.0	7.2	0	81.8
10:45		264	254	3.2	1.7	-0.29	-1.5	-3	-6	11.3	7.2	0.1	81.4
11:00		265	255	3.3	1.8	-0.30	-1.5	-3	-6	11	6.9	0	82.1
11:15		265	255	3.0	1.6	-0.23	-1.5	-3	-6		_	_	-
11:30	28.48	267	257	3.0	1.7	-0.28	-1.5	-3	-6	11.3	7.1	0	81.9
Ave.	28.48	265	254.5	3.45	1.84	-0.27.0	-1.5	-3	-6	10.63	7.30	0.07	82.00

2-16-51

-37-

TEST NO. 2 SUMMARY OF DATA

	Depth of Fuel Test Coal Mixt Test Load: Duration of Te	Bed: Sure:	inches 1 0,000 1b. hours	steam per hour
				lander og en
Proximate Analysis:	Alr-dry	As I	'ired	Combusiible
Moisture	0.56	9		
Volatile Matter	14.68	13	.7	18.4
Ash Content	20.67	19		
Fixed Carbon	64.09	60	.9	81.6
Air-dry Loss	5.30			
Cerbon and Hydrogen:	As Fired			
Carbon	0.6280	1. a		
Hydrogen	0.0495			에 있는 것이 있는 것이 있는 것이다. 1993년 - 1993년 - 1993년
Righer Heating Value:	11,720 Bto	per lt	. As Fire	d
Refuse:	Per Cent Refuse 28.9	•	arbon in 32.2	Refuse
Average Orsat Analysis:	602 12.0	02 6.77	00 0.05	N2 81.18
Average Data:	Item		Correc	ted Reading
Boiler Drum Pressure	, psig		2	61.0
Superheater Outlet H	ressure, psig		2	50.0
Barimetric Pressure,	in, Hg.	n in terri. Notes fatter a		28.32
Teedwater Temperatur	re, op		2	33.0
Superheater Outlet 1	emperature, °I		5	05.0
Dry-bulb Temperature	, of			61.9
Wet-bulb Temperature	, of			49.8
Flue Gas Temperature	from Air Heat	er, of	lį,	25.0
Fuel Temperature, ⁰ 1				71.8
Weight of Coal, 1bs.			30.5	18
Steen Generated, 1bs	•		235,6	48
Evaporation, 1bs. of	eteam/1b. of	coal		7.73
Elowdown, 1bs.			7.3	85

TEST NO. 2 DATA SHEET

2-16-51

	1				Tim	PERATU	res (°	P)			
	RK BULB	WELL BULLS	MB	GAS TO HEATER (RECORDER)	GAS FROM HEATHER (RECORDER)	AIR TO REATER (RECORDER)	AIR FROM HEATER (THERMO.)	AIR FROM HEATER (RECORDER)	FEEDMATER (RMCORDER)	INLET SUPERHAMER (THERMO.)	CUTLET SUPERHEATER (THERMO.)
4:30	59	47	73	665	437	65	344	327	234	402	501
4:45	60	47		650	435	65	348	328	231	402	502
5:00	60	47	71	680	439	65	340	320	230	402	502
5:15	61	48		650	435	65	338	320	231	402	506
5:30	59	47	70	650	437	65	340	31.9	232	402	506
5:45	60	48		650	435	65	342	320	235	402	506
6:00	63	50	73	655	435	65	336	320	235	402	504
6:15	63	50	Γ	655	438	65	348	326	233	402	504
6:30	60	48	74	655	438	65	338	322	232	402	507
6:45	60	48		655	434	65	340	322	232	402	509
7:00	60	48	72	652	438	65	340	320	235	402	509
7:15	62	50		650	435	65	340	320	232	402	506
7:30	65	52	70	650	438	68	338	320	232	402	508
7:45	64	51	I	650	440	68	340	322	233	402	505
8:00	65	51	68	635	440	68	340	330	232	402	508
8:15	64	53		630	435	68	340	325	234	402	504
8:30	61	52	72	630	430	68	338	320	235	402	504
8:45	61	51		628	425	68	338	320	235	402	504
9:00	64	54	73	628	430	68	338	320	236	402	502
9:15	62	54		615	435	68	338	320	236	402	505
9:30	63	54	73	615	435	68	340	320	235	102	509
Ave.	61.9	49.8	71.8	645	435	66.4	340	322	233	402	505

- 39-

TEST NO. 2 DATA SHEET

				n n ser i s Antonia fasta da	PRESS	URS					orsi	æ	
ant a	BARONETTE II. HO.	IRUM PRESS. PSIG	S. R. FRISS. PSIG	AIR IN HEATER IN. H20	WINDBOX II. H ₂ 0	FURNACE IN. H ₂ 0	LAST PASS IN. H20	OUTLET AIR HIATER IN. H20	I. D. FAN IN. H ₂ 0	2 00	6	8	S.
4:30	28.32	268	255	2.2	1.2	-0.22	-1.2	-2.2	-4.2	12.2	6.9	0.2	80.7
4:45		270	260	2.0	1.0	-0.22	-1.1	-2.1	-4.0	13.6	5.2	0.3	80.9
5:00		265	255	2.7	1.4	-0.25	-0.9	-2.9	-5.5	11.8	7.4	0	80.8
5:15		266	255	2.8	1.3	-0.17	-1.5	-1.8	-3.7	9.4	8.1	0.1	82.4
5:30	28.32	263	254	2.5	1.7	-0.23	-1.0	-3.0	-6.0	11.4	7.0	0	81.6
5:45		266	257	2.2	1.3	-0.23	-1.2	-2.0	_4.0	13.0	5.8	0	81.2
6:00	99	267	258	2.3	1.1	-0.35	-1.3	-2.4	-4.5	12.0	7.0	0	81.0
6:15		265	255	2.5	1.3	-0.24	-1.2	-2.3	-4.5	12.4	6.6	0	81.0
6: 30	28.32	265	255	2.3	1.3	-0.25	-1.3	-2.4	-4.7	12.4	6.6	0	81.0
6:45		266	257	2.7	1.2	-0.20	-1.3	-2.3	-4.5	11.0	7.1	0.1	81.8
7:00		265	255	2.5	1.4	-0.20	-1.4	-2.6	-5.0	11.7	7.4	0	80.9
7:15	an said ini a sain an	265	255	2.3	1.2	-0.26	-1.5	-2.5	_4.8	12.5	7.0	0	80.5
7:30	28.32	265	255	2.7	1.4	-0.24	-1.5	-2.7	-5.0	11.3	6.4	0.1	81.2
7:45		265	255	2.8	1.4	-0.18	-1.5	-2.7	-5.2	12.2	7.8	0.1	79.9
8:00		265	258	2.2	1.1	-0.30	-1.3	-2.7	-5.0	11.9	7.4	0	80.7
8:15		266	258	2.2	1.1	-0.28	-1.2	-2.3	-4.3	11.7	7.3	0	81.0
8:30	28.32	265	256	2.5	1.4	-0.20	-1.5	-2.1	-4.2	13.1	5.9	0	81.0
8:45		268	258	2.1	1.1	-0.23	-1.5	-1.7	-3.0	12.9	5.4	0.1	80.7
9:00		265	257	2.2	1.1	-0.15	-1.5	-3.0	-5.5	12.0	6.3	0	81.7
9:15		266	258	2.2	1.1	-0.30	-1.2	-2.7	-5.0	11.6	6.7	0	81.7
9:30	28.32	262	253	3.0	1.1	-0.17	-1.3	-2.7	-5.0	11.2	7.0	0	81.8
Ave.	28.32	266	256	2.56	1.22	-0.23	-1.3	-2.33	4.85	12.0	6.77	0.05	81.18

2-16-51

40

TEST NO. 3 SUMMARY OF DATA

	Depth of Fue	l Bed:	4 inches	an an an Arbana Batan Arbana Arbana	
	Test Coal M1:	kture:	4:1		
	Test Load:		50,000 16.	steam per	hour
	Duration of !	lest:	5 hours		
					2
<u> Eroximate Analysis:</u>	Air-dry	As	Fired	Combusti	ble
Noisture	1.73	· · · · ·	6.3		
Volatile Matter	12.60	1	12.0	17.4	
Ash Content	26.00	2	24.8		ţ.
Fixed Carbon	59.67	5	56.9	82.6	
Air-dry Loss	4.66				
Carbon and Hydrogen:	As Fired				
Carbon	0.6250				
Hydrogen	0.0344				
		e na sere e La companya			
Higher Heating Value:	10,840 31	n per]	b. As Fired	Line, in the	
				a da ser a ser en s En ser en ser	÷ † .
Refuse:	er Cent Refu	10	Carbon in I	lefuso	
	36.0		32.9		
Average Orsat Analysis:	. CO2	02	CO	³³ 2	
 The second se Second second sec	9.50	9.27	0.08	81.15	. '
					- 19 - E
Average Data:	Item		Correct	led Reading	0 6
Boiler Drum Pressure	, psig		2	59.0	
Superheater Outlet F	ressure, psid	P	51	18.0	
Barimetric Pressure,	in. Hg.		Ê	27.95	
Feedwater Temperatur	e, of		22	29.3	
Superheater Outlet 1	emperature, C	T	51	16.0	
Dry-bulb Temperature	, of		£	1.1	
Wet-bulb Temperature	or		5	57.9	
Flue Gas Temperature	from Air Hee	ter. of	۰ Li	6.6	
Fuel Temperature, OF			é	10.6	
Weight of Coal. 1bs.			36.37	18	
Steam Generated. 1bs			245 50	m	
Evaporation. 1bs. of	steam/lb. of	coal		6.75	·
Blowdown. 1ba.	nin in manakanan kanakan sebuah s	ALC OF BUILDING	2 17	1 I J	
يوسي والمعالم المعالم			ال ملد و تن		

TEST NO. 3 DATA SHENT

	TEMPERATURES (°F)											
	Date of the second seco		THE SECOND	GAS TO HEATER (RECORDER)	GAS FROM HEAVER (RUCORDER)	ALR TO REATER (RECORDER)	AIR FRON HEATER (THERMO.)	AIR FROM HEATUR (RECORDER)	PERIMATER (RECORDER)	INLET SUPERHEATER (THTENO.)	OUTLE? SUPERIE AATER (THERWO.)	
10:15	77	61	80	580	435	80	338	320	230	400	51.6	
10:30	80	58		583	435	81	334	320	230	400	516	
10:45	80	58	81	580	430	83	340	320	230	400	513	
11:00	82	64		580	430	85	338	315	230	400	516	
11:15	81	59	80	580	431	85	340	320	231	400	512	
11:30	81	59		585	433	85	346	322	231	401	514	
11:45	81	58	82	583	435	87	344	322	230	400	510	
12:00	82	59		590	445	85	342	330	230	400	519	
12:15	82	59	81	580	440	86	346	332	230	403	513	
12:30	84	59		578	432	87	344	329	230	400	518	
12:45	84	59	80	580	435	80	342	329	230	400	516	
1:00	84	59		584	436	87	342	330	230	39 9	518	
1:15	83	58	80	580	435	88	340	329	230	400	516	
1:30	83	58		582	440	88	340	329	230	399	517	
1:45	83	57	80	587	440	88	340	325	230	398	516	
2:00	82	57		585	440	86	342	329	230	400	520	
2:15	82	58	81	578	437	86	342	330	230	400	516	
2:30	79	54		583	1440	86	344	329	230	400	516	
2:45	78	54	82	580	440	83	342	328	230	400	518	
3:00	78	54		578	440	83	344	332	226	400	520	
3:15	79	54	80	580	440	83	342	330	226	400	512	
Ave.	81.1	57.9	80.6	582	+36.6	84.3	342	326	229.3	400	516	

2-27-51

TEST NO. 3 DATA SHEET

		9.99 (44 THAT DIRECTOR OF A DAY	999-999 (* 1997) 1999 - 1994 (* 1997)	Ŧ	500,520,0 20 ,000,000,000,000,000,000,000,000,000,	ORSAT							
THE	BARONNTER IN. HG.	DRUM PRESS. PS IG	s. H. PRESS. PSIG	AIR IN HEATME IN. R ₂ 0	WINDBOX IN. H ₂ 0	FURNACE IN. H20	LAST BASS IN. H20	OUTLET AIR HEATER IN. K20	I. D. PAN II. H ₂ O	8	ð	8	CJ IM
10:15	27.96	260	251	3.4	2.2	-0.1	-1.5	-3.0	-5.7	9.7	9.9	0	81.2
10:30		263	253	3.3	1.8	-0.22	-1.5	-3.0	-4.7	9.2	9.6	0.2	81.0
10:45		261	251	3.2	1.9	-0.05	-1.2	-2.2	-4.5	9.0	9.8	0	81.2
11:00		262	251	3.4	2.0	-0.15	-1.5	-2.7	-5-3	8.3	10.9	0	80.8
11:15	27.96	265	251	3.0	1.8	-0.18	-1.5	-2.6	-4.6	8.6	10.6	0	80.8
11:30		265	255	2.9	1.7	-0.15	-1.4	-2.4	-4.1	10.2	9.0	0.2	80.6
11:45		265	255	2.8	1.6	-0.24	-1.3	-2.1	-6.0	9.2	10.4	0.2	80.2
12:00		263	252	3.4	2.2	-0.14	-1.5	-3.0	-5.0	8.7	10.5	0	80.8
12:15	27.95	265	255	2.6	1.5	-0.22	-1.5	-2.6	-4.5	10.2	8.4	0.3	81.1
12:30		265	255	2.7	1.6	-0.02	-1.3	-2.3	-4.5	10.4	8.4	0.1	81.1
12:45		266	255	2.7	1.5	-0.13	-1.3	-2.4	-4.5	9.4	10.1	0.1	80.4
1:00		265	255	2.7	1.6	-0.09	-1.2	-2.3	-4.8	11.6	7.8	0	80.6
1:15	27.94	265	255	2.6	1.5	-0.20	-1.4	-2.3	-5.4	10.1	9.7	0	80.2
1:30		264	252	3.1	1.7	-0.28	-1.5	-2.8	-5.9	9.6	10.2	0	80.2
1:45		260	250	3.6	2.0	-0.18	-1.5	-3.0	-5.6	9.0	10.4	0	80.6
2:00		265	255	3.2	1.8	-0.20	-1.5	-2.9	-4.6	-			CHEVRON AND A CHEVRON
2:15	27.94	265	255	2.8	1.7	-0.10	-1.3	-2.3	-5.7	10.2	9.3	0	80.5
2:30		265	255	3.3	1.9	-0.10	-1.5	-3.0	-5.3	9.0	10.4	0.2	80.4
2:45		264	253	3.0	1.8	-0.11	-1.5	-2.9	-4.9	8.8	10.8	0.3	80.1
3:00		265	255	2.6	1.5	-0.15	-1.6	-2.5	-5.6	9.3	9.9	0	\$0.8
3:15	27.94	265	255	2.6	1.4	-0.32	-1.5	-3.0	-5.0				
Ave.	27.95	264	253.7	3.03	1.74	-0.16	-1.42	-2.63	507	9.50	9.27	0.08	81.15

2-27-51

-43-

TIST	NO.	4	SUMMARY	OF	DATA
the product of	144 M. 4		124 HAR & WAR - HAR HAR HE	10.00	HOLE BY BY HE IS

	Depth of Fuel TEst Coal Mixi Test Load: Duration of Te	Bed: $5\frac{1}{2}$ inchesbure:4:150,000 lbbest:5 hours	. steam per hour
	A A was Nicerca	A	A
Proximate Analysis:	Alr-dry 2.60	AS FIRED	COMPUSTIOLE
Volatile Metter	14.30	0.0 17 g	20.0
Ash Content	24.50	24.4	
Fixed Carbon	58.60	55.0	80.0
Air-dry Loss	4.29		
Carbon and Hydrogen: Carbon	As Fired 0.6150		
Hydrogen	0.0343		
Eigher Heating Value:	10,820 Btr	ı per 1b. As Fir	₽ å
<u>Refuse:</u>	Per Cent Refus 34.65	e Carbon in 30.0	Refuse)
Average Orset Analysis	: 602	0o CO	No
	10.26	8.77 0.06	80.91
Average Data:	Item	Corre	cted Reading
Boiler Drum Pressur	e, psig		258.0
Superheater Outlet	Pressure, psig		247.5
Barimetric Pressure	, in. Hg.		27.96
Feedwater Temperatu	re, °F		225.0
Superheater Outlet	Temperature, "I		518.0
bry-bulb Temperatur	e, vr		18.3
Wet-Duid Temperatur	e, vr		22.1
Flue Gas Temperatur	e irom air meat T	ier, vr	+31.3
unel temperature,	#	ha	01.J
stoom Generated 1h		40, 2h7 (11)
Evenoration 1h- o	f steem/th of	600 ¹	6 53
Blowdown, 1bs.	* sandard The AT	2,0	990

TEST NO. 4 DATA SHEET

		TEMPERATURE (°F)										
T	MLB M		Inu	(RECORDER)	GAS FROM HEATER (R BOORDER)	ATH TO FEATUR	AIR FROM REAFER (RECORDER)	AIR FROM MEATER (THEREO.)	FUNDWATUR (RECORDER)	INLET SUPERHEATER (THERIO.)	OUPLAR SUPERHEAFER (THERMO.)	
4:15	7 9	54	81	585	445	g4	330	342	226	400	524	
4:30	78	53		585	442	g4	330	340	225	400	522	
4:45	79	54	79	580	440	85	329	338	225	400	521	
5:00	82	56		580	439	87	330	334	225	400	518	
5:15	80	55	80	575	435	87	330	336	226	400	508	
5:30	79	53		575	430	85	328	334	225	400	505	
5:45	78	53	81	580	440	85	328	334	225	399	514	
6:00	77	52		582	前5	85	328	332	225	399	513	
6:15	78	53	82	580	438	82	330	336	225	400	517	
6:30	82	56		580	440	85	330	334	225	400	511	
6:45	79	53	84	570	430	85	320	334	225	400	506	
7:00	77	82		590	445	82	330	330	225	400	518	
7:15	76	52	83	580	440	82	332	332	225	400	517	
7:30	77	52		576	435	80	330	334	225	400	517	
7:45	76	51	81	580	440	80	330	334	225	400	510	
8:00	79	53		582	435	80	330	332	225	400	510	
8:15	81	56	82	575	435	82	330	334	225	400	511	
8:30	79	53		580	435	80	330	334	225	400	512	
8:45	76	52	83	572	430	80	330	320	225	400	509	
9:00	75	51		575	433	80	329	336	225	400	510	
9:15	74	51	82	575	432	80	328	334	225	400	514	
Ave.	78.3	53.1	81.9	580	437.5	82.7	329	334	225	400	518	

2-27-51

-45-

TEST NO. 4 DATA SHEET

					PRESS	URE				*****	OR SAI		
LINE	BARONETER IN. HO.	DRUN PRISS. PSIG	S. E. PRESS. PSIG	AIR IN HEATUR IN. H20	WINDBOX IN. H20	TURNACE IN. H ₂ O	LAST PASS IN. H ₂ O	OUTLET AIR HEATER IN. E ₂ O	I. D. PAN IN. H ₂ O	802	8	8	B 2
4:15	27.94	265	255	3.0	1.7	-0.30	-1.5	-2.9	-5.6	8.1	11.3	0.2	80.4
4:30		265	255	3.0	1.7	-0.24	-1.5	-2.8	-5.3	6.2	13.3	0	80.5
4:45		260	250	3.0	1.8	-0.15	-1.5	-3.0	-5.8	10.6	9.0	0.1	80.3
5:00		263	253	2.9	1.7	-0.17	-1.4	-2.5	-4.9	11.6	7.4	0	81.0
5:15	27.94	263	252	2.5	1.2	-0.19	-1.3	-2.3	-4.5	11.2	7.3	0.1	81.4
5:30		265	251	2.3	1.5	-0.05	-1.1	-2.2	-4.1	10.9	8.5	0.1	80.5
5:45		260	250	3.0	1.6	-0.30	-1.5	-3.0	-6.0	8.0	11.4	0	80.6
6:00		560	250	3.0	1.7	-0.31	-1.5	-3.0	-5.8			-	
6:15	27.96	264	252	2.7	1.5	-0.20	-1.4	-2.4	_4.6	anti internetaria di secondaria			10000
6:30		260	250	2.8	1.6	-0.23	-1.5	-3.0	-5.5	8.9	11.0	0	80.1
6:45		568	258	2.5	1.5	-0.10	-1.6	-1.2	-2.0	13.6	5.3	0	81.1
7:00		262	252	3.0	1.7	-0.30	-1.5	-3.0	-6.0	12.3	6.4	0.1	81.2
7:15	27.96	265	255	2.6	1.5	-0.32	-1.5	-2.7	-5.2	9.2	9.6	0	81.2
7:30		265	255	2.4	1.5	-0.23	-1.3	_2.4	_4.5	10.2	8.8	0	81.0
7:45		264	255	2.5	1.4	-0.40	-1.5	-3.0	-6.0	10.9	7.8	0	81.3
8:00		260	252	2.3	1.3	-0.26	-1.4	-2.5	-4.7	8.9	9.6	0.2	81.3
8:15	27.99	262	253	2.4	1.3	-0.23	-1.4	-2.5	-4.7	10.8	7.9	0.1	81.2
8:30		265	255	2.4	1.3	-0.11	-1.2	-2.2	-4.2	12.4	6.1	0.2	81.3
8:45		266	255	2.2	1.3	-0.12	-1.2	-2.3	-4.1	11.0	7.7	0.1	81.2
9:00		262	255	2.3	1.2	-0.24	-1.4	-2.4	-4.5	11.0	8.2	0	80.8
9:15	27.99	265	252	2.3	1.2	-0.18	-1.3	-2.5	-4.4	9.2	10.0	0	80.8
Ave.	27.96	263	252	2.62	1.48	-0.22	-1.41	-2.55	-4.88	10.26	\$ 77	0.06	80.91

2-27-51

46

TERT BO. 5 SUMMARY OF DATA

	Depth of Fuel Bed: Test Coal Mixture:	2-3/4 inches 4:1	
	Test Load:	50,000 lb. steam per ho	44章
	Duration of Testi	5 hours	
Proximate Analysis:	Air-dry A	s Fired Combustibl	麋
Noisture	1.55	6.0	
Volatile Natter	14.30	12.2 19.2	
Ash Content	32.06	30.6	
Fixed Carbon	52.09	51.2 50.3	
Alz-dry Loss	4.50		
Carbon and Hydrogent	As Fired		11 ·
Carbon	0.5690		•
Eydrogens	0.0375		
<u>Higher Heating Value:</u> <u>Refuse:</u>	9,960 Btu per Per Cent Befuse	lb. As Fired Carbon in Refuse	
	****	e1.v	
Average Orsat Analysis	002 02	oo Ng	· .
	10.70 8.14	0.02 51.14	
Average Data:	Item	Corrected Reading	
Boiler Drum Fressure	e. poig	257.5	
Superheater Outlet 1	ressure, psig	247.6	
Rarimetric Pressure,	, in. He.	28.14	
Feedwater Temperatu	re, 07	228.7	
Superheater Outlet 9	femperature, °F	516.0	
Dry-bulb Temperature	e, or	76.8	
Vet-bulb Temperature	b. op	59.2	
Flue Gas Texperature	e from Air Neater. "	07 436.0	
Ruel Temperature. 01		75.5	
Weight of Coal. 1bs.		40.625	
Stenn Generated. 1b		243.500	
Evenoration, 1bs. of	esteam/10. of cosl	5.98	
Bloudown, 1be.	an na an a	7,525	

TEST NO. 5 DATA SHEET

48

da, iz olasofi iz orazoria	ľ	and a state of the second s	*******	ile stare e contra (de padato)	T E	MPERAT	URE (°I	r)	ani an Angalan an Angalan Angal	en en e	in an
a ni	DRT BULB	KER BULB	1010	CAS TO HEATER (RECORDER)	GAS TROM HEATER (RECORDER)	AIR TO HEATER (RECORDER)	AIR FROM HEATER (THERMO.)	AIR FROM HEATER (RECORDER)	FREDMATER (RECORDER)	INLER SUPERHEAT IR (RECORDER)	OUTLET SUPERHEATER (RECORDER)
3:15	79	61	79	580	430	80	324	320	236	402	524
3:30	79	61		570	425	80	328	315	236	396	519
3:45	79	60	78	575	430	80	336	318	230	400	512
4:00	78	60		590	435	80	330	320	226	386	500
4:15	77	60	78	580	430	80	328	320	226	400	514
4:30	79	60		585	435	80	328	325	230	403	514
4:45	79	60	78	585	438	80	340	328	227	402	515
5:00	80	61		585	435	80	340	325	227	401	513
5:15	79	60	78	585	438	80	345	326	227	402	514
5:30	78	59		590	440	80	340	325	227	403	517
5:45	78	59	78	590	440	80	346	328	228	403	518
6:00	77	59		590	440	80	346	330	230	404	519
6:15	77	59	74	590	435	79	340	325	226	404	520
6:30	76	59		590	440	78	345	332	226	404	519
6:45	75	58	73	588	435	75	345	330	230	404	520
7:00	74	58		588	435	75	345	325	230	404	520
7:15	73	58	73	580	428	73	345	320	230	403	518
7:30	73	57		580	425	72	346	320	230	402	519
7:45	73	57	71	590	435	72	335	320	230	404	512
8:00	74	58		590	440	72	350	328	226	403	515
8:15	75	58	71	590	432	72	340	325	825	404	515
Ave.	76.8	59.2	75.5	585	436	78	338.5	324	228.7	403	516

3-6-51

TEST NO. 5 DATA SHEET

	PRESSURE									orsat			
anz	BARONNTER IN. HO.	DRUM PRESS. PSIG	S. H. PRESS. PSIG	AIR IN HEATHE IN. H ₂ O	WINDBOX IN. H ₂ 0	FURMACN IN. H ₂ O	LAST PASS IN. HOO	OUTLET AIR HEATER IN H ₂ O	I. D. FAN IN. H20	00 ⁵	8	00	S.
3:15	28.15	260	249	3.6	2.0	-0.20	-1.5	-2.9	-5.6	9.2	9.6	0.1	81.1
3:30		245	235	3.7	2.1	-0.16	-1.5	-2.7	-5.3	9.8	8.8	0	81.4
3:45		253	245	3.7	2.1	-0.26	-1.5	-3.0	-5.7	10.4	7.6	0	82.0
4:00		253	250	3.7	2.1	-0.23	-1.5	-3.0	-5.8	8.0	10.0	0	82.0
4:15	28.15	267	256	3.3	1.6	-0.13	-1.5	-2.5	-4.5	11.3	7.3	0.1	81.3
4:30		266	256	3.1	1.7	-0.17	-1.4	-2.6	-5.5	11.9	7.1	0	81.0
4:45		266	256	3.0	1.5	-0.36	-1.5	-2.8	-5.5	12.6	6.4	0.1	80.9
5:00		265	255	3.0	1.7	-0.15	-1.5	-3.0	-5.8	11.4	7.8	0	80.8
5:15	28.14	262	250	3.5	1.9	-0.20	-1.5	-3.0	-6.0	11.2	7.0	0	81.8
5:30		265	246	3.7	1.9	-0.25	-1.5	-3.0	-6.0	8.8	9.2	0.1	81.9
5:45		265	255	3.8	1.9	-0.22	-1.5	-3.0	-6.0	8.8	9.7	0	81.5
6:00		267	258	2.7	1.4	-0.32	-1.5	-2.8	-5.5	12.2	7.2	0	80.6
6:15	28.14	266	256	3.5	1.9	-0.15	-1.5	-3.0	-6.0	Corps	-		-
6:30		268	258	3.2	1.6	-0.17	-1.5	-3.0	-6.0	11.8	7.6	0	80.6
6:45		265	258	2.5	1.3	-0.32	-1.5	-3.0	-6.0	10.1	8.6	0	81.3
7:00		265	255	3.0	1.5	-0.32	-1.5	-3.0	-6.0	11.3	8.1	0	80.6
7:15	28.14	265	256	3.0	1.6	-0.17	-1.4	-2.5	-4.9	11.9	7.1	0	81.0
7:30		267	258	2.8	1.4	-0.30	-1.4	-2.4	-4.5	11.1	7.8	0	81.1
7:45		264	255	3.8	2.0	-0.20	-1.5	-3.0	-6.0	9.6	8.9	0	81.5
8:00		266	256	3.5	1.7	-0.33	-1.5	-2.8	-5.2	9.8	8.6	0	81.6
8:15	28.14	266	257	2.8	1.4	-0.27	-1.5	-2.7	-5.1	10.2	8.4	0	81.4
Ave.	28.14	263	253.3	3.26	1.72	-0.23	-1.5	-2.85	-5.56	10.7	8.14	0.02	81.14

3-6-51

-49-

TEST NO. 6 SUMMARY OF DATA

	Depth of Fuel Bed Test Coal Mixture	1: 2-3/4 inch 4:1	es
and a second	Test Loza: Duration of Test	90.000 10. 5 hours	eresu per nour
Proximate Analysis:	Air-dry	As Fired	Combustible
Moisture	0.80	7.01	
Volatile Matter	13.70	12.9	18.3
Ash Content	24.10	22.6	and the second second
Fixed Carbon	61.40	57.5	81.7
Air-dry loss	6.25		
Carbon and Hydrogen:	As Fired		
Carbon	0.6350		
Hydrogen	0.0350		
Aroners Grast Applarit	33.3	32.2	Noluse
Average or sat mistysi	10.25 8.	48 O	81.27
Average Data:	Item	Correc	ted Reading
Boiler Drum Pressu	re, psig	ŝ	263.0
Superheater Outlet	Pressure, psig		252.0
Barimetric Pressure	e, in. Hg.		28,24
Feedwater Temperatu	ure, or		24.4
Superheater Outlet	Temperature, T	5	16.0
Dry-bulb Temperatu	re, vr		12.2
Wet-bulb Temperatu	re, or		51.4
Flue Gas Temperatu	re from Air Heater	, u <u>y</u> . L	141.0
Fuel Temperature, '			[0.1
weight of Coal, 1b		22,4	£7
steam Generated, 1)9. 	=70,0	7 10
svaporation, ibs. (DI STEAM/LD. OI CO	či.s	1.10
blowdown, 10s.		1.	29

-50-

TEST NO. 6 DATA SHRET

	TIMPIRATURES (°F)											
	IRK BULD	R IN	R	GAS TO HEATER (RECONDER)	GAS FRON HEATIN (RECORDER)	ATH TO HEATER (RECORDER)	AIR FROM HEATER (THURNO.)	AIR FROM HEATER (RECORDER)	F DEDVATER (RECORDER)	INLIT SUPERHEATER (THERMO.)	OUTLET SUPTERATER (THERMO.)	
6:30	78	53	74	600	445	77	348	330	225	402	517	
6:45	72	50		600	450	72	354	333	222	404	518	
7:00	71	50	74	600	450	70	352	330	555	404	517	
7:15	74	52		600	443	73	348	325	222	404	515	
7:30	74	51	74	600	443	73	350	328	222	403	514	
7:45	73	51		600	441	73	346	328	223	404	510	
8:00	74	52	75	600	445	73	350	325	823	403	518	
8:15	70	49		604	450	70	350	325	225	404	516	
8:30	75	53	75	600	440	70	340	325	225	404	516	
8:45	72	52		600	440	70	338	325	225	404	510	
9:00	75	54	80	600	440	70	342	320	225	404	512	
9:15	74	53		600	440	70	344	320	225	404	510	
9:30	66	48	84	605	450	67	350	325	225	404	520	
9:45	70	50		605	450	67	348	330	226	404	524	
10:00	73	52	80	600	440	70	348	325	226	404	519	
10:15	72	52		590	435	70	344	325	226	405	520	
10:30	72	52	82	600	450	70	352	330	226	406	516	
10:45	72	52		605	445	70	382	320	225	406	517	
11:00	70	52	80	60 0	440	70	342	320	225	404	517	
11:15	70	51		590	435	70	342	320	225	404	510	
11:30	69	51	82	580	425	67	336	320	225	404	512	
Ave.	72.2	51.4	78.1	598	1441	70.7	346.5	325	224.4	404.5	516	

3-9-51

TEST NO. 6 DATA SHEET

	FRESSURB					ORSAT							
狂 脱蛋	BARONIPTER IN. HG.	DRUM PRESS. PS10	S. H. PRESS. PSIG	AIR IN HEATER IN. E20	WINDBOX IN. H ₂ O	FURIACS IN. K20	LAST PASS IN. H ₂ 0	OUTLET AIR HEATER IN. H20	I. D. PAN IN. H20	80	6		Z
6:30	28.24	269	259	2.8	1.5	-0.32	-1.5	-2.9	-5.5	10.0	8.8	10	81.2
6:45		269	260	2.4	1.5	-0.22	-1.5	-2.9	-5.9	9.8	8.7	10	81.5
7:00		269	260	3.3	1.7	-0.26	-1.5	33.0	-6.0	10.1	9.1	0	80.8
7:15		266	257	3.1	1.7	-0.25	-1.5	-2.9	-5.6	10.2	8.6	0	81.2
7:30	28.24	266	257	2.9	1.5	-0.26	-1.5	-2.7	-5.2	10.2	8.6	0	81.2
7:45		266	259	3.3	1.7	-0.25	-1.5	-3.0	-5.8	9.8	8.2	0	82.0
8:00		266	256	3.7	1.8	-0.50	-1.5	-2.9	-5.7	10.0	9.0	0	81.0
8:15		269	257	2.7	1.3	-0.32	-1.5	-3.0	-5.7	9.7	9.1	0	81.2
8:30	28.24	270	259	2.8	1.5	-0.31	-1.5	-2.8	-5.2	10.5	8.5	0	81.0
8;45		270	260	2.7	1.4	-0.23	-1.5	-2.5	-4.9	10.0	8.5	0	81.5
9:00		265	256	3.2	1.6	-0.27	-1.5	-3.0	-4.9	9.8	9.1	0	80.1
9:15		267	259	3.0	1.5	-0.25	-1.5	-2.8	-5.4	9.3	8.7	0	81.0
9:30	28.24	268	256	3.0	1.6	-0.25	-1.5	-2.5	-6.0	9.7	9.2	10	81.1
9:45		268	257	3.2	1.4	-0.38	-1.5	-3.0	-6.0	9.5	9.3	0	81.2
10:00		269	259	2.9	1.5	-0.18	-1.3	-2.8	-4.6	9.7	9.1	0	81.2
10:15		270	260	2,4	1.3	-0.20	-1.4	-3.0	-4.3	9.4	8.2	0	81.4
10:30	28.24	270	260	3.1	1.6	-0.17	-1.5	-3.0	-6.0	9.9	8.7	0	81.4
10:45		269	260	3.0	1.4	-0.30	-1.5	-2.5	-4.8	10.0	8.8	0	81.2
11:00		265	255	2.5	1.8	-0.23	-1.5	-2.3	-4.8		-		-
11:15		267	257	2.5	1.2	-0.25	-1.5	-2.6	-6.0	12.0	6.5	0	81.5
11:30	28.24	270	260	2.1	1.1	-0.17	-1.1	-1.9	-3.6	14.0	4.1	0	81.9
Ave.	28.24	268	258	2.87	1.51	-0.27	-1.47	-2.76	-5,39	10.25	8.48	10	81.27

3-9-51

APPENDIX (2)

SAMPLE CALCULATIONS

The methods of calculation shown below are used for all tests. The values used here are taken from boiler test No. 1 for the purpose of demonstration.

- (A) Determination of higher heating value, carbon and hydrogen in the test coal.
 - (1) Fuel analysis, per cent:

Items	Air-dry	As Fired	Combustible
Moisture	0.5	5.7	
Volatile Matter	15.5	14.3	18.9
Ash	20.2	19.2	
Fixed Carbon	63.8	60.8	81.1
Air-dry Loss	5.2		

- (2) Conversion of proximate analysis from air-dry basis to as fired basis:
 - $M_{af} = M_{ad} = \frac{100-L}{100} + L$
 - $= 0.5x \frac{100 5.2}{100} + 5.2 = 5.7\%$

$$V_{af} = V_{ad} \times \frac{100 - L}{100}$$

$$= 15.5 \times \frac{100 - 5.2}{100} = 14.3\%$$

$$\begin{array}{l} \mathbb{A}_{af} = \mathbb{A}_{ad} \times \frac{100 - 1}{100} \\ = 20.2 \times \frac{100 - 5.2}{100} = 19.2\% \\ \end{tabular} \\ \end{tab$$

(3) Conversion of proximate analysis from as fired basis to combustible basis:

$$V_{C} = \frac{V_{af}}{V_{af} + V_{af}} \times 100$$

= $\frac{14.3}{14.3 + 60.8} \times 100 = 18.9\%$
$$F_{C} = \frac{F_{af}}{V_{af} + F_{af}} \times 100$$

= $\frac{60.8}{14.3 + 60.8} \times 100 = 81.1\%$
Where: V_{C} = volatile matter in combustible basis, per cent
 V_{af} = volatile matter in as fired basis, per cent

-54-

- (4) Determination of higher heating value, carbon and hydrogen of the test coal from the proximate analysis to the combustible basis by using F. C. Evans' Imperical Relations":
 HHV_c = 16,160 2,250V_c (V_c is between 16 36%)
 HHV_e = 16,160 2,250 x 0.189 = 15.635 Btu/1b.
 C_c = 0.943 0.242V_c (V_c is between 0 36%)
 C_c = 0.943 0.242 x 0.189 = 0.897
 H_c = 0.0457 + 0.0206V_c (V_c is 16% and up)
 H_c = 0.0457 + 0.0206 x 0.189 = 0.0414
 - Where: HHV_c = higher heating value in combustible basis, Btu/lb. C_c = fraction of carbon in combustible basis H_c = fraction of hydrogen in combustible basis V_c = fraction of volatile matter in combustible basis
- (5) Conversion of higher heating value, carbon and hydrogen of test coal from the combustible basis to the as fired basis: $\text{MHV}_{af} = \text{MHV}_{c} \left(\frac{100 - M_{af} - A_{ef}}{100}\right)$

= $15.635 (\frac{100 - 5.7 - 19.2}{100}) = 11.730 \text{ Btu/lb.}$

*Barnard, W. N., Ellenwood, F. O., and Hirshfeld, C. F., <u>Heat-</u> Power Ingineering, Third Edition, New York: John Wiley and Sons, 1930, Volume II, Table XXX, p. 325.

$$C_{af} = 0_{c} \left(\frac{100 - M_{af} - A_{af}}{100} \right)$$
$$= 0.897 \left(\frac{100 - 5.7 - 19.2}{100} \right) = 0.684$$
$$H_{af} = H_{c} \left(\frac{100 - M_{af} - A_{af}}{100} \right)$$

$$= 0.0414 \left(\frac{100 - 5.7 - 19.2}{100} \right) = 0.0311$$

Where:
$$HHV_c$$
, C_c , H_c = as specified in (4)
 HHV_{af} = higher heating value in as fired basis, $Btu/1b$
 C_{af} = fraction of carbon in as fired basis
 H_{af} = fraction of hydrogen in as fired basis
 M_{af} = moisture in as fired basis, per cent
 A_{af} = ash in as fired basis, per cent

(B) Determination of per cent refuse.

The per cent of refuse is calculated by dividing the per cent of ash in coal from the proximate analysis by the per cent of ash in refuse from the combustible analysis of the refuse in the ash pit.

$$\frac{Aef}{A_T} = \frac{Aef}{A_T} = 100$$

= $\frac{19.2}{67.7} = 100 = 28.35\%$

Where: %R = per cent of refuse

Aaf = ash in as fired basis, per cent

 A_T = ash in refuse from the combustible analysis of refuse, per cent The above method of computing the per cent of refuse has been proved to be accurate to within one per cent of actual weighing of refuse from the ash pit, refuse from cyclone separator, and calculated weight of refuse leaving the stack.*

(C) Heat Balance.

(1) Average Orsat analysis, per cent by volume

602		10.63
CO		0.01
02		7.30
N2	تصنیف در	82.06

(2) Average experimental data:

1	Vncorrected Value	Corrected Value
Superheater outlet temperature, 0]	P 514	514
Superheater inlet temperature, oF	401	401
Temperature of fuel, °F	74.4	74.4
Flue gas cutlet temperature, ^o F	432.5	432.5
Dry-bulb temperature, oF	62.1	62.1
Wet-bulb temperature, oF	47.0	47.0
Feed-water temperature, °F	227.5	227.5
Boiler drum pressure, psig	265	260
Superheater pressure, psig	253.5	248.5

^{*}Copion, O., Cottinghem, G. R., and Murphy, J. D., <u>Determination</u> of <u>Mixture of Merrimac Culm and Bituminous Coal for No. 6 Boiler</u>, Thesis Virginia Polytechnic Institute, 1950, p.43-45.

Barometric pressure, in. Hg.	28.45	28.48
Weight of coal, 1bs.	32,430	32.373
Steam generated, 1bs.	266,200	241,100
Evaporation, 1bs. steam/1b. coal	1970 - 19	7.45
Cerbon in refuse, per cent		32.3
Refuse, per cent of coal burned		28.35
Blowdown, 1bs.	7720	7720

-58-

(3) Correction factor for steam flow:

 $0_{f} = \frac{v_{c}}{v} = \frac{2.037}{2.094} = 0.974$

Where: $C_f = correction fector$

V_c = specific volume of steam at 250 psig and 100° F superheat, cu.ft./1b

V = specific volume of steam at 248.5 psig and 514° F, cu.ft./lb

(4) Corrected weight of steam flow:

 $W_g = (weight of steam flow) \ge C_f$

= 247,650 x 0.974

= 241,100 lbs.

Where: $W_g = corrected weight of steam flow, lbs.$

 C_{f} = correction factor for steam flow

(5) Corrected weight of coal burned:

- $W_f = (weight of coal) x C_f$
 - = 32430 x 0.996
 - = 32,373 lbs.

C_f = correction factor which was obtained from the calibration of the weigh larry.

(6) Ivaporation:

$$W_{nf} = \frac{W_{s}}{W_{f}} = \frac{241,100}{32,373} = 7.45$$
 lbs steem/1b coal

Where: $W_{nf} = evaporation$, lbs steam/lb coal

 W_{S} = weight of steam, lbs

Wf = weight of coal burned, lbs

(7) Heat balance:

(a) Heat absorbed by water and steam in unit:

 $B = W_{nf} (h_1 - h_f)$ = 7.45(1270.2 - 195.5) = 8,000 Btu/1b

Where: E = heat absorbed, Btu/1b

 $W_{nf} = evaporation$, lbs steam/lb coal

h1 = enthalpy of steam at superheater outlet, Btu/1b

hf = enthalpy of feedwater entering boiler drum, Btu/1b

(b) Heat loss due to moisture in coal:

 $L_{M} = M_{ef}(1089 + 0.46t_{e} - t_{f})$

 $= 0.056 (1089 + 0.46 \times 432.5 - 74.4)$

= 67 Btu/1b

Where: Im = heat loss due to moisture in coal, Btu/1b.

Maf = moisture in coal, 1b/1b coal

 $t_g = temperature of flue gas leaving last heating surface, oF$ $t_f = temperature of fuel, oF$

- (c) Heat loss due to water from combustion of hydrogen in fuel: $L_{\rm H} = 9W_{\rm H} (1089 + 0.46t_g - t_f)$
 - $= 9 \times 0.0311 (1089 + 0.46 \times 432.5 74.4)$
 - = 340 Btu/10
 - Where: I_{H} = heat loss due to water from combustion of available hydrogen in fuel. Btu/lb
 - $W_{\rm H}$ weight of hydrogen in fuel, 1b/1b coal
 - tg = temperature of flue gas leaving, oF

tf = temperature of fuel, oF

- (d) Heat loss due to moisture in air:
 - (i) fraction of carbon burned in fuel:

 $C_b = C_{af} - (\%R) (O_r)$ = 0.684 - (0.2835) (0.323) = 0.592 1b/1b coal

Where: Cb = fraction of carbon burned, 1b/1b coal

Caf = fraction of carbon in fuel, 1b/1b coal

- %R = per cent of refuse
- C_r = carbon in refuse, per cent
- (ii) weight of dry air supplied:

$$W_{A} = \frac{28N_{2}}{(.766) (12) (60_{2} + 60)} C_{b}$$

= 13.89 1b/1b coal

Where: W_A = weight of dry air supplied per pound of coal burned

> N2. CO2. and CO are respectively fraction by volume nitrogen, carbon dioxide and carbon monoxide in dry flue gas

Cb = weight of carbon burned in fuel

(111) heat loss due to moisture in air:

$$L_{MA} = 0.46 N_A V_A (t_g - t_a)$$

= 0.46 x $\frac{23.6}{7000}$ x 13.89 (432.5 - 62.1)
= 7.95 Btu/1b

Where: I_{MA} = heat loss due to moisture in air, Btu/1b

- M_A = moisture in dry air at dry-bulb temperature 62.1°F and wet-bulb temperature 47°F, 1b/1b dry-eir
- WA = weight of dry-air supplied, 1b/1b coal
- tg : temperature of flue gas leaving, °F
- t_a = temperature of air entering, ^oF
- (e) Heat loss due to dry flue gas:
 - (i) weight of dry flue gas:
 - $W_{g} = \frac{4400_{2} + 2800 + 320_{2} + 2802}{12(00_{2} + 60)} C_{b}$

 $=\frac{(44)(0.1063)+(28)(0.0001)+(32)(0.073)+(28)(0.8206)}{12(0.1063+0.0001)}x0.592$

= 13.90 1b/1b coal

Where: W_o : weight of dry flue gas per pound of coal burned

- CO2, CO, C2 and N2 are respectively the per cent by volume of carbon dioxide, carbon monoxide, oxygen and nitrogen in dry flue gas.
- $O_{\rm b}$ = fraction of carbon burned
- (11) heat loss due to dry flue gas:

 $L_g = 0.24 W_g (t_g - t_a)$ = 0.24 x 13.9 (432.5 - 62.1) = 1235 Btu/1b coal

Where: L_b = heat loss due to dry flue gas, Btu/1b

 W_g = weight of dry flue gas per pound of coal burned t_g = temperature of flue gas leaving, °F t_a = temperature of air entering, °F

(f) Heat loss due to carbon monoxide:

- $L_{00} = \frac{60}{60 + 602} \times 0_0 \times 10,160$
 - $= \frac{0.0007}{0.0007 + 0.1063} \times 0.592 \times 10,160$
 - = 39.5 Btu/1b coal

Where: LCO = heat loss due to carbon monoxide, Btu/1b

CO2 end CO are respectively the per cent by volume of cerbon dioxide and carbon monoxide in dry flue ge

Cb = fraction of carbon burned.

(g) Heat loss due to carbon in refuse:

Ler = Wr x 14600

- $= 0.0913 \times 14,600$
- = 1332 Btu/1b coal

Where: L_{cr} = heat loss due to carbon in refuse, Btu/1b Wr = weight of carbon in refuse per pound of coal burned = (%R) (G_m) (h) Heat loss due to blowdown: $\mathbf{L}_{h} = \mathbf{W}_{h}(\mathbf{h}_{a} - \mathbf{h}_{f})$ $=\frac{7720}{3^2,373}$ (383.00 - 195.5) = 44.3 Btu/ 1b coal Where: L_b = heat loss due to blowdown, Btu/1b Wh = weight of blowdown per pound of coal burned ha : enthalpy of saturated water at boiler drum pressure. Btu/1b hf = enthalpy of feedwater entering boiler drum, Btu/1b (i) Heat loss due to radiation: $L_{rs} = (per cent of radiation loss) (HAV)$ = (0.0114) (11,730) = 13¹⁴ Btu/10 Where: L_{ra} = heat loss due to radiation, Btu/1b Note: Per cent of radiation loss was obtained from Plate 3, A.S.N.E. Power Test Code On Stationary Steam-Generating Units, 1946. (j) Uneccounted-for losses: $L_u = (HHV) - (Summation of items (a) through (1))$ = (11,730)-(8,000+67+340+7.95+1235+5.65+ 1332+44.3+134) = 463.8 Btu/1b Where: $L_u = unaccounted-for losses, Btu/1b$

-63-

(k) Boiler efficiency: Boiler efficiency = $\frac{\text{heat absorbed}}{\text{HHV}}$ = $\frac{8,000}{11,730}$ = 68.1%(D) Excess air. $x = \frac{(02 - 0.5 \ CO) \times 100}{0.264 \ M2} - (02 - 0.5 \ CO)}$

> $= \frac{(7.30 - 0.5 \times 0.01) \times 100}{0.264 \times 82.06 - (7.30 - 0.5 \times 0.01)}$ = 51.0%

Where: x = excess air, per cent

O2. CO and N2 are respectively per cent by volume of oxygen, carbon monoxide and nitrogen in dry flue gas

APPENDIX (3)

-65-

METHOD TO CALCULATE BOILER EFFICIENCY BASED ON

AVERAGE ASH CONTENT

This method of calculation is based on the consideration that the decrease in boiler efficiency is directly proportional to the increase in ash content in coal. The sample calculation shown here is for the fuel bed depth of 51 inches.

(A) Average ash content of test mixture:

Average ash content = $\frac{19.2 + 19.6 + 24.4 + 24.8 + 30.6 + 22.6}{6} = 23.53\%$

(B) Boiler efficiency at average ash content of 23.53% for 5¹/₂ inch fuel bed depth:

Difference in ash content = 24.4 - 19.2 = 5.2%

Difference in boiler efficiency = 68.1 - 65.15 = 2.95%

- Hence each per cent of ash content decreases $\frac{2.95}{5.2}$ or 0.567% of boiler efficiency
- $D = B_0 0.567 (23.53 A_b)$
 - = 68.1 0.567 (23.53 19.2)

- Where: E = calculated boiler efficiency at average ash content of 23.53% in coal, per cent
 - Bb = boiler efficiency from actual test at ash content 19.2% per cent
 - Ab = per cent of ash content in coal corresponding to boiler efficiency, Bb

(C) Boiler efficiencies at average ash content of 23.53% for 4 in. and 2-3/4 in. fuel bed depths are 67.56% and 67.95% respectively.

^{= 65.53%}

ABSTRACT

In attempting to use the 4-1 mixture of Merrimac culm and bituminous coal for boiler No. 6 in the Virginia Polytechnic Institute Heating and Power Plant, the problem of maintaining a proper depth of fuel bed had arisen. This problem seemed to warrant an investigation, which was subsequently made.

The fuel bed depth that will give the best results for a boiler depends on many factors, and it is best determined by boiler tests. Therefore, the authors decided to investigate the effect of the fuel bed depth on the performance of Boiler No.6 and to determine the optimum fuel bed depth, when the 4-1 mixture was used and the load was 50,000 pounds of steam per hour.

This investigation consisted of the collection and evaluation of data obtained from the boiler tests at various fuel bed depths. During the boiler tests, some of the variables were held as constant as possible in order to obtain comparative results. The fuel bed depths tested were 2-3/4, 4, and 5-1/2 inches. The optimum depth of fuel bed is that fuel bed which would give the highest boiler efficiency and good boiler control.

The results of the tests showed that the boiler efficiency remained approximately constant between 2-3/4 and 4 inches of the fuel bed depths and decreased as the fuel bed depth was increased above 4 inches. But, at 2-3/4 inches of the fuel bed, close attention was necessary to control the boiler, whenever the load swung, or there was a change of the quality of fuel fed into the furnace. The authors, therefore, conclude that Boiler No.6 should have a fuel bed depth between 3 and 4 inches deep when the 4-1 mixture is used and the load is about 50,000 pounds of steam per hour.