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CARDIAC COMPUTED TOMOGRAPHY

METHODS AND SYSTEMS USING FAST

EXACT/QUASI—EXACT FILTERED BACK

PROJECTION ALGORITHMS

CROSS-REFERENCE TO RELATED

APPLICATIONS

This application claims priority to and the benefit of the

filing date of US. Provisional Application No. 61/225,708,

filed Oct. 28, 2009, which is incorporated by reference herein

in its entirety.

STATEMENT OF GOVERNMENT INTEREST

This invention was made made with government support

under contracts EB002667, EB004287 and EB007288

awarded by National Institutes of Health. The government

has certain rights in the invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention provides systems, methods, and

devices for improved computed tomography (CT). More spe-

cifically, the present invention includes methods for improved

cone-beam computed tomography (CBCT) resolution using

improved filtered back projection (FBP) algorithms, which

can be used for cardiac tomography and across other tomo-

graphic modalities.

2. Description of Related Art

Cardiovascular diseases (CVDs) are pervasive (American

Heart Association 2004). CVD is the number one killer in the

western world. The cost of the health care for CVD is sky-

rocketing. In 2004, the estimated direct and indirect cost of

CVD was $368.4 billion.

Coronary artery disease is a leading cause of death as a

result ofa myocardial infarct (heart attack) without any symp-

tom. Tomographic equipment with high temporal resolution

is needed in order to successfully perform a cardiac scan and

understand the etiology and pathogenesis of CVD, such as

high blood pressure, coronary artery diseases, congestive

heart failure, stroke and congenital cardiovascular defects, as

well as to develop effective prevention and treatment strate-

gies. CT scanners are now considered instrumental for detect-

ing early heart diseases and are a centerpiece of preventive

cardiology programs.

Although there has been an explosive growth in the devel-

opment ofCT scanners for cardiac CT studies, the efforts are

generally limited to regular heartbeats. When applying tradi-

tional CT algorithms for cardiac CT reconstruction, the car-

diac images may be inaccurate or useless based on substantial

motion blurring, especially seen in patients who have high

and irregular heartbeats due to the fact that each projection

sector covers a projection angular range of a substantial

length. Within such an angular range, the heart moves appre-

ciably, especially when it is not in a relative stationary phase.

As a benchmark, a ~0.3 mm spatial resolution is routinely

achieved in spiral CT ofthe temporal bone where the motion

magnitude is much less than that ofthe heart (see M. Vannier

and G. Wang, Spiral C T refines imaging of temporal bone

disorders, Diagnostic imaging, vol. 15, p. 116-121, 1993 and

G. Wang, et al., Design, analysis and simulation for develop-

ment ofthe first clinical micro-CT scannerl , Academic Radi—

ology, vol. 12, pp. 511-525, 2005, which is incorporated by

reference herein in its entirety). Spatial resolution with car-

diac CT is at best in the millimeter domain.

10

15

20

25

30

35

40

45

50

55

60

65

2

Over the last thirty years, computer tomography (CT) has

gone from image reconstruction based on scanning in a slice-

by-slice process to spiral scanning. From the mid-1980s to

present day, spiral type scanning has become the preferred

process for data collection in CT. Under spiral scanning, a

table with the patient continuously moves through the gantry

while the source in the gantry is continuously rotating about

the table. At first, spiral scanning used a one-dimensional

detector array, which received data in one dimension (a single

row of detectors). Later, two-dimensional detectors, where

multiple rows (two or more rows) of detectors sit next to one

another, were introduced. In CT there have been significant

problems for image reconstruction especially for two-dimen-

sional detectors.

For three/four-dimensional (also known as volumetric/dy-

namic) image reconstruction from the data provided by a

spiral scan with two-dimensional detectors, known groups of

algorithms include: exact algorithms, quasi-exact algorithms,

approximate algorithms, and iterative algorithms. While the

best approximate algorithms are of Feldkamp-type, the state

of the art of the exact algorithms is the recently developed

Katsevich algorithm.

Under ideal circumstances, exact algorithms can provide a

replication of a true object from data acquired from a spiral

scan. However, exact algorithms can require a larger detector

array, more memory, are more sensitive to noise, and run

slower than approximate algorithms. Approximate algo-

rithms can produce an image very efficiently using less com-

puting power than exact algorithms. However, even under

typical circumstances they produce an approximate image

that may be similar to but still different from the exact image.

In particular, approximate algorithms can create artifacts,

which are false features, in an image. Under certain circum-

stances these artifacts can be quite severe.

To perform the long object reconstruction with longitudi-

nally truncated data, the spiral cone-beam scanning mode and

a generalized Feldkamp-type algorithm were proposed by

Wang and others in 1991. However, the earlier image recon-

struction algorithms for that purpose are either approximate

or exact only using data from multiple spiral turns.

In 2002, an exact and efficient method was developed by

Katsevich, which is a significant breakthrough in the area of

spiral cone-beam CT. The Katsevich algorithm is in a filtered-

backproj ection (FBP) format using data from a PI-arc (scan-

ning arc corresponding to the PI-line and less than one turn)

based on the so-called PI-line and the Tam-Danielsson win-

dow. The principle is that any point inside the standard spiral

or helical belongs to one and only one PI-line. Any point on

the PI-line can be reconstructed from filtered data on the

detector plane with the angular parameter from the PI-arc. In

2003, a slow FBP and a backprojected-filtration algorithm

(BPF) were developed for helical cone-beam CT based on the

Katsevich algorithm by exchanging the order ofintegrals. For

important biomedical applications including application with

movement present such as cardiac CT, generalization of the

exact cone-beam reconstruction algorithms from the case of

standard spirals to the case of nonstandard spirals and other

scanning loci is desirable and useful. Although the current

Katsevich-type algorithms are known for a standard spiral

scan, there are no known fast algorithms, systems, devices

and methods that can reconstruct an image exactly or quasi-

exactly from data acquired in a CT scan with good temporal

resolution.

Therefore, despite the impressive advancement of the CT

technology, there are still unmet, critical and immediate

needs such as those mentioned above for better image quality
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in many cardiac and other CT investigations wherein the

motion magnitude is increased.

SUMMARY OF THE INVENTION

The numerous limitations inherent in the scanning systems

described above provide great incentive for new, better sys-

tems and methods capable of accounting for one or more of

these issues. If CTs are to be seen as an accurate, reliable

therapeutic answer, then improved methods for reconstruct-

ing an image should be developed that can more accurately

predict the image with improved temporal resolution and less

artifacts.

The primary limitation to the above-mentioned system is

its need to provide goodtemporal resolution and image recon-

struction when movement is involved. However, as more

complex applications for scanning are encountered, recon-

struction ofkey subject areas such as the heart, lung, head and

neck is cumbersome at best andmay be inadequate to develop

reliable diagnosis and therapies. Therefore, a more-advanced

system that allows for the production of better object recon-

struction would be ideal. This allows for the adaptation of

exact and quasi-exact algorithms to provide better images.

Accordingly, embodiments ofthe invention provide meth-

ods, systems, and devices for reconstructing an image from

projection data provided by a computed tomography scanner

comprising: scanning an object in a cone-beam imaging

geometry following a general triple helix path wherein pro-

jection data is generated; reconstructing the image, wherein

the reconstructing comprises performing a filtered back-

projection; using a fast exact or quasi-exact filtered back

projection algorithm to generate the backproj ected data; and

using the backprojected data to generate an image with

improved temporal resolution. Preferably, embodiments of

the invention provide images with less than about 500 ms,

e.g., about 100 ms temporal resolution or less, such as about

80 ms or less, or about 60 ms or less, or about 50 ms or less,

or about 30 ms or less, or even about 10 ms or less, and so

forth.

In the context ofthis disclosure, exact or quasi-exact means

that the algorithm is theoretically exact for a good portion of

voxels in the object or theoretically exact if a practically

insignificant portion of data could be handled in a more com-

plicated fashion. Said another way, quasi-exact means that the

algorithm is derived from an exact three-dimensional recon-

struction approach, in which deviations from exactness are

introduced which are sufficiently small and lead to minor

artifacts, but result in a numerically efficient algorithm. By

way ofexample, these deviations may lead to inexact weight-

ing of a small percentage of Radon planes at every voxel.

In preferred embodiments, the temporal resolution may be

in the range of about 100 ms to less than about 10 ms.

The present invention includes a computed tomography

(CT) imaging method comprising: scanning an object using

multi-source helical cone-beam computed tomography

(CBCT) to acquire projection data relating to the object; and

reconstructing the scanned portion ofthe object into an image

by performing a computationally efficient filtered back-

projection (FBP) and theoretically exact/quasi-exact algo-

rithm to generate image data. Such methods, for example, are

included within the scope ofthe invention which are capable

ofachieving a temporal resolution in the image in the range of

<500 ms.

In the context of this disclosure, what is meant by “com-

putationally efficient”, we mean that the computational effi-

ciency ofa cone-beam reconstruction algorithm is in the same

order of magnitude of that developed by Katsevich as
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reported in (A. Katsevich, “Theoretically exact filtered back-

projection-type inversion algorithm for spiral CT,” SIAM

Journal on Applied Mathematics, vol. 62, p. 2012, 2002),

which is herein incorporated by reference in its entirety. Fur-

ther, by “theoretically exact”, we mean that the reconstructed

image would be exact if both the sampling interval and the

measurement error approach zero.

Embodiments of the invention further include a computed

tomography (CT) imaging system comprising: a multi-source

helical cone-beam computed tomography (CBCT) scanner

operably configured for scanning an object to acquire proj ec-

tion data relating to the obj ect; a processing module operably

configured for reconstructing the scanned portion of the

object into an image by performing a filtered backproj ection

(FBP) with a fast exact or quasi-exact FBP algorithm to

generate image data; and a processor for executing the pro-

cessing module. Such systems can include software and hard-

ware operably configured for performing the functions ofthe

processing module.

Embodiments of the present invention provide for recon-

structing the image using a fast exact or quasi-exact algorithm

developed by defining the weight function, determining fil-

tering directions, calculating the backproj ection coefficients,

and reconstructing the object with, for example:

 
f( ) l f cm(s,x) X

x = ——

47T2 [Z Ix-y(5)|

2” a D ‘ * 0 —dy d[0 E, f(y(q),cosyfi(s,x)+smya (m, m» mm s.

Such methods, systems, and devices can further be char-

acterized in having the fast exact or quasi-exact algorithm

implemented by differentiating each projection with respect

to variable s; for each y1(s), i:{l, 2, 3}, performing the

Hilbert transform of derivative data along the given filtering

directions on the corresponding detector plane; and back-

projecting the filtered data on the inter-PI segments to recon-

struct the object.

The features and advantages of the present invention will

be apparent to those skilled in the art. While numerous

changes may be made by those skilled in the art, such changes

are within the spirit of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

These drawings illustrate certain aspects of some of the

embodiments ofthe present invention, and should not be used

to limit or define the invention.

FIGS. 1A-B are schematic diagrams showing geometry of

triple-source helical CBCT. Three x-ray sources are rotated

around the x3-axis along the helices y1(s), y2(s) and y3(s),

respectively. The y1(s), y2(s) and y3(s) are on a cylinder of

radius R. An object to be reconstructed is confined within a

cylinder ofradius r, where r<R. Parameter h denotes the pitch

ofeach helix. The inter-helix distance along the x3 -axis is h/3.

FIG. 2 is an illustration of the Zhao window bounded by

solid lines F11 and the Tam-Danielsson window bounded by

dashed lines 112. The detector plane is represented by the

Cartesian coordinate system (u, v).

FIG. 3 is a schematic diagram of inter-PI arcs (thick solid

curve-arcs).

FIG. 4 is a schematic diagram of the decomposition of the

Zhao window into the regions G1, G2 and G3. th and le are

the inflection lines at a“ and sd, respectively.
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FIG. 5A is a graphic representation allowing for the visu-

alization of the domains delimited by the A-curves and

T-curves on the surface of the unit sphere in spherical coor-

dinates for x:(0.1, 0, 0).

FIGS. 5B, C, and D are graphic representations of the

zoom-in versions of the areas bounded by the bottom left,

bottom right, and top circles shown in FIG. 5A, respectively.

FIG. 6 is an illustration of the osculating plane Inc,

FIGS. 7A and B are graphical representations ofthe close-

up views of the diagram for x:(0, —0.15, 0) for 7A and x:(0,

—0.3, 0) for 7B.

FIG. 8 is a graphical illustration of L-curves in the spheri-

cal coordinates 61, 62).

FIG. 9A is a graphic representation of the full diagram

showing different regions split by A-, T- and L-curves for

L-curves in x:(0.2, —0.3, 0).

FIGS. 9B, C, and D are graphic representations of the

zoom-in versions ofthe regions bounded by the upper, bottom

right, and bottom left circles shown in FIG. 9A.

FIG. 10 is a graphic representation of domains on the

detector plane.

FIG. 11A is a graphical representation of the BS-curve

being tangent to a T-curve in D1 1 for the source on yl(s).

FIG. 11B is a graphical representation of the BS-curve

being tangent to a T-curve in D5 for the source on y1(s).

FIG. 11C is a graphical representation of the BS-curve

passing across the second T-curve for the source on y1(s).

FIG. 12A is a graphical representation ofthe determination

of co.

FIG. 12B is a graphical representation ofthe determination

of Cl.

FIGS. 13A-B are respectively graphical representations of

filtering lines in the case of xeGlUG3 and )2er for the first

fast FBP algorithm.

FIG. 14 is a graphical representation showing that the

required detector area is bounded by Ft, F], Lmax and me for

the first algorithm, andby Ft, F], L'max and L'mm for the second

algorithm.

FIG. 15 is a graphical representation of filtering lines for

two fast FBP algorithms when x is above where L”, La, and

Lu are for the first and second algorithms, respectively.

FIGS. 16A and 16B are graphical representations illustrat-

ing the second fast FBP algorithm.

FIG. 17A is a reconstructed image of the Clock phantom

with 1:375 m using the first fast FBP algorithm.

FIG. 17B is a reconstructed image of the Clock phantom

with 1:375 m using the second fast FBP algorithm.

FIGS. 17C and D are images representing the differences

between the reconstructed images in FIGS. 17A and 17B and

the ground truth respectively in the display window [—05,

0.5].

FIG. 18 is a graphical representation showing projected

inter-PI lines on the detector plane, where the thick curve

segments denote the inter-PI arcs.

FIG. 19A is a graphical representation of a plot of EQUA-

TION 20 with r0:0.495 R.

FIG. 19B is a graphical representation of a plot of (IDS over

a range of se(0, 231).

FIG. 19C is a graphical representation of a plot of 1p(s25)

over a range of 0; s22—soé4.1773.

FIG. 20 is a graphical representation for possible locations

of the “critical event” for Case 4.

FIG. 21 is a graphical representation illustrating regions

G21 and G22.

FIG. 22A is a graphical representations of the relationship

among the inter-PI line La, L-line, LI and inflection line th

(le) for x in G2 and above s“.
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FIG. 22B is a graphical representation of the relationship

among the inter-PI line La, L-line, L2 and inflection line th

(le) for x in G2 and above 3,.

FIG. 23 is a schematic representation of the angular trans-

formation from a spherical coordinate system to a detector.

DETAILED DESCRIPTION OF VARIOUS

EMBODIMENTS OF THE INVENTION

In accordance with embodiments of the present invention,

a method of the present invention may comprise introducing

two fast FBP algorithms foruse with conventional cardiac CT

technologies in order to obtain better reconstruction images.

One of the many potential advantages of the methods of the

present invention, only some ofwhich are discussed herein, is

that images with less blurring and improved temporal reso-

lution may be obtained even when there is movement in the

object being scanned. The current invention may provide

benefits to various types of interior tomography including,

but not limited to, cardiac, lung, head and neck tomography.

In the medical field and in biomedical science, the methods

disclosed herein may greatly reduce the production of unus-

able images and thereby potentially allow increased early

detection of diseases, reduced amount ofradioactive contrast

used on the patients, and/or reduced costs associated with

CTs. Better temporal resolution in the images may provide a

cost savings by reducing the number of images needed to

conclude a finding. This type of scanning may likewise pro-

vide more flexibility in designing experiments in small ani-

mals in order to better study these diseases and develop effec-

tive treatments.

Another potential advantage is that the two fast FBP pro-

posed algorithms utilize the inter-PI line and inter-PI arcs, and

have a shift-invariant filtering structure. Unlike our slow-FBP

algorithm performing filtration spatial-variantly line by line,

the proposed fast-FBP algorithms filter projection data spa-

tial-invariantly view by view, representing a significant com-

putational benefit. Since triple-source helical CBCT may

triple temporal resolution, it seems a promising mode for

cardiac CT and other CT applications, and our proposed

algorithms may find applications in this context. The methods

of the present invention allow for temporal resolution in the

range of about 100 ms to less than about 10 ms.

Geometry of Triple-Source Helical CBCT.

In particular embodiments, the geometry of the triple-

source helical. CBCTmay be measuredby allowing f(x) be an

object function to be reconstructed. In embodiments where

this function is smooth and vanishes outside the object cylin-

der EQUATION 1 may be applied as described below:

Q:{x:(xl,x2,x3) ‘xl2+x22§r21x3mm2x3 §x3max}>

0<r<R, (EQUATION 1)

where r is the radius ofthe object cylinder and R the radius

of the scanning cylinder on which a scanning trajectory

resides. In embodiments with the Cartesian coordinate sys-

tem (x1, x2, x3), the triple-helix trajectories can be expressed

as shown in EQUATION 2 below:

E UATION 2

y1(s) = (Rooss, Rsins, ( Q )

h ]

ES

2 .
y2(s) = (Roos(s + 5n], Rsm(s +

2

5

4 , 4

y3(s) = (Roos(s + 5n], Rsm(s + gfl]

J

J

h

555

h

555
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where h>0 is the pitch of each helix, and selR is the rota-

tion angle. FIG. 1 illustrates the triple-source helical CBCT

geometry.

Previously, the inter-helix PI-lines-were defined and

extended the traditional Tam-Danielsson window to the Zhao

window in the case of triple helices. The terms inter-helix

PI-lines and inter-PI lines are the same and are used inter-

changeably throughout. Specifically, for each source position

yj(s), je {1, 2, 3}, the corresponding Zhao window is the

region on the surface ofthe scanning cylinder bounded by the

nearest helix turn of yjmo(13+ l(s) and the nearest helix turn of

y0+1)m0d3+1(s), je {1, 2, 3}. In FIG. 2, 111 and 112 denote the

boundaries of the Zhao window and the Tam-Danielsson

window on the detector plane, respectively. In certain

embodiments, the algorithms described herein are designed

for flat-panel detectors. However, in embodiments with

detectors of other shapes, the arbitrary-shaped detector may

be rebinned to a virtual flat-panel detector in a preprocessing

step so that the algorithms of the current disclosure may be

used.

The properties ofthe inter-PI lines and inter-PI arcs may be

determined by recalling that an inter-PI line for yj(s) and

yjmod3+l(s), je{1, 2, 3}, is the line that (1) intersects yj(s) at

one point and yjmo(13+ l(s) at anotherpoint; and (2) the absolute

difference between the angular parameter values at the two

intersection points is less than 275. The existence and unique-

ness of the inter-PI line is shown in Theorem 1 below.

Theorem 1 states that through any fixed er, there exists

one and only one inter-PI line for any pair ofthe three helices

defined by EQUATION 2. In the triple-helix case, there are

three inter-PI lines for a fixed er and corresponding inter-

helix PI-arcs whose end points may be along the correspond-

ing helices and share the intersection points of the inter-PI

lines. In some embodiments, the three inter-PI arcs represent

the source trajectory arcs along which the sources illuminate

the point x as shown in FIG. 3.

In 2003, Katsevich proposed a general scheme for con-

structing inversion algorithms for CBCT. It can be stated as

follows in EQUATIONS 3-8:

 

 

 

fl") =
(EQUATION 3)

1 Cm(sa X) 2” 13

_Wf,; Ix — y(s)| Xfo EDfW)’ “OW“ ’0 +

. d y

SUD/0115, X, 0m» .— d5
smy

(7::

fi(s, x) ;= x ‘ y“) ,
(EQUATION 4)

Ix - y(s)|

021(5, x, 0) :2 MS, x) X 045, x, 0), (EQUATION 5)

Cm (S, x) := lim (¢(s, x, 0m + a) — ¢(s, x, 0m — 5)), (EQUATION 6)

sa0+

(MS, x, 0) := sgn(a-y(s))n(s, x, oz), (EQUATION 7)

1
‘

n (EQUATION 3)

1:: Ia..bt]»R3.IaHy(s)eR3,

|y(5)| ¢ 0-

where D/(y, [3) is the cone-beam transform of f, 6 the polar

angle in the plane perpendicular to [3(s, x), (X(S, x, 6) a unit

8

vector perpendicular to [3(s, x), em a point where q)(s, x, 6) is

discontinuous, n(s, x, (X) a weight function, C a finite union of

C°° curves in IR 3, —00<a1<b1<00, and y(s)::dy/ds.

The aforementioned general inversion formula can be

applied to any trajectory that satisfies Tuy’s condition, but

only when the weight function n(s, x, (X) is well designed can

the inversion formula have a shift-invariant filtering structure.

To derive fast exact FBP algorithms for triple-source helical

CBCT, our general approach involves the following key con-

cepts of and analyses on the inflection line, A-, T-, L-, and

Bs-curves.

Inflection line. On the detector plane, the boundaries ofthe

Zhao window may be expressed as EQUATION 9 below:

Dsins Dh (s + A5)

= m (l —coss)

(EQUATION 9)

14(5) 2 v(s)

l—coss’

where D is the distance between the detector and the

source, s is the angular parameter relative to the correspond-

ing source position, As:—2/3J'c and As:—4/3J'c are for the top

and bottom boundaries respectively. Then, EQUATIONS

10-14 can be used.

. (EQUATION 10)

14(5) 2

30 coss — l ’

Dsins (EQUATION 11)

13(5) = 7,
(coss — l)2

Dh [l — coss — (s + As)sins] (EQUATION 12)

{1(5) 2 ——2

35 23R (1 — coss)

(coss — l)(s + As)coss + (EQUATION l3)

__ _ Dh 25ins(coss + ssins + Assins — 1)

my) _ m ((1 — coss)3)

40 d2 v wows) — ii(s)\'/(s) h , (EQUATION 14)

— =—= —(s+As—sms).

duz [,2(5)]3 27rD

The inflection point exists when

45

d2 v _ O

W _ '

50

Thus, we obtain su:2.6053 and sd:3.6779 when As:—2/3J'c

and —4/3J'IS. The slope ofthe tangent line at s can be computed

as shown in EQUATION 15 below:

55 dv {2(5) (EQUATION 15)

E = E

h[l — coss — (s + As)sins]

_W

60

= ficoss.

Because cos su:cos sd:—0.8596, the slope is the same

5 (—0.1368 h/R) at both inflection points. For practical medical

applications, it is common that rFOV§0.5 R, and a boundary

limitation x12+x22érz (r:0.495 R) may be included, which is

c
x
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shown as the vertical lines F] and F, in FIG. 4. Now, the

inflection lines (the tangent lines at sd and s“, where sd and s“

are the projection ofy0+1)mod3+l(sd) and yjmod3+l(su), je{ l, 2,

3} on the detector plane) and the boundary lines split the Zhao

window into the following three regions: G1, G2 and G3. Only

the points in G1 and G3 can have tangent lines with 17:1.

A-Curve and T-Curve.

To construct an appropriate weight function, the under-

standing ofhow Radon planes intersect with the trajectories is

important. The number of intersection points only changes

when a Radon plane is tangent to the trajectory or contains

one PI line/inter-PI line. Hence, if we find all such Radon

planes, we can determine the distribution of the intersection

points. Since each plane is uniquely determined by its normal

vector, in the following sections we use unit vectors instead of

the Radon planes. An A-curve consists of all unit vectors

orthogonal to an inter-PI line. A T-curve consists of all unit

vectors in EQUATION 16 as shown below:

(26 — y(s)) X Ms) (EQUATION 16)

“(5) = i K): — y(s)) x y(s)|’

where s belongs to an inter-PI arc. Actually, the A-curve

represents all Radon planes containing one inter-PI line, and

the T-curve represents all Radon planes tangent to the traj ec-

tory. Since there are three inter-PI lines and three inter-PI arcs

for a fixed x, there are accordingly three A-curves and three

T-curves. The use of spherical coordinates (6 1, 62) to describe

these curves on the unit sphere is shown in EQUATION l7:

0L:(cos 01 sin 62, sin 01 sin 62, cos 01),—n§01§n,

0:62én. (EQUATION 17)

With the identification (61, 62)E((61+n)mod2m 313—62), each

a corresponds to a unique plane through x with the normal

vector (X.

As an example, the A-curves and T-curves ofpoint x:(0. l,

0, 0) are illustrated in FIG. 5, where R:l, h:2a'c. T1, T2 and T3

stand for the T-curves corresponding to the inter-PI arcs $fo ,

SS: and SSE: respectively. Similarly,Al , A2 andA3 are for the

A-curves corresponding to the inter-PI lines slssze, szssf and

gigs; respectively.

The A-curves and T-curves may divide the surface of the

unit sphere into several connected domains, in each ofwhich

all the planes through x have the same number of intersection

points (IPs) with the inter-PI arcs of x. Given an object point

and one trajectory, the number of IPs only changes when a

Radon plane is tangent to the trajectory or contains the end-

points of the trajectory. The A-curve represents all planes

containing the endpoints of the trajectory, and the T-curve

represents all planes tangent to the trajectory. If any Radon

plane is chosen and rotated around one direction, the normal

vector ofthis plane forms a curve on the unit sphere. Clearly,

only when this curve intersects with the A-curve or T-curve

does the number ofIPs change. Thus, the A-curve and T-curve

define the boundaries of different domains in which the num-

ber of IPs is constant. The distribution ofIPs over the inter-PI

arcs is listed in Table I. To determine the distribution of IPs,

we first pick a vector 0t(61, 62) in each domain, and then

generate the plane through x and perpendicular to 0t(61, 62),

and compute numerically the number of IPs.
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TABLEI
 

Distribution of IPs on Each of the Domains Delimited by the A-curves

and T—curves on the Surface of the Unit Sphere. The dash indicates

no IP on the corresponding inter-Pl arc. 

$fo SSS: SiSf
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7 2

l 2

l l
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By construction, a T-curve always starts from an A-curve

and ends on another A-curve. It can be seen from FIG. 5 that

a T-curve is may not be smooth at some point ac, but the limits

ofunit tangent vectors at ac" and a; are equal Such a point ac

is defined herein as a “cusp”. The term cusp indicates that the

two vectors determine the same plane, and ac is the normal

vector to that plane. It has been proved in that the cusp is

equivalent to the osculating plane IIC(x) which goes through

y1(Sic(X)) i€{ls 2, 3}, is Parallel to $61500), 57161500) and

contains x (see FIG. 6). On the detector plane, this corre-

sponds to a point where the projected boundary has a point of

zero curvature, i.e., the point of inflection.

The diagram plotted in spherical coordinates deforms

smoothly as a function ofx. The new diagram is equivalent to

the old one in the embodiments where the distribution of IPs

remain the same. An essential change could happen when

three boundaries intersect each other at one point, which is

defined herein as a “critical event”. The term “critical event”

may happen in the following seven cases:

1. Three A-curves intersect at one point;

2. Three T-curves intersect at one point.

3. Two A-curves and one T-curve intersect at one point;

4. One A-curve and two T-curves intersect at one point;

5. A T-curve becomes tangent to an A-curve at a point of

non-smoothness (i.e., cusp);

6. When the order oftangency (i.e., the zero derivatives of

this order) at the beginning of the T-curve is increased, the

T-curve re-emerges on the other side of the A-curve;

7. T-curve develops a smooth dent and becomes-tangent to

an A-curve.

From Lemmas 2-3 described below in the Examples sec-

tion, it is shown that Cases 1, 2, 4, 6, 7 do not occur for

r<0.495 R and Case 5 does not occur for r<0.265 R. In some

embodiments, Case 3 is possible. In embodiments where

Case 3 takes place, the tangency of T-curve and A-curve will

move across another A-curve, then one domain disappears.

For example, when x:(0.l, 0, 0) gradually changes to x:(0,

—0.15, 0), in FIG. 5D the tangency of T3 and A2 will move

across A3, and domain D10 disappears (see FIG. 7A). In other

embodiments, Case 5 is possible for riO.265 R. In these

embodiments, a T-curve will only intersect A-curves at the

endpoints. That is, the cusp of that T-curve and one domain

disappear (see FIG. 7B).

L-Curve.

The L-curve may be used to split the domain D4 into sub-

domains, making the weight function 11 continuous across all

the A-curves. This is the key requirement, which may allow
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for the development of eflicient reconstruction algorithms.

Thus, the L-curve should not go across an A-curve. In

embodiments where x is fixed and s is run over the three

inter-PI arcs, )2 forms a trajectory on the detector plane.

Because at the endpoint ofthe inter-PI arc the line connecting

yl(s) and x happens to be an inter-PI line, )2 always starts from

one endpoint of the inter-PI arc on the boundary of the Zhao

window, and ends at the other one. Hence, whatever the

trajectory of)2 is, part ofthe trajectory is in G2. In other words,

)2 will run across one inflection line, then move in G2, and

finally cross the other inflection line. Note that )2 on the

inflection line indicates a plane containing the inflection line,

i.e., a cusp in one T-curve. From Lemma 3 described in the

Example section below, the cusps always belong to the

boundary of domain D4. Thus, they can be used as the end-

points of the L curve. A family of L-curves is formed as

follows. Run s over the three inter-PI arcs ofx. If)2 is in G2 and

above s“ where F“ intersects th (FIG. 4), find the plane

through )2 and g“. If )2 is in G2 and below a, where F'1 inter-

sects le, find the plane through )2 and sd. If )2 is in G2 and

between sd and s“, find the plane through )2 and parallel to the

u-axis. A plot of all the normal unit vectors of these planes in

the spherical coordinates (61, 62) may then be constructed.

This gives us three L-curves. The corresponding lines on the

detector plane are called L-lines. FIG. 8 shows the L-curves

on the diagram in spherical coordinates (6 1, 6 2), where L1, L2

and L3 denote the L-curves corresponding to the inter-PI arcs

5‘53: , 5‘53: and 5‘53: respectively. As is seen from the above

construction, the L-curve always starts and ends on the cusps,

and not defined for those parameter values when )2 is not in

G2.

For riO.265 R, one ormore cusps will disappear if“critical

event Case 5” occurs, then the L-curve may start from the

intersection of T-curve and A-curve, and end at one A-curve.

Also, the L-curve may start from one cusp and end at one

A-curve or start from the intersection ofT-curve andA-curve,

and end at one A-curve. For example, see FIG. 9, L1 starts

from the intersection ofT3 andAZ, and ends at the intersection

ofT2 and A2; L2 starts from one point on A2, and ends at the

cusp ofT1; L3 starts from the cusp ofT1, and ends at one point

on A2.

Whatever the endpoints ofL-curves are, the L-curves inter-

sects at one point, for example, in some embodiments, 62:31

or 0 in the spherical coordinates (which corresponds to the

plane containing x and parallel to the x1 -x2 plane). Then D4 is

split into several sub-domains. If the endpoints of L-curves

are cusps, by Lemma 5, each sub-domain contains only one

A-curve. If not, small “line segments” on A-curves may

appear and the sub-domains may contain more than one

A-curve (see FIG. 9B).

BS-curve. A BS-curve may consist of all unit vectors per-

pendicular to x-yl(s), ie{0, 2, 3}. Each intersection of BS- and

A-curves corresponds to a plane containing an inter-PI line

and yl(s). Each intersection ofB, and T-curves corresponds to

a plane tangent to an inter-PI arc and containing yl(s). For

example, in certain embodiments, one may choose er with

)2er, )2 is above LO, where L0 is the projection of the helical

tangent at the current position. If L(6)::DP(s)flII(x, (X(S, x,

6)) is denoted, where DP(s) is the detector plane correspond-

ing to the source position s, and L(6) is the projection of the

plane through x with the normal vector (X(S, x, 6) (FIG. 10),

then as 6 increases, (X(S, x, 6)e[3L(s, x) rotates clockwise on

DP(s), and the following sequence ofevents takes place. First,

II(x, (X(S, x, 6)) intersects mg, and a pair of IPs is born. On

the unit sphere, this is seen as an intersection of BS and A1,

after which BS enters D5 (FIG. 1111). Second, II(x, (X(S, x, 6))
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intersects my and another pair of IPs is born. On the unit

sphere, this is seen as an intersection ofBS andA3, after which

BS enters D11. Third, a swap oftwo IPs takes place. On DP(s)

this happens when 6:60, L(6O) is parallel to the helical tan-

gent. On the unit sphere, this means that BS is tangent to T1 at

(x0:0t(s, x, 60). Fourth, BS exits Dll by intersecting T1. On

DP(s), this takes place when L(6) is tangent to F”. Finally,

II(x, (X(S, x, 6)) intersects the L-line. This will not change the

number of IPs but it will be useful for construction of the

weight function. On the unit sphere, this is seen as an inter-

section of BS and L1.

 

The jumps across an A-curve can only be of two types:

from a 1-IP domain to a 3-IP domain and from a 3-IP domain

to a 5-IP domain. Note that the BS-curve is tangent from the

inside to T1, which means a swap oftwo intersection points at

(FOLD where sgn(0t0~y(s)):0 (see [15]). For a fixed s, if x is

allowed to change slightly inside the Zhao window, the tan-

gency point will move from D1 1 to D5 across A3 (or from D1 1

to D6 across A1) (FIGS. 12-13). Ifx projects into G1 or G3, the

BS-curve will pass not only through D5 (or D6) and D1 1 but

also through D7 and D12 (FIG. 14). The similar results can be

obtained if the source is on y2(s) or y3(s).

Two filtered-backprojection algorithms for triple-source

helical cone-beam CT can be used to obtain images having

higher temporal resolution. The first exemplary algorithm

uses two families of filtering lines, which are parallel to the

tangent of the scanning trajectory and the so-called L lines.

The second algorithm uses two families of filtering lines

tangent to the boundaries of the Zhao window and L lines,

respectively, but it eliminates the filtering paths along the

tangent of the scanning trajectory, thus reducing the detector

size greatly. Additional information concerning these algo-

rithms can be found in Lu, Yang, et al., “Fast Exact/Quasi-

Exact FBP Algorithms for Triple-Source Helical Cone-Beam

CT,” IEEE Transactions on Medical Imaging, Vol. 29, No. 3,

March 2010, which is incorporated by references herein in its

entirety.

First Fast FBP Algorithm.

In order to design an algorithm for triple-source helical

CBCT useful in cardiac CTs and other CTs where movement

exists, the weight function n(s, x, (X) must be specified. The

filtering directions by the discontinuities of q)(s, x, 6)::sgn

(a~y(s))n(s, x, (X) must also be determined. Following the

determination of the filtering directions, the backproj ection

coeflicients can be calculated according to EQUATION 6.

Once the filtering lines and the backprojection coefficients are

determined, EQUATION 3 may be used to reconstruct the

object.

In order to construct the weight function n(s, x, (X) one

should know the following. In certain embodiments, in order

to have an eflicient FBP structure, the weight function n(s, x,

(X) should be continuous across all A-curves. Thus, the weight

function can be defined as shown in Table II. The values in

Table II are the weights assigned to IPs. For example, in the

D1 domain the Radon plane has only one IP on the inter-PI

segment STE: .Accordingly, a weight of 1 may be assigned to

this IP and a dash used to indicate that there is no IP on the

inter-PI segments @7526 and 5‘93: . In the D1 1 domain the Radon

plane has three IPs on .5737 , one IP on 5‘53: and one IP on 53:.

Thus, a weight of—1 may be assigned to two IPs on 5‘53: and

a weight of 1 to all other IPs.
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TABLE II
 

Weight Function for the First Fast FBP Algorithm
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To find the backprojection coefficients, a representative

point in each area is selected in order to determine the dis-

continuities ofq)(s, x, 6)::sgn(ot-y(s))n(s, x, (X) and extend the

results by continuity to the entire area. A discontinuity of sgn

occurs only when a BS-curve is tangent to a T-curve from the

inside. In other words, the BS-curve does not go across the

T-curve, but stays on one side in a neighborhood of the point

of tangency. On the detector plane, L(6) is parallel to the

helical tangent for all xeGl OGZOG3. Hence, this gives a

family of filtering lines parallel to L0, where L0 is the proj ec-

tion ofthe helical tangent at y(s). The swap oftwo IPs changes

the weight from n:0 to n:1. The backproj ection coefficient is

computed as c0:¢+—¢':(+1)(0)—(—1)(1):1 (FIG. 12A).

In certain-embodiments, by construction, the weight func-

tion 11 is continuous across all inter-PI lines. A discontinuity

of 11 occurs only when a BS-curve intersects a T-curve or an

L-curve. Without loss of generality or wishing to be limited

by theory, choosing y1(s0) on SE . For xeGZ, after the swap

mentioned in the above paragraph the weight at the current

position is zero. Hence, when the BS-curve passes through a

T-curve, i.e., from Dll to D4, 11 is continuous. Possible jumps

of 11 may only occur when a BS-curve passes through an

L-curve, i.e., from D43 to D41 or from D42 to D41 in FIG. 8. On

the detector plane, this occurs when L(6) overlaps the L-line

of x. Then, the backproj ection coefficients may be computed

as c1:¢+—¢':(+1)(1)—(+1)(0):1 (FIG. 16.). For xeGlflG3,

the BS-curve will not enter D41. Instead, it passes through a

second T-curve twice, i.e., from D43 to D12 and from D7 to D1.

From Table II, the jumps of 11 may only occur in the latter

intersection. On the detector plane, this happens when L(6)

overlaps the line tangent to F11. Then, the backproj ection

coefficients may be computed as ct:(|)+—(|)':(+1)(1)—(+1)(0):

1 (FIG. 15).

FIG. 13A and FIG. 13B summarize the filtering lines and

the backprojection coefficients discussed above. In these fig-

ures, L0' is the line parallel to L0 and L1 denotes the L-line. To

implement the proposed algorithm, the filtering lines cannot

be truncated. Thus, the detector size shouldbe large enough to

cover the area bounded by Fr, Ft, Lmax and BM, where Lmax

and me are the lines across the intersections of (1) F1 and

F+2 and (2) F, and F'2 respectively, and parallel to L0 (FIG.

14). In certain embodiments, the required detector area can be

determined by two factors: (1) the ratio of the pitch h and the

scanning radius R and (2) the ratio ofthe object support radius

r and the scanning radius R. IfR is fixed, the required detector

area grows as h or r increases.
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Second Fast FBP Algorithm.

Again, the design of the second fast FBP algorithm starts

with specifying new weights (Table III). By construction, n(s,

x, (X) is continuous across all inter-PI lines. More importantly,

a swap of two IPs takes place when a BS-curve becomes

tangent to a T-curve, and n(s, x, (X) changes from +1 to —1 . The

discontinuity of sgn(ot-y(s)) appears only when a BS-curve is

tangent to a T-curve from inside. Since both n(s, x, (X) and

sgn(ot~y(s)) are discontinuous at that point, the function q)(s, x,

6)::sgn(ot-y(s))n(s, x, (X) is continuous. Thus, the filtering

operation along the tangent of the scanning trajectory is

eliminated.

TABLE III

 

Weight Function for the Second Fast FBP Algorithm 

 

$fo 3:5: 3:55

D1 +1 7 7

D2 7 +1 7

D3 7 7 +1

D5 +1, —1 +1 7

D6 +1, —1 7 +1

D7 +1 +1, —1 7

D8 7 +1, —1 +1

D9 +1 7 +1, —1

D10 7 +1 +1, —1

D11 —1,+1,—1 +1 +1

Dl2 +1 —1,+1,—1 +1

Dl3 +1 +1 —1,+1,—1

D41 +1 0 0

D42 0 +1 0

D43 0 0 +1

 

A discontinuity ofn can occur only when a BS-curve inter-

sects a T-curve or an L-curve. Follow the discussion in Sec-

tion IV, jumps of 11 may occur when (1) a BS-curve passes

through a T-curve, i.e., from Dll to D4 or from D4 to D12 in

FIGS. 11A and 11C, and (2) a BS-curve passes through an

L-curve, i.e., from D42 to D41 or from D43 to D41 in FIG. 8. On

the detector plane, this gives two families offiltering lines: the

lines tangent to 112 or Fil and the L-lines. Note that the

filtering lines tangent to yil are different from those for our

first fast FBP algorithm (FIG. 15), because the discontinuity

ofn(s, x, (X) occurs on the different side ofthe cusp. Then, the

backproj ection coefficients can be calculated a ct:¢+—¢—:

(+1)(0)-(+1)(-1):1 and Cl:(l)+_(l)—:(+1)(1)_(+1)(0):1‘

The reconstruction formula for the second algorithm is the

same as that for the first algorithm. The only difference lies in

the selection of the filtering lines. For clarity, our second fast

FBP algorithm is illustrated in FIGS. 16A-B. Because the

filtering paths along the tangent ofthe scanning trajectory are

eliminated, the required detector area is reduced by at least

30% (FIG. 14).

By Lemma 3 described below in the Examples section,

there are two types of “line segments” according to different

critical events. First, let us consider the “line segment” related

to a critical event in Case 3. Recall that before entering D4 the

BS-curve will be tangent to a T-curve. For the first algorithm,

at the tangency the weight 11 changes from 1 to 0, then it does

not change whether the Bs-curve enters D4 across anA-curve

or a T-curve. For the second algorithm, ifthe weight 11 changes

from 1 to —1 at the tangency, then it will jump from —1 to 0

when the BS-curve enters D4. Ifthe BS-curve enters D4 across

an A-curve (i.e., the “line segment”; see FIG. 7), the FBP

structure is ruined. Thus, the critical event in Case 3 will only

affect the second algorithm, without damaging the FBP struc-

ture of the first algorithm. Then, let us consider the “line

segment” related to a critical event in Case 5, which only
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occurs when riO.265 R. From the discussion in Section HID

such “a line segment” is the boundary of the one-IP and

three-IP domains. Hence, for both the algorithms the weight

n will jump from 1 to 0 if the BS-curve enters D4 across the

“line segment”, and the FBP structure is ruined. Conse-

quently, the first algorithm is theoretically exact for r<0.265 R

and not exact for 0.495 R§r§0265 R, and the second algo-

rithm is not exact for r§0.495 R.

Since the algorithms are not always exact, it may be impor-

tant to estimate what percentage ofthe Radon planes is incor-

rectly calculated. If the Radon planes with approximate

weighting only have a small percentage, the algorithms canbe

considered quasi-exact, and we can still reconstruct with high

image quality.

First, one must consider the incorrectly weighting planes

caused by the critical event in Case 3. It appears in the area

r<0.495 R. Let us fix x for r<0.495 R, denote the intersection

of the Radon plane and the detector plane as L(6), Ge[0, 23's],

run s over the three inter-PI arcs, and see what happens with

x and L(6). Based on the discussion in Section III. E, for x in

G2, ifthe critical event occurs, the BS-curve will first intersect

a T-curve, and then go cross anA-curve. For example, in FIG.

12 the BS-curve will first intersect T1, then enter D4 across A3.

On the detector plane, this corresponds to that L(6) intersects

the tangent of IS+2 before the inter-PI line @335 while L(6) is

rotated clockwise. Therefore, the Radon planes between the

tangent ofIS+2 and slcéf are not exactly weighted. Because the

slope ofWis positive and the slope ofthe tangent of F+2 is

less than h/2J'cR, the percentage of the incorrectly weighted

Radon planes is less than

 

 

-fih<fi<2t2ta-thp—fl,WereDz arcau{\/§an2],a—arcan2flR

(See Appendix). It is common that h/R<0.2 in practical appli-

cations, hence p<1 . 17%. For x in G1 (G3), ifthe critical event

occurs, the BS-curve will first go across an A-curve, and then

over a T-curve. On the detector plane, this corresponds to the

case when L(6) intersects the tangent to F+1(F'l) before the

inter-PI line $38825 while L(6) is rotated clockwise. Hence,

the Radon planes between the tangent ofF“ (F'l) and 838825

are not exactly weighted. Because the slope of sis; is nega-

tive and the slope of the tangent of F“ (F'l) is more than

—0.35 h/R, the percentage ofthe incorrectly weighted Radon

planes is less than p:2.57% for h/R:0.2.

Then, one must further consider the incorrectly weighting

planes caused by the critical event in Case 5. Recall that the

L-curves are used to split the domain D4 into sub-domains,

making the weight function 11 continuous across all the

A-curves, and the cusps are the starting and ending points of

the L-curves. If the endpoints of the L-curves are not the

cusps, there will be small fractions (or “line segments”) on the

A-curves, making the weight function 11 discontinuous across

them and ruining the FBP structure of our algorithms. It

possibly occurs for riO.265 R. As discussed above, the Bs-

curve will first enter a 1-IP domain from a 3-IP domain across

the “line segment”, and then pass through an L-curve. On the

detector plane, this corresponds to that L(6) intersects the

inter-PI line §3e§25 before the L-line while LA(6) is rotated

clockwise. Recall that if the cusp is not in D4, S; is possibly

to the left of Sn or S38 is to the right of Sd. Thus, the slope of

838825 is always more than —0.35 h/R.

Because the slope of the L-curve is never positive, the

percentage of the incorrectly weighted Radon planes is less
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than p:2.57% for h/R:0.2. On the other hand, based on the

discussion on Lemma 3, one or more cusps may possibly

remain even when riO.265 R, which means that less “line

segments” related to critical events will appear in Case 5, and

in fact more Radon planes may be correctly weighted.

The implementation of these algorithms consists of one or

more, and preferably all, of the following steps: Step 1) Dif-

ferentiate each projection with respect to variable s; Step 2)

For each yl(s), i:{1, 2, 3}, perform the Hilbert transform of

derivative data along the given filtering directions on the

corresponding detector plane; Step 3) Backproj ect the filtered

data on the inter-PI segments to reconstruct the object point.

Differences between the algorithms described herein and

some of the ones previously described include, but are not

limited to, differences in triple-helices geometry the filtered

data are backprojected on inter-PI segments and that there are

two families of filtering lines for each algorithm so that each

point on the detector plane will be filtered twice. Also, since

the algorithms described herein allow shift-invariant filtra-

tion, all results are in Cartesian coordinates directly, and there

is no coordinate transform necessary similar to what was used

in the slow-FBP algorithm or BPF algorithm.

Previously published BPF algorithms for triple-source

helical CBCT can indeed produce excellent image quality,

FBP algorithms (either “slow” or “fast”) are computationally

desirable for several reasons, such as being amendable for

parallel processing. In particular, while the computational

structures ofour BPF algorithm and FBP algorithms are quite

similar, the FBP algorithms avoid densely sampled interme-

diate reconstruction in the PI-line-based coordinate system,

and more importantly they can reconstruct a region ofinterest

(ROI) or volume ofinterest (VOI) much more efficiently than

the BPF counterpart. Note that ROI/VOI reconstruction is

very common in medical imaging. A related technology

called “interior tomography” is being actively developed to

target this type of problems. Then, an interesting possibility

would be to develop tripe-source interior CBCT.

The inventive two fast exact/quasi-exact FBP algorithms

for triple-source helical CBCT have their advantages and

disadvantages. From the perspective of exact reconstruction,

the first algorithm is more desirable than the second algorithm

because it is not affected by critical events in Case 3. How-

ever, in terms of efficient data acquisition, it may require a

larger detector area than the second algorithm. In the medical

CT field, the rectangular detector shape is most popular, and

the helical pitch may be varied case by case. Therefore, it is

practically possible to have projection data for reconstruction

using either or both of the two fast FBP algorithms.

The methods disclosed herein can be practiced on any CT

system. An example ofa CT system and apparatus capable of

implementing the methods is provided is an electron beam

CT. In that framework, a curvilinear tungsten material or

target can be arranged along a non-standard curve to be traced

by an electro-magnetically driven electron-beam for forma-

tion of an X-ray source and collection of cone-beam data.

An exemplary electron beam CT comprises a vacuum

chamber having an exterior surface, an underlying interior

surface, and defines an enclosed space. At least a portion of

the exterior surface can define or surround a subject cavity.

The subject cavity is adapted to receive a subject. The subject

cavity canbe adapted to receive a human, a mouse or a rat, e.g.

The apparatus can further comprise a charged particle

beam generator having a proximal and a spaced distal end.

The electron beam generator can generate a flat or curved

electron sheet. The electron beam generator can have a scan-
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ning speed from about 25 Hz to about 50 Hz. The apparatus

can comprise a single electron beam generator or a plurality

of electron beam generators.

The apparatus can include a focusing mechanism adapted

to selectively focus charged particles generated by the

charged particle beam generator and a target adapted to gen-

erate X-rays upon receipt of charged particles from the

charged particle beam generator. If a plurality of electron

beam generators are used, the apparatus may comprise a

plurality of focusing mechanisms.

The apparatus further comprises a detector or a series of

detectors surrounding the target. There are a large variety of

detectors that can be used in the disclosed apparatuses, sys-

tems and methods. Two representative types are a) thin-film

transistors (TFT, .alpha.-Si:H) and b) mono-crystalline sili-

cone CCD/CMOS detectors. Although their quantum effi-

ciency is high, the readout speed ofTFT detectors is generally

less than 30 frames per second, rarely reaching 100 frames

per second. On the other hand, the readout speed of CCD/

CMOS detectors can be extremely high, such as 10,000-30,

000 frames per second, and are coupled with fiber-optical

tapers, resulting in low quantum efficiency. For example, the

1000 Series camera from Spectral Instruments (Tucson,

Ariz.), can be used. This camera is compact, measuring 92 by

92 by 168 mm. Two, three, and four-phase architecture CCDs

from Fairchild Imaging (Milpitas, Calif.), E2V (Elmsford,

N.Y.), Kodak (Rochester, N.Y.), and Atmel (San Jose, Calif.)

can be placed in the selected camera. The readout and digiti-

zation can use 16-bit digitizer. The pixel readout rate can be

varied from 50 kHz to 1 MHZ. The gain ofthe analog proces-

sor can be modified under computer control to compensate

for the gain change of the dual slope integrator at different

readout speeds. The 1000 Series system offers fully program-

mable readout of sub arrays and independent serial and par-

allel register binning. In addition, specialized readout modes,

such as time delay and integration (TDI) using an internal or

external time base can be used. These capabilities allow the

readout of only the area of the CCD of interest at variable

resolution in order to optimize image signal to noise ratio.

To facilitate a better understanding of the present inven-

tion, the following examples of certain aspects of some

embodiments are given. In no way should the following

examples be read to limit, or define, the scope of the inven-

tion.

EXAMPLES

Example 1

To verify and showcase the fast FBP algorithms of the

present invention, numerical tests were performed using the

Clock phantom. This phantom consists of ellipses, as param-

eterized in Table IV. In the simulations, the origin of the

reconstruction coordinate system was set to the center ofeach

phantom. The spherical phantom support was of 375 mm for

the experiment. Three sources were arranged uniformly along

a circle with their corresponding detectors on the opposite

side. The source-detector distance was 1000 mm. Projections

were generated from 1000 view angles while the sources and

the detectors were constantly moved along three helixes in

one turn. The helix was of 750 mm in radius and 100 mm in

pitch. The detector plane consisted of 1300x200 detection

elements of 1.0><1.0 mm2.
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TABLE IV
 

Parameter ofthe Clock Phantom

 

No x yc 26 a b c 0 p

1 0 0 0 1 1 1 0 1

2 0 0.8 0 0.1 0.1 0.1 0 1

3 0.4 0.69 0.01 0.1 0.1 0.1 0 1

4 0.69 0.4 0.02 0.1 0.1 0.1 0 1

5 0.8 0 0.03 0.1 0.1 0.1 0 1

6 0.69 —0.4 0.04 0.1 0.1 0.1 0 1

7 0.4 —0.69 0.05 0.1 0.1 0.1 0 1

8 0 —0.8 0.06 0.1 0.1 0.1 0 1

9 —0.4 —0.69 0.07 0.1 0.1 0.1 0 1

10 —0.69 —0.4 0.08 0.1 0.1 0.1 0 1

11 —0.8 0 0.09 0.1 0.1 0.1 0 1

12 —0.69 0.4 0.1 0.1 0.1 0.1 0 1

13 —0.4 0.69 0.11 0.1 0.1 0.1 0 1

14 0 0.5 0 0.05 0.05 0.05 0 1

15 0.25 0.43 —0.01 0.05 0.05 0.05 0 1

16 0.43 0.25 —0.02 0.05 0.05 0.05 0 1

17 0.5 0 —0.03 0.05 0.05 0.05 0 1

18 0.43 —0.25 —0.04 0.05 0.05 0.05 0 1

19 0.25 —0.43 —0.05 0.05 0.05 0.05 0 1

20 0 —0.5 —0.06 0.05 0.05 0.05 0 1

21 —0.25 —0.43 —0.07 0.05 0.05 0.05 0 1

22 —0.43 —0.25 —0.08 0.05 0.05 0.05 0 1

23 —0.5 0 —0.09 0.05 0.05 0.05 0 1

24 —0.43 0.25 —0.1 0.05 0.05 0.05 0 1

25 —0.25 0.43 —0.11 0.05 0.05 0.05 0 1

 

The algorithms were coded in MATLAB and executed on

a regular PC (Intel Core2 Duo CPU 3.06 GHz, 4 GB RAM).

Reconstructed images are shown in FIG. 22. Our numerical

results show that in the case ofr:0.495 R both two algorithms

produced high quality images.

Example 2

Auxiliary Lemmas were used as described below. A point

was fixed at er and its three associated inter-PI lines were

found as shown in FIG. 3. Then, a source position was

selected as se(sj3, s18), je{1, 2, 3} and how the inter-PI lines

project onto the corresponding detector plane was deter-

mined. For simplicity, in this disclosure the projection of

yl(s), je{1, 2, 3} on a detector plane is denoted by S].

Lemma 1.

On a detector plane, the slopes of the projected inter-PI

lines SjSSjm0d3+le and S(j+l)mod3+lss'e are always positive, and

that of the inter-PI line Sjm0d3+15SU+Umod3+1€ je{1, 2, 3} is

always negative.

Proof of Lemma 1.

Without loss of generality or wishing to be limited by

theory, the source position was selected to be y1(s0), soe(s15,

s19). By construction, sze—s15<2a'c, sle—s3s<2n and s3e—s25>0.

Hence, the projections of s15, s39, and s35 were always to the

left of those of Si, Si, and s19 respectively (FIG. 18). When

se(sls, s19) changed, the point x, i.e., the projection ofx onto

the detector plane, was moved inside the region

G::G1UG2UG3. Clearly, x could reach its highest (respec-

tively, lowest) position in the vertical direction when x was at

the intersection of F1 and F“ (respectively, of F, and 17—1).

Also, the vertical coordinates at these points are

- 1 3794 Dh d - 1 3794 DhVmax— - flan me——- fi’
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respectively. Moreover, the lowest point on IT+2 and the high-

est point on F'2 are

Dh

W

Dh

v = 1.3801 27IR
mm

and am = 4.3301

respectively. Evidently, Vmaxévmln' and Vmax'évmln’ Since s15

and a; were to the left ofs; and s19, the slopes ofthe inter-PI

lines m; and s35s18 were positive for all x in G.

The inter-PI line m; was satisfied by EQUATION 18

below:

  

 

x1 = thoss‘é + R(1 — t)coss§ (EQUATION 13)

x2 = Rtsins‘; + R(1 — t)sins§

h 5 Zn hl E 47r

363—5 52—3]+E( —I)(53—?],

where te[0,1] and s25, s3ee(s0, s0+2rc).

By allowing

x1 :ro cos 110

x :r sin E UATION 192 0 Ho

where roe[0,0.495 R] and qu[0,2a'c].

The following was left:

rosinmo — 5;) (EQUATION 20)

V R2 + r% — 2Rr0cos(/.(0 — 5%)

 ,and

then, EQUATION 20 was rewritten as EQUATION 21

below:

51an — 53) (EQUATION 21 )
 

R 2 , 2

(B —COS(#0 —s§)) +sm (p0 —s§)

When Ito—s29 was fixed and r0 was reduced,

COS
 

2
53—52‘

 

decreased. Therefore, the right side of EQUATION 21

reached its maximum or minimum when rO is maximized, i.e.

at r0:0.495 R. Those maximum and minimum values were

numerically calculated (FIG. 19A), and shown below in

EQUATIONS 22 and 23:

E — 53 (EQUATION 22)
—0.4949 s c0553 5 0.4949 

or 2.1062<s3E—s25<4.1770 (EQUATION 23)

Next, it was shown that 0§s25s0§41773 implied

VI(33e—So)—V2(32S—So)>0, (EQUATION 24)
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where

Dh s—47r/3

fl 1—coss

Dh s—27r/3

fl 1—coss'

 and v2(s) =  V1(S) =

FIG. 19B shows the function CI>(s:1—cos S—(S—4/3J‘E) sin s

in the range se(0, 2n), demonstrating that vl(s) was always

positive. Hence v1(s3e—s0) was monotonically increasing.

s3e:s25+2.1062 was fixed and the function) II’(s2‘3)fl/1(s3‘3—

sO)—v2(s25—s0) was plotted in FIG. 19C. Clearly, this function

was always positive in the range Oészs—soé4. 1773. Note that

s:4.1773+sO was the intersection of F1 and F“ and a; could

not be to the left of this point (otherwise, x is outside G).

EQUATION 24 indicated that s; was always lower than s; in

the vertical direction. Since a; was to the right of €39, the

slope of the inter-PI lineW was always negative. Due to

symmetry, the other two cases se(s25, Si) and se(s3s, s39) was

handled similarly. This finishes the proof.

Lemma 2.

A T—curve cannot be tangent to an A-curve at an interior

point of T.

Proof of Lemma 2.

The interior point ofT—curve canbe any point ofthe T—curve

except an endpoint. It has been proved previously that a

T—curve is smooth everywhere, except possibly at a cusp.

When sf, ie{ 1, 2, 3} is chosen to be the point where the cusp

occurs. It was assumed that a T—curve was tangent to an

A-curve at Ot(s). If s:slce(sls, sf), where sf, sf were the

endpoints of the T—curve, then the osculating plane He(x)

intersected the helix yl(s) at only one point and it contained

one inter-PI line. By construction, ITc(x) intersected the

detector plane at the asymptote of the Tam-Danielson win-

dow boundary and x belonged to the asymptote. Connecting

x and sf, x and sf we detected two inter-PI lines. Clearly,

1T8(x) could not contain any of them. By Lemma 1, the third

inter-PI line had a negative slope, thus it would not overlap the

asymptote. Hence, 1T8(x) could not contain it. Consequently,

s¢sf and T—curve was smooth in a neighborhood of Ot(s).

If 6 was chosen to be the polar angle for the great circle

(x—yl(se))l, s“e{sls, sf}, ie{1, 2, 3}, then the A-curve could

consist ofall the unit vectors Otl(6)e(x—yl(se))i. Clearly, (x1 (6)

could be perpendicular to Otl(6) and (x—y1(s“)). By construc-

tion, the T—curve was tangent to the A—curve at Ot(s). Hence,

Ot(s) was be parallel to 01(6). That is, Ot(s) was perpendicular

to Otl(6) and (x—yl(s“)). Because Ot(s) was also perpendicular

to (x—yl(s1)), sle(sls, sf), (x—yl(s1)) was parallel to (x—yl(s“))

and s1:s“, which contradicted the assumption that sl is an

inner point of the T—curve. This finishes the proof.

Lemma 3.

Case 1, 2, 4, 6, 7 do not occur forr<0.495 R and Case 5 does

not occur for r<0.265 R.

Proof of Lemma 3.

Cases 1 and 2 were impossible because they mean that

there can be a plane containing three inter-PI lines or tangent

to three inter-PI arcs. In Case 4, there can be one plane IT

containing one inter-PI line and tangent to two inter-PI arcs. If

one assumes this inter-PI line is slssze, chooses a point s:s15

on yl(s) and denotes L:IIODP (so), then by construction, on

the detector plane x is on F“ and it overlaps a; Then, L may

tangent to F“ and F+4 or F'1 and F'l, see FIG. 20. Because

the points oftangency are on the inter-PI arcs, the endpoint s19

is to the left ofthe tangency for caseA and s; was to the right

ofthe tangency for case B. Connecting s19 and x(or a; and x)

we find that the slope of the inter-PI line s35s18 could be

negative. By Lemma 1, these two cases were impossible.
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In Case 5, there was one plane containing one inter-PI line

and tangent to one inter-PI arc at the inflection point. Thus, the

inter-PI line on the detector overlapped the inflection line, i.e.,

szssf overlapped th when s25:su and s3e:2su, where s“ is

difference between s21 and s39. When looking at EQUATION

21 and uO—sze is fixed, the absolute value of

 

was monotonically decreasing when rO was reduced. Then,

the range of s3e—s2‘3 was narrowed. In other words, the differ-

ence between s: and s29 became closer to at. Case 5 occurred

when s3e—s29:su. If order to exclude Case 5, the range of

s3e—s2‘3 could not cover the value su:2.6053. Hence, the mini-

mum range of s3e—s2‘3 is 2.6053<s3e—s252n—2.6053. That is,

e s e 5

53—52 53—52
—O.2649 < cos < 0.2649 and cos  

reached its extreme when r0:0.265 R. From EQUATIONS 21

and 22 we have s3e—s25:su only for riO.265 R thereby con-

tradicting our condition. Hence, Case 5 was impossible for

r<0.265 R.

In Case 6, a T-curve will intersect oneA-curve twice before

meeting a cusp. Suppose this took place at inter-PI arc 573‘; .A

point s:s15 on y1(s) was chosen and observations of what

happens on the detector plane when s moves were taken. By

construction, the plane II containing y1(s) and x intersected

the detector plane at the line L which was parallel to the helix

tangent across x. At s:s15, x was on F“ and II contained

inter-PI line ass; As s moved along y1(s), x moved down-

wards. Notice that L was parallel to the asymptote of the

Tam-Dannielson window, so it would not intersect F'Z pro-

vided that x moved across the asymptote, at where the cusp

occurred. Hence, II would not contain the inter-PI line m;

and Case 6 was impossible. By Lemma 2, Case 7 was impos-

sible. This finishes the proof.

Lemma 4.

 

 

The inflection point sued) is inside the inter-PI arc when x

is in G21 (G22).

Proof of Lemma 4.

By Lemma 3, any point in the area r<0.265 R had three

cusps in the diagram. Note that there was one IP in each

inter-PI arc within D4. Since all three cusps were in D4, an

osculating plane of one inter-PI arc intersected two other

inter-PI arcs exactly once at one point. Assuming that this

osculating plane He contained x and considering He of the

second inter-PI arc (i.e., ofy2(s)). s1O was set to be the point

where it intersected the first inter-PI arc (i.e., on yl(s)). s was

moved along the first inter-PI arc and the results were

observed with x on the detector when s:s15, x entered the

Zhao window through F“, and when s:s120, x belongs to L“.

As follows from the diagram, the point s“ must be inside the

second inter-PI arc, i.e., between s; and Si. As the point s

moved further, the difference szs—s became smaller, and the

point s; moved to the right of g“ along I“. The inter-PI line

m; had a positive slope. Thus, as long as x was inside G21,

the point s; was always to the left ofs“. The case where x was

in G22 can be similarly treated. This proves Lemma 4.
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Lemma 5.

An L-curve never intersects an A-curve, for r<0.265 R.

Proof of Lemma 5.

If an L- and A-curve intersect, an L-line through x can

overlap the inter-PI line. One point on the inter-PI arc

S53: was chosen and the slope of the inter-PI line was con-

sidered on the corresponding detector plane. By construction,

an L-curve always started from a cusp of a T-curve and ended

on a cusp of another T-curve. For the osculating plane He, its

intersection with the detector plane was the line tangent to F“

(F'l) at sued). By Lemma 4, the endpoints ofthe inter-PI arc

onF“ (F'l) were on different sides ofg“ (sd), and one ofthem

on the right (left) side was also an endpoint ofthe inter-PI line

for helices y2(s) and y3(s), and was denoted as é;(§;) in FIG.

22.

If x was in G2 and above s“, the L-line was formed by

connecting x, s“, and the inter-PI line was formed connecting

x, Q. If Z was in G2 and below sd, we formed the L-line by

connecting x, 3,, and the inter-PI line was formed by connect-

ing x, a; Clearly, in any case the slope ofL-line was between

zero and the slope ofthe inter-PI line. That is, the L-line could

not overlap the inter-PI line. For other x, the L-line was

parallel to the u axis. By Lemma 1, it was always between two

inter-PI lines and could not overlap with any ofthem. For the

point on other inter-PI arcs, the situation was the same. This

finishes the proof.

The present invention has been described with reference to

particular embodiments having various features. It will be

apparent to those skilled in the art that various modifications

and variations can be made in the practice of the present

invention without departing from the scope or spirit of the

invention. One skilled in the art will recognize that these

features may be used singularly or in any combination based

on the requirements and specifications of a given application

or design. Other embodiments ofthe invention will be appar-

ent to those skilled in the art from consideration of the speci-

fication and practice of the invention. It is intended that the

specification and examples be considered as exemplary in

nature and that variations that do not depart from the essence

of the invention are intended to be within the scope of the

invention.

Therefore, the present invention is well adapted to attain

the ends and advantages mentioned as well as those that are

inherent therein. The particular embodiments disclosed

above are illustrative only, as the present invention may be

modified and practiced in different but equivalent manners

apparent to those skilled in the art having the benefit of the

teachings herein. Furthermore, no limitations are intended to

the details of construction or design herein shown, other than

as described in the claims below. It is therefore evident that

the particular illustrative embodiments disclosed above may

be altered or modified and all such variations are considered

within the scope and spirit of the present invention. While

compositions and methods are described in terms of “com-

prising,” “containing,” or “including” various components or

steps, the compositions and methods can also “consist essen-

tially of” or “consist of” the various components and steps.

All numbers and ranges disclosed above may vary by some

amount. Whenever a numerical range with a lower limit and

an upper limit is disclosed, any number and any included

range falling within the range is specifically disclosed. In

particular, every range ofvalues (ofthe form, “from about a to

about b,” or, equivalently, “from approximately a to b,” or,

equivalently, “from approximately a-b”) disclosed herein is

to be understood to set forth every number and range encom-

passed within the broader range of values. Also, the terms in
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the claims have their plain, ordinary meaning unless other-

wise explicitly and clearly defined by the patentee. Moreover,

the indefinite articles “a” or “an,” as used in the claims, are

defined herein to mean one or more than one of the element

that it introduces. If there is any conflict in the usages of a

word or term in this specification and one or more patent or

other documents that may be incorporated herein by refer-

ence, the definitions that are consistent with this specification

should be adopted.

Throughout this application, various publications are ref-

erenced. The disclosures ofthese publications in their entire-

ties are hereby incorporated by reference into this application

in order to more fully describe the features of the invention

and/or the state of the art to which this pertains. The refer-

ences disclosed are also individually and specifically incor-

poratedby reference herein for the material contained in them

that is discussed in the portion ofthis disclosure in which the

reference is relied upon.

G. Wang, C. R. Crawford, and W. A. Kalender, “Guest

editorial-Multirow detector and cone-beam, spiral/helical

CT,” Medical Imaging, IEEE Transactions on, vol. 19, pp.

817-821, 2000.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka,

K. Gruber, C. SiiB, M. Grasruck, K. Stierstorfer, B. Krauss,

and R. Raupach, “First performance evaluation of a dual-

source CT (DSCT) system,”European Radiology, vol. 16, pp.

256-268, 2006.

M. Vannier and G. Wang, “Spiral CT refines imaging of

temporal bone disorders,” Diagnostic imaging, vol. 15, p.

116-121,1993.

G. Wang, S. Zhao, H.Yu, C. Miller, P. Abbas, B. Gantz, S.

Lee, and J. Rubinstein, “Design, analysis and simulation for

development of the first clinical micro-CT scannerl,” Aca—

demic Radiology, vol. 12, pp. 511-525, 2005.

G. Wang, T.-H. Lin, P.-C. Cheng, and D. M. Shinozaki, “A

general cone-beam reconstruction algorithm,” IEEE Trans-

actions on Medical Imaging, vol. 12, p. 486, 1993.

A. Katsevich, “Theoretically exact filtered backprojection-

type inversion algorithm for spiral CT,” SIAM Journal on

Applied Mathematics, vol. 62, p. 2012, 2002.

S. S. Orlov, “Theory of three-dimensional reconstruction.

1. Conditions of a complete set of projections,” Sov. Phys.

Crystallogr, vol. 20, pp. 312-314, 1975.

l. Gel’fand and M. Graev, “Crofton’s function and inver-

sion formulas in real integral geometry,” Functional Analysis

and Its Applications, vol. 25, pp. 1-5, 1991.

H. Rullgard, “An explicit inversion formula for the expo-

nential Radon transform using data from 180,” Arkiv fOr

Matematik, vol. 42, pp. 353-362, 2004.

G. Wang, Y. Ye, and H. Yu, “Approximate and exact cone-

beam reconstruction with standard and non-standard spiral

scanning,” Physics in Medicine and Biology; vol. 52, pp.

1-13, 2007.

J. Zhao, M. Jiang, T. Zhuang, and G. Wang, “An exact

reconstruction algorithm for triple-source helical cone-beam

CT,” Journal ofX-Ray Science and Technology, vol. 14, p.

191, 2006.

J. Zhao, Y. Jin,Y Lu and G. Wang, “A Filtered Backproj ec-

tion Algorithm for Triple-Source Helical Cone-Beam CT,”

Medical Imaging, IEEE Transactions on, vol. 28, pp. 384-

393, 2009.

The invention claimed is:

1. A computed tomography (CT) imaging method com-

prising:

scanning an object using triple-source helical cone-beam

computed tomography (CBCT) to acquire projection

data relating to the object being imaged, where each
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x-ray source ofthe CBCT is disposed opposite a detector

and has a scanning radius that is a distance R from a

rotation axis, and where each detector covers a field of

view less than 0.495 R; and

reconstructing the scanned portion of the object into an

image by performing a computationally efficient filtered

backprojection (FBP) and theoretically exact/quasi-ex-

act algorithm to generate image data.

2. The method of claim 1, further comprising:

supporting the object in a stationary position; and

moving each source of the triple-source and its associated

detector about the object at a constant speed to generate

three spiral scans with source trajectories y1(s), y2(s),

and y3(s) defined as:

y1(s) = (Rooss, Rsins, h—s]

2

y2(s) = (Roos(s + —7r], RsiI-{s + a};—s]

3 Zn

h J
—s

2

5

4 , 4

y3(s) = (Roos(s + 5n], Rsm(s+ §7r7r} 2”

where R is the distance from the x-ray source to the rotation

axis, h is helical pitch, s is a scan path corresponding to

source position.

3. A method of computing images derived from triple-

source spiral computed tomography scan with three detec-

tors, comprising the steps of:

(a) collecting cone beam data from three detectors during a

scan of an object;

(b) for each source position yj(s), je{1, 2, 3}, identifying

two families of lines on a detector plane DP(s) corre-

sponding to a source position s and containing the cor-

responding detector and intersecting the cone beam, and

two families of lines include:

i. a first family of lines parallel to L0, where

L0 is the projection of the helical tangent at current

source position;

ii. a second family of lines tangent to T“ and T'l, or

parallel to the horizontal axis of the plane DP(s),

where

T“ is the projection of the helical turn yjmod3+1(s)

defined by s<q<s+2at onto the plane DP(s);

T'1 is the projection of the helical turn y(]+l)mod3+l(s)

defined by s<q<s+2at onto the plane DP(s);

q is the parameter along the scan path which describes

the point being projected;

(c) computing a derivative of the cone beam data with

respect to the source position;

(d) performing Hilbert transform of the derivative of the

cone beam data along the two families oflines, where the

Hilbert transform is a convolution between the deriva-

tive of the cone beam data and a kernel function h(t):1/

(m);

(e) back projecting said filtered data to form a precursor of

said image; and

(f) repeating steps a, b, c, d and e to obtain an image.

4. The method of claim 3, wherein identifying the second

family of lines includes:

the lines tangent to T“, when the projection ofpoint x onto

DP(s) is located in the area bounded by T], L”, and T“;

the lines tangent to T‘ 1, when the projection ofpomt x onto

DP(s) is located in the area bounded by Fr, le and T'l;
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the lines parallel to the horizontal axis of the plane DP(s),

when the projection ofx onto DP(s) is located in the area

bounded by F], R, L”, le, F“ and F'l, where

F] and F, are the projections ofthe object support limitation

1:0.495 R onto DP(s);

th is the inflection line of F“;

le is the inflection line of F'l;

r is the radius of the object support, and

R is the radius of the scanning trajectory.

5. The method of claim 3, wherein the back projection

step(e) includes:

(ei) fixing a reconstruction point x, which represents a

point inside the object being scannedwhere it is required

to reconstruct the image;

(eii) determining the three inter-Pl arcs for x;

(eiii) finding the projection x of x onto a detector plane

DP(s);
(eiv) identifying lines from the two families of lines and

points on the said lines that are passing through the said

projection x;

(ev) computing contribution from filtered cone beam data

to the image being reconstructed at the point x by mul-

tiplying

1

_47r2|x—y(s)l'

(evi) adding the contribution from filtered cone beam data

to the image being reconstructed at the point x according

to the three inter-Pl arcs;

(evii) going to step (ei) and choose a different reconstruc-

tion point x.

6. The method ofclaim 5, wherein the three inter-Pl arcs for

x are determined according to the following rules:

the endpoints ofthe inter-Pl arc on a first helical turn y1(s)

are s:s15 and s:sle, sle>s15;

the endpoints of the inter-Pl arc on a second helical turn

y2(s) are s:s25 and s:s28, s28>s25;

the endpoints ofthe inter-Pl arc on a third helical turn y3 (s)

are s:s35 and s:s3e, s3e>s35;

lsf—sl‘ l<2n;

lsf—sf l<2n;

lsf—stZn;

the line connecting y1(sle) and y3 (s35) passes through x;

the line connecting y2(s29) and y1(s15) passes through x;

the line connecting y3 (s39) and y2(s29) passes through x.

7. A method of computing images derived from triple-

source spiral computed tomography scan with three detec-

tors, comprising the steps of:

(a) collecting cone beam data from three detectors during a

scan of an object;

(b) for each source position yj(s), je{l, 2, 3}, identifying

two families of lines on a detector plane DP(s) corre-

sponding to a source position s and containing the cor-

responding detector and intersecting the cone beam, and

two families of lines include:

i. a first family of lines tangent to F” and F'z, where

F” is the projection ofthe current helical turn defined

by s<q<s+2n onto the plane DP(s);

F'2 is the projection ofthe current helical turn defined

by s—2J'c<q<s onto the plane DP(s);
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ii. a second family of lines tangent to F“ and F'l, or

parallel to the horizontal axis of the plane DP(s),

where

F“ is the projection of the helical turn yjmod3+1(s)

defined by s<q<s+2at onto the plane DP(s);

F'1 is the projection of the helical turn YQ+1)mod3+1(S)

defined by s<q<s+2at onto the plane DP(s);

(c) computing the derivative of the cone beam data with

respect to the source position;

(d) performing the Hilbert transform ofthe derivative ofthe

cone beam data along the two families oflines, where the

Hilbert transform is a convolution between the deriva-

tive of the cone beam data and a kernel function h(t):l/

(m);

(e) back projecting said filtered data to form a precursor of

said image; and

(f) repeating steps a, b, c, d and e until an image of the

object is completed.

8. The method of claim 7, wherein identifying the first

family of lines includes:

the lines tangent to T”, when the projection of x onto

DP(s) is located above LO;

the lines tangent to F'Z, when the projection of x onto

DP(s) is located below LO;

where L0 is the projection of the helical tangent at current

source position.

9. The method of claim 7, wherein identifying the second

family of lines includes:

the lines tangent to T“, when the projection of x onto

DP(s) is located in the area bounded by F], th and F“;

the lines tangent to F'l, when the projection of x onto

DP(s) is located in the area bounded by Fr, le and F'l;

the lines parallel to the horizontal axis of the plane DP(s),

when the projection ofx onto DP(s) is located in the area

bounded by F], D, L”, le, F“ and F'l, where

F] and F, are the projections ofthe object support limitation

1:0.495 R onto DP(s);

th is the inflection line of F“;

le is the inflection line of F'l;

r is the radius of the object support, and

R is the radius of the scanning trajectory.

10. The method of claim 7, wherein the back projection

step(e) includes:

(ei) fixing a reconstruction point x, which represents a

point inside the object being scanned where it is required

to reconstruct the image;

(eii) determining the three inter-Pl arcs for x;

(eiii) finding the projection x of x onto a detector plane

DP(s);
(eiv) identifying lines from the two families of lines and

points on the said lines that are passing through the said

projection x;

(ev) computing contribution from filtered cone beam data

to the image being reconstructed at the point x by mul-

tiplying

1

_47r2|x—y(s)|'

(evi) adding the contribution from filtered cone beam data

to the image being reconstructed at the point v according

to the three inter-Pl arcs;

(evii) going to step (ei) and choose a different reconstruc-

tion point x.
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11. The method of claim 7, wherein the three inter-Pl arcs

for x are determined according to the following rules:

the endpoints ofthe inter-Pl arc on a first helical turn y1(s)

are s:s15 and s:sle, sle>slsg

the endpoints of the inter-Pl arc on a second helical turn 5

y2(s) are s:s25 and s:s28, s28>s25;

the endpoints ofthe inter-Pl arc on a third helical turn y3 (s)

are s:s35 and s:s3e, s3e>s3sg

lsf—sl‘ l<2n;

10

lsf—s; l<2n;

lsf—stZn;

the line connecting y1(sle) and y3 (s35) passes through x;

the line connecting y2(s29) and y1(s15) passes through x;

the line connecting y3 (s39) and y2(s29) passes through x.

* * * * *


