
On Improving the Security of Virtualized Systems through
Unikernelized Driver Domain and Virtual Machine Monitor

Compartmentalization and Specialization

A K M Fazla Mehrab

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Binoy Ravindran, Chair

Daphne Yao

Paul Plassmann

Haibo Zeng

Ruslan Nikolaev

February 17, 2023

Blacksburg, Virginia

Keywords: Operating Systems, Unikernels, Virtualization, Hypervisors, VMM,

Compartmentalization

Copyright 2023, A K M Fazla Mehrab



On Improving the Security of Virtualized Systems through Uniker-
nelized Driver Domain and Virtual Machine Monitor Compartmen-
talization and Specialization

A K M Fazla Mehrab

(ABSTRACT)

Virtualization is the backbone of cloud infrastructures. Its core subsystems include hyper-

visors and virtual machine monitors (VMMs). They ensure the isolation and security of

co-existent virtual machines (VMs) running on the same physical machine. Traditionally,

driver domains – isolated VMs in a hypervisor such as Xen that run device drivers – use

general-purpose full-featured OSs (e.g., Linux), which has a large attack surface, evident by

the increasing number of their common vulnerabilities and exposures (CVEs). We argue

for using the unikernel operating system (OS) model for driver domains. In this model, a

single application is statically compiled together with the minimum necessary kernel code

and libraries to produce a single address-space image, reducing code size by as much as one

order of magnitude, which yields security benefits.

We develop a driver domain OS, called Kite, using NetBSD OS’s rumprun unikernel. Since

rumprun is directly based on NetBSD’s code, it allows us to leverage NetBSD’s large collec-

tion of device drivers, including highly specialized ones such as Amazon ENA. Kite’s design

overcomes several significant challenges including Xen’s limited para-virtualization (PV) I/O

support in rumprun, lack of Xen backend drivers which prevents rumprun from being used

as a driver domain OS, and NetBSD’s lack of support for running driver domains in Xen. We

instantiate Kite for the two most widely used I/O devices, storage and network, by designing



and implementing the storage backend and network backend drivers. Our evaluations re-

veal that Kite achieves competitive performance to a Linux-based driver domain while using

10x fewer system calls, mitigates a set of CVEs, and retains all the benefits of unikernels

including a reduced number of return-oriented programming (ROP) gadgets and advanced

gadget-related metrics.

General-purpose VMMs include a large number of components that may not be used in

many VM configurations, resulting in a large attack surface. In addition, they lack intra-

VMM isolation, which degrades security: vulnerabilities in one VMM component can be

exploited to compromise other components or that of the host OS and other VMs (by privi-

lege escalation). To mitigate these security challenges, we develop principles for VMM com-

partmentalization and specialization. We construct a prototype, called Redwood, embodying

those principles. Redwood is built by extending Cloud Hypervisor and compartmentalizes

thirteen critical components (i.e., virtual I/O devices) using Intel MPK, a hardware primi-

tive available in Intel CPUs. Redwood has fifteen fine-grained modules, each representing a

single feature, which increases its configurability and flexibility. Our evaluations reveal that

Redwood is as performant as the baseline Cloud Hypervisor, has a 50% smaller VMM image

size and 50% fewer ROP gadgets, and is resilient to an array of CVEs.

I/O acceleration architectures, such as Data Plane Development Kit (DPDK) enhance VM

performance by moving the data plane from the VMM to a separate userspace application.

Since the VMM must share its VMs’ sensitive information with accelerated applications,

it can potentially degrade security. The dissertation’s final contribution is the compart-

mentalization of a VM’s sensitive data within an accelerated application using the Intel

MPK hardware primitive. Our evaluations reveal that the technique does not cause any

degradation in I/O performance and mitigates potential attacks and a class of CVEs.



On Improving the Security of Virtualized Systems through Uniker-
nelized Driver Domain and Virtual Machine Monitor Compartmen-
talization and Specialization

A K M Fazla Mehrab

(GENERAL AUDIENCE ABSTRACT)

Instead of using software on a local device like a laptop or a mobile phone, consumers can

access the same services from a remote high-end computer through high-speed Internet. This

paradigm shift in computing is enabled by a remote computing infrastructure known as the

“cloud,” wherein networked server computers are deployed to execute third-party applica-

tions, often untrusted. Multiple applications are consolidated on the same server to save

computer resources, but this can compromise security: a malicious application can steal co-

existent applications’ sensitive data. To enable resource consolidation and mitigate security

attacks, applications are executed using a virtual machine (VM) – an abstract machine that

runs its own operating system (OS). Multiple VMs run on a single physical machine using

two software systems: hypervisor and virtual machine monitor (VMM). They ensure that

VMs are spatially isolated from each other, localizing security attacks. This dissertation

focuses on enhancing the security of hypervisors and VMMs.

The hypervisor and VMM have multiple responsibilities toward supporting the OS run-

ning on the physical computer and VMs. The OS runs software called device drivers, which

communicate with input-output (I/O) hardware such as network and storage devices. Device

drivers, usually written by third-party and I/O device manufacturers, are highly vulnerable

to security attacks. To mitigate such attacks, device drivers are often run inside special VMs,



called driver domains. State-of-the-art driver domains use a general-purpose full-featured

OS such as Linux, which has a large code base (in the tens of millions of lines of code) and

thus, a large attack surface. To address this security challenge, the dissertation proposes

using lightweight, single-purpose VMs called unikernels, as driver domain OSs. Their code

size is smaller than that of full-featured OSs by as much as one order of magnitude, which

yields security benefits.

We design and develop a unikernel-based driver domain, called Kite, for network and storage

I/O devices. Kite uses NetBSD OS’s rumprun unikernel for creating a driver domain OS.

Using rumprun unikernel as a driver domain OS requires overcoming many technical chal-

lenges including a lack of support in a popular hypervisor such as Xen for performing I/O

operations and communicating with rumprun, among others. Kite’s design overcomes these

challenges. Our empirical studies reveal that Kite is ten times less likely to be affected by

future attacks and ten times faster to start than existing solutions for driver domains. At

the same time, Kite domains match the performance of state-of-the-art driver domain OSs

such as Linux.

The hypervisor and VMM are responsible for creating VMs and providing resources such

as memory, processing power, and hardware device access. Existing VMMs are designed to

be versatile. Thus, they include a large number of components that may not be used in

many VM configurations, resulting in a large attack surface. In addition, VMM components

are not well spatially separated from each other. Thus, vulnerabilities in one component

can be exploited to compromise other components. To address these security challenges,

the dissertation proposes a set of principles for i) customizing a VMM for each VM’s needs,

instead of using one VMM for all VMs, and ii) strongly isolating VMM components from

each other. We realize these principles in a prototype implementation called Redwood. Red-



wood is highly configurable and separates critical I/O components from each other using a

hardware primitive. Our evaluations reveal that Redwood significantly reduces the VMM’s

size and VMM’s vulnerabilities while maintaining performance.

To enhance VM performance, I/O acceleration software is often used that eliminates commu-

nication overheads in the VMM. To do so, the VMM must share VMs’ sensitive information

with accelerated applications, which can potentially degrade security. The dissertation’s

final contribution is a technique that strongly isolates and limits access to sensitive informa-

tion in the application using a hardware primitive. Our evaluations reveal that the technique

improves security by localizing attacks without sacrificing performance.



Dedication

To my late father, Md. Insan Ali.

vii



Acknowledgments

Working with Professor Binoy Ravindran has been a tremendous honor and privilege. I am

deeply grateful for this opportunity and his guidance, continued support, and invaluable ad-

vice. His professional demeanor, strong principles, and warm personality inspire me greatly.

I will always treasure the time I spent learning from him and strive to emulate his high

standards for my future endeavor.

Professor Ruslan Nikolaev’s wisdom and expertise have greatly enriched my knowledge and

helped shape my academic path. I am grateful for his precious guidance and help throughout

my PhD journey. I will cherish the time I spent working with him.

I am sincerely thankful to my committee members, Professor Daphne Yao, Professor Paul

Plassmann, and Professor Haibo Zeng, for taking time out of their busy schedules to review

my dissertation and offer valuable feedback.

I am deeply grateful for the support and guidance I received from the talented individuals at

SSRG, past and present. While it is difficult to name everyone, I especially want to recognize

Professor Pierre Olivier, a close mentor since my master’s studies. His kind support, the

teaching of research methodology, and advice inspired me to continue this journey.

Our band (The Migratory Birds of Blacksburg) and the Bangladeshi community in this

beautiful town have relieved my stress and provided unforgettable memories. Their presence

made my PhD journey much easier, and I am truly thankful for their support.

My gratitude extends to my parents, brothers, and other family members for their sacrifices

and support. Finally, I would like to express my appreciation to my loving wife, Swarna,

for being my constant companion throughout my journey, providing continued support, her

sacrifice, and delicious dishes, which made my life much easier.

viii



This research is based upon work supported by the Office of the Director of National In-

telligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA). The views

and conclusions contained herein are those of the authors and should not be interpreted

as necessarily representing the official policies or endorsements, either expressed or implied,

of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to re-

produce and distribute reprints for Governmental purposes notwithstanding any copyright

annotation thereon.

This research is also based upon work supported by the U.S. Office of Naval Research

(ONR) under grants N00014-18-1-2022, N00014-19-1-2493, N00014-16-1-2104, and N00014-

16-1-2711.

ix



Contents

List of Figures xviii

List of Tables xxiv

Attribution xxvi

1 Introduction 1

1.1 The Unikernel Operating System Model . . . . . . . . . . . . . . . . . . . . 5

1.2 VMM’s Security Threats in Clouds . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 I/O Acceleration for VMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Summary of Research Contributions . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Kite: Unikernelized Storage Domain . . . . . . . . . . . . . . . . . . 11

1.4.2 Kite: Unikernelized Network Domain . . . . . . . . . . . . . . . . . . 12

1.4.3 Redwood: Flexible Secure VMM . . . . . . . . . . . . . . . . . . . . 13

1.4.4 Vhost User Compartmentalization in DPDK . . . . . . . . . . . . . . 13

1.5 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background 16

2.1 Xen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

x



2.2 KVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Xen I/O Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Xen Blkfront and Blkback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Xen Netfront and Netback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Xen Driver Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Virtual Machine Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Virtio PV Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 OVS-DPDK Vhost User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.10 Unikernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.11 Rump Kernels and Rumprun . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.12 Memory-based Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Related Work 30

3.1 Hypervisor Disaggregation Approaches . . . . . . . . . . . . . . . . . . . . . 30

3.2 Unikernels for Cloud Infrastructures . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Driver Domain and Backend Improvement . . . . . . . . . . . . . . . . . . . 34

3.4 Protection Key-based Memory Isolation . . . . . . . . . . . . . . . . . . . . 36

3.5 Virtual Machine Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Kite: Unikernelized Storage Domain 40

4.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xi



4.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Storage Device Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Storage Backend Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Storage Domain Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Kite’s Storage Domain Prototype 50

5.1 Block Device Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Blkback Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Blkback Initialization and Connection . . . . . . . . . . . . . . . . . . . . . 55

5.4 Event Handler and Request Handler Thread . . . . . . . . . . . . . . . . . . 55

5.5 Handling Device Driver Responses . . . . . . . . . . . . . . . . . . . . . . . 56

5.6 Persistent Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.7 Indirect Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.8 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.9 Implementation Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Kite: Unikernelized Network Domain 60

6.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Network Device Driver and Interface . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Netback Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xii



6.5 Linking Netback With a Physical Device . . . . . . . . . . . . . . . . . . . . 66

7 Kite’s Network Domain Prototype 68

7.1 Virtual Network Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Netback Instantiation and Connection . . . . . . . . . . . . . . . . . . . . . 69

7.3 Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4 Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.5 Threaded Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.6 Physical Network Device Driver . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.7 Bridging Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.8 Implementation Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8 Kite’s Storage Domain Evaluation 77

8.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.2 dd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.3 SysBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.3.1 SysBench File I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.3.2 SysBench MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.4 Filebench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.4.1 Filebench File server . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.4.2 Filebench MongoDB Server . . . . . . . . . . . . . . . . . . . . . . . 83

xiii



8.4.3 Filebench Web server . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9 Kite’s Network Domain Evaluation 85

9.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2 Nuttcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.3 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.4 Apache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.5 Redis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.6 MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10 Kite’s Security Evaluation 92

10.1 Image Size and Boot Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10.2 ROP Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10.3 Gadget Set Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.4 Syscall Reduction and CVEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

11 Redwood: Flexible Secure VMM 99

11.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

11.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

11.3 Trusted Computing Base and Trust Model . . . . . . . . . . . . . . . . . . . 102

11.4 Achieving Per-VM Specialization . . . . . . . . . . . . . . . . . . . . . . . . 103

11.4.1 VM Bootloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xiv



11.4.2 Virtual I/O Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.4.3 VM Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11.5 Establishing Intra-VMM Isolation . . . . . . . . . . . . . . . . . . . . . . . . 109

11.5.1 What to Compartmentalize? . . . . . . . . . . . . . . . . . . . . . . . 110

11.5.2 How to Compartmentalize? . . . . . . . . . . . . . . . . . . . . . . . 110

11.5.3 When to Enable/Disable a Compartment? . . . . . . . . . . . . . . . 111

11.6 Securing OVS-DPDK Vhost User . . . . . . . . . . . . . . . . . . . . . . . . 111

12 Implementation of Redwood 114

12.1 Workload-aware Redwood . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

12.2 Isolation inside Redwood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

12.3 Unikernel Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

12.4 Isolating Vhost User in OVS-DPDK . . . . . . . . . . . . . . . . . . . . . . 119

12.5 Implementation Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

13 Redwood’s Performance Evaluation 122

13.1 Experimental Setup for Performance Evaluation . . . . . . . . . . . . . . . . 122

13.2 Virtio Network Device Performance . . . . . . . . . . . . . . . . . . . . . . . 123

13.2.1 iPerf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

13.2.2 Apache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

13.2.3 Network Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xv



13.3 Virtio Block Device Performance . . . . . . . . . . . . . . . . . . . . . . . . 126

13.3.1 dd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

13.3.2 SysBench File I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

13.4 Virtio Balloon Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

13.5 Vhost User Network Device Performance . . . . . . . . . . . . . . . . . . . . 129

13.5.1 iPerf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

13.5.2 Redis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

14 Redwood’s Security Evaluation 132

14.1 CVE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

14.2 Image Size Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

14.3 ROP Gadget Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

14.4 Gadget Set Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

15 Conclusions 139

15.1 Contributions Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

15.1.1 Kite: Unikernelized Storage Domain . . . . . . . . . . . . . . . . . . 140

15.1.2 Kite: Unikernelized Network Domain . . . . . . . . . . . . . . . . . . 141

15.1.3 Redwood: Flexible Secure VMM . . . . . . . . . . . . . . . . . . . . 141

15.1.4 Vhost User Compartmentalization in DPDK . . . . . . . . . . . . . . 142

15.2 Perspective on Dissertation Contributions . . . . . . . . . . . . . . . . . . . 142

xvi



15.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 144

15.3.1 Ensuring Protection Key’s Integrity in Redwood . . . . . . . . . . . . 144

15.3.2 Automating Compartmentalization . . . . . . . . . . . . . . . . . . . 145

15.3.3 Unikernelized Vhost User Devices . . . . . . . . . . . . . . . . . . . . 146

15.3.4 Unikernelized Virtio Driver Domain for Xen and KVM . . . . . . . . 147

15.3.5 Rumprun PVH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 151

xvii



List of Figures

1.1 CVEs for drivers during 2001–2019 [41]. . . . . . . . . . . . . . . . . . . . . 2

1.2 Category of QEMU CVEs [42]. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Traditional VM model versus the unikernel VM model. . . . . . . . . . . . . 6

1.4 Kite and Ubuntu network domain: image size, boot time, and syscall com-

parison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 ROP gadget comparison. For a detailed gadget breakdown of rumprun/Kite

and advanced gadget metrics, see Chapters 10 and 14. . . . . . . . . . . . . 8

2.1 Xen hypervisor runs on bare metal hardware, and guest VMs run directly on

the hypervisor layer, where the administrative OS also runs inside a guest VM.

Xen has its implementation for resource distribution and VM management.

KVM module converts a Linux (Host) into a hypervisor, where guest VMs are

managed with the help of VMM inside the host OS that distributes resources

between VMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Xen’s PV I/O device driver model. . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Different modes of virtio devices. . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 OVS-DPDK architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Rumprun stack on Xen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Xen’s PV storage driver model. . . . . . . . . . . . . . . . . . . . . . . . . . 42

xviii



4.2 Rumprun storage domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Blkfront and blkback communication. For read operations, blkfront places

a request in the ring and notifies blkback. Upon receiving the notification,

blkback reads data from the storage device, places it in the shared memory

buffer, and sends a notification to blkfront so that it can read from the buffer.

For write operations, blkfront places the data in the shared memory, places a

write request in the ring, and sends a notification to blkback. Upon receiving

the notification, blkback writes the data in the storage device and sends a

notification to blkfront upon completion. . . . . . . . . . . . . . . . . . . . . 45

4.4 Batching multiple segments improves storage domain performance. However,

there is no guarantee that segments in a disk (A) will be accessed consec-

utively. Typically, it would take 6 separate read/write operations to access

the segments marked with blue boxes (B). However, using batching, we can

perform one operation for segments 2, 3, and 4 combined and another for

segments 5 and 6 combined, resulting in a total of 3 operations instead of 6,

as shown with the green boxes (C). In this scenario, batching saves half the

time required to perform all operations separately. . . . . . . . . . . . . . . . 47

4.5 Both direct (a) and indirect (b) requests can point to one 4K page per ref-

erence, with a maximum of 11 and 8 references per request, respectively. A

page referenced by a direct request contains segment data. In contrast, a

page referenced by an indirect request can contain up to 512 other references,

each pointing to a 4K page containing segment data. . . . . . . . . . . . . . 48

xix



5.1 Xenstore is a key-value store database that maintains a directory-like struc-

ture for keys, each representing a path. This listing is a partial snapshot of

Xenstsore database generated using the xenstore-ls command. It shows

some key-value pairs for the storage driver domain (ID 2), which is connected

to a blkfront from guest domain (ID 4). . . . . . . . . . . . . . . . . . . . . 53

6.1 Xen’s PV network driver model. . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Rumprun network driver domain architecture. . . . . . . . . . . . . . . . . . 62

6.3 Netfront and netback communication. To send packets from DomU, netfront

places packets in the shared memory, a transmit request in the Tx ring, and

notifies netback. Being notified, netback copies those packets, forwards them

to the NIC through netback’s vif, and notifies netfront upon completing for-

warding. A similar sequence of operations is performed using the Rx ring for

forwarding network packets from a vif to DomU. . . . . . . . . . . . . . . . 64

6.4 Linking netbacks can help multiplex a single NIC between multiple guest

VMs. Linking methods, like network bridges, can be utilized reduce the need

for multiple NICs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Data exchange between netback and netfront. . . . . . . . . . . . . . . . . . 72

7.2 Threaded implementation of netback for efficient interaction with netfront. . 73

8.1 Throughput measurements using dd. . . . . . . . . . . . . . . . . . . . . . . 79

8.2 File I/O Throughput measurements using sysbench. . . . . . . . . . . . . . . 80

8.3 MySQL throughput measurements using SysBench. . . . . . . . . . . . . . . 81

xx



8.4 Fileserver throughput measurements using filebench. . . . . . . . . . . . . . 82

8.5 MogoDB server performance measurement using filebench. . . . . . . . . . . 83

8.6 Web server performance measurement using filebench. . . . . . . . . . . . . 84

9.1 Nuttcp throughput for UDP file transfers. . . . . . . . . . . . . . . . . . . . 87

9.2 Latency comparison for Linux and rumprun network driver domains. . . . . 88

9.3 Apache throughput varying file size. . . . . . . . . . . . . . . . . . . . . . . 89

9.4 Throughput, transfer time, and request rate. . . . . . . . . . . . . . . . . . . 89

9.5 Redis key-value store throughput. . . . . . . . . . . . . . . . . . . . . . . . . 90

9.6 MySQL throughput. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.7 CPU utilization while benchmarking the MySQL. . . . . . . . . . . . . . . . 91

10.1 Image size and boot time comparison. . . . . . . . . . . . . . . . . . . . . . 93

10.2 ROP gadget comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10.3 Gadget set analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.4 System call count comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xxi



11.1 An example of a virtualization stack focusing on components for VMs using

PV storage. The host OS, such as Linux, manages the physical storage device

(e.g. NVMe SSD) driver, a filesystem (e.g., Ext-4), a virtual filesystem pro-

viding a common interface, and a hypervisor (e.g., KVM). The virtual disk

images are files of specific formats (e.g., raw and qcow) in the host OS. VMM

(e.g., QEMU) instances provide implementations for these formats and PV

block devices (similar to blkback in Xen). A guest OS runs the PV block

driver and filesystems in its kernel space for offering storage interfaces to

applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.2 QEMU CVE trend from 2007 to 2022. [41] . . . . . . . . . . . . . . . . . . . 108

11.3 The OVS-DPDK architecture provides faster networking for guest VMs by

running as a userspace process on the host and utilizing vhost-user interfaces

and an OVS switch. It connects to physical NICs through the NIC driver in

the kernel or the PMD driver in DPDK and establishes the control path with

the VMM and data paths with the guest VMs through virtio-net or virtio-

pmd drivers. However, it also poses a security risk as the OVS-DPDK process

has unfiltered access to all vhost-user instances, which may contain sensitive

information from the guest VMs. . . . . . . . . . . . . . . . . . . . . . . . . 112

12.1 Core and additional components of Redwood. . . . . . . . . . . . . . . . . . 115

13.1 iPerf3 TCP throughputs for receive and transmit over network. . . . . . . . 124

13.2 Apache server throughput measured using Apache benchmark. . . . . . . . . 125

13.3 Network Latency measured using different tools. . . . . . . . . . . . . . . . . 126

13.4 Virtio block’s read and write throughput measured using dd. . . . . . . . . . 127

xxii



13.5 File I/O throughput measured using SysBench. . . . . . . . . . . . . . . . . 128

13.6 Memory bandwidth while using ballooning. . . . . . . . . . . . . . . . . . . . 129

13.7 TCP receive and transmit throughput for vhost-user-net devices. . . . . . . 130

13.8 Redis throughput for operations under varying degrees of request concurrency. 131

14.1 Image sizes for Cloud Hypervisor (All) and different configurations of Redwood.136

14.2 Gadgets for Cloud Hypervisor (All) and different configurations of Redwood. 137

14.3 Gadget set analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

15.1 Unikernelized acceleration architectures with virtio-vhost-user devices can

provide VM-level isolation to reduce the attack surface. . . . . . . . . . . . . 147

15.2 Architecture for unikernelized virtio driver domain on Xen. . . . . . . . . . . 148

15.3 Overview of the various virtualization modes implemented in Xen. (Cour-

tesy: Xen Project [29]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xxiii



List of Tables

3.1 Prior arts related to Kite’s approach. . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Prior arts related to Redwood’s approach. . . . . . . . . . . . . . . . . . . . 38

5.1 Key functions in Kite storage domain. . . . . . . . . . . . . . . . . . . . . . 51

5.2 Important storage device information available in Xenstore. . . . . . . . . . 54

5.3 Lines of code (LOC) changed or added for Kite storage domain. . . . . . . . 59

7.1 Important network device information available in Xenstore. . . . . . . . . . 69

7.2 Key functions in Kite network domain. . . . . . . . . . . . . . . . . . . . . . 75

7.3 LOC changed or added for Kite network domain. . . . . . . . . . . . . . . . 76

8.2 Configuration of Xen domains on the server side. . . . . . . . . . . . . . . . 78

8.1 Hardware configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.1 Hardware configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2 Configuration of Xen domains on the server side. . . . . . . . . . . . . . . . 86

10.1 Examples of CVEs prevented by only keeping necessary system calls. . . . . 97

11.1 Example of emulated and paravirtualized devices in VMMs. . . . . . . . . . 106

12.1 Isolated virtio PV devices in Redwood. . . . . . . . . . . . . . . . . . . . . . 117

xxiv



12.2 LOC changed or added for Redwood prototype. . . . . . . . . . . . . . . . . 121

13.1 Hardware configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xxv



Attribution

The contents of this dissertation are based on my own work, which has already been docu-

mented in three papers. The dissertation’s principal contributions have been documented in

two papers; one of them is published (ACM Eurosys’22), and the other is under review at

the time of writing the dissertation. My third paper (ACM HPDC’19) focuses on unikernels

in the HPC domain. Although it is not part of the dissertation, it was the foundation and

inspiration for my dissertation’s work on unikernels.

• A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran. 2023. Rethinking

Virtual Machine Monitors for Better Security in Clouds. Conference paper submitted

in January 2023, currently under review.

• A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran. 2022. Kite: Lightweight

Critical Service Domains. In Seventeenth European Conference on Computer Systems

(EuroSys ’22). Association for Computing Machinery, New York, NY, USA, 384–401.

https://doi.org/10.1145/3492321.3519586

• Pierre Olivier, A K M Fazla Mehrab, Stefan Lankes, Mohamed Lamine Karaoui, Rob

Lyerly, and Binoy Ravindran. 2019. HEXO: Offloading HPC ComputeIntensive Work-

loads on Low-Cost, Low-Power Embedded Systems. In The 28th International Sym-

posium on High-Performance Parallel and Distributed Computing (HPDC ’19). Asso-

ciation for Computing Machinery, New York, NY, USA, 85-96.

https://doi.org/10.1145/3307681.3325408

xxvi



Chapter 1

Introduction

Cloud infrastructures run thousands of server machines, each of which facilitates a multi-

tenant environment so that different applications with varying resource requirements can

execute seamlessly and transparently. Such an environment should isolate tenants from one

another in order to ensure data and execution integrity. A separate virtual machine (VM),

equipped with the necessary resources and capable of running the preferred operating system

(OS), is often allocated per tenant so that each tenant’s workload can be executed securely

and (usually) with no modifications. The ability to execute many VMs simultaneously on

the same server, with strong isolation between them and the relative ease of managing their

resources has made virtualization technology the backbone of modern cloud infrastructures.

Hypervisors and virtual machine monitors (VMMs) are essential components that enable

virtualization. They are often described interchangeably due to their overlapping and in-

terdependent responsibilities. In this dissertation, we use the term hypervisor to refer to

software that performs core operations such as scheduling and resource allocation while run-

ning on bare metal (e.g., XEN [49], VMware ESX [104]) or that utilizes a host OS (e.g.,

KVM [76], VirtualBox [135]) for virtualization. We use the term VMM to refer to soft-

ware that performs other essential virtualization operations with the help of a hypervisor.

Examples include QEMU [66], Firecracker [118], and Cloud Hypervisor [45].

The role of VMMs varies depending on the hypervisor being used, due to differences in

architecture among hypervisors. For example, QEMU with KVM can create a VM, allocate

1



2 CHAPTER 1. INTRODUCTION

0

20

40

60

80

100

120

R
ep

o
rt

ed
 C

V
Es

Year

Linux Drivers

Windows Drivers

Figure 1.1: CVEs for drivers during 2001–2019 [41].

memory and virtual CPUs (vCPUs), help boot a guest OS, emulate virtual I/O devices,

migrate VMs between servers, and stop VMs. Therefore, VMMs have a significant role in

ensuring functionality, flexibility, performance, security, and reliability in any virtualization

environment. In contrast, QEMU is only required for device emulation when using Xen in

the hardware virtual machine (HVM) mode. Although hypervisors and VMMs are critical

for VM-level isolation, they contribute to the size of the trusted computing base (TCB).

Virtualization ecosystems must provide efficient and secure access to network and storage

I/O devices. To that end, hypervisors such as Xen [49], which is used by Amazon EC2 [39]

and Rackspace cloud servers [43], have developed a number of solutions over the years. First,

network and storage I/O are exposed to guest OSs via efficient para-virtualized (PV) drivers

which communicate with the corresponding physical device drivers. Second, a physical device

driver (e.g., a network or storage driver) can be executed in a separate driver domain [140]

for more effective load balancing and enhanced security. Isolating drivers in separate VMs

is especially important as the number of common vulnerabilities and exposures (CVEs) for

drivers continue to surge across different OSs (see Figure 1.1).



A K M FAZLA MEHRAB CHAPTER 1. INTRODUCTION 3

Driver domains are special guest OSs, which run inside isolated VMs. They are often ad-

vocated for enhanced isolation and security [114]: they can be used to house certain classes

of device drivers. Thus, instead of running device drivers in privileged service VMs such

as Xen’s administrative OS, called Dom0 [6], where a potential driver vulnerability can be

catastrophic for the entire system, they are isolated in driver domains. By removing the

drivers from Dom0, Dom0’s attack surface is also reduced, further increasing security.

A downside of service VMs is that they are relatively heavy-weight as they usually run a

general-purpose, full-featured OS such as Linux. Such VMs are cumbersome for deployment

and upgrades. Linux is designed to support many subsystems (e.g., audio, video, USB) as

well as user-space libraries, tools, daemons, and configuration scripts that are irrelevant to

network or storage drivers alone, and yet, they all need to be properly maintained when

Linux runs as a driver domain. Case in point: Ubuntu Server 18.04’s image is ≈1GB; the

kernel alone, without any modules, is ≈50MB [11].

General-purpose OSs are also not ideal for security as they expose a potentially large attack

surface, which is undesirable for systems with a greater degree of resource sharing such as

Amazon EC2. Even special stripped-down distributions, though rarely used in practice, still

have large memory footprints, which add up in enterprise-scale bare-metal cloud systems

that handle many I/O devices. Moreover, it is simply impossible to reduce the number of

system calls since many of them (e.g., clone, exec, file I/O, etc) are essential for running a

Linux-based OS. In Chapter 10, we show that the number of required Linux system calls for

running a driver domain is as high as 171.

On the other hand, VMM instances contribute to the TCB size as they run as userspace

processes in the host/administrative OS. VMM bugs are a significant concern due to their

potential to compromise the main security benefit of virtualization. Many vulnerabilities

related to VMMs are reported year-round, with QEMU being a particularly high-profile



4 CHAPTER 1. INTRODUCTION

48%

19% 24%
2%

0.5%

1%

3%

2%

Denial of Service Code Execution
Overflow Memory Corruption
Directory Traversal Bypass something
Gain Information Gain Privileges

(a) QEMU CVEs from 2007 to 2022.

61%21%

18%

Code Execution + Overflow
Code Execution
Overflow

(b) CVEs with a minimum score of 6.5.

Figure 1.2: Category of QEMU CVEs [42].

example. In fact, we analyzed and categorized 443 QEMU CVEs reported from 2007 to

2022; Figure 1.2a shows the results. These vulnerabilities, which include denial of service

(DoS), memory overflow, and arbitrary code execution attacks represent a variety of security

flaws that require different security measures for mitigation.

Many of these bugs arise from improper memory handlings, such as null pointer derefer-

encing, use-after-free, and out-of-bound access, which are common in software written in C,

a language that lacks many safety features. Rust, a language that features type systems

and supports ownership models can help prevent many of these vulnerabilities. However,

no language can guarantee complete safety because human error can occur during software

development. For example, hundreds of CVEs have been reported for Rust, despite it being

a relatively newer language. Furthermore, memory safety techniques are often not sufficient

to mitigate all vulnerabilities. For instance, an incomplete validation in the Rust-based

Firecracker VMM led to CVE-2019-18960 [12], which could potentially allow attackers to

perform memory manipulation or remote code execution exploits.



1.1. THE UNIKERNEL OPERATING SYSTEM MODEL 5

Figure 1.2b categorizes 61 high-impact QEMU CVEs with a minimum score1 of 6.5. Only

18% of these CVEs can be mitigated using memory safety techniques that prevent memory

overflow. However, memory safety techniques alone cannot mitigate the rest of the CVEs, as

21% of them involve arbitrary code execution, and 61% involve both arbitrary code execution

and memory overflow vulnerabilities. Therefore, enhanced security primitives are required

to prevent a significant number of severe vulnerabilities.

1.1 The Unikernel Operating System Model

Unikernels [57, 82, 84, 86, 87, 95, 98, 99, 110, 144] are lightweight OSs designed specifically

for cloud systems and run atop a hypervisor in separate VMs. They are, by design, capable

of running only a single application. In contrast to general-purpose full-featured OSs, in

unikernels, a single application is statically compiled together with the minimum necessary

kernel code and libraries to produce a single address-space image – a form of library OS [48].

In contrast, the traditional VM model includes a full-featured guest OS, which includes

a large number of subsystems that may not be used by guest applications. Figure 1.3

illustrates this contrast. Examples of unikernels include HermitCore [87], MirageOS [95, 96],

rumprun [82], HermiTux [105], Lupine Linux [86], and IncludeOS [57], among others.

The unikernel model has several advantages. Since only select OS components are included

with the application, their code size and memory footprints are significantly smaller, which

also reduces their boot times. (This is potentially important if fast failure recovery through

VM restarts is desired.) Figure 1.4 compares the image size, boot times, and system calls of

the Kite [100], an unikernelized driver domain proposed in this dissertation, against Ubuntu

Linux. In this figure, Kite encapsulates a rumprun-based [82] network driver domain that
1The Common Vulnerability Scoring System (CVSS) is a method for describing the severity of a vulner-

ability using a single numerical score [40]. Higher the number, the greater the severity.



6 CHAPTER 1. INTRODUCTION

Figure 1.3: Traditional VM model versus the unikernel VM model.

we designed (Chapter 6) and implemented (Chapter 7), and Ubuntu Linux does not run any

application. This figure reveals rumprun’s significant savings on memory image size and

boot times – by one order of magnitude.

0

100

200

300

Kite Ubuntu

Si
ze

 (
M

)

(a) Image size.

0

20

40

60

80

Kite Ubuntu

Ti
m

e 
(s

)

(b) Boot time.

0

50

100

150

200

Kite Ubuntu

Sy
sc

al
l c

o
u

n
t

(c) System calls.

Figure 1.4: Kite and Ubuntu network domain: image size, boot time, and syscall comparison.

Unikernels also have a performance advantage. Since OS components are compiled together

with the application in a single address space, system calls are converted to common function

calls, a feature that can reduce system call latency by up to one order of magnitude [105],

leading to performance improvement of up to 33% for OS-intensive applications [86].

Unfortunately, unikernels are designed only for user-space applications and are unsuitable

for driver domains. In this dissertation, we explore the use of unikernels for driver domains.



1.1. THE UNIKERNEL OPERATING SYSTEM MODEL 7

We use the rumprun unikernel [82] for this purpose. The key feature of rumprun is that it

is directly based on NetBSD OS’s code [28], which makes it possible to leverage NetBSD’s

large collection of device drivers, including highly specialized ones such as Amazon ENA [9].

In fact, NetBSD device drivers can run inside a rumprun unikernel instance out-of-the-box.

Compared to Linux, a rumprun unikernel image is minimalistic: it can be as small as 22MB.

This small code size yields an important security advantage: potentially fewer security vul-

nerabilities. Figure 1.5 compares the number of ROP gadgets [119], measured using the

Ropper tool [24], for rumprun, vanilla Linux kernel with the default configuration, CentOS

8, Fedora Rawhide (05/2020), Ubuntu 18.04, and Debian 10.4 kernel images with their as-

sociated kernel modules. The number of ROP gadgets is one quantitative metric that is

often used to evaluate security vulnerability [70]: smaller the number of gadgets, the greater

is the difficulty for an attacker, broadly described, to find appropriate gadgets to launch

an exploit2. Figure 1.5 demonstrates that rumprun has a substantially smaller number of

gadgets than any of the Linux configurations. Assuming that NetBSD’s code quality is on

par with that of Linux, this figure also indicates the potential for improved security more

generally, as rumprun’s attack surface is also proportionally reduced compared to that of

full-featured OSs.

Recent versions of rumprun [103] were extended to support multi-core systems and hardware-

assisted virtualization in Xen, which makes it even more attractive as a driver domain

OS. However, using rumprun as a driver domain OS requires overcoming several significant

challenges. Xen’s PV I/O support is very minimalistic in rumprun. Rumprun lacks Xen

backend drivers. Thus, rumprun can be used only as a regular unikernel, but not as a driver

domain. Moreover, NetBSD cannot run driver domains in Xen.

2We only use the number of ROP gadgets as a simple indicator of the likelihood of security vulnerabilities.
Recent works [58] have demonstrated that other metrics (related to ROP gadgets) are more robust indicators.
We defer such metrics to Chapter 10 and 14.



8 CHAPTER 1. INTRODUCTION

0

500

1000

1500

2000

2500

3000

3500

4000

Rumprun vanilla CentOS Fedora Debian Ubuntu

G
ad

ge
t 

co
u

n
t 

in
 t

h
o

u
sa

n
d

s

Figure 1.5: ROP gadget comparison. For a detailed gadget breakdown of rumprun/Kite and
advanced gadget metrics, see Chapters 10 and 14.

We overcome these challenges developing a rumprun-based, driver-domain OS called Kite [100].

We instantiate Kite for the two most used devices, storage and network, by designing and

implementing the storage backend (blkback) and network backend (netback) drivers, re-

spectively. To understand the effectiveness of our implementations, we conduct extensive

experimental studies using well-known benchmarks and applications. Our results reveal

that our rumprun driver domains provide competitive performance to that of a Linux-based

driver domain, while retaining all the benefits of unikernels such as reduced number of ROP

gadgets, smaller image and code sizes, and faster boot time.

1.2 VMM’s Security Threats in Clouds

Modern cloud applications have a range of safety and performance requirements. However, a

rigid VMM design and configuration for every VM may not provide effective safety in many

scenarios. For example, the QEMU emulator provides a floppy drive controller (FDC), even

though most workloads do not use floppy devices nowadays. The VENOM vulnerability [7],

which is present in the FDC may allow a guest user to crash the VM or execute arbitrary



1.2. VMM’S SECURITY THREATS IN CLOUDS 9

code on the host with the privileges of the QEMU process, regardless of a VM’s need for

this device. This means that a faulty implementation can pose a significant security risk to

the entire virtualization ecosystem.

Therefore, it is crucial to have a flexible per-VM specialization for the VMM in order to

minimize the attack surface. Although various VMMs exist with a variety of features, they

lack the ability to be easily customized. This causes VMs to use generic VMMs with many

irrelevant default features, resulting in a larger attack surface. To overcome this problem,

it is essential to design and develop a modular and configurable VMM that minimizes the

TCB in cloud infrastructures. Creating such a VMM from scratch is challenging because it

requires substantial expertise and engineering effort. On the other hand, the rigid design of

generic VMMs makes it difficult to achieve a customized, minimal VMM for specific VMs.

Even if unwanted features are removed by specializing a VMM, it does not ensure that

the VMM is safe from attacks because of existing bugs in its remaining implementation.

The lack of security primitives in current VMMs to enforce separation between components

makes them susceptible to exploitation. Therefore, an attacker can manipulate one part

of the VMM by exploiting a vulnerability in another part. Moreover, since VMMs run as

userspace processes on the host, attackers can exploit bugs in a VMM to gain the VMM

process’s privilege to harm the host OS and other VMs.

By using isolation mechanisms to compartmentalize unrelated modules, it is possible to pre-

vent unauthorized access and restrict the damage caused by a security breach. Implementing

this type of compartmentalization in a VMM requires careful design and implementation.

Determining when to grant and restrict access to compartments requires a thorough evalu-

ation of the interactions between different parts of the VMM.

CPU manufacturers and researchers are introducing new isolation mechanisms to improve



10 CHAPTER 1. INTRODUCTION

or replace traditional ones [35, 67, 69, 90, 124, 129]. Some of these techniques prioritize

security at the expense of performance [77, 85, 117, 131], while others focus on boosting

performance over security. Furthermore, not all isolation techniques are appropriate for use

within a VMM. The challenge lies in finding an isolation technique that can achieve the

necessary level of compartmentalization within a VMM without sacrificing the performance

of VMs.

To overcome these security concerns and mitigation challenges, we have developed methods

for compartmentalizing and specializing VMMs in order to improve cloud security. Our

prototype, called Redwood, extends Cloud Hypervisor [45], an open-source VMM written in

Rust, for running modern cloud workloads. We have identified thirteen crucial components

of Cloud Hypervisor, such as virtual devices, and compartmentalized them in Redwood

using Intel memory protection keys (MPKs) [67] on x86 servers. This isolation helps prevent

unauthorized access to virtual devices or limits attackers’ ability to exploit vulnerabilities

to compromise other devices or execute arbitrary code. Redwood has fifteen fine-grained

modules, each representing a single feature, making it highly configurable and flexible. As

a result, a VMM image size can be significantly reduced at build time by including features

that are necessary only for running a particular VM. Furthermore, we extend Redwood’s

support for running unikernels.

1.3 I/O Acceleration for VMs

I/O acceleration architectures, such as Data Plane Development Kit (DPDK) [128] and

Storage Performance Development Kit (SPDK) [123], can enhance the performance of VMs

with high throughput when used with VMMs. These architectures involve moving the data

plane from the VMM to a separate userspace DPDK or SPDK application on the host. This



1.4. SUMMARY OF RESEARCH CONTRIBUTIONS 11

technique allows for increased I/O performance but poses a security risk, as the VMM must

share sensitive information about its VMs with the accelerated DPDK or SPDK application.

Thus, the accelerated application can become an appealing hotspot for attackers, as it may

contain information of multiple VMs. To mitigate this risk, we propose implementing a

solution that isolates each VM’s information within the accelerated application. This way,

even if an attacker were to compromise the accelerated application, the information for each

VM would remain protected.

1.4 Summary of Research Contributions

The dissertation’s first contribution is a unikernelized driver domain OS called Kite, which

is instantiated for the two most basic and necessary devices: storage and network. The

dissertation’s second contribution includes new VMM design principles for improving cloud

security, and specialization and compartmentalization techniques that realize these princi-

ples. These principles are demonstrated by constructing a prototype called Redwood. The

dissertation’s third and final contribution includes isolation techniques for mitigating exploits

that leverage vulnerabilities in I/O acceleration architectures used for VMs.

We now summarize these contributions.

1.4.1 Kite: Unikernelized Storage Domain

Most guest VMs need storage device drivers. PV storage drivers are one of the most common

drivers used by guest VMs because of faster I/O processing than emulation. We present the

Kite storage domain, an effort to design an unikernelized storage driver domain, aiming for

security advantages while preserving performance benefits.



12 CHAPTER 1. INTRODUCTION

Kite uses the rumprun unikernel, which allows leveraging physical storage drivers from the

NetBSD OS. However, a PV storage device needs a blkback driver in the driver domain to

communicate and transfer data between the physical storage and the guest VM through its

storage frontend (blkfront). We design and implement the blkback driver. Our experi-

mental evaluations reveal that the Kite storage domain is as performant as Linux, one of the

most widely used commodity OS for servers and desktops. Importantly, the Kite storage

domain’s exposed attack surface is only a fraction of a counterpart Linux domain.

1.4.2 Kite: Unikernelized Network Domain

Networking is one of the widely used functionalities for guest VMs. PV networking is the

most efficient method for multiplexing one network device between several guests. We design

and implement a rumprun-based Kite network driver domain, which works as a backend for

PV networking and routes networking traffic from guest machines to the physical network

interface card (NIC). We leverage the NIC drivers from NetBSD but implement a netback

driver, which rumprun lacks.

The netback and netfront (network frontend) communicate using two shared memory ring

buffers for receiving and transmitting network packets. Since rumprun lacks rich work queues

and interrupts, we develop a multi-threaded model that helps efficiently handle network

packets with no performance penalty. We also design and implement network bridging

support for netback, which is necessary for forwarding packets from multiple guest OSs

to the physical network adapter. Our evaluations show that the Kite network domain is

as performant as Linux while exposing only a fraction of a corresponding Linux domain’s

attack surface.



1.4. SUMMARY OF RESEARCH CONTRIBUTIONS 13

1.4.3 Redwood: Flexible Secure VMM

VMMs play a crucial role in deploying and managing VMs, providing isolation and security

for VMs running on the same physical machine. However, some parts of the standard

VMM architecture and implementation are prone to vulnerabilities. We present Redwood,

a method for customizing and compartmentalizing VMMs for localizing exploits that may

leverage such vulnerabilities. We have developed Redwood’s prototype based on the open-

source VMM called Cloud Hypervisor. It converts the Cloud Hypervisor into a flexible

VMM and uses the Intel MPK, a hardware feature, to compartmentalize virtual I/O device

instances within the VMM.

Our security analysis includes a CVE analysis and attack surface analysis of the VMM,

showing that Redwood can mitigate various existing CVEs. Additionally, Redwood’s basic

configuration exhibits a 50% smaller VMM image size, a significant reduction in quality and

quantity of gadgets (measured with ropper [24, 25] and GSA-based [37, 58] metrics) compared

to Cloud Hypervisor. The other three Redwood configurations are also significantly compact.

Our evaluations reveal that Redwood is as performant as the original Cloud Hypervisor in

most scenarios.

1.4.4 Vhost User Compartmentalization in DPDK

The DPDK library is employed in conjunction with the OVS application, known as OVS-

DPDK, to enhance the networking capabilities of VMs through the vhost user interface.

This architecture significantly improves the performance of paravirtual network connections.

However, as OVS-DPDK can access the memory of multiple VMs, it can be exploited, causing

leakage of VM data. We develop a compartmentalization technique that isolates sensitive VM

information within the OVS-DPDK application. We develop a prototype implementation of



14 CHAPTER 1. INTRODUCTION

the technique utilizing the Intel MPK hardware primitive to protect VMs’ memory.

Our security analysis including CVE analysis demonstrates that the compartmentalization

technique can mitigate potential attacks on the OVS-DPDK application. Our performance

evaluation reveals that the technique does not cause any noticeable performance degradation.

1.5 Dissertation Organization

The rest of the dissertation is organized as follows.

Chapter 2 discusses the relevant background information that is necessary to understand

the dissertation’s research contributions. These include hypervisors, their PV I/O driver

models for network and storage devices, VMMs, the vhost user interface in OVS-DPDK,

rump kernels, the rumprun unikernel, and memory-based isolation techniques.

Chapter 3 summarizes related work on hypervisor and VMM disaggregation techniques,

unikernels, driver domains, and protection key-based memory isolation techniques, and com-

pares and contrasts them with the dissertation’s contributions.

Chapter 4 discusses the challenges associated with unikernelizing the storage driver domain

and the design of the Kite storage domain. Chapter 5 describes the Kite storage domain’s

implementation.

Chapter 6 discusses the challenges of unikernelizing the network driver domain and presents

the design of the Kite network domain. Chapter 7 discusses its implementation.

Chapters 8 and 9 evaluate the Kite storage domain’s and network domain’s performance,

respectively. Chapter 10 evaluates the storage and network domains’ security benefits.

Chapter 11 describes Redwood’s design principles for improving cloud security in VMMs.



1.5. DISSERTATION ORGANIZATION 15

This chapter also discusses the necessary changes to implement these principles through per-

VM specialization and intra-VMM compartmentalization. Chapter 12 presents Redwood’s

prototype, including its implementation for a highly flexible and Intel MPK-based compart-

mentalized VMM, and compartmentalization in OVS-DPDK. Chapters 13 and 14 evaluates

the performance and security of Redwood and the compartmentalized OVS-DPDK.

Finally, Chapter 15 concludes the dissertation and identifies future work in each problem

space of the dissertation’s contributions.



Chapter 2

Background

This chapter discusses concepts relevant to the design and implementation of Kite and Red-

wood. It touches upon hypervisors, such as Xen and KVM, their virtualization approaches,

and the role of VMMs. This chapter also discusses unikernels, rumprun architecture, I/O

accelerators, and memory-based isolation techniques.

Sections 2.1 and 2.2 discuss two popular hypervisors, Xen and KVM, architectures. Xen’s

I/O device model, including the network and storage drivers, are discussed in Sections 2.3,

2.4, 2.5 followed by a discussion on Xen driver domain in Section 2.6. Section 2.7 discusses

the concept and different roles of VMMs. Section 2.8 discusses virtio device models, often

facilitated by VMMs in conjunction with hypervisors like KVM. The relationship between

vhost user devices and DPDK is sketched in Section 2.9. We then discuss the concept

of unikernels, followed by a discussion of using unikernels for the driver domain and the

rationale for choosing the rumprun unikernel in Sections 2.10 and 2.11. Finally, Section 2.12

discusses different techniques of memory-based isolations.

2.1 Xen

Xen is a popular open-source hypervisor [83], which pioneered a concept of “paravirtualiza-

tion’’ by leveraging protection rings of x86-32. These CPUs historically lacked virtualiza-

tion capabilities [112], and Xen’s approach was to modify the target OS kernel so that it

16



2.2. KVM 17

runs on top of a hypervisor. Later, CPUs enabled hardware-assisted virtualization support

through VT-x and AMD-V (or other extensions by non-x86 vendors). Hardware Virtual-

ization Mode (HVM) was proposed and widely adopted by Xen since then. HVM is also

preferable nowadays since it is not affected by recently discovered security vulnerabilities,

such as Meltdown [91]. Figure 2.1a depicts Xen’s architecture. Xen has implementations

for VM creation, memory management, scheduling, etc. The VM that runs administrative

OS is known as Dom0, used for running Xen utilities, such as xl and Xenstore, and device

drivers. The guest VMs in Xen are called DomU.

2.2 KVM

KVM (Kernel-based Virtual Machine) [76] is another open-source hypervisor that uses Linux-

based OSs. KVM is built as a kernel module for Linux, which makes it highly efficient and

secure. The Linux kernel that runs on bare-metal and loads the KVM module is known

as host OS. The virtualization is achieved through hardware virtualization support (such as

Intel VT or AMD-V) on the host system. To provide a complete virtualization solution KVM

relies on the host Linux’s device drivers, memory management, and process management for

resource distributions. KVM also needs help from VMM, which runs as userspace process,

for managing guest VMs.

2.3 Xen I/O Drivers

Traditional I/O device emulation is inefficient due to substantial performance overheads [59].

Xen’s original paravirtualization method proposed to handle I/O through special PV drivers.

PV drivers are also used in the HVM mode as long as the corresponding guest OS is enlight-



18 CHAPTER 2. BACKGROUND

Domain-0

Xen Hypervisor

Hardware

Guest VM
(DomU)

Guest VM
(DomU)

(a) Xen architecture.

Host

VMM

Hardware

Kernel Space

Guest VM

U
se

r 
Sp

ac
e

KVM

VMM

Guest VM

(b) KVM architecture.

Figure 2.1: Xen hypervisor runs on bare metal hardware, and guest VMs run directly on
the hypervisor layer, where the administrative OS also runs inside a guest VM. Xen has its
implementation for resource distribution and VM management. KVM module converts a
Linux (Host) into a hypervisor, where guest VMs are managed with the help of VMM inside
the host OS that distributes resources between VMs.

ened about Xen’s presence. Other hypervisors, e.g., VMware, Hyper-V, and KVM, similarly

implement faster I/O drivers.

PV drivers in Xen are typically divided into two parts: frontend and backend. The frontend

driver runs in the guest OS, denoted as DomU. The backend driver runs either in Dom0, the

very first (privileged) guest, or in a dedicated driver domain (see Section 2.6).

2.4 Xen Blkfront and Blkback

The PV storage frontend (blkfront) provides an interface to abstract secondary storage.

Therefore, the other part of the OS and applications can use this interface to issue regular

block device operations such as read, write, etc. On the other hand, the PV storage backend

(blkback) is responsible for performing these operations on the real device using the physical

storage device driver. A storage domain should be able to support multiple blkfront from

the same or different guest machines as shown in 2.2.



2.5. XEN NETFRONT AND NETBACK 19

Both ends of the PV driver get to know each other’s configurations using the Xenstore

database. The communication between the blkfront and blkback is maintained using Xen’s

shared memory and ring buffer mechanism. The blkfront allocates the shared memory and a

ring buffer, which are used by both ends to transfer data. Using the ring buffer, the blkfront

sends requests with information, like sector number, size, etc., to the blkback for performing

specific kinds of operation on the storage device. On the other hand, the blkback sends

responses upon performing such operations. The storage data is transferred between these

ends using direct memory access (DMA) transfers, known as the grant table mechanism.

2.5 Xen Netfront and Netback

In the case of network interface card (NIC), the frontend (netfront) exposes a virtual network

interface to the network stack of DomU, whereas the backend (netback) talks to the actual

physical NIC. The netfront and netback drivers establish a connection between each other

using Xen-specific mechanisms such as Xenstore and Xenbus. Netfront and netback transfer

data between each other using shared memory ring buffers. As a result, DomU can send

packets to the physical NIC through netfront.

For each netfront, there should be one corresponding netback as shown in Figure 2.2. The

netback and netfront drivers use two shared ring buffers for data exchange, which are allo-

cated by netfront. One ring buffer, Tx, is used for sending packets from netfront to netback.

Another ring buffer, Rx, is used for sending packets from netback to netfront.

As shown in Figure 6.1, there are multiple netbacks with multiple DomUs. One way to

share the same physical NIC is to use bridging by connecting all netbacks to a bridge. The

network bridge, which is connected to the physical NIC, routes packets between netbacks

and the physical NIC as well as across different netbacks. Each netback is assigned its own



20 CHAPTER 2. BACKGROUND

Frontend Driver

Application

Ring

Device Interface

Frontend Driver

Application

Ring

Device Interface

Hypervisor

Hardware Devices

Backend Driver

Physical Device Drivers

Dom0/Driver Domain
D

o
m

U
s

Physical Device

Device Interface

Physical Device

Backend Driver

Device Interface

Frontend Driver

Application

Ring

Device Interface
Frontend Driver

Application

Ring

Device Interface

Frontend Driver

Application

Ring

Device Interface

Frontend Driver

Application

Ring

Device Interface

Figure 2.2: Xen’s PV I/O device driver model.

IP address on the network.

2.6 Xen Driver Domain

Xen’s privileged Dom0 domain runs device drivers and performs many critical system tasks.

To offload Dom0, driver domains, special unprivileged guest OSs which run device drivers,

are often used. Driver domains also increase isolation and overall system security since

potentially vulnerable drivers are isolated from Dom0. Driver domains have direct access to

the underlying hardware by using PCI passthrough capabilities of the hypervisor. They are

more typical for networking, where the netback driver runs inside a separate VM rather than

Dom0. Although storage also has corresponding blkfront-blkback I/O drivers, they seem to

be deployed in Dom0 for typical setups.



2.7. VIRTUAL MACHINE MONITOR 21

The use of driver domains is exemplified by Qubes OS [114], an OS which runs individual

Linux instances for each group of applications in VMs atop of Xen to provide very strong

security. Qubes OS uses network driver domains to strongly isolate network device drivers

from the system. For stronger isolation, Qubes OS also takes advantage of I/O memory

management unit (IOMMU) [47, 79], which we also support in our design. Full-fledged

IOMMU support needs HVM; it safely remaps interrupts and memory addresses to protect

against both malicious (or faulty) devices and vulnerable (or buggy) device drivers.

By moving device drivers to a separate domain, Dom0’s attack surface reduces. As a result,

any error or exploit in the corresponding code will not affect Dom0, and the Xen admin-

istrative interface to other guest OSs remains uninterrupted. Though other open-source

virtualization technologies such as KVM support faster I/O, they do not yet implement

driver domains, unlike Xen.

In this dissertation, we propose to use a unikernel for Xen driver domains. By using a

light-weight unikernel, we are able to reduce memory footprints as well as reduce the attack

surface of driver domains.

2.7 Virtual Machine Monitor

A VMM is a software run in host OS which plays vital roles in virtualization technology.

There are many well-know VMMs such as QEMU, Firecracker, Cloud Hypervisor, kvmtool,

etc., that work with KVM. The main roles of a VMM include:

• Resource abstraction: A VMM helps provide virtual resources to guest VMs. It

abstracts the physical resources of a host machine, such as CPU, memory, and I/O

devices, with the help of a hypervisor and hardware virtualization support.



22 CHAPTER 2. BACKGROUND

• Resource allocation: A VMM dynamically allocates physical resources to guest OSs

to serve the needs of each VM. With the help of a hypervisor and host, a VMM manages

the use of resources across multiple VMs and ensures that each VM gets the resources

it needs to run efficiently.

• Isolation: It is an essential feature to run multiple VMs on the same physical machine

without risking one VM affecting the others. VMMs share responsibility for providing

isolation between VMs so that each VM runs in an isolated environment.

• Security: Similarly, VMMs should enforce access controls and security policies so that

it is possible to provide security to run sensitive applications in VMs, without risking

security breaches or data theft.

• Performance: VMMs use hardware and software acceleration and other performance

optimization techniques to enable high performance virtualization. They reduces the

virtualization overhead to run VMs with near-native performance.

• I/O virtualization: VMMs offer emulated and PV I/O devices to the guest VMs,

making it possible to share I/O resources between multiple VMs and improve VMs’

I/O performance. There are multiple I/O schemes. Some of them are discussed in 2.8.

• VM Migration: This is necessary for high availability, disaster recovery, and load

balancing. Some VMMs support migration, which allows VMs to be moved from one

physical host to another without downtime.

• Snapshots: It allows users to save the state of a VM at runtime and restore it later

if needed to resume the VM from that state. Snapshotting can be helpful for testing,

development, and bug detection when testing new software or configurations.



2.8. VIRTIO PV DEVICES 23

2.8 Virtio PV Devices

A major role of a VMM is managing I/O for VMs. Emulating traditional I/O devices can

be inefficient due to significant performance penalty [59]. To improve performance, VMMs

offer special PV I/O devices. Virtio [113, 130] is a specification for PV devices that provides

an interface for software to manage and exchange information. PV devices can be exposed

to the emulated environment through PCI, memory mapping I/O, and S/390 channel I/O.

Some communication tasks, such as device discovery, are delegated to these methods.

Host

VMM

Hardware

KVM

virtio-device

virtio-driver

Guest VM

(a) Virtio device.

Host

Hardware

KVM vhost-device

VMM

Guest VM

virtio-driver

(b) Vhost device.

Host

VMM

Hardware

Guest VM

KVM

vhost-user-device

virtio-driver

(c) Vhost-user device.

Figure 2.3: Different modes of virtio devices.

A virtio device runs on the host and translates signals between the virtio driver and the

virtio data plane. It can handle both physical devices (like a NIC) and virtual devices (like

a virtual NIC). The virtio driver in the VM communicates with the virtio device according

to the virtio specification. It performs tasks such as detecting a device, allocating shared

memory for communication, starting the device using the virtio protocol, and maintaining

communication with the virtio device. The virtio-device and virtio-driver concept is inspired

by Xen’s PV backend and frontend, respectively.



24 CHAPTER 2. BACKGROUND

The device and driver communicate using virtqueues and notifications. Virtqueues are

queues of guest buffers that the host reads from or writes to, then returns to the guest.

The memory of these queues is arranged in a circular ring known as a virtring or vring.

Driver notifications from the guest VM are transported to KVM interruptions via methods

such as PCI, halting the guest’s processor and transferring control to the host. The device

notifications, on the other hand, are a type of IOCTL that the host sends to the KVM

device. Information about virtqueues can be obtained by QEMU through shared memory.

There are several ways virtio devices can operate, depending on where the device’s data plane

is located. When the VMM handles both the data plane and control plane operations, it is

referred to as a virtio device, such as virtio-net for networking. If the VMM delegates the

data plane to the kernel, the device is called a vhost device, such as vhost-net for networking.

When the VMM offloads the data plane to a separate user-space process on the host, it is

called a vhost-user device, such as vhost-user-net for networking. Figure 2.3 depicts these

variations. Each has its benefits and drawbacks in terms of security and performance, but

these discussions are beyond the scope of this dissertation. A modern VMM should support

all variations so that workloads can choose the one that best meets their needs.

2.9 OVS-DPDK Vhost User

Open virtual switch (OVS) is an open-source software switch designed for virtualized envi-

ronments. To eliminate the context switching between kernel and userspace while exchanging

packets between two userspace entities connected through the switch, OVS can run its for-

warding table in userspace.

DPDK is a library that helps speed up packet processing in data plane applications. It

works by allocating resources to dedicated logical processing cores before the data plane



2.9. OVS-DPDK VHOST USER 25

Host

VMM

Hardware

Guest VM

KVM

vhost-user-device virtio-driver

OVS-DPDK

Switch

PMD pmd-driver

Figure 2.4: OVS-DPDK architecture.

application is called. In contrast to a Linux kernel, which uses a scheduler and interrupts to

switch between processes, DPDK accesses devices through constant polling. This avoids the

overhead of context switching and interrupt processing. DPDK’s poll mode drivers (PMD)

allow packets to be transferred directly between user space and physical interfaces, bypassing

the kernel network stack entirely. This bypassing of the kernel stack and elimination of

interrupt handling can provide a significant performance boost.

It is possible to link an OVS application with DPDK, which offers vhost-user APIs. There-

fore, a VM can connect to an OVS-DPDK application, running in userspace on the same host,

through the vhost-user interface. For each guest VM created on the host, the OVS-DPDK

application can instantiate another vhost-user backend to communicate with the guest’s

virtio driver. As a result, OVS can forward packets between VMs on the same machine

without the overhead of context switching. Furthermore, OVS-DPDK can be configured to

use PMD on the host, and similarly, applications in guests can use DPDK PMD with their

virtio driver to boost performance. Figure 2.4 shows the OVS-DPDK architecture, where

OVS-DPDK runs as a userspace process, serving vhost-user-devices to multiple guest VMs.



26 CHAPTER 2. BACKGROUND

2.10 Unikernel

Unikernels [57, 82, 84, 86, 87, 95, 98, 99] are a type of lightweight OS that is optimized for

use in cloud systems and runs on top of a hypervisor in a separate VM. They are designed

to run a single application and are created by statically compiling the application with the

minimum necessary kernel code and libraries into a single-address-space image. This reduces

the code and memory footprint, making the attack surface smaller, and eliminates the need

for context switching, allowing system calls to be made as ordinary function calls, which can

improve performance. Despite their minimalistic nature, unikernels are run by full-fledged

VMMs like QEMU. To embrace minimalism, our prototype minimal VMM includes support

for unikernels.

2.11 Rump Kernels and Rumprun

For the network and storage driver domains, we need a unikernel capable of running many

device drivers. A fair number of non-compatible network (such as Ethernet [88], Wireless

LAN [44], etc) and storage (such as PATA, SATA, SCSI, and NVMe) controllers must be

supported. Because porting incurs non-trivial engineering effort, we need a unikernel that

can reuse existing drivers.

NetBSD [28], a well-known general-purpose OS, has a unique property in that all its core

kernel components are refactored into anykernel components. The anykernel concept implies

that these components can be used in any context, e.g., a device driver can be executed in a

user thread. A special rump kernel glue layer enables the reuse of the anykernel components

outside of the NetBSD kernel.



2.11. RUMP KERNELS AND RUMPRUN 27

Application

Rump Kernel

Rump Kernel Syscalls

LibC

Userspace Libraries

Rumpuser Hypercall

Xen
Host Platform

Base

FactionFaction

Device DriverDevice Driver

Bare Metal Kernel

Rump 
Kernel Calls

Figure 2.5: Rumprun stack on Xen.

Rumprun is a unikernel that leverages rump kernels such that it can potentially reuse any

NetBSD device driver. Figure 2.5 shows the rumprun software stack, which consists of the

platform-specific layer (Xen) and bare metal kernel (BMK) layer, which implements thread

management, scheduling, interrupts, and memory management. A special rumpuser layer

implements an interface (known as “hypercalls”, which are not to be confused with Xen’s

hypercalls) for the rump kernel components to communicate with the BMK layer. This

dissertation reuses other NetBSD components, such as the TCP stack and vnode block

device interface that are denoted as ‘Faction.’

The layers above the rump kernel consist of relevant libraries and their interface to the rump

kernel. A unikernel application runs on top of the stack. NetBSD system calls from LibC

are replaced with ordinary function calls. Since drivers need semantically similar support

routines they use in NetBSD, the rump kernel contains ‘Base’ which provides support for

memory allocation, thread handling, and locking.



28 CHAPTER 2. BACKGROUND

Although a number of embedded Linux systems exist, we are not aware of a comparable

minimal system that can readily be used for driver domains. Linux-based unikernels [86, 111]

currently lack maturity and flexibility. In contrast, rumprun is stable, and rump kernels are

upstreamed to NetBSD.

2.12 Memory-based Isolation

Memory-based isolation techniques aim to improve software security by isolating different

parts of a program’s memory, preventing them from interfering with each other and reducing

the attack surface. Therefore, these techniques can help prevent data breaches and minimize

the impact of security vulnerabilities [64]. Some of them are discussed below.

• Memory segmentation: Isolated memory in segments. Each segment is given specific

permissions and access controls to prevent unauthorized access and data leakage.

• Virtual memory: Widely used technique in OSs - provides an abstraction on the physi-

cal memory by creating multiple virtual memory spaces for different parts of a program.

Each part is allowed to access only its own allocated memory space. Hardware and

software supports are leveraged for physical to virtual memory mapping.

• Containerization and sandboxing: These techniques use virtual environments to isolate

applications and their dependencies. A separate environment for each application

reduces the risk of data leakage or interference.

• Process isolation: Each program runs as a separate process, with its own memory

space, to prevent one program from interfering with another. Often one program is

divided into multiple processes to enhance isolation, where processes use inter-process

communication or remote procedure calls to synchronize between different parts.



2.12. MEMORY-BASED ISOLATION 29

Each technique has associated advantages and disadvantages. We explore memory-based

techniques for inter-process isolation as this dissertation compartmentalizes VMM compo-

nents. The software fault isolation (SFI) [133] technique uses memory-bound checks to

prevent one component from indirectly accessing the memory of another. It requires code

instrumentation at compile time or binary rewriting. The execution overhead of SFI tech-

niques is up to 42% [85, 117].

Some approaches use hardware page protection for memory isolation [50, 54, 63, 89, 92, 93].

As part of the address translation, hardware checks the access permission, which incurs

no additional overhead on execution. However, changing control between two components

involves a base change in the extended page table (EPT) that requires expensive context

switching. Though light-weight context switching approaches [54, 63, 78, 92, 93] reduces

overhead, the toll is still significant, where the upper limit varies from 10% to 65% [92, 131],

depending on the application and approach.



Chapter 3

Related Work

Several state-of-the-art works share motivations with our work in some aspects. Moreover,

different existing approaches previously attempted to secure virtualization platforms in dif-

ferent ways. On the other hand, unikernels are being used on different hypervisors and

proposed to solve various interesting problems. Similarly, various compartmentalization

techniques are being exercised to improve security in various platforms. In this chapter, we

discuss some existing relevant works on hypervisor and VMM security and unikernel usages.

The discussion of various existing disaggregation techniques for enhancing the security of

virtualization environments is presented in Section 3.1. In Section 3.2, the benefits of using

unikernels in improving cloud infrastructure are discussed. Prior approaches to enhance

driver domains are examined in Section 3.3. Finally, Section 3.4 explores works that leverage

protection keys to benefit from memory-based isolation. Tables 3.1and 3.2 summarize works

related to approaches proposed by Kite [100] and Redwood, respectively.

3.1 Hypervisor Disaggregation Approaches

Hypervisors, which make it possible to run multiple VMs on the same physical machine,

are counted towards a TCB for cloud infrastructures. The Xen hypervisor uses Dom0 as a

control VM. Dom0 is a fully-fledged OS that runs on top of Xen. Unexpected behavior from

Dom0 or Xen can immediately and adversely affect any (DomU) guest OS. Therefore, there

30



3.1. HYPERVISOR DISAGGREGATION APPROACHES 31

Table 3.1: Prior arts related to Kite’s approach.

Approach Isolation type Disaggregate Driver Domain OS type

Xoar [65] VM 3 3 Full-fledged
QubesOS [114] VM 3 3 Full-fledged
Nexen [120] Memory 3 8 Full-fledged
Murray et al. [102] VM 3 8 Lightweight
LibrettOS [103] VM 8 8 Lightweight
Docker [101] Process 8 8 Lightweight
Kite VM 3 3 Lightweight

have been several efforts [65, 102, 120] for splitting Xen responsibilities, so that an exploited

or failed component does not affect other components.

Xoar [65] disaggregates Dom0 functionality into nine types of service VMs, each having

different responsibilities. Two of them, PCI backend and bootstrapper, run on top of nanOS,

a lightweight OS, destroyed after initialization. Among other service VMs are network driver

domain and block driver domain. Driver domains execute corresponding backend drivers.

Xoar allocates one backend driver for each frontend driver so that one frontend does not

adversely affect another frontend. Every driver domain runs a fully-fledged OS such as

Linux, which still has a potentially large attack surface.

Qubes OS [114] implements a protected Xen-based user environment using four types of

VMs: apps VMs, network VM, storage VM, and administrative/graphical user interface

(GUI) VM. The apps VMs are domains for running corresponding types of applications.

The network VM runs netback and serves as a network driver domain for the apps VMs.

The storage VM provides access to the disk for the apps VMs. The administrative/GUI VM

provides GUI to users. For all types of VMs, Qubes OS runs Linux. Since Qubes OS uses

standard Xen driver domains, our Kite driver domains can also be integrated into Qubes

OS easily for reducing attack surface and memory footprint of driver domains. Reducing



32 CHAPTER 3. RELATED WORK

memory overheads is crucial for desktop environments that Qubes OS primarily targets.

The NeXen [120] architecture decomposes hypervisor into three parts using paged-based iso-

lation mechanisms: security monitor, shared service domain, and Xen slices. The security

monitor provides isolation between internal domains and manages privileges by controlling

all updates to the memory management unit (MMU). Xen slices are composed of highly

vulnerable hypervisor functionalities and data needed by the DomU. Each slice serves only

one DomU. The shared service domain provides the functionalities that could not be decom-

posed into slices. One limitation of this work is that NeXen does not manage I/O devices.

Therefore, NeXen relies on the native Linux PV (e.g., network and disk) device drivers and

cannot prevent abuses on the drivers.

Murray et al. [102] disaggregate the hypervisor by extracting the domain building process,

called domain builder, from Dom0 and porting it to a light-weight OS such that the TCB

attack surface remains small. However, for I/O calls, the domain builder relies on Dom0

which runs a backend driver as well as a physical driver. Therefore, this disaggregation does

not secure the I/O path. SSC [61] describes a modified Xen architecture for reducing TCB

by distributing DomU responsibilities to multiple user-level service domains called UDom0.

Each DomU belongs to one UDom0, which enforces isolation. Apart from UDom0, this design

has a system-wide administrative domain, called SDom0, and a domain builder. SDom0

has multiple responsibilities, including scheduling and I/O device virtualization. Therefore,

SDom0 has a relatively larger attack surface and errors can affect core functionalities.

These approaches incur a performance penalty and were specifically designed for the Xen

bare-metal hypervisor, where all the VMs, including Dom0, run on top of Xen. Because of

architectural differences, these approaches do not apply to other hypervisors. For example,

KVM cannot run on bare metal and instead it converts a Linux OS into the hypervisor,

known as the host OS. As a result, Linux’s functionality, such as the memory management



3.2. UNIKERNELS FOR CLOUD INFRASTRUCTURES 33

and scheduler, becomes the functionality of the hypervisor. Unlike Xen, KVM cannot run

PV backends inside a separate VM. KVM runs on hardware that provides virtualization

support, such as Intel VT-x, so that VMs can benefit from hardware-assisted isolation.

KVM, Hyper-V, and several other hypervisors rely on VMMs, such as QEMU [66] and

Firecracker [118], for VM creation and management, I/O device emulation, and other re-

sponsibilities. It is possible to run each VM on a separate VMM process, providing process-

level isolation between VMM instances. This dissertation addresses the risks associated with

VMMs for VMs. While the current design does not allow for the disaggregation of the VMM,

we propose intra-VMM isolation to improve security without sacrificing performance.

3.2 Unikernels for Cloud Infrastructures

Every workload in the cloud runs inside VMs. Unikernels are light-weight OSs that claimed

to have various desirable properties by the researchers, which make them a good fit for the

cloud infrastructure over the existing setup. In terms of boot time, some works [97, 137, 139]

show that deployment of scaled cloud workload in remote data centers is faster and smoother

compared to Linux. Moreover, memcached was shown to have a throughput that is twice as

faster using a unikernel [116] compared to Linux.

On the other hand, because of the portability and consistency, application containerization

became very popular for deployment in clouds. However, containers provide process-level

isolation where unikernels themselves are VMs, often supported by hardware-assisted vir-

tualization, which offers better isolation. To provide better isolation, containers often run

inside VMs that use fully-fledged OSs [68, 72]. These OSs have a bigger attack surface

than unikernels. Moreover, Goethals [74] et al. show that for microservice applications, the

OSv [84] unikernel performs up to 38% faster than Docker [101]. LibrettOS [103] shows that



34 CHAPTER 3. RELATED WORK

rumprun-based unikernels can be used as servers in a single OS. LibrettOS’s NFS server is

9% faster than that of either Linux or NetBSD, and Ngnix HTTP server is up to 66% and

27% faster than NetBSD and Linux, respectively. We use and extend LibrettOS’s multi-core

and Xen HVM support in our work.

HEXO [106] takes advantage of the low resource requirement nature of a unikernel, named

HermitCore [87]. Authors were able to offload server workloads to light-weight, low-cost

embedded computer boards such as Raspberry Pi [10]. This way, they were able to improve

the throughputs for compute-intensive workloads in servers up to 67%, costing negligible

amount of money for infrastructure and energy.

The faster boot time, lower resource requirement, and better performance of unikernels are

inspiring the researcher in the academia and industry [8, 111] to adapt unikernel architecture

for improving the cloud infrastructure. However, none of these prior works attempted to

improve the hypervisor itself. In this dissertation, we show how adapting the unikernel

concept can benefit hypervisors and make them more secure and performant, while reducing

resource consumption.

3.3 Driver Domain and Backend Improvement

Several approaches were proposed by the researchers previously to improve the Xen PV

device drivers and driver domains. Sushrut Shirole came up with the idea to replace the

interrupt-based event handler with a polling-based request and response handler for both

front and backends [121] to improve driver domain performance. This approach requires

modification to Linux frontend and backend drivers for compatibility, where our work results

in a lightweight driver domain without losing any compatibility with the existing frontends.



3.3. DRIVER DOMAIN AND BACKEND IMPROVEMENT 35

XCollOpts [142] focuses on the existing VM scheduling scheme that supposedly favors CPU-

intensive workloads over the latency-sensitive I/O workloads running in a VM. In contrast,

the authors proposes premature preemption prevention techniques for driver domains and

CPU load balancing-based optimizations for credit schedulers to benefit I/O virtualization.

Moreover, XCollOpts suggests multiple Tx and Rx buffer pairs in the network driver domain

to leverage multicore systems along with methods to reduce grant page accesses for the

small-sized packets.

Bourguiba et. el [55, 56] proposes a I/O virtualization model based on packet aggregation

to transfer packets between the driver domain and the VMs. Their work shows network

throughput improvement at the cost of latency. To mitigate latency degradation, the pro-

poses a dimensioning tool that helps to dynamically balance between throughput and latency

in different situations.

All of the above-mentioned prior works regarding I/O virtualization and driver domain

focuses particularly on performance (especially for network) rather than other important

aspects such as security and resource utilization. Moreover, it seems they consider Linux

as the base OS for the driver domain. One exception would be the LibrettOS’s Network

Server [103] that implements a network server in a unikernel. This network server runs as a

network backend where the communication with the frontend is done using improvised ring

buffers, which are only compatible with network clients with such ring support. Therefore,

unlike our proposal, this model is not compatible with the frontends from existing commodity

OSs such as Linux, NetBSD, and Windows.



36 CHAPTER 3. RELATED WORK

3.4 Protection Key-based Memory Isolation

Intel MPK is a feature in Intel CPUs that enables memory protection using protection

keys. Various memory-based isolation schemes [73, 80, 81, 90, 115, 124] leverage MPK

to separate trusted and untrusted components. These schemes create separate memory

protection domains by assigning different pkeys to memory pages containing different codes

and data. The access of one domain to another domain’s code or data depends on the

protocol devised by a particular approach.

In addition to its use in memory isolation, MPK has also been employed to harden JavaScript

engines [108], reinforce other exploit mitigations [60, 62, 75, 85], and provide software ab-

stractions for isolation and sandboxing [77, 107, 131, 132]. It can also be used to implement

eXecute-Only Memory (XOM), a defense against code-reuse attacks that rely on reading

code [53, 109]. The XOM-Switch tool [143] patches the dynamic linker and libc to mark all

pages containing executable code as execute-only using the PKU system call.

LibhermitMPK [124] introduced the concept of intra-unikernel isolation using Intel MPK,

dividing the unikernel into three domains for safe kernel code, unsafe kernel code, and user

code. However, MPK cannot protect the codes. Therefore, LibhermitMPK designs isolation

between domains by manipulating access permission to their memory. When a domain with

safe code calls a function in another domain with unsafe code, access to the current domain’s

memory is disabled and re-enabled upon return from that function. This way, any attempt

from the unsafe domain to access the safe domain’s memory will cause a segmentation fault,

ensuring protection against potential harm from unsafe code.

Later, Hodor [77] advanced the concept of domain isolation to the idea of protected libraries

in an application running on general-purpose OSs. Each library is kept in a separate domain

of executable code, with access to certain parts of the address space granted to each domain



3.5. VIRTUAL MACHINE MONITORS 37

while access to others is restricted. Erim [131] proposed a similar concept by dividing

the application’s code into trusted and untrusted domains. Trusted domains can access

untrusted domains’ memory, but untrusted domains cannot access trusted domains’ memory.

The transition between domains requires a change in permissions for the corresponding

memory, using keys associated with these domains. The main difference between Hodor and

Erim lies in the mechanisms used to ensure that transitions cannot be hijacked, preventing

attackers from arbitrarily changing permissions on the keys to execute code or memory from

trusted/protected domains.

Recently, FlexOS [90] extended the idea of libhermitMPK, Hodor, and ERIM to compart-

mentalize unikernels into further granularity. There can be multiple compartments, each

having one or more libraries where the compartments are mutually untrusting. Therefore,

any transition from one compartment to another requires disabling the current compartment

so that the destination compartment cannot access other compartments’ memory. FlexOS’s

prototype has an MPK-based implementation. However, none of these approaches or tech-

niques have previously been used for VMM compartmentalization. Moreover, one cannot

directly apply these protection key-based techniques because of the difference in VMM’s

architecture to the unikernel or regular application, which does not compartmentalize im-

plementations like I/O devices.

3.5 Virtual Machine Monitors

There are a several VMMs and approaches for increasing isolation between VMs. Table 3.2

shows a summary of these approaches. QEMU [66] is a heavily-used full-featured VMM,

which is written in C. It is designed to be generic for supporting a wide range of VMs. It

is possible to launch separate QEMU instances for each VM so that each can benefit from



38 CHAPTER 3. RELATED WORK

Table 3.2: Prior arts related to Redwood’s approach.

Approach Isolation type Per-VM flexibility General OS support Language

QEMU [66] Process 8 3 C
Firecracker [118] Process 8 8 Rust
Cloud Hypervisor [45] Process 8 3 Rust
kvmtool [38] Process 8 3 C
uKVM [138] Process 3 8 C
Turtles [51] Nested VM 8 3 C
No Turtles [34] cgroups 8 3 C
Redwood Intra-process 3 3 Rust

process-level isolation. The monolithic design of QEMU does not allow isolation inside the

QEMU instance.

Firecracker [118] and Cloud Hypervisor [45] are two comparatively newer VMMs. Both are

written in Rust, enabling them to enjoy security from the robust memory model enforced by

this language. Firecracker is designed to run lightweight Linux VMs, called microVM, and

offers a small set of virtio device implementations. Cloud Hypervisor is developed targeting

cloud OSs, such as Ubuntu Cloud, to run modern cloud workloads. This VMM offers more

devices than Firecracker and has some additional features like VM migration, VFIO [5], and

vDPA [4]. However, both VMMs provide only process-level isolation.

The kvmtool [38] VMM is written from scratch and can boot Linux VMs. It implements

several virtio devices but is not known for feature-completeness like QEMU and lacks fine-

grained modularity. In contrast, uKVM [138] provides per-VM specialization but can only

run unikernels. Both VMMs are written in C, are very lightweight, and offer only process-

level isolation.

The turtles project [51] offers nested virtualization for KVM, enabling VM-level isolation be-

tween multiple hypervisor instances running on the same physical host. While this approach



3.5. VIRTUAL MACHINE MONITORS 39

increases isolation, multiple hypervisors increase the attack surface and exhibit poor I/O

performance. Therefore, a very recent approach [34] proposes using cgroups [36], instead of

nested virtualization, to run a group of VMs sharing common resources. While cgroups offer

isolation between VMs, they cannot provide fine-grained intra-process isolation.



Chapter 4

Kite: Unikernelized Storage Domain

Unikernelizing a storage domain is a non-trivial problem because of several aspects related

to unikernel and Xen’s storage domain architecture. A careful design can provide a more

compact storage domain than the state-of-the-art without losing any performance benefit.

In this chapter, we discuss our design choices to achieve such qualities.

In Section 4.1, we discuss the challenges associated with unikernelizing a Xen storage domain.

In Section 4.3, we discuss the adaptation of rumprun’s physical storage driver from NetBSD

so that the unikernelized storage domain can perform operations on the physical storage

device. In Sections 4.4 and 4.5, we discuss Kite’s design for the unikernelized storage domain

on top of rumprun, considering the discussed challenges.

4.1 Challenges

Xen PV storage frontend and backend drivers are available in different commodity OSs, such

as Linux and NetBSD. Therefore, it is easier to take one of these OSs as they are and deploy

it as a storage driver domain. In contrast, no existing Xen-based unikernel has both ends

of the PV storage driver implemented. To be specific, rumprun leverages Mini-OS for Xen

interfaces, such as Xenbus, and has the frontend driver implementation of Xen PV storage

driver. Neither rumprun nor Mini-OS has blkback implemented, and it cannot be leveraged

from NetBSD because the backend is associated with platform-specific implementation. This

40



4.2. THREAT MODEL 41

situation poses the challenge of the design and implementation of blkback in the unikernel

context, which is fundamental for getting a unikernelized storage domain.

Now, a rumprun blkback needs some specific attention, unlike the commodity OSs, because

of its any kernel philosophy, which allows us to use physical storage drivers from NetBSD. To

access the physical device driver from NetBSD from rumprun, we need to access the storage

device interfaces provided by NetBSD. At the same time, since our goal is to leverage the

unikernel concept, we cannot use core kernel functionalities from NetBSD, such as memory

management and scheduling. For these functionalities, we depend on the rump kernel.

Therefore, it requires a careful separation and interaction between what we can leverage

from NetBSD and what we cannot.

Xen provides some device-specific scripts for commodity OSs. The execution of these scripts

helps the backend domain (Dom0 or driver domain) to accomplish specific operations nec-

essary for paravirtualization. Xen invokes these scripts in Dom0 or the driver domain upon

the corresponding front-end device driver’s request for a backend device driver. For instance,

the block script retrieves requested storage device-specific information and writes them to

the Xenbus database. Rumprun is a single address space OS, which lacks the luxury of

running scripts. Therefore, accomplishing these block script-specific tasks for the rumprun

driver domain is another challenge.

4.2 Threat Model

Storage driver domains are potentially vulnerable to attacks from malicious actors who want

to gain unauthorized access to the system’s data or resources. The Kite storage driver domain

shares the same threat model as that of any driver domain and any VM such as [65, 102, 120].



42 CHAPTER 4. KITE: UNIKERNELIZED STORAGE DOMAIN

Hardware Devices

Secondary Storage Device

Hypervisor

Storage Interface

Backend Driver

Storage Device Driver

Storage Interface

Backend Driver

Ring

Frontend Driver

Application

Ring

Frontend Driver

Application

DomU Dom0/Network Driver Domain DomU

Figure 4.1: Xen’s PV storage driver model.

We consider the Xen hypervisor to be the trusted component of the system that provides

virtualization capabilities. The compiler is another trusted component of the system that is

used to translate source code into machine code. Domain-0 is also considered trusted as it

is the administrative domain on the Xen hypervisor.

Both physical and PV drivers are components of the driver domain that manage the com-

munication between the hardware and the virtualized environment. They are potentially

vulnerable to attacks from malicious actors who want to gain unauthorized access to the

system’s resources or data. A guest VM user is an actor who has access to the virtualized

environment and can potentially manipulate the system to launch an attack. Therefore, no

component in the driver domain or other guest VMs is considered to be trusted. This means

that any potential vulnerabilities in those components are assumed to exist, and appropriate

security measures should be put in place to mitigate them. To mitigate threats associated

with untrusted components, Kite aims to limit the attacker’s flexibility by reducing the

attack surface of driver domains (in Xen’s driver domain model).



4.3. STORAGE DEVICE DRIVER 43

Block Status App

Rump Kernel

Rump Kernel Syscalls

LibC

Block Lib/Tool

Rumpuser Hypercall

Interface to Xen

Host Platform

Block Glue 
Code

Syscalls
Block 

Device 
Interface

Block 
Driver

Bare Metal Kernel

Rump Kernel Calls

Blkback
Driver

From NetBSD New Contribution

Figure 4.2: Rumprun storage domain.

4.3 Storage Device Driver

A driver domain requires full access to the underlying device that the PV backend driver

will use to serve I/O requests from guest VMs. Specifically, a storage driver domain can use

a physical storage device, such as a hard disk drive (HDD) or solid-state drive (SSD). The

device can be assigned to the driver domain from the Dom0 using Xen’s PCI passthrough

mechanism, which we particularly use for assigning a storage device to a rumprun unikernel.

Once the device is assigned, a corresponding storage device driver is necessary. Therefore, the

next step is to get a suitable storage driver that is compatible with the rumprun unikernel.

From the discussion in Chapter 2, we know that this driver belongs to the rump Kernel layer

in the rumprun stack, as shown in Figure 4.1. Inspired by the rump kernel’s philosophy, we

aim to import the storage device driver from another OS (i.e., NetBSD) and use it unmodi-



44 CHAPTER 4. KITE: UNIKERNELIZED STORAGE DOMAIN

fied. Therefore, it benefits us by saving development and maintenance efforts. However, to

realize this vision and ensure that the driver works on the underlying platform and exports

its functionalities, we will need to provide the glue code. It belongs to the rump Kernel layer

to bridge the unikernel with the driver obtained from another OS.

Although the storage driver is imported from another OS, it relies on the underlying kernel

support from the target OS. The rump kernel provides an unmodified system call (syscall)

interface, which allows the imported driver to utilize rump Kernel functionality without any

modification. Additionally, to interact with the device driver for storage operations, such

as reading or writing on the disk, block device interfaces are needed. Like syscalls, these

interfaces are part of the rump kernel layer and can be obtained from other OSs. In the

rump kernel layer, both syscalls and device driver interfaces are referred to as factions (as

shown in Figure 4.2).

4.4 Storage Backend Driver

In a virtualization setup, multiple guest VMs should be able to use the same or different

storage devices. The storage backend driver is the most crucial part of a storage driver

domain because it multiplexes the physical storage access between guest VMs and makes fast

storage virtualization possible. Each guest machine using PV storage device/s is responsible

for providing a blkfront per device. On the other hand, the storage domain is responsible

for offering a blkback against each of these blkfronts, as shown in Figure 4.1.



4.4. STORAGE BACKEND DRIVER 45

Blkfront Blkback

Physical storage 
driver interface

Ring

Shared memory

Send request

Read response

Copy request

Send resp & notify

Write

Read

Virtual 
storage 

interface

Figure 4.3: Blkfront and blkback communication. For read operations, blkfront places a
request in the ring and notifies blkback. Upon receiving the notification, blkback reads data
from the storage device, places it in the shared memory buffer, and sends a notification to
blkfront so that it can read from the buffer. For write operations, blkfront places the data in
the shared memory, places a write request in the ring, and sends a notification to blkback.
Upon receiving the notification, blkback writes the data in the storage device and sends a
notification to blkfront upon completion.

Our storage domain monitors all guest VMs and their properties all the time to realize when

to populate a blkback instance. If any guest VM seeks PV storage, the storage domain ne-

gotiates with that VM and creates a blkback instance. Blkback and blkfront communicate

and transfer data between each other using Xen’s shared memory and event channel mecha-

nisms. Figure 4.3 shows and describes the general flow of communication when a guest VM

performs a PV storage device operation. Since blkback driver is very hypervisor-specific, it

belongs to rumprun’s platform layer, as shown in Figure 4.2.

We divide blkback into platform-dependent and platform-independent layers (upper and

bottom) according to the rumprun’s philosophy. The bottom layer handles requests for

block data from blkfront and sends responses using Xen shared ring buffer. Depending on

the type of request (read, write, etc.), the bottom layer communicates with the upper layer.

The upper layer performs the read and write operations on the storage device using the block

device interface. The upper layer is also responsible for forwarding the feedback from the

device driver to the bottom layer.



46 CHAPTER 4. KITE: UNIKERNELIZED STORAGE DOMAIN

Each request is consists of multiple block segment information to perform a particular op-

eration, such as read, write, etc., on those segments of the block device. A write-request

requires reading block data from the shared memory and writing them to the storage device.

In contrast, a read-request requires reading from the storage device and writing them to

the shared memory. In Xen, the shared memory access is performed using the grant table

operations, which requires hypercall execution, and they are time-consuming.

Blkfront notifies blkback of requests via a Xen event channel. To receive these notifications,

blkback has a designated notification handler. To prevent the accumulation of requests and

improve request handling, we have implemented a dedicated thread for reading all pending

requests, performing the necessary operations on the storage device, and then going to sleep.

The notification handler only wakes up this thread when a notification is received. This

allows the notification handler to respond promptly when additional requests are received.

Blkback sends a response to blkfront when requested operations are completed on the stor-

age device. However, performing block operations on the storage device can also be time-

consuming. If a request is only handled once the response for the previous request is sent

to blkfront, it is likely that the number of pending requests will accumulate, causing the

ring to become full of requests. This results in high response times, low throughput and

high latency, which is not desirable. To address this, the response is sent to blkfront as

soon as the corresponding requested operation is completed by the device driver. Instead of

waiting for the operation to be completed and then sending the response and handling the

next request, we send responses asynchronously. This means we continue handling requests

and submitting the requested operations, and only send responses when the storage device

has completed those operations. This way, subsequent requests do not have to wait for the

response to be sent for the current request.

There are few other optimization techniques we have used in out blkback driver. They are



4.4. STORAGE BACKEND DRIVER 47

B 1 2 3 4 5 6

1 2 3

A

C

Figure 4.4: Batching multiple segments improves storage domain performance. However,
there is no guarantee that segments in a disk (A) will be accessed consecutively. Typically,
it would take 6 separate read/write operations to access the segments marked with blue
boxes (B). However, using batching, we can perform one operation for segments 2, 3, and 4
combined and another for segments 5 and 6 combined, resulting in a total of 3 operations
instead of 6, as shown with the green boxes (C). In this scenario, batching saves half the
time required to perform all operations separately.

discussed below.

• Batching: A request may contain multiple segments of information to perform oper-

ations. It is possible that one segment is consecutive to the next segment. Similarly,

multiple requests may have consecutive segments where the first segment of a request

starts from the last segment of the previous request. In such cases, if the same opera-

tion is to be performed on these segments, we combine these operations into a single

operation and perform it on the storage device. Figure 4.4 describes how batching can

accelerate storage operations with an example.

• Persistent reference: A request may contain multiple grant references, each of which

points to a shared memory location. The corresponding segment data is read from or

written to these locations by blkfront and blkback. However, the shared memories

are allocated by blkfront. Therefore, blkback must map the grant references to access

these memories, and unmap them after accessing them. This grant reference mapping

and unmapping incurs significant time due to context switching for hypercall. To

reduce this cost, we take advantage of Xen’s persistent grant referencing feature, which



48 CHAPTER 4. KITE: UNIKERNELIZED STORAGE DOMAIN

Ref 1

Ref 2

Ref 3

.

.

.

.

Ref 11G
ra

n
t 

re
fe

re
n

ce
s 

in
 a

 r
e

q
u

e
st

Pages with
segment data

1

2

3

11

(a) Direct referencing.

Indirect Ref 1

Indirect Ref 2

Indirect Ref 3

.

.

.

.

Indirect Ref 8G
ra

n
t 

re
fe

re
n

ce
s 

in
 a

 r
e

q
u

e
st

Pages with
references

Pages with
segment data

1

2

3

8

1

2

3

512

(b) Indirect referencing.

Figure 4.5: Both direct (a) and indirect (b) requests can point to one 4K page per reference,
with a maximum of 11 and 8 references per request, respectively. A page referenced by a
direct request contains segment data. In contrast, a page referenced by an indirect request
can contain up to 512 other references, each pointing to a 4K page containing segment data.

allows blkfront and blkback to reuse already mapped references. This means a grant

reference does not need to be unmapped as it can be used again. Later, if any of these

references are used for transferring segment data, the corresponding memory can be

accessed using previously mapped pages, which significantly reduces processing time.

• Indirect segments: One request can contain up to 11 grant references, each of

which points to one 4K page of shared memory. Therefore, one request can transfer

a maximum of 44K data between blkfront and blkback. This limitation can act as a

bottleneck for paravirtualizing high-throughput storage devices, such as NVMe SSDs.

Xen supports a feature called indirect referencing to overcome this limitation. Instead

of holding block data, indirect grant references point to pages that contain segment

information, such as sector numbers and grant references to the corresponding shared

memories. This way, each page can hold up to 512 segments of data. Each request can



4.5. STORAGE DOMAIN APPLICATION 49

contain a maximum of 8 indirect segments, making a total of 4096 segment information

that each request can transfer. As each of these segments can point to one 4K page of

data, each request can transfer up to 16MB of data between blkfront and blkback. In

our blkback design, we leverage this feature to improve storage throughput. Figure 4.5

depicts the difference between direct and indirect referencing.

4.5 Storage Domain Application

Xen provides block device scripts for NetBSD and Linux, where these scripts retrieve some

storage device information and write them to the Xen store database. This information

includes a device’s status, grant references for shared buffer rings, event channel number,

etc. The storage backend scans through the database to learn about the device. Since

we cannot run shell scripts in rumprun, we design an application to retrieve device-specific

information and pass them to the backend. Since rumprun is a single address space OS,

we schedule context switching, between the backend and this application, in a time-sharing

manner.



Chapter 5

Kite’s Storage Domain Prototype

The existing rumprun unikernel is not designed for storage domains and lacks backend im-

plementation for I/O devices. Therefore, along with the core PV storage backend driver,

the unikernelized storage domain requires other implementations, such as physical device

interface, backend invocation, and storage domain application. In this chapter, we present

the Kite storage domain, a prototype for the unikernelized driver domain for storage based

on rumprun, and the design choices as described in Chapter 4.

In Section 5.1, we discuss how Kite’s blkback driver accesses the physical storage driver.

In Sections 5.2 and 5.3, we discuss Kite’s backend driver invocation, initialization, and its

connection setup with the frontend driver. Sections 5.4, 5.5, 5.6, and 5.7 contain blkback

implementation detail. Table 5.1 summarizes some new and existing functions that are

crucial parts of these implementations. Finally, Section 5.8 describes the storage domain

application implementation for complementing Xen’s missing storage scripts for unikernels.

5.1 Block Device Interface

In NetBSD, there are several block device interfaces/functions that the storage domain needs

to use for performing operations on storage devices. The upper layer of the system is re-

sponsible for invoking these functions.

50



5.1. BLOCK DEVICE INTERFACE 51

Table 5.1: Key functions in Kite storage domain.

Function Description
devsw_blk2name Get block device name
bdevsw_lookup Get block device structure
xbdw_thread_func Watch for changes in Xenstore
xbdback_instance_search Searches for blkback for blkfront
probe_xbdback_device Probes a blkfront that does not have a blkback
xbdback_xenbus_create Creates a blkback instance
xbdback_connect Establish blkback’s connection with blkfront
xbdback_frontend_changed Invoked upon blkfront’s status change
xbdback_backend_changed Invoked upon blkback’s status change
xbdback_function Handles I/O between blkback and blkfront
bdev_strategy Submit I/O request to physical device driver
xbdback_iodone Callback function invoked upon I/O completion

Before performing any operation on a device, the first step is to check the device’s availability

and status. The physical device driver assigns a name to each device. Therefore, as a part of

the sanity check, we first check if a device has a name using the devsw_blk2name() function.

If it returns no name, then the device is assumed to be non-existent.

For each block device, there is a constant data structure called the Block Device Switch

(bdevsw), in NetBSD. This data structure is defined in the physical driver and includes

mandatory entry points such as open, close, strategy, dump, size, flags, ioctl, etc. To

perform any operation on the device, we heavily depend on the interfaces that allow us to

use these entry points. Therefore, the next step is to search for the device’s bdevsw structure

using the bdevsw_lookup() function.

In UNIX-based operating systems, a device is treated as a file. Therefore, we create a virtual



52 CHAPTER 5. KITE’S STORAGE DOMAIN PROTOTYPE

node (vnode) for the storage device, which represents an inode of a storage device file. As

a result, we can perform open, close, read, and write operations on it just like files.

In NetBSD, we can obtain a vnode for a block device using the bdevvp() function. The

next step is to perform the open operation on the device, followed by any necessary read,

write, ioctl, and close operations, which are done using VOP_OPEN, bdev_strategy(),

VOP_IOCTL, and vn_close, respectively.

Reading and writing on a block device is done by first constructing buffers and then submit-

ting these buffers using the bdev_strategy function. The buffer serves as a data placeholder

and holds various information such as the source address, operation type, and a callback

function. Before constructing the buffer, we initialize it with the necessary information and

destroy it after we are done using it. We use the device driver interface to initialize and

destroy the buffers. The device driver reads data from the buffer and writes it to the stor-

age device for write operations. For read operations, the device driver reads data from the

storage device and writes it to the buffer. After a completed operation, the device driver

invokes the aforementioned callback function.

The usage of the above-discussed block device interfaces from the upper layer is mostly

triggered by the lower layer, except for the callback function. However, the lower layer

is the Xen-specific layer executed in the rump kernel context, while the upper layer uses

the device interface executed in NetBSD codes. Since rumprun is a single process ker-

nel, we need to switch between the rump kernel and NetBSD code context. Therefore,

when we switch from the lower layer to the upper layer, we use cooperative scheduling

by exiting from the rump kernel code using the rumpuser__hyp.hyp_schedule() function.

Later, after upper layer execution, we switch back to the rump kernel context using the

rumpuser__hyp.hyp_unschedule() function.



5.2. BLKBACK INSTANTIATION 53

/local/domain/2/backend = “”
/local/domain/2/backend/vbd = “”
/local/domain/2/backend/vbd/4 = “”
/local/domain/2/backend/vbd/4/51712 = “”
/local/domain/2/backend/vbd/4/51712/mode = “w”
/local/domain/2/backend/vbd/4/51712/state = “4”
/local/domain/2/backend/vbd/4/51712/dev = “xvda”
/local/domain/2/backend/vbd/4/51712/type = “phy”
/local/domain/2/backend/vbd/4/51712/online = “1”
/local/domain/2/backend/vbd/4/51712/bootable = “1”
/local/domain/2/backend/vbd/4/51712/removable = “0”
/local/domain/2/backend/vbd/4/51712/frontend-id = “4”
/local/domain/2/backend/vbd/4/51712/device-type = “disk”
/local/domain/2/backend/vbd/4/51712/discard-enable = “1”
/local/domain/2/backend/vbd/4/51712/params = “/dev/vg/logical_volume”

Figure 5.1: Xenstore is a key-value store database that maintains a directory-like structure
for keys, each representing a path. This listing is a partial snapshot of Xenstsore database
generated using the xenstore-ls command. It shows some key-value pairs for the storage
driver domain (ID 2), which is connected to a blkfront from guest domain (ID 4).

5.2 Blkback Instantiation

The creation of a guest VM, i.e. DomU, is a discrete event. As a result, a blkfront instan-

tiation can occur at any time, requiring a blkback to be instantiated on the driver domain

side to pair and enable PV I/O. To detect blkfront creations, the Kite storage domain cre-

ates a dedicated thread to monitor changes to the Xenstore database regarding the storage

domain. If a new VM wants to use this storage domain, Xenstore adds a new set of blkfront

information to the storage domain’s backend path. Figure 5.1 shows a few backend paths in

a Xenstore database.

The Kite storage domain maintains a list of important Xenstore paths and sets a callback

function for each of them. A dedicated thread runs the xbdw_thread_func(), which continu-

ously monitors for changes in the Xenstore database. If there is a change for a path on the list,

the corresponding callback function is invoked. Kite uses the xbdback_instance_search()

function as the callback for any changes in the storage domain’s backend path. This func-

tion investigates the changes in the path by traversing all blkfront subdirectories. The



54 CHAPTER 5. KITE’S STORAGE DOMAIN PROTOTYPE

Table 5.2: Important storage device information available in Xenstore.

Key Description
frontend Frontend’s path
frontend-id Frontend’s ID
state Connection state
dev Device’s name
mode I/O permission
device-type I/O type
sectors Number of sectors
sector-size Each sector size
params Storage file/disk’s path
type Device type (physical or virtual)
feature-flush-cache Support for cache flush
physical-sector-size Sector size for physical device
feature-persistent Support for persistent referencing
feature-max-indirect-segments Maximum indirect segments allowed

probe_xbdback_device() function detects blkfronts with a XenbusStateInitialising sta-

tus, indicating the creation of a new blkfront instance that is waiting for a blkback to pair.

The xbdback_xenbus_create() function first ensures that no blkback instance has been

created previously for this blkfront by checking the list of blkback instances. It then

creates an instance of blkback for this blkfront. A blkfront instance is an object of the

xbdback_instance structure, which contains various information about the requested stor-

age device, such as the detail for blkfront, blkback, shared ring, etc. Kite adds the blkfront’s

and blkback’s absolute paths to the watchlist, so that the xbdback_frontend_changed()

and xbdback_backend_changed() methods are invoked, respectively, for any changes in

those ends. Lastly, this function reads the device’s major-minor (physical-device) number

and adds it to blkback path on the Xenstore database.



5.3. BLKBACK INITIALIZATION AND CONNECTION 55

5.3 Blkback Initialization and Connection

The xbdback_backend_changed() function first performs a sanity check on the requested

storage device, as described in Section 5.1, requested by the corresponding blkfront. It then

adds blkback properties to the Xenstore database, including sector count, sector size, read-

/write mode, and information regarding supported features such cache flushing, persistent

grant reference, and indirect segments. Finally, it changes blkback connection status to con-

nected (XenbusStateConnected). Table 5.2 shows some of the storage device information

that is stored in Xenstore.

Upon reading these properties from Xenstore, the blkfront also changes its connection status

to XenbusStateConnected, which triggers the xbdback_frontend_changed() function to

be invoked. This causes the xbdback_connect() routine to finish the remaining steps to

complete the connection between the blkfront and blkback.

In Xen, communication between the frontend and backend parts is achieved through special

I/O ring buffers, which are built on top of a shared memory mechanism called the grant

table [141]. The ring reference is a reference to the location of the shared memory buffer.

The xbdback_connect() function reads the blkfront properties from Xenstore, which include

the ring reference, event channel number, support for persistent grant reference, and the

I/O protocol. Then, it maps the ring to a page so that blkback can access it, and an event

handler is set to handle notifications from the blkfront using the event channel.

5.4 Event Handler and Request Handler Thread

As discussed in Section 4.4, to keep the event handler available for request notifications, a

request handler thread (xbdback_thread) is created in the xbdback_connect() function.



56 CHAPTER 5. KITE’S STORAGE DOMAIN PROTOTYPE

The event handler routine wakes up the xbdback_thread if it is not already awake upon

receiving a new notification.

The xbdback_function() handles the I/O processing using a call graph adapted from

NetBSD’s blkback implementation. The xbdback_co_main_loop() function copies the re-

quest into blkback object, and the xbdback_co_io_loop keep reading segment information

from the copied requests. The xbdback_co_io_gotfrag2() function constructs a batch

of buffers, which are initialized by xbdback_co_io_gotio(), with the segment information.

The xbdback_co_map_io() function maps the grant references to the pages, from the storage

domain’s address space, which is used as the block data place holder in the buffer.

The xbdback_co_do_io() function invokes the device driver interface using the upper layer

to perform I/O operations on the disk. VOP_IOCTL interface and bdev_strategy() function

performs cache flush operations and submits read/write operations, respectively.

5.5 Handling Device Driver Responses

As requests are received from the blkfront, they are processed, and the requested operations

are submitted to the physical device driver. However, no response to the requests is sent to

the blkfront until the lower layer receives a response from the device driver regarding the

submitted operations. The NetBSD buffer structure allows Kite to set a callback function,

which is invoked by the device driver when it finishes performing the submitted operations.

Kite storage domain sets a common callback function in the upper layer for all buffers. This

function ultimately invokes a function in the lower layer, which can unmap grant references

(unless they are persistent), send responses to the blkfront, and destroy used buffers. The

xbdback_iodone() function sends responses to the blkfront by placing them in the ring,



5.6. PERSISTENT REFERENCE 57

based on the success or failure of the operations submitted to the device driver. Blkback

sends notifications using the event channel to inform the blkfront of the placed responses.

Once all responses to batched operations are prepared and sent to the blkfront, it is impor-

tant to release all used data structures to efficiently reuse the memory. Therefore, blkback

destroys used buffers by invoking the device driver interface and return other used data

structures to the pools.

5.6 Persistent Reference

For all segments in one request, it is possible to batch the grant mapping, so that blkback

can map the references on consecutive pages. The benefit of doing this is that blkback can

use only one buffer to perform operations on the device for all segments in one request. For

persistent referencing, Kite does not unmap grant references and tries to reuse previously

mapped pages if the corresponding grant references appear in a new request. Otherwise, a

grant reference is mapped to a newly allocated page, if not mapped before. However, with

persistent referencing, there is no guarantee that the same set of grant references will appear

in another request. As a result, blkback cannot reuse the consecutive pages from the batched

mapping of those references. Therefore, Kite discretely maps pages for grant references. One

mapped page acts as a placeholder for data in a buffer. Consequently, Kite ultimately uses

one buffer for each segment. Additionally, Kite batches the buffers to submit all segment

operations in one request

To maintain a list of mapped pages, Kite implements a simple array of mapped page ad-

dresses. The indices of this array represent the grant references. When a buffer is constructed

for a segment, Kite first checks if the corresponding grant reference already has a mapped

page in the array. If a mapped page is found, Kite reuses it. Otherwise, it maps the grant



58 CHAPTER 5. KITE’S STORAGE DOMAIN PROTOTYPE

reference to a newly allocated page. On the other hand, before destroying the buffers, Kite

returns the pages to the array instead of unmapping them.

5.7 Indirect Segments

The implementation of indirect segments requires extra parsing of requests if it indicates

the operation type is indirect. This parsing is done in the xbdback_co_main_loop(). First,

Kite maps the grant references to pages. Then it parses these pages, each of which may

contain up to 512 indirect segments. However, by default Linux supports a maximum of 32

indirect segments. Therefore, we also limit the maximum number of indirect segments to 32.

We store the parsed indirect segments in the bdi_indirect_segments in blkback object, so

we can read their information in the xbdback_co_io_loop() where segments are prepared

for I/O operations.

5.8 Application

Each device has a unique major-minor number pair, which is used for identifying devices

separately. The Xen block scripts in NetBSD and Linux read this number for the requested

devices and add them to the Xenstore database. Since Kite does not have this script, it reads

the major-minor number pair for all available devices using a C application. This application

constructs a list of devices with their major-minor numbers and availability, indicating if the

device is already being used by a guest VM. The list is shared between the PV storage driver

and the application.

If the application terminates, the unikernel will halt. Therefore, Kite needs to run the appli-

cation as long as we want to run the storage domain. To achieve this, once the application



5.9. IMPLEMENTATION EFFORT 59

finishes constructing the list, it unschedules itself by yielding periodically, so that the other

parts of the unikernel can get CPU context to execute codes.

5.9 Implementation Effort

Table 5.3 shows the gist of Kite’s storage domain implementation effort. Most changes

pertain to extending HVM support for rumprun and implementing the blkback driver. The

application for configuring and retrieving storage information involves very few lines.

Table 5.3: Lines of code (LOC) changed or added for Kite storage domain.

Component Description LOC

Blkback Xen’s storage backend driver 1904

HVM extension xenbus and xenstore support 1100

Configuration storage applications 58

Total: 3062



Chapter 6

Kite: Unikernelized Network Domain

Network devices are considered essential for guest machines, alongside storage devices. PV

network devices utilize shared memory and ring buffers for communication between the

backend and frontend. However, networking requires two rings instead of one, as depicted

in Figure 6.1. This presents unique challenges that require new design considerations when

unikernelizing a network domain. This chapter will cover these challenges, our proposed

solutions, and a general overview of our approach.

Section 6.1 examines the design challenges in creating a Kite network driver domain. The

association between the physical network driver and PV network backend, as well as the

required design changes in the rumprun architecture, are explored in Sections 6.3 and 6.4.

The process of linking the physical NIC and PV backends, enabling communication between

the guest and the rest of the network, is discussed in Section 6.5.

6.1 Challenges

As discussed in Section 4.1, rumprun lacks I/O backend drivers; specifically, there is no

netback implemented, which is an integral part of a network driver domain. Therefore, the

biggest obstacle for a unikernelized network domain is to design and implement a netback

modifying rumpurn that is compatible with other guest OSs with the network frontend.

Additionally, similar to the storage domain in commodity OSs, netback heavily relies on

60



6.1. CHALLENGES 61

Hardware Devices

Network Interface Card

Network Interface

Network Bridge 
Interface

Network Bridge 
Interface

Backend Driver

Tx Rx

Frontend Driver

Application Backend Driver

DomU Dom0/Network Driver Domain

Hypervisor

NIC Device Driver

Network Interface

Tx Rx

Frontend Driver

Application

Network Interface

DomU

Figure 6.1: Xen’s PV network driver model.

various configuration scripts (e.g. network bridging across different backend instances) which

cannot be used in rumprun-based environments.

Unikernelizing the network driver domain requires more than porting an existing netback

driver from a commodity operating system like NetBSD or Linux. On the one hand, uniker-

nels are single-purpose and single address-space operating systems. Furthermore, a netback

driver must consistently manage the data flow for both receive and transmit rings, which

take place asynchronously. To ensure smooth receive and transmit operations, netback must

communicate with the TCP/IP stack in rumprun and also with the frontend. Therefore, we

redesigned netback driver as a single-process unikernel that is capable of seamless duplex

communication without sacrificing performance or existing frontend compatibility.

Depending on the number of netfronts in DomUs, there can be several netback instances in

the driver domain. Typically, to link these netbacks to a physical NIC, different techniques

are used such as bridging, switching, routing, network address translation, and virtual local

area networks. These techniques are independent of netback and run as a separate process



62 CHAPTER 6. KITE: UNIKERNELIZED NETWORK DOMAIN

Bridging App

Rump Kernel

Rump Kernel Syscalls

LibC

Network Lib/Tool

Rumpuser Hypercall

Interface to Xen

Host Platform

NIC Driver 
Glue Code

Syscalls
TCP/IP 
Stack

NIC Driver

Bare Metal Kernel

Rump Kernel Calls

Netback 
Driver

From NetBSD New Contribution

Figure 6.2: Rumprun network driver domain architecture.

that is triggered when necessary. Since rumprun is a single-process application, we cannot

run the linking mechanism as a separate process, unlike Linux or NetBSD. Instead, Kite

runs a special program in a dedicated thread, so that netback, integrated with the unikernel,

links to a physical NIC with minimal performance penalty.

6.2 Threat Model

Although the design and implementation of the Kite network driver domain have additional

challenges than that of the unikernelized storage domain, it shares the same threat model as

that of the Kite storage domain (discussed in Section 4.2). The trusted components include

the Xen hypervisor, Domain-0, and the compiler. Each component in the network domain

and guest VMs is untrusted. Therefore, it is crucial to minimize the network driver domain’s



6.3. NETWORK DEVICE DRIVER AND INTERFACE 63

attack surface as much as possible.

6.3 Network Device Driver and Interface

Similar to the storage domain, we aim to import physical NIC drivers from an existing

OS and use it unmodified to save on development and maintenance efforts for the network

domain. And likewise, Kite needs glue code to make it happen and leverage the drivers’

functionalities for the underlying netback driver in the rump kernel layer.

To ensure efficient communication between netback and the NIC for exchanging network

packets with the outside world, the rump kernel requires several components besides the

NIC driver. One of these components is a network interface, which enables the network

packet transfer between the two. To facilitate this communication, we use a TCP/IP stack

that provides a standardized network interface. The TCP/IP stack, NIC driver, and glue

code are considered factions in the rump kernel layer, alongside other essential elements such

as syscalls, as shown in Figure 6.2.

6.4 Netback Driver

Netback driver plays a crucial role in a network driver domain. For each netfront at each

guest VM, the network driver domain should create one corresponding netback instance, as

a single VM may require multiple PV network devices and thus multiple netfronts. Netback

and netfront communicate and transfer data between each other using the Xen hypervisor’s

shared memory and event channel mechanisms. To ensure compatibility with the hypervisor,

certain parts of netback driver are hypervisor-specific and are thus integrated as part of the

host platform, as illustrated in Figure 6.2.



64 CHAPTER 6. KITE: UNIKERNELIZED NETWORK DOMAIN

Netfront Netback

Tx
Ring

Shared memory

Read response

Copy request

Send response & notify

Write

Read

Rx
Ring

Read response

Copy request

Send response & notify

Send request & notify

Send request & notify

vifvif

Figure 6.3: Netfront and netback communication. To send packets from DomU, netfront
places packets in the shared memory, a transmit request in the Tx ring, and notifies netback.
Being notified, netback copies those packets, forwards them to the NIC through netback’s
vif, and notifies netfront upon completing forwarding. A similar sequence of operations is
performed using the Rx ring for forwarding network packets from a vif to DomU.

Netfront and netback exchange requests and responses using two rings, Tx and Rx, for

network packet transmission and reception, respectively. They also use shared memory

space for transferring network packets between them. Netfront forwards the guest VM’s

outgoing network traffic to netback, which eventually forwards it to the physical NIC through

netback’s virtual network interface (vif ). On the other hand, netback forwards the incoming

traffic at vif to the guest VM through netfront. Figure 6.3 depicts the communication

between netback and netfront.

The Interface to Xen layer hosts netback driver along with other Xen-related implementa-

tions such as the xenbus and grand table interfaces. Despite being designed specifically for

Xen, we separate netback driver into platform-dependent and platform-independent layers

to adhere to the design principles and linking restrictions of rumprun. The upper layer of

netback communicates with the NIC driver through rumprun’s network stack and linking

mechanism, such as a network bridge. For any incoming packet (from the network stack)



6.4. NETBACK DRIVER 65

destined for a DomU, this layer places the packets into a memory buffer and forwards them to

the bottom layer. The bottom layer then places these memory buffers into the corresponding

Xen I/O ring buffer and sends a notification to netfront on the other side.

Similarly, for a stream of network packets originating from a DomU, the bottom layer re-

ceives them in memory buffers through the ring buffer and forwards them to the upper

layer. Subsequently, the upper layer pushes these memory buffers onto the network stack.

Aside from ring buffer operations, other hypervisor-specific operations between netback and

netfront such as interrupts through Xen’s event channel are done at the bottom layer.

The discussed duplex communication occurs as asynchronous events. Netback is expected

to complete the interactions as soon as there is any data available from netfront. However,

rumprun lacks rich OS support for interrupts and work queues. In our design, Kite exploits

multi-threading so that netback can process data fast avoiding any delay due to hypervisor-

based event mechanisms.

Our design includes an event handler that is invoked when there is a notification from net-

front for a data request or response. Often, these notifications require operations involving

hypercalls, which are time-expensive. Spending significant time in the handler may create

a bottleneck, blocking other incoming notifications. We introduce a dedicated thread, acti-

vated by the handler, to take over and perform necessary actions in response to notifications.

Similar to netfront notifications, netback needs to respond to the network stack operations.

For example, any data received from the stack should be forwarded to netfront. Thus,

netback uses network stack callback routines to respond to the network stack operations.

Spending too much time in these routines may delay subsequent operations because a re-

sponse may require hypercall execution, which is expensive. To minimize this response time

and prevent the stack operations from blocking, we introduce another thread that is activated



66 CHAPTER 6. KITE: UNIKERNELIZED NETWORK DOMAIN

NetBack NetFront

NetBack NetFront

NetBack NetFront

Guest 1

Guest 2

Guest 3

NIC

NIC

NIC

(a) Separate NICs for each netback instance.

NetBack NetFront

BridgeNIC

Guest 1

Guest 2

Guest 3

NetBack NetFront

NetBack NetFront

(b) Multiple netback sharing the same NIC.

Figure 6.4: Linking netbacks can help multiplex a single NIC between multiple guest VMs.
Linking methods, like network bridges, can be utilized reduce the need for multiple NICs.

by the routines. This thread performs the processing and execution of the corresponding

operations so that the network stack routines can respond to operations without blocking.

6.5 Linking Netback With a Physical Device

To forward network traffic between the outside world and netfront, each netback instance

in a network driver domain must be connected to a NIC. However, assigning one NIC per

netback, as illustrated in Figure 6.4a, is not a practical solution as a machine can have

multiple netback instances. To address this, multiple vifs from netbacks are connected to a

single NIC.

There are various methods to connect netback vifs to a physical NIC. One widely used

approach is bridging, which is commonly employed in Xen PV networking. As depicted in

Figure 6.4b, a bridge interface can link the NIC interface with multiple vifs. How and when

bridging should take place is decided by a given driver domain OS. For example, Linux runs a

driver domain daemon that starts services required in the corresponding Xen driver domain.

Among other responsibilities, this service runs networking scripts to establish a bridge.

A single-process unikernel is unable to run multiple services or scripts, thus a unified appli-

cation is introduced. This application creates a network bridge, connects the NIC interface,



6.5. LINKING NETBACK WITH A PHYSICAL DEVICE 67

and vifs. It periodically checks for new vifs and adds them to the bridge. This application

runs in a dedicated thread, so that it does not interfere with the netback driver. However, if

the application runs continuously, it may lead to the netback driver being starved of CPU

time. To prevent this from happening, a time-sharing and context switching approach is

employed between the netback driver and the bridging application.



Chapter 7

Kite’s Network Domain Prototype

The details for Kite’s PV network driver domain implementation are discussed in this chap-

ter. A netback instance is needed for each netfront that uses this driver domain for its PV

network devices. Netback driver implementation provides virtual network interfaces. The

bridge implementation connects these interfaces with the physical network device.

Section 7.1 discusses about the interface between netback and NIC driver. Kite’s process of

netback creation and its pairing with netfront is discussed in Section 7.2. Sections 7.3, 7.4,

and 7.5 talk about the communication between the NIC, netback, and netfront. How Kite

use an unmodified NIC device driver from NetBSD [28] for rumprun-based network domain

is discussed in Section 7.6. The bridge implementation for connecting NIC and netbacks’

vifs is discussed in Section 7.7. Finally, Section 7.8 summarizes the implementation effort

for prototyping Kite’s network driver domain.

7.1 Virtual Network Interface

Each netback instance in Kite network domain creates a vif to use as a gateway to com-

municate with the outside world through the NIC. To do that, Kite leverages the TCP/IP

stack from NetBSD, which offers a set of functionalities to talk to the device.

Kite’s netback creates the vif and sets different callback functions associated with it using the

rump_xennetback_create() function. The interface is initialized and marked as running

68



7.2. NETBACK INSTANTIATION AND CONNECTION 69

Table 7.1: Important network device information available in Xenstore.

Key Description
backend Backend’s path
backend-id Backend’s ID
frontend Frontend path
frontend-id Frontend’s ID
handle Handle ID
state Connection status
mac MAC address
bridge Connecting network bridge
feature-sg Scatter-gather support
feature-rx-copy Grant copy support on Rx ring
tx-ring-ref Tx ring’s grant reference
rx-ring-ref Rx ring’s grant reference
event-channel-tx Tx event channel’s grant reference
event-channel-rx Rx event channel’s grant reference
feature-ipv6-csum-offload Checksum offloading support
feature-split-event-channels Different event channel for Rx and Tx

by the if_init() function. Kite also utilizes the if_ioctl() function for any network

device-specific IOCTL operations. When a packet from the outside world reaches the netback

through the interface, the if_start() function is invoked. Kite’s netback enqueues the

outgoing packets to the network stack using the if_percpuq_enqueue() function.

7.2 Netback Instantiation and Connection

Xenstore holds information regarding the network devices in guest and driver domains. Ta-

ble 7.1 lists some PV network device-related crucial keys available in the Xenstore. By



70 CHAPTER 7. KITE’S NETWORK DOMAIN PROTOTYPE

reading these keys, the netback driver can obtain detailed information about the netfront

and subsequently publish its own supported features to the Xenstore.

According to the Xen PV driver model, a separate netback instance must be created for every

netfront instance in a DomU. Similar to the blkback invocation described in Section 5.2, a

netback instance per netfront is created by the network domain. The backend path of the

network domain is added to a watchlist for monitoring new netfront instances. A change

in that path triggers a corresponding callback function, which investigates the change and

instantiates a new netback instance for any new netfront instances.

Section 6.4 states that both netfront and netback drivers utilize two ring buffers, specifically

Tx and Rx. Netfront is responsible for initializing the rings and allocating the necessary

shared memories. It shares the grant references for these rings and other information, such

as event channel references and supported features, with the Xenstore. The netback driver

then reads the Tx and Rx ring’s grant references and maps them to its own memory address

space. Both netfront and netback work together in a producer-consumer fashion to exchange

requests and responses using the ring buffers.

The communication between netback and netfront happens asynchronously. Therefore, event

channels (virtual interrupts) are used for asynchronous notifications to communicate between

front- and back- ends effectively in Xen. Netback binds the event channel to the event handler

so that relevant notifications can be handled. For both transmit and receive, a network PV

driver can use the same event channel. However, Xen supports separate event channels for

transmit and receive as well. Our netback implementation supports both types.

Since hypervisor has all machine memory mapped for all domains, it is faster to copy data

from one domain to another using hypervisor. To provide faster data transfer between

netfront and netback, Xen supports hypervisor-based data copy, and nowadays, most of the



7.3. TRANSMIT 71

netfronts from OSs such as Linux and NetBSD utilize this advantage. Therefore, in our Kite

network driver domain, we implement this feature.

To distinguish one netback vif from another in the network driver domain, each vif is assigned

a unique name. The first step for initializing a netback instance is to update the Xenstore

database so that this netback’s properties, such as vif name, event channel type, support for

data copy, etc., are advertised to other domains.

7.3 Transmit

In a DomU, any data pushed to a corresponding interface is received by the netfront. Netfront

transmits the network data to the netback using the Tx ring buffer. Netback forwards the

received data through its vif. The ring buffer consists of multiple slots that can be used

for requests as well as responses. A Tx request means a request to transmit data from

the netfront through netback. Each request consists of the address of the page containing

data, corresponding offset, relevant flags, size of data, and ID of the request. As shown in

Figure 7.1, after inserting request(s) in the ring buffer (T3), netfront sends a notification

via an event channel. The notification handler in netback copies the unhandled request(s)

(T4) and maps the pages in memory using the grant table mechanism (T5). The memory

contents are then delivered to the vif s (T6).

Finally, netback sends responses to netfront on the accomplished Tx operations by utilizing

the slots from already served requests. Once these slots are filled with responses, netback

pushes them to the Tx ring buffer (T7) and updates netfront by sending an event notification

if required. During the request serving process, netback updates its Tx request’s consumer

and response producer indices.



72 CHAPTER 7. KITE’S NETWORK DOMAIN PROTOTYPE

vif

Netfront Netback

Tx

Shared Memory

RING_GET_REQ
RING_PUSH_REQ_AND_NOTIFY

T3 T4

T5

T7RING_GET_RES
RING_FINAL_CHECK_FOR_RESP

T8

RING_FINAL_CHECK_FOR_REQUESTS
RING_COPY_REQ

PING_PUSH_RESP_AND_CHECK_NOTIFY

T6

Rx

RING_GET_REQ
RING_PUSH_REQ_AND_NOTIFY

R2 R3

R5RING_GET_RES
RING_FINAL_CHECK_FOR_RESP

R6

RING_COPY_REQ

RING_GET_RESP
PING_PUSH_RESP_AND_CHECK_NOTIFY

R1R4

T1

R7

T2

R7

vif

Figure 7.1: Data exchange between netback and netfront.

7.4 Receive

Upon receiving network data from netback, netfront delivers them to its associated vif. The

role of netback is to receive the data from its attached vif and push it using the Rx ring

buffer. Like Tx, the Rx ring buffer consists of multiple slots that can be used for requests and

responses. However, the front and back end interaction through the Rx ring is not inverse

of the Tx ring but similar in some aspects.

Upon receiving network data, netback delivers it to the associated vif. The role of netback

is to receive data from the vif and push it using the Rx ring buffer. The Rx ring buffer,

like the Tx ring buffer, consists of multiple slots for requests and responses. However, the

interaction between the front- and back- end through the Rx ring is not the inverse of the

Tx ring, but it is similar in some aspects.

When netfront sends an Rx request (R2), netback copies the request (R3) but waits until it

receives data from its associated vif ). A function in netback is invoked when its vif receives

network data (R1), indicating that there are pending incoming data. Netback then copies



7.5. THREADED IMPLEMENTATION 73

Start

Is pusher 
Wake?

Copy Rx requests
to a List

Yes

End

Copy Tx requests

Copy Tx data
to buffer

Pusher start

Is buffer 
empty?

Push data to VIF 

Yes

Sleep

No

Wake Pusher

No

(a) Notification handler and pusher thread.

VIF start

Is soft start 
thread sleeping?

Yes

End

soft start

Is VIF Data 
pending?

Wake up 
soft_start

Is the List 
empty?

No

Push to a List

No

Yes

Bulk CopyNo

Sleep

Yes

Push Response 
and Notify

(b) Handling incoming data from vif.

Figure 7.2: Threaded implementation of netback for efficient interaction with netfront.

the data (R4) into the pages associated with the copied Rx requests using the grant table

mechanism. To inform netfront of the copy operation’s outcome, netback reuses the served

request slots for responses. After pushing the responses to the Rx ring (R5), netback notifies

netfront if necessary. Like the transmit operation, netback updates all indices of requests

and responses for the Rx ring (R6).

7.5 Threaded Implementation

Rumprun is a single-process unikernel and lacks any rich support for work queues. Since

network packet reception and transmission are independent of each other, Kite uses multi-

threading to improve the speed of Tx and Rx operations.

Netback’s event handler is invoked when it receives a notification. Netback must not block

the handler for a long so that a notification can be received and handled as soon as possible.

However, notification handling requires the manipulation of shared pages. It involves Xen

hypercalls, which are expensive and thus inappropriate for latency-sensitive contexts. There-



74 CHAPTER 7. KITE’S NETWORK DOMAIN PROTOTYPE

fore, Kite uses a separate thread called pusher, dedicated to push data to the corresponding

netfront instance using hypercalls.

As shown in Figure 7.2a, the handler copies pending Rx requests from netfront to a list.

Next, it reads Tx requests and copies the corresponding data to a buffer. Unless the pusher

thread is already awake, the handler then wakes up the pusher thread so that the thread

can push the buffer contents to the vif. Therefore, the handler does not have to wait for the

hypervisor to finish copying data to complete its routine. The pusher thread goes to sleep if

there is no pending data on the buffer.

On the other hand, when any data is available at the vif, a callback function called start

is invoked. Here, netback’s responsibility is to send this data to netfront using Xen’s grant

table copy mechanism if there is any pending Rx request, which is time-consuming. Thus, if

the start function does the copy operation, consecutive incoming data at vif may have to wait

until the copying is done. Moreover, netback may have to perform multiple copy operations,

which could be accomplished with one copy. Therefore, Kite introduces another thread called

soft_start, which performs copy operations in a batch using only one hypercall. As shown

in Figure 7.2b, the start function’s only responsibility is to wake up the soft_start thread.

This thread reads the Rx request from the list, performs the copy operation, and goes to

sleep if the list is empty. As a result, received data at the vif is forwarded as soon as possible.

Table 7.2 lists some crucial functions and their role in Kite’s network domain.

7.6 Physical Network Device Driver

The design of rump kernels allows us to utilize existing NetBSD network drivers without

modification. By using the PCI passthrough mechanism (with IOMMU for added protection

and security), Xen assigns the corresponding PCI device (NIC) to the Kite network driver



7.7. BRIDGING APPLICATION 75

Table 7.2: Key functions in Kite network domain.

Function Description
xennetback_entry Entry point for network backend driver
xennetback_probe_device Probes a netfront that does not have a netback
xennetback_xenbus_create Creates netback instance with vif
xennetback_connect Establishes connection with frontend
xennetback_init_watches Sets callback functions on Xenstore path changes
xennetback_frontend_changed Invoked for changes in frontend path
xennetback_ifstart Invoked on data at vif. Wakes up soft_start thread
soft_start_thread_func Gets data from vif
xennetback_copy Pushes data to netfront
xennetback_evthandler Wakes up the handler thread
xennetback_network_tx Gets data from netfront
if_percpuq_enqueue Pushes data to vif

domain. We leverage the 1Gbit and 10Gbit ethernet drivers from NetBSD for the Kite

network domain. In addition to the NIC driver itself, Kite uses the TCP/IP stack and other

network stack components sourced from the rump kernels in NetBSD.

7.7 Bridging Application

Using a network bridge, Kite connects the vif interfaces from netbacks to the physical NIC.

To that end, we developed a bridging application in our Kite network driver domain. When

this application is launched, it creates a bridge interface. Next, the application assigns an

IP address to the physical interface, which works as a gateway for incoming and outgoing

packets across all vif s. Then, the application keeps scanning for new network interface

creations. When a new vif appears, the application adds the new interface to the bridge.



76 CHAPTER 7. KITE’S NETWORK DOMAIN PROTOTYPE

We ported the ifconfig utility from NetBSD to initialize bridge interfaces and assign IP

addresses. Along with that, we also ported the brconfig utility from NetBSD, which is used

for adding interfaces to a bridge. In order to give CPU context to the other factions such

as netback driver, physical driver, and network stack, the bridging application yields its

schedule in a time-shared manner.

7.8 Implementation Effort

Table 7.3 summarizes Kite’s network domain implementation effort. Most changes belong

to rumprun’s extended HVM support and the netback driver implementation. In contrast,

bridge-related changes are relatively small, making it easier to adapt our driver domain for

other network configurations. We also source ifconfig and brconfig utilities from NetBSD.

Table 7.3: LOC changed or added for Kite network domain.

Component Description LOC

Netback Xen’s network backend driver 2687

HVM extension Xenbus and xenstore support 1100

Configuration unified (bridging) application 369

Utilities ifconfig/brconfig changes 222

Total 4378



Chapter 8

Kite’s Storage Domain Evaluation

For the storage domain performance evaluation, we have built Kite exclusively for storage

domain. This chapter discusses the evaluation results, which help to determine if the storage

domain implementation incurs any performance overhead compared to existing counterpart

solutions. Since all existing driver domains use Linux and there are no existing NetBSD-

based driver domains, we only compare against a Linux-based storage driver domain.

Section 8.1 explains our experimental setup for the Kite storage domain’s performance eval-

uation. Section 8.2 examines the read and write performance of a guest VM that uses Kite

and Linux domains for PV storage devices. Sections 8.3 and 8.4 discusses similar guest VM’s

performance for real-life application such as database server, file server, and web server that

involves storage operations.

8.1 Experimental Setup

This evaluation uses both micro- and macro-benchmarks. We do microbenchmarking using

dd [15] to measure overall storage device throughput. We use macrobenchmarking tools such

as Sysbench [125] and Filebench [126] to measure the performance of real-life applications

like MySQL [20] and MongoDB [19] database server, file server, web server, etc. We install

the Ext4 filesystem on the virtual storage device in DomU to run macrobenchmarks. For

each run, we flush the read buffer and use a total I/O size larger than the main memory,

77



78 CHAPTER 8. KITE’S STORAGE DOMAIN EVALUATION

Table 8.2: Configuration of Xen domains on the server side.

Dom0 DomU Linux Blkdom Kite Blkdom

OS Ubuntu 18.04.3 LTS Ubuntu 18.04.3 LTS Ubuntu 18.04.3 LTS Rumprun-SMP [82, 103]
Kernel 5.3.0-40-generic 4.15.0-88-generic 5.0.0-23-generic Based on NetBSD 8.0
Memory 8 GB 5 GB 2 GB 1 GB
vCPUs 1 4 1 1

letting us exercise storage domains more aggressively.

Table 8.1: Hardware configuration.

CPU 1 x Intel(R) Xeon(R) CPU E5-2695, 2.20GHz

Cores 24 per CPU (HT)

L1/L2 cache 32 KB / 256 KB per core

L3 cache 30720 KB

Main Memory 64 GB

Storage Samsung 970 EVO Plus 500GB NVMe SSD

Table 8.1 shows the hardware configuration for the machine that we use for setting up Xen

4.9 and running the Dom0, storage driver domains, and the guest domain (DomU). The

configurations for these domains are shown in table 8.2. The NVMe SSD is assigned to the

storage driver domain using the PCI passthrough. The mentioned applications run on the

DomU and access the NVMe SSD using the Linux storage frontend. VM configurations are

kept similar to get a fair performance comparison.

For most of the cases, Kite’s storage domain performs as good as Linux. Certain Kite’s

storage performance gains can be attributed to NetBSD itself. Other gains are due to the

elimination of kernel layers and user space.



8.2. DD 79

0

200

400

600

800

1000

1200

Read Write

Th
ro
u
gh
p
u
t(
M
B
/s
) Linux Rumprun

Figure 8.1: Throughput measurements using dd.

8.2 dd

dd is a command line tool in Linux, which lets us to perform read and write operations

directly on the storage device. Therefore, we use this tool in DomU to measure and compare

read-write performances on the PV storage device while using Linux and Kite for storage

domain. To keep the reading overhead minimal during write performance measurement for

the disk, we use /dev/zero as the source device for write content. On the other hand, to

keep the writing overhead minimal while measuring read performance, we use the /dev/null

as the destination disk. Each experiments are run three times and each time 10GB of data

is read-write from/to the device.

The experimental results are depicted in Figure 8.1, showing the storage device access

throughput in MB per second. As one can see, for both read and write operations, Linux and

Kite storage domain exhibits similar performance, meaning our unikernelization techniques

do not incur any overhead. The relative standard deviation (RSD) for these experiments are

0.062% and 0.038% for Linux and Kite storage domains, respectively.



80 CHAPTER 8. KITE’S STORAGE DOMAIN EVALUATION

8.3 SysBench

SysBench [125] is a popular system component benchmarking tool, which is capable of run-

ning requests in threads so that multiple requests can run in parallel. For storage evaluation,

we leverage SysBench (v1.1.0) for getting ideas on real-life application performance, running

them on DomU that is using Linux and Kite storage domain.

8.3.1 SysBench File I/O

We measure the file I/O performance using the SysBench benchmark. For this experiment,

SysBench uses 192 files totaling 15GB and performs random operations on these files with

a read-write ratio of 3:2 since read operations are performed more than write, in general.

We run the same experiment for a different number of threads, ranging from 1 to 100, and

block sizes, ranging from 16KB to 128MB. Each experiment is run for 5 minutes, and we

make sure to clear the read buffer cache between each run so that we can get actual storage

throughput, not primary memory throughput.

0

100

200

300

400

1 5 10 20 40 60 80 100

Th
ro

u
gh

p
u

t 
(M

b
p

s)

Thread Count

Linux Kite

(a) Throughput varying number of threads.

0

200

400

600

Th
ro

u
gh

p
u

t(
M

b
p

s)

Block Size

Linux Kite

(b) Throughput for different block sizes.

Figure 8.2: File I/O Throughput measurements using sysbench.

Figure 8.2a shows throughputs for runs with a different number of threads performing I/O

operations with each block of size 256KB. On the other hand, Figure 8.2b shows throughputs



8.3. SYSBENCH 81

for a fixed number of threads (20) but runs with a varying number of block sizes. As evident

from the figures, the throughput for Kite storage domain is very comparable with Linux and

even better than Linux for higher number of threads and block sizes. The average RSD is

0.49% and 0.33% and the average latency is 16.91ms and 15.23ms for Linux and Kite storage

driver domains, respectively.

8.3.2 SysBench MySQL

We setup the widely used MySQL database on the storage device in DomU and evaluate

the database performance using SysBench. This database contains 100 tables, each with

1,000,000 records, which totals 20GB of disk space. Since the primary memory size for

DomU is 5GB, full database cannot fit in there, which reduces read buffering effect. We

ran the benchmark varying number of threads (from 5 to 100) for performing complex SQL

queries on the database. Each experiment was run for five minutes.

0

5000

10000

15000

1 5 10 20 40 60 80 100

Th
ro

u
gh

p
u

t 
(K

b
p

s)

Thread Count

Linux Kite

Figure 8.3: MySQL throughput measurements using SysBench.

Figure 8.3 presents the SysBench throughputs for the database operations for a different

number of threads. It shows both Linux and Kite have overlapping performances for run-

ning the storage domain. It suggests that unikernelizing driver domains with the presented

optimizations can help achieve state-of-the-art performance. The maximum average RSD



82 CHAPTER 8. KITE’S STORAGE DOMAIN EVALUATION

for these experiments is 0.61% and 0.67%, and the average latency is 18.39ms and 17.83ms

for Linux and Kite storage driver domains, respectively.

8.4 Filebench

Filebench is a tool suite that is heavily used, by researchers in academia and industry,

for benchmarking works associated with filesystem and storage. It is shipped with several

macrobenchmarks written in workload modeling language (WML) and capable of creating

workloads of real-life applications. We took a few of them and modified them to benchmark

the storage domain that virtualizes high-speed NVMe SSD.

8.4.1 Filebench File server

To generate a file server workload, we ran 50 threads in parallel, each performing a series

of operations like create, read, write, append, close, stat, delete, etc. Before running the

workload, Filebench creates 100000 files with an average size of 128KB, which makes around

13GB, i.e. at least twice the bigger than the assigned primary memory. The mean append

size is 1KB, where I/O sizes are varied, from 16KB to 8MB, for each run for 5 minutes.

0

200

400

600

800

Th
ro

u
gh

p
u

t 
(M

B
p

s)

Block Size

Linux Kite

Figure 8.4: Fileserver throughput measurements using filebench.



8.4. FILEBENCH 83

The throughput for the described file server workload is presented against a different number

of I/O block sizes in Figure 8.4. As one can see, the Kite’s storage domain often performs

slightly better than Linux. We attribute this performance gain is due to the absence of

context switching regarding system calls. The maximum incurred latency for this experiment

is 8.99ms and 7.93ms and maximum RSD is 0.831% and 0.245% for Linux and Kite storage

domains, respectively.

8.4.2 Filebench MongoDB Server

We also evaluate MongoDB, a NoSQL database server, using Filebench because of the dif-

ference in its file access patterns compared to the other types of databases. We create 20GB

of data with a mean I/O size of 4MB. Figure 8.5 shows the throughput, execution time per

operation, and latency, stretched in a logarithmic scale, for a run of 5 minutes with one

user. Kite outperforms Linux, proving our storage domain can exhibit better performance

even for lower concurrency. This slight performance gain is achieved from Kite’s lightweight

design, which involves no address space separation. The RSD for this experiment is 0.58%

and 0.91% for Kite and Linux storage domains, respectively.

4
4
6
.9

1
3
0
1
7

2
3
.3

8
9
2
.1 1
0
7
2
9

1
1
.8

Throughput(Mbps) CPU(us/op) Latency(ms)

Linux Kite

Figure 8.5: MogoDB server performance measurement using filebench.



84 CHAPTER 8. KITE’S STORAGE DOMAIN EVALUATION

8.4.3 Filebench Web server

We generate the web server workload by running 50 threads in parallel, each performing a

series of operations that combine open, read, and close. First, Filebench creates 200,000 files

with an average size of 64KB, totaling around 13GB, to make it at least twice as big as the

assigned primary memory. Therefore, the effect of the read buffer is mitigated. The mean

append size is 16KB and the I/O size is 1MB, with each operation being run for 5 minutes.

2
4
6
.9

2
9
1
9
7

4
7
1
8
.4

5
6
1
.5

2
8
3
0
3

2
4
0
6
.4

Throughput(Mbps) CPU(us/op) Latency(ms)

Linux Kite

Figure 8.6: Web server performance measurement using filebench.

Figure 8.6 shows the web server throughput, execution time per operation, and latency. It

demonstrates that the Kite storage domain takes slightly less time than Linux to execute each

operation, providing slightly better throughput. At the same time, the Kite storage domain

exhibits faster latency than its Linux counterpart. We attribute this slight performance

difference to Kite’s single address space architecture, which involves no context switching

due to system calls. The RSD for this experiment is 0.94% and 0.71% for Kite and Linux

storage domains, respectively.



Chapter 9

Kite’s Network Domain Evaluation

In this chapter, we evaluate Kite, which is only built for the network driver domain, discard-

ing all unrelated components. The primary goal of our evaluation is to determine perfor-

mance overheads, if there are any, because of our implementation. Like the storage domain

evaluation in Chapter 8, we only compare against a Linux-based network driver domain.

We have confirmed that our system shows similar performance trends for 1Gbe and 10Gbe

(with various NIC drivers). In general, Kite should work with any NIC drivers from NetBSD,

including recent 40Gbe drivers, for which we expect similar performance trends.

Section 9.1 discusses our experimental setup for evaluating Kite’s network driver domain

prototype. Guest VM’s network bandwidth and latency, when using Kite and Linux network

domains, are discussed in Sections 9.2 and 9.3. Finally, Sections 9.4, 9.5, 9.6 evaluate this

prototype with several popular real-life applications.

9.1 Experimental Setup

Table 9.1 shows our experimental setup. The client and server machines are directly con-

nected by an SFI/SFP+ network cable, where each has a 10Gbe NIC attached. Driver VMs

are tested on the server side. For network-related tests, our client acts as a load generator.

The server runs Xen (Dom0 is only used for the control path). Each tested application runs

inside DomU. Both Linux and Kite network driver domains have direct PCI passthrough

85



86 CHAPTER 9. KITE’S NETWORK DOMAIN EVALUATION

access to the NIC. Kite environment also incorporates recent changes from LibrettOS [103]

to run in Xen’s HVM mode.

Table 9.2 shows the Kite network domain’s configuration and software versions. We use

out-of-the-box Xen 4.9 from Ubuntu. Driver domains are I/O-intensive and do not need to

allocate more than one vCPU in our experiments.

Table 9.1: Hardware configuration.

Server Client

CPU Intel(R) Xeon(R) CPU E5-2695, 2.20GHz Intel(R) Core(TM) i5-6600K 3.50GHz

Cores 24 per CPU (HT) 4 per CPU

L1/L2 cache 32 KB / 256 KB per core 32 KB / 256 KB per core

L3 cache 30720 KB 6114 KB

Main Memory 64 GB 16 GB

Network Intel 82599ES 10-Gigabit adapter Intel 82599ES 10-Gigabit adapter

Table 9.2: Configuration of Xen domains on the server side.

Dom0 DomU Linux Netdom Kite Netdom

OS Ubuntu 18.04.3 LTS Ubuntu 18.04.3 LTS Ubuntu 18.04.3 LTS Rumprun-SMP [82, 103]

Kernel 5.3.0-40-generic 4.15.0-88-generic 5.0.0-23-generic Based on NetBSD 8.0

Memory 8 GB 8 GB 2 GB 1 GB

vCPUs 1 22 1 1

For the Kite network domain evaluation, we use both micro- and macro-benchmarks. We

run the nuttcp [31] microbenchmark to measure overall network throughput. We measure



9.2. NUTTCP 87

network latency using ping, Netperf [21], and memtier [22] benchmark. We use macrobench-

marks like ApacheBench [127], Redis [23], and MySQL [20] to measure the performance of

real-life applications, which can be relevant to cloud users.

9.2 Nuttcp

We measure the network throughput of a guest VM running Linux that uses 10Gbe NIC

through the Linux and Kite driver domains. To achieve optimal throughput with minimal

packet loss, we run nuttcp benchmark [31] (v8.2.2) in the UDP mode with 4MB of window

size and 8KB of buffer size. As shown in Figure 9.1, with the described configuration, the

nuttcp client achieves about 7Gbps with less than 1.5% UDP packet loss for both Linux and

Kite network domains.

0

2

4

6

8

Linux Kite

B
an

d
w

id
th

 (
G

b
p

s)

Figure 9.1: Nuttcp throughput for UDP file transfers.

We repeat each experiment 3 times and report the average, where the RSD is 1.33% and

1.02% for Linux and Kite network domains, respectively. The result suggests that Kite

exhibits similar UDP throughput to Linux, incurring no penalty.



88 CHAPTER 9. KITE’S NETWORK DOMAIN EVALUATION

9.3 Latency

We use various tools with different configurations for measuring network latency. Figure 9.2

shows the latency comparison when using Linux and Kite network backend. Pinging the

guest machine from the client machine 100 times with a one-second interval, we get lower

latency for Kite (0.31ms) than for Linux (0.51ms). The Netperf [21] benchmark, which sends

1000 requests per second with even intervals to the guest machine, shows 0.18ms latency

for Linux and 0.10ms latency for the Kite network domain. Memtier [22], a benchmark

for Memcached [18], reports 0.16ms and 0.15ms for Linux and Kite, respectively, when

performing 100000 SET and GET operations with a ratio of 1:10 and data of size 8KB.

0
0.1
0.2
0.3
0.4
0.5
0.6

Ping Memtier Netperf

La
te

n
cy

 (
m

s) Linux Kite

Figure 9.2: Latency comparison for Linux and rumprun network driver domains.

One can see that the Kite network domain achieves slightly better latency than that of

Linux across different applications. Therefore, using Kite driver domains for running latency-

sensitive applications, we can achieve a similar performance to that of Linux.

9.4 Apache

To evaluate performance with a real-life HTTP server, we run the Apache server (v2.4.29) in

DomU and Apache benchmark in the client machine. The server data (files) are randomly

generated. The benchmarking tool sends 100,000 requests and measures the server-side



9.4. APACHE 89

throughput, and each experiment is repeated 3 times. Figure 9.3 shows Apache server

throughput for different file sizes, ranging from 512B to 1MB, with 40 concurrent requests

for each run. These numbers show the Apache server does not incur any overhead due to

Kite’s implementation.

0

50

100

150

200

250
5

1
2 1
k

4
k

8
k

1
6

k

3
2

k

6
4

k

1
2

8
k

2
5

6
k

5
1

2
k

1
m

Th
ro

u
gh

p
u

t 
(M

B
p

s)

File size

Kite Linux

Figure 9.3: Apache throughput varying file size.

1
4

9
.6

9

3
3

.4
1

7

2
9

9
.2

5

1
6

9
.6

6

2
9

.4
8

4 3
3

9
.1

7

Throughput 
(MB/s)

Time (s) Request/s
Linux Kite

Figure 9.4: Throughput, transfer time, and request rate.

We show a specific example with transfer time, throughput, and request handling rate for

64KB in Figure 9.4. The Apache benchmark sends 100,000 requests with 40 concurrent

requests. The performance is marginally higher for Kite. The maximum RSD is 1.20% and

1.44% for Linux and Kite, respectively, for the presented throughputs.



90 CHAPTER 9. KITE’S NETWORK DOMAIN EVALUATION

9.5 Redis

Nowadays, in-memory key-value databases are extensively used in cloud infrastructures. We

run Redis [23] server, a well-known key-value store, to compare Kite and Linux network driver

domains. We execute the Redis benchmark (v4.0.9) with millions of SET/GET operations

in the pipeline mode. We set the pipeline size to 1000. Each run is repeated for different

levels of concurrency, wherein each GET/SET operation reads/writes 128KB of data with

each key of the size of 64 bits.

0

50

100

150

5 10 15 20

Tr
an

sa
ct

io
n

s(
K

)/
se

c

Thread Count

Linux SET Kite SET
Linux GET Kite GET

Figure 9.5: Redis key-value store throughput.

Figure 9.5 shows the number of SET/GET operations per second. Overall, Kite and Linux

network driver domains exhibit similar performance. Each experiment was repeated three

times and the RSD for Linux’s and Kite’s netback is 0.00053% and 0.0011%, respectively.

9.6 MySQL

Along with NoSQL databases like Redis and Memcached, relational databases are also

widely used. We compared the performance of MySQL [20] server (v5.7.29), a popular

SQL database, running on DomU. On the client machine, we ran Sysbench (v1.1.0) bench-

mark, which triggers database transactions sending SQL queries, to measure the database

throughput.



9.6. MYSQL 91

0

1

2

3

4

5

6

5 10 20 40 60

O
p

er
at

io
n

s(
K

)/
s

Thread Count

Kite Linux

Figure 9.6: MySQL throughput.

We created a database with ten tables, each with 1,000,000 records. All data fits in memory,

i.e., the workload is memory-bound, and there is no storage I/O. We ran the benchmark

from the client machine for a different number of threads (from 5 to 60). This benchmark

sends read-only SQL queries to the server, which allows us to stress-test the network path.

Figure 9.6 shows the number of operations (queries and transactions). There is almost no

performance difference when using Linux’s or Kite’s netback. We repeated each experiment

three times and the RSD is 0.0167% and 0.0496% for Linux and Kite, respectively.

0

5

10

15

1 5 10 20 40 60

C
P

U
 U

ti
liz

at
io

n
 %

Thread Count

Kite Linux

Figure 9.7: CPU utilization while benchmarking the MySQL.

We also measured CPU utilization. Figure 9.7 shows the average CPU utilization of DomU,

measured using the sysstat utility [27], during the mentioned benchmark execution. We

observed that DomU’s CPU utilization for both Linux and Kite is very similar. Therefore,

the CPU utilization time is preserved.



Chapter 10

Kite’s Security Evaluation

Device drivers are one of the most erroneous parts of any OS, and general-purpose full-

featured OSs have significantly bigger attack surfaces. The biggest motivation for uniker-

nelizing Xen driver domains is reducing attack surface so that such critical VMs becomes

more resilient against the attacks due to exploitation of presented bugs and, therefore, the

cloud infrastructure can enjoy more security. In this chapter, we conduct a thorough security

evaluation of Kite’s driver domain implementations, including an analysis of the resulting

attack surface and a discussion on its strength against related CVEs.

In Section 10.1, we compare Kite’s executable size and boot time to those of other operating

systems capable of running driver domains. Our analysis of different gadgets in Sections 10.2

and 10.3 shows that Kite has a lower gadget quality and quantity measured in various matrics,

making it less vulnerable to attack compared to other state-of-the-art solutions. Finally, in

Section 10.4, we assess Kite’s resilience to known vulnerabilities, considering that it requires

a minimal number of system calls, which could compromise driver domains.

10.1 Image Size and Boot Time

We compare the image size of Kite with Ubuntu 18.04, the Linux distribution we used in

the presented experiments. We measured the size of the entire Kite network domain binary.

For Linux, we measured only the size of the kernel and its modules, i.e., we did not include

92



10.2. ROP GADGET 93

the size of user-space programs and libraries such as libc. As Figure 10.1a shows, the Linux

image is about 10x larger than the Kite image.

Since the boot time directly affects deployment in the cloud infrastructure, it is crucial to

reduce it as much as possible. Moreover, driver domains may need to restart to recover

from failures or attacks, where faster boot times are equally important. As Figure 10.1b

shows, Kite only takes 13 seconds to boot the network domain. In contrast, Ubuntu needs

75 seconds.

0

100

200

300

Kite Ubuntu

Si
ze

 (
M

)

(a) Image size.

0

20

40

60

80

Kite Ubuntu

Ti
m

e 
(s

)

(b) Boot time.

Figure 10.1: Image size and boot time comparison.

10.2 ROP Gadget

The number of ROP gadgets is one concrete, quantitative metric that can be used to evalu-

ate security. A smaller number of gadgets indicates potential obstacles for an attacker since

the attacker will have a hard time finding appropriate gadgets to exploit a known vulnera-

bility [46]. Moreover, the attack surface is proportionally reduced in Kite, which also helps

in achieving better security. Using the methodology from [71], we count gadgets belonging

to different categories: Data move, Arithmetic, Logic, Control flow, Shift & Rotate, Setting

flags, String, Floating point, Misc, MMX, NOP, and RET. Each category represents a class

of operations.



94 CHAPTER 10. KITE’S SECURITY EVALUATION

0

1

2

3

4

Kite Default CentOS Fedora Debian Ubuntu

Q
u

an
ti

ty
 o

f 
G

ad
ge

ts
 (

M
)

DataMove Arithmatic Logic

ControlFlow ShiftAndRotate SettingFlags

String Floating Misc

MMX Nop Ret

Figure 10.2: ROP gadget comparison.

Figure 10.2 shows the quantity of ROP gadgets for the Kite, vanilla Linux, and popular

Linux distributions such as CentOS 8, Fedora Rawhide (05/2020), Debian 10.4, and Ubuntu

18.04. For Kite, we measured the number of instructions from different categories present

in the Kite network domain image. For the vanilla Linux kernel, we did the same for the

kernel image built with the default configuration (defconfig), which is a fairly minimalistic

configuration. The vanilla image alone already has four times more gadgets than the Kite

image, but for using Linux as a network domain, we generally need kernel modules. (Not

to mention user-space libraries.) Therefore, we measured the quantity of ROP gadgets for

associated kernel modules along with the kernel image for the presented Linux distributions

that are capable of running as the network driver domain.

We used Ropper [24] to measure the number of ROP gadgets. We found that the number

of ROP gadgets for Kite is 4x and 24x smaller than that of the Linux default configuration

and Ubuntu, respectively. Kite’s substantially smaller number of gadgets indicates its great

potential for better security when used as a driver domain.



10.3. GADGET SET ANALYSIS 95

1

10

100

1000

10000

100000
R

O
P

 E
xp

lo
it

A
SL

R
-P

ro
o

f
R

O
P

 E
xp

lo
it

Tu
ri

n
g

C
o

m
p

le
te

n
es

s

R
O

P

JO
P

C
O

P

R
O

P

JO
P

C
O

P

JO
P

C
O

P

JO
P

C
O

P

JO
P

Tr
am

p
o

lin
e

In
tr

a-
st

ac
k

C
O

P
 P

iv
o

t

Sy
sc

al
l

Expressivity Quality Quantity Dispatcher Dataloader Others

Linux Kite

Figure 10.3: Gadget set analysis.

10.3 Gadget Set Analysis

Though Kite has significantly fewer ROP gadgets presented in its executable compared to

different flavors of Linux distributions, the total gadget count may fall short of representing

its resilience against attacks. Attackers may exploit remaining gadgets to manipulate an

attack. Moreover, some attack surface reduction attempts can introduce newer gadgets.

Brown et al. [58] proposed an in-depth gadget analysis to understand the likelihood of the

program variants falling victim to gadget-based attacks compared. They offer an open-source

tool named GadgetSetAnalyzer that performs static binary analysis on program variants

and produces results based on the quantity, quality, and locality of code reuse gadget sets,

indicating the impact of attack surface reduction. We use GadgetSetAnalyzer to compare

Kite and default Linux kernel’s likelihood of gadget-oriented attacks. Figure 10.3 depicts

the corresponding results in logarithmic scale for different gadget utility metrics.

Abstract instructions, known as functional gadgets, are utilized to carry out fundamental

computational operations like addition, register loading, and logical branching. These op-



96 CHAPTER 10. KITE’S SECURITY EVALUATION

erations are then combined to create a malicious payload. The computational capability

allowed by a group of gadgets is determined by their expressivity. As shown in figure 10.3,

Kite does not increase the expressivity of driver domains when fundamental computational

operations are taken into account.

Kite reduces the quality of gadgets, such as gadget length and memory side effects, for ROP

and call-oriented program (COP) gadgets compared to Linux. Additionally, Kite reduces the

quantity of ROP and jump-oriented (JOP) gadgets. However, Kite shows a slight increase

in the COP quantity and corresponding intra-stack pivot. We attribute this increase to

Rumprun’s introduced function calls for performing system calls, as opposed to Linux, which

uses the same trampoline function for system calls because of the context switching between

userspace and kernel space. Moreover, the count of gadgets that dispatch JOP and COP and

the count of gadgets that load data for JOP and COP gadgets are also lower for Kite. Finally,

Kite significantly reduces JOP trampoline and syscall gadgets in comparison to Linux.

10.4 Syscall Reduction and CVEs

The minimalistic design of Kite allows only a handful of libraries, selected drivers, and one

application per driver domain. These applications replace the need for several userspace

libraries (e.g. python) and tools (e.g. xen-tools). Therefore, Kite driver domains are safe

from many known vulnerabilities, such as CVE-2016-4963 and CVE-2013-2072, associated

with unneeded libraries and applications that are part of traditional service VMs. We found

172 [32] and 92 [33] reported CVEs that make use of crafted applications and shell, respec-

tively, for performing attacks on Linux-based OSs. Being single-purpose OSs without rich

user-space environments, Kite VMs prevent the attackers from running malicious applica-

tions or using shells.



10.4. SYSCALL REDUCTION AND CVES 97

Table 10.1: Examples of CVEs prevented by only keeping necessary system calls.

CVE ID Syscall Name Description
2021-35039 init_module Linux kernel loading unsigned kernel

modules via init_module syscall.
2019-3901 execve A race condition allows attackers to leak

sensitive data from setuid programs.
2018-18281 ftruncate, mremap Permits access to a already freed and reused

physical page.
2018-1068 compat_sys_setsockopt Allows a privileged user to

arbitrarily write to kernel memory.
2017-18344 timer_create Allows userspace applications to read arbi-

trary kernel memory.
2017-17053 modify_ldt, clone Allows an attacker to exploit use-after-free

by running a crafted program.
2016-6198 rename Allows local users to cause a denial of service

attack.
2016-6197 rename, unlink Allows local users to cause a denial of service

attack.
2014-3180 compat_sys_nanosleep Usage of uninitialized data creates possible

out-of-bounds read.
2009-0028 clone Allows unprivileged child process to

send arbitrary signals to its parent.
2009-0835 chmod, stat Allows local users to bypass intended access

restrictions via crafted syscalls.

0

50

100

150

200

Kite Ubuntu

Sy
sc

al
l c

o
u

n
t

Figure 10.4: System call count comparison.



98 CHAPTER 10. KITE’S SECURITY EVALUATION

Rumprun leverages syscall-related functions from NetBSD. Since each Kite VM runs one

specific application, we can easily pinpoint the system calls that are used. We found

that rumprun uses 14 and 18 system calls for the network and storage domain, respec-

tively, whereas even minimal Ubuntu-based driver domains use 10x more systems calls

(Figure 10.4). Furthermore, to prevent attackers from using other syscalls, we discard all

remaining syscalls during the compilation process. This reduces the attack surface and mit-

igates many CVEs, including 11 CVEs presented in the Table 10.1.Though we can block

a few syscalls in Linux, lots of them are essential to initialize and run driver domains and

cannot be removed.



Chapter 11

Redwood: Flexible Secure VMM

VMMs play important roles in deploying and managing VMs. They ensure the isolation and

security of VMs running on the same physical machine. However, there are components in a

general VMM architecture that are susceptible to future vulnerabilities and may contribute to

propagating and aggregating damage. Additionally, performance acceleration architectures,

such as DPDK, when incorporated with VMMs, can become a single point of catastrophic

vulnerability with the potential to affect multiple VMs. This chapter examines vulnerable

points in VMMs and introduces the concept of Redwood, a method for specializing and

compartmentalizing VMMs to make them more resilient to future attacks by mitigating

these vulnerabilities. It also discusses strategies for securing acceleration architectures in

the virtualization ecosystem.

Sections 11.1 and 11.2 describe Redwood’s design principles and associated challenges, re-

spectively. The design for achieving VMM specialization is discussed in Section 11.4, and

the design for establishing compartmentalization is described in Section 11.5. Finally, Sec-

tion 11.6 covers isolation for vhost-user interfaces to secure VMs connected to OSS-DPDK.

11.1 Design Principles

Existing VMM designs have several limitations that make the virtualization infrastructure

prone to common vulnerabilities. These vulnerabilities include memory manipulation, ar-

99



100 CHAPTER 11. REDWOOD: FLEXIBLE SECURE VMM

bitrary code execution, denial of service, etc. Attackers can exploit these vulnerabilities to

access sensitive information, disrupt services, and cause financial losses. To address these is-

sues, we propose a set of new design principles for VMMs that can enhance security in cloud

infrastructures. These principles focus on per-VM specialization and fine-grained intra-VMM

component compartmentalization.

(P1) The design of a VMM should be modular and highly configurable, allowing

for the removal of any default features or implementations that are not desired. A highly

flexible VMM is a prerequisite for creating a minimal VMM that can be specialized to meet

the specific needs of each VM.

(P2) A VMM should not have any unnecessary components. Each VMM should be

tailored to meet the specific needs of individual VMs, rather than being designed as a generic,

full-featured VMM. This approach helps to create VMMs resilient against vulnerabilities by

minimizing their attack surface.

(P3) Each pair of unrelated VMM components should be kept in separate com-

partments. This approach helps limit an attacker’s freedom of using vulnerabilities in one

component as a means of exploiting another. Compartmentalized components make it more

difficult for attackers to traverse the whole VMM to gain access to sensitive information or

disrupt operations.

(P4) Each instance of the same component type should be isolated from one

another. Although there may be multiple instances of the same component type, keeping

them in separate compartments helps to avoid a vulnerability in one instance propagating

to the other and improve the overall security of the VMM.

(P5) Security should not come at the cost of performance. It is crucial to balance

the two. Therefore, isolation mechanisms should be chosen carefully so that they do not neg-



11.2. CHALLENGES 101

atively impact performance. These mechanisms should be lightweight and efficient, allowing

the system to maintain optimal performance while providing the necessary protection.

(P6) The compatibility with the existing VMs should not be compromised. In-

troduced security primitives should be transparent to the VMs, so that they can continue

to function as normal while the VMM enforces security. This allows for the best of both

worlds, providing a secure environment while minimizing the impact on existing systems.

11.2 Challenges

VMMs run on the host OS and are considered the TCB of the cloud infrastructure. Though

there are several VMMs available with a wide range of features, they lack flexibility in terms

of configuration. This means that VMs must use VMMs that are built to be generic and

include many default features unrelated to the VM, resulting in a larger attack surface. This

presents the challenge of designing and implementing a highly modular and configurable

VMM, which is crucial for minimizing the TCB in cloud infrastructure. Building a modular

and flexible VMM from scratch requires significant implementation effort and expertise. On

the other hand, the rigid design of generic VMMs makes it challenging to achieve a minimal,

specialized VMM for individual VMs.

When a VMM is deployed, the entire process is considered to be trusted. However, even

if unwanted features are removed, the VMM’s security can still be compromised due to

existing bugs in any part of the remaining implementation. Current VMMs lack security

primitives to enforce compartmentalization between different VMM components, making

them vulnerable to attacks. Exploiting a vulnerability in one part of the VM can allow

an adversary to manipulate another part. Implementing compartmentalization in a VMM

requires careful design and implementation techniques. Deciding when to enable and disable



102 CHAPTER 11. REDWOOD: FLEXIBLE SECURE VMM

access to a compartment requires thorough examination of interactions between different

parts of the VMM. To the best of our knowledge, Redwood is the first attempt to deploy

VMM components in separate compartments for improving cloud security.

Isolation has been a topic of active research for years, and there are several software- and

hardware-based isolation techniques, each of which have pros and cons in terms of security

and performance. Some isolation techniques offer improved security at the cost of per-

formance, while others prioritize performance over security. Additionally, not all existing

isolation techniques are suitable for intra-VMM isolation. As a result, finding an isolation

technique that achieves the desired level of compartmentalization within a VMM without

sacrificing VM performance is a challenging problem. We explore both software and hard-

ware solutions to balance performance and security in a virtualized environment.

Introducing flexibility in VMM configuration and compartmentalization between VMM com-

ponents deserves a thorough re-evaluation of the design and a significant amount of additional

effort in implementation. A poorly designed VMM may have limited capabilities, potentially

rendering it inadequate in serving existing VMs because of missing features. Moreover, mod-

ifying existing VMs to be compatible with the proposed VMM is often not desirable. Thus,

it is crucial to carefully consider the compatibility of new security primitives with existing

VMs when selecting isolation mechanisms and specialization techniques for a VMM to ensure

seamless integration.

11.3 Trusted Computing Base and Trust Model

The virtualization stack has several components that are critical to Redwood’s functional

correctness, including the host OS, hypervisor, compiler, linker, and loader. Any compromise

of these trusted components would compromise Redwood’s correctness.



11.4. ACHIEVING PER-VM SPECIALIZATION 103

The VMM is consists of various components, including core and additional components (see

details in 11.4). The core components are relatively small and potentially formally verifiable.

In contrast, there are many additional components and we consider all of them to be mutually

distrusting, as each component may have potential vulnerabilities that an adversary could

exploit to attack other parts of the VMM.

The Redwood prototype (discussed in Section 12) leverages the Intel MPK [67] hardware

feature for compartmentalization. We trust the MPK APIs for enabling and disabling pro-

tection keys and assume that they work as intended.

11.4 Achieving Per-VM Specialization

This section discusses various options for creating a highly configurable VMM (P1) that

offers a minimal attack surface (P2) while still maintaining needed compatibility (P6).

VMMs have several core responsibilities, including creating, allocating resources for, launch-

ing, and destroying VM. However, these tasks are not sufficient for running an operating

system with workloads inside a VM. As a result, a VMM may need to provide additional

support, such as firmware like BIOS and UEFI, interrupt controllers like APIC, MSI, and

MSI-X, configuration and power interfaces like ACPI, I/O devices, and migration mecha-

nism.

Any additional feature not needed by the workload only contributes to the attack surface.

Therefore, the uKVM [138] approach combines unikernels with relevant VMM components

and replaces standard PV devices with low-level interfaces to create a unified executable.

However, this approach is designed specifically for and requires modifications to unikernels,

which may violate the principle (P6) of backward compatibility and may not be suitable



104 CHAPTER 11. REDWOOD: FLEXIBLE SECURE VMM

for all VMs. In addition, running a user-provided executable directly on the host poses a

security risk to the ecosystem.

The virtualization community often introduces new software features, such as vDPA [4] and

VFIO [5], and hardware features, such as Intel SGX [69] and AMD SEV [35], to improve

performance and security. Full-fledged VMMs like QEMU are often the first to test these

features due to their widespread market share. However, build-from-scratch approaches like

uKVM suffer from a lack of support and infrequent updates. Therefore, even if a workload

desires, it may not use such minimal VMMs because of missing features.

In contrast, QEMU typically has hundreds of features implemented. Firecracker [118] and

Cloud Hypervisor [45] selectively implement fewer features as they aim only to support

microVM (lightweight Linux) and cloud OSs, respectively. All these VMMs make most

of their features default and non-removable. However, not all workloads have the same

requirements. To create a VMM with minimal attack surface, it is necessary to make each

VMM highly customizable to suit the specific needs of different workloads.

Achieving a minimal VMM from an existing one losing no necessary features or compatibility

requires fine-grain configurability. This requires a nontrivial modularization and refactoring

of the current implementation. After identifying all the additional components, a refactoring

is necessary to ensure that each fine-grained component can function independently along

with the core parts. Finally, we need to create a configuration space with one configuration

per component, allowing users to choose which components to include at build time. This

can be achieved using platform-specific tools or techniques such as the Kconfig language, the

define keyword in C, or the features feature in Rust.

We propose creating various VMM images for different configurations, rather than using

the same image for all VMs or receiving different images from clients. Then, based on the



11.4. ACHIEVING PER-VM SPECIALIZATION 105

requested VM configuration, the corresponding VMM image can be used to run the VM.

Our prototype suggests that this approach can reduce the size of the VMM by at least

50%. Therefore, the additional disk space required for storing the executables will not be

significant. Next, we discuss features we can take into consideration to make them highly

configurable at build time.

11.4.1 VM Bootloading

VM bootloading is the process for a VM to start up and loads its OS. Bootloading a VM is

similar to bootloading a physical machine, but with some differences because of the virtual-

ized environment.

The boot process begins with the firmware, which locates the Master Boot Record (MBR)

on the VM image and loading the bootloader. The bootloader is responsible for loading the

kernel, which is the core component of the OS. The kernel then starts the init process, which

initializes and running the rest of the OS.

There are several ways to boot a VM, including:

• Boot like a regular machine, where the firmware locates the MBR on the VM image

and loads the bootloader from there. Then, the bootloader loads the kernel. Finally,

the kernel starts the init process.

• VMM directly loads the GRUB bootloader from the host using the configuration from

the VM. The GRUB then loads the kernel, which starts the init process.

• A kernel and an init disk can also be directly supplied to the VMM, allowing it to

skip many of the normal steps in the boot process. Therefore, the VMM directly loads



106 CHAPTER 11. REDWOOD: FLEXIBLE SECURE VMM

Table 11.1: Example of emulated and paravirtualized devices in VMMs.

Emulated device Paravirtualized Device
Serial port Virtio console
Network card (E1000, NE2000 PCI) Virtio network, Xen netback
ATA/SATA, CD/DVD-ROM, floppy disk Virtio block, Xen blkback
Graphics card (CL-GD5446, Red Hat QXL VGA) Virtio GPU
PS/2 mouse and keyboard, HID Virtio mouse and keyboard
SCSI controller (LSI53C895A, NCR53C9x) Virtio SCSI
USB controllers (UHCI, EHCI, xHCI) Xen USB
Watchdog timer (Intel 6300 ESB PCI, or iB700 ISA) Virtio watchdog

the kernel and the init disk from the host. The kernel starts the init process from the

supplied disk.

As there are a few other ways to boot a VM’s operating system, a VMM usually sup-

ports multiple bootloading mechanisms. However, a particular VM only needs one method.

Therefore, a VMM can minimize its functionality by keeping only the necessary method.

11.4.2 Virtual I/O Device

A VMM can facilitate I/O operations by a PV, a fully emulated, or a physical device. For

example, a VM can use an emulated e1000 NIC, a virtio network device, or a physical

NIC accessed with PCI-passthrough. Table 11.1 lists a subset of emulated and PV devices

supported by QEMU.

Each device type can have further variations and a full-fledged VMM provides a wide range

implementations to accommodate these variations. For example, a virtio block device may

support different virtual disk formats, such as raw, qcow, vdi, and vhdx. Figure 11.1 high-



11.4. ACHIEVING PER-VM SPECIALIZATION 107

Hardware DevicesNVMe SSD

QEMU VMM

Virtio Block Device

NMVe SSD Driver

Host Linux Kernel Space

Guest OS in VM

KVM Hypervisor

qcow

Host Linux User Space

Ext-4 Filesystem Virtual Filesystem

qcow File Raw File

QEMU VMM

Virtio Block Device

Raw

Virtio Block Driver

Application

Guest OS in VM

Virtio Block Driver

Application

Figure 11.1: An example of a virtualization stack focusing on components for VMs using
PV storage. The host OS, such as Linux, manages the physical storage device (e.g. NVMe
SSD) driver, a filesystem (e.g., Ext-4), a virtual filesystem providing a common interface,
and a hypervisor (e.g., KVM). The virtual disk images are files of specific formats (e.g., raw
and qcow) in the host OS. VMM (e.g., QEMU) instances provide implementations for these
formats and PV block devices (similar to blkback in Xen). A guest OS runs the PV block
driver and filesystems in its kernel space for offering storage interfaces to applications.

lights storage components in an example of a virtualization stack for running a guest VM

that uses PV storage. However, a VM typically only requires a limited set of these imple-

mentations to facilitate its workloads. For instance, a VM running a web server may only

need a network, a storage, a serial and a clock device, making the use of other I/O devices

present in the VMM unnecessary.

Figure 11.2 illustrates the count of I/O device-related and the total number of CVEs reported

for QEMU over the years from 2007 to 2021. As the graph indicates, I/O devices account for

approximately one-third of the total number of reported CVEs. This suggests that I/O device



108 CHAPTER 11. REDWOOD: FLEXIBLE SECURE VMM

0

20

40

60

80

100

2007 2010 2013 2016 2019

C
V

E
 C

o
u
n
t

Year

Total CVE

IO Device CVE

Figure 11.2: QEMU CVE trend from 2007 to 2022. [41]

implementations may have a higher number of vulnerabilities compared to other parts of a

VMM. This is an important consideration when it comes to security, as these vulnerabilities

can provide an attacker with a potential entry point to the system.

To mitigate this risk, one effective strategy is to reduce the number of I/O implementa-

tions by retaining only those that are needed by a particular VM. This helps to significantly

reduce the VMM’s attack surface by eliminating unnecessary or unused I/O device implemen-

tations.Therefore, it is essential to make the I/O device implementations highly configurable

when designing a VMM so that one can discard all unrelated devices at build time.

11.4.3 VM Migration

The capability of migrating VMs between different hosts is a crucial feature for managing

various operations in the cloud, such as workload balancing and system upgradation. A VMM

may have multiple migration techniques implemented, such as checkpoint restart, post-copy,

pre-copy, and hybrid migration. Each technique has its advantages and disadvantages, and a

VM may require a specific technique that best suits its purpose when migration is necessary.

Some short-lived VMs may not require migration at all during their lifespan. For example,

a VM providing function as a service (FaaS) may boot quickly and shut down immediately



11.5. ESTABLISHING INTRA-VMM ISOLATION 109

after serving the requested function. Therefore, it may not need VM migration. Depending

on a VM’s purpose, reducing or eliminating migration-related implementation from a VMM

can help reduce the attack surface and improve security.

11.5 Establishing Intra-VMM Isolation

VMM instances run as userspace processes in the host OS, contributing to TCB of the

ecosystem and increasing the attack surface. While reducing the size of the VMM can

significantly reduce this attack surface, vulnerabilities in the remaining implementation can

still pose serious security risks. For example, if a VM requires multiple I/O devices and one

of them has a bug that allows an attacker to gain privilege of the VMM process, the attacker

may disrupt the execution flow or steal data from this device or other parts of the VMM.

Isolation can prevent an untrusted component from directly accessing the private memory of

other components. Partitioning sensitive data and code into isolated components within the

VMM can help limit the impact of an attack and preserve the confidentiality and integrity

of other components’ data.

The approach of intra-VMM isolation requires a careful examination of the VMM design to

determine which components need to be isolated into separate compartments and what the

isolation boundary should be. Therefore, we need to answer the question of what to isolate.

Not all components can be compartmentalized in the same manner due to differences in

functionality and implementation. Additionally, there may be multiple isolation techniques

available, depending on the hardware and software environment, leading to the question of

how to isolate. Finally, based on the chosen isolation technique and the functionality of the

isolated components, decisions must be made regarding when to enable or disable access to

a compartment and who has the authority to do so. In the following sections, we present



110 CHAPTER 11. REDWOOD: FLEXIBLE SECURE VMM

our analysis to address these questions.

11.5.1 What to Compartmentalize?

To compartmentalize a VMM, the first step is to identify which components in it we want

to isolate. For instance, virtual I/O devices are a major part of any VMM and often share

vulnerabilities, as shown in Figure 11.2. Therefore, virtual devices are potential candidate

for compartmentalization. According to the principle P4, there should be isolation between

multiple instances of the same type of device in a VMM. For example, if a VM requires two

network devices, the VMM should isolate both instances to ensures that a vulnerability in

one network devices cannot propagate to the other device.

11.5.2 How to Compartmentalize?

Prior protection key-based isolation approaches [77, 90, 124, 131, 134] draw isolation bound-

aries around libraries and the application code. For instance, there can be multiple compart-

ments in FlexOS [90], where each can contain one or more libraries. When a compartment

needs to execute a function in another compartment, the caller compartment’s memory is

disabled, and the callee compartment’s memory is enabled. Upon return, memory permis-

sion is changed in reverse order. This model does not exactly fit for isolating VMM devices,

which are not necessarily libraries, and they do not get invoked like library functions. Unlike

functions performing operation on the supplied arguments, each device instance has its own

memory with sensitive information, which needs to be secured. Moreover, I/O devices per-

form asynchronous operations. Therefore, keeping other I/O devices disabled when one is

performing is not a viable option. This scenario demands fine-grained isolation. For exam-

ple, during a device instantiation, a VMM may create a unique protection key to label every



11.6. SECURING OVS-DPDK VHOST USER 111

memory location that belongs to and represents this instance. Any access to these memory

locations will require proper permission change, otherwise will be considered illegal.

Technologies such as Intel MPK [67] and ARM MTE [1] can be utilized to implement such iso-

lation model. Hardware capabilities, such as the CHERI [136] ISA extension for ARMv8-A,

can also be used to assign different capabilities to different components to compartmentalize

the VMM. However, TrustZone [94], AMD SEV [35], and EPT/VM all utilize compartments

as separate systems, communicating through RPCs and shared memory. Therefore, using

them to isolate VMM components may result in significant performance penalties, which

goes against the principle P5. Additionally, Intel SGX is not capable of performing I/O, so

isolating device drivers in this environment is not feasible.

11.5.3 When to Enable/Disable a Compartment?

Our goal is to keep the memory in a compartment disabled when it is not being used.

Therefore, a vulnerability in another part of the VMM cannot propagate and arbitrarily

execute device operations. Since I/O device operations are asynchronous events, a dedicated

(not shared) event handler can enable and disable memory accesses if protection key-based

techniques are used.

11.6 Securing OVS-DPDK Vhost User

The vhost-user model allows offloading virtio device implementation from the VMM to

a userspace application running on the host. Moving the backend in a separate process

is supposed to increase security by providing process-level isolation, incurring a possible

performance penalty because of added indirection. Upon integrating the vhost-user with

the performance acceleration platforms, like DPDK, the performance increases significantly.



112 CHAPTER 11. REDWOOD: FLEXIBLE SECURE VMM

Hardware DevicesPhysical NIC

QEMU VMM
Vhost-user

Host Linux Kernel Space

Guest 2

KVM Module

Host Linux User Space

virtio-pmd

Application

OVS-DPDK 1

QEMU VMM
Vhost-user

Guest 1

virtio-net

Application

Data Path

Control Path

OVS Switch

Data Path

Control Path

NIC Driver

QEMU VMM
Vhost-user

Guest 4

virtio-net

Application

OVS-DPDK 2

QEMU VMM
Vhost-user

Guest 3

virtio-pmd

Application

Data Path

Control Path

OVS 
Switch

Data Path

Control Path

PMD
Driver

Physical NIC

Figure 11.3: The OVS-DPDK architecture provides faster networking for guest VMs by
running as a userspace process on the host and utilizing vhost-user interfaces and an OVS
switch. It connects to physical NICs through the NIC driver in the kernel or the PMD
driver in DPDK and establishes the control path with the VMM and data paths with the
guest VMs through virtio-net or virtio-pmd drivers. However, it also poses a security risk as
the OVS-DPDK process has unfiltered access to all vhost-user instances, which may contain
sensitive information from the guest VMs.



11.6. SECURING OVS-DPDK VHOST USER 113

However, it creates an opportunity for a threat of higher magnitude than the security gain

from process-level isolation. Here, we discuss the scope of vulnerability in DPDK and the

design for mitigation.

Figure 11.3 depicts how VMMs can connect to the OVS-DPDK process through vhost-

user interfaces. OVS-DPDK creates vhost-user instances for each guest VM connected to

this application. To establish direct memory access between the vhost-user backend and

the virtio frontend, the VMM shares the whole VM’s memory with the OVS-DPDK. That

means the OVS-DPDK has direct access to the memory of all VMs connected to it. It makes

the OVS-DPDK a lucrative hub for intruders to manipulate attacks and disrupt all VMs’

execution or steal their data.

There are multiple scenarios of how an intruder can gain access to OVS-DPDK. Any vul-

nerability on the host OS, VMM, OVS, or DPDK itself that gives an attacker full or partial

access to DPDK provides open access to the VMs’ memory connected through the vhost-user

interface. For instance, CVE-2020-14377 [14] shows that a buffer over-read vulnerability in

DPDK can let a VM user do unauthorized access to the host’s memory. CVE-2020-14377 [14]

shows that an attacker can exercise a buffer overflow attack to write arbitrary data to any

address in DPDK. Similar attacks may lead one VM user to read other VM memory since

DPDK already has access to all connected VMs’ memory.

We propose to scrutinize OVS-DPDK’s access to the guest VM’s memory. One idea is putting

each VM’s memory in a separate compartment and enabling access to that compartment just

for the corresponding vhost-user. Any activity of undesired access to a compartment should

be identified as an attack. For example, accessing a memory address using buffer overflow

or arbitrary code execution should trigger an action, like a segmentation fault or application

reset, that would prevent the attacker from proceeding further. Isolation techniques such as

memory tagging, capability, etc., can be used based on the security and performance metrics.



Chapter 12

Implementation of Redwood

The design principles and techniques of Redwood, outlined in Chapter 11, can be applied

to all existing general-purpose VMMs. We developed a prototype for Redwood based on

Cloud Hypervisor, an open-source VMM that runs on KVM and Hyper-V hypervisors. This

chapter covers the implementation details of Redwood toward creating a minimal VMM

from an existing VMM and isolate PV I/O devices using hardware-enforced techniques. To

enhance the virtualization ecosystem, Redwood has added unikernel bootload support and

compartmentalized memory access for VMs using OVS-DPDK.

Section 12.1 explains how Cloud Hypervisor was transformed into a highly flexible VMM,

enabling customization to meet specific requirements. Section 12.2 delves into the technical

details of compartmentalizing I/O devices using hardware support from Intel’s MPK. Sec-

tion 12.3 outlines the multiboot implementation for Redwood. Finally, Section 12.4 explains

how memory compartmentalization for each VM, connected to OVS-DPDK via vhost-user-

net interfaces, is implemented to restrict attacker access.

12.1 Workload-aware Redwood

Redwood aims for improving VMM better security in cloud infrastructure. Cloud Hypervisor

is suitable for our target problem space because it is designed to run modern cloud workloads.

It can run cloud OSs with most I/O handled by virtio devices and 64-bit CPUs. We chose

114



12.1. WORKLOAD-AWARE REDWOOD 115

Hyper
visor

ISA

VM

Device 
Manager

CPU 
Manager

Memory 
Manager

VMM Core

Migration

Firmware

PVH Linux

Multiboot

Bootloader

Block

Net

+10

VirtIO Dev

Serial

APIC

+3

Other Dev

SGXTDX VFIO vDPA

Raw +3

Others

Figure 12.1: Core and additional components of Redwood.

Cloud Hypervisor as a base for Redwood’s prototype over QEMU because it is written in

Rust, which is programming language known for providing better memory safety than C.

Although Firecracker is also written in Rust, we chose Cloud Hypervisor for its broader

support for general cloud OSs, rather than a specific configurations like micro-VMs.

Rust’s package manager, Cargo, provides a mechanism called features for conditional com-

pilation and optional dependencies. As discussed in Section 11.4, we identify the core and

additional components in Cloud Hypervisor and refactor all additional components into

named features in Redwood. Therefore, users can enable and disable components at build

time by choosing which to keep in Redwood image.

Figure 12.1 shows Redwood components. Green boxes represent core components, which

include CPU, memory, device managers, and APIs for VM, ISA, and hypervisor operations

necessary for running any VM. These managers create and manage VCPUs, memory, and

devices for VM. VM APIs perform VM creation, launching, destruction, etc. ISA (x86-64

and AArch64) and hypervisor (KVM and Hyper-V) supports were already configurable in

Cloud Hypervisor.



116 CHAPTER 12. IMPLEMENTATION OF REDWOOD

Cloud Hypervisor supports booting OSs using third-party firmware, such as OVMF [2] and

Rust Hypervisor Firmware [3], and direct booting uncompressed Linux into 64-bit mode.

Along with these two, Redwood adds multiboot support (Section 12.3). As discussed in

Section 11.4.1, a VM needs only one booting mechanism. Separating these three bootloaders

into features (blue boxes), Redwood provides the flexibility to include only the required one

at build time.

Cloud Hypervisor implements 18 I/O devices. Along with the virtio devices, listed in Ta-

ble 12.1, it implements ACPI, IO APIC, and legacy devices such as RTC/CMOS, GPIO,

and serial. Only RTC/CMOS is configurable at build time. Redwood resolves any interde-

pendency, if any, between all these I/O devices and makes them configurable at build-time.

We also make disk implementations configurable, allowing a VMM to have specific types

needed for a particular VM. Supported formats include raw, qcow, VHD, and VHDX.

Cloud hypervisor supports security features, like Intel SGX [69] and TDX [16], and device

passthrough mechanisms like VFIO and vDPA, where TDX and VFIO are configurable. It

also supports live migration as a default feature. Redwood separates the VM SGX, vDPA,

and migration-related sources and makes them optional feature. All additional components

in Redwood are marked with white boxes.

12.2 Isolation inside Redwood

Cloud Hypervisor implements 13 virtio devices, listed in Table 12.1. Redwood isolates all

instances of these devices, i.e., if there are multiple instances of the same device (say, two

block devices), each will be isolated into separate compartments.

Cloud Hypervisor maintains per-device information, which includes a list of features, various



12.2. ISOLATION INSIDE REDWOOD 117

Table 12.1: Isolated virtio PV devices in Redwood.

Device Name Description
virtio-net Ethernet card for networking
virtio-block Block device for storage volume
virtio-console Console device for data input-output
virtio-balloon Device used for memory ballooing
virtio-mem Device for hot (un)plugging memory
virtio-pmem Device for resizing page cache
virtio-rng Device for random number generation
virtio-watchdog Device for monitoring system status
virtio-iommu Device for DMA management
virtio-vsock Device for guest-host communication
vhost-user-net Network device in separate process
vhost-user-block Storage device in separate process
vhost-user-fs Device for sharing host directory

events and interrupt handlers, and the driver (in VM) detail. Each type of device has addi-

tional device-specific information. For instance, a block device has unique ID, information of

underlying disk, block device configuration, which are all sensitive and crucial to perform a

virtio-block device operation. The VMM populates this information during the instantiation

process of a device.

On the other hand, the device and drivers perform asynchronous I/O operations. Therefore,

Cloud Hypervisor creates a distinct event handler thread per device instance to handle

corresponding I/O events. The event handler has access to much sensitive information

regarding the virtio queue, VM’s memory, interrupts, events, and the underlying device

interface and configuration. With access to all mentioned information, an intruder has a

lot of flexibility to manipulate an attack to disrupt execution, or steal data. To limit the



118 CHAPTER 12. IMPLEMENTATION OF REDWOOD

exposure of sensitive information, Redwood labels each memory location that belongs to the

device with a unique memory protection key during the instantiation process.

Redwood utilizes Intel’s MPK [67] feature to label memory pages and control access rights

with protection keys (pkeys). For every access to a tagged memory page, an additional

permission check is performed using the PKRU register, which has access disable and write

disable bits. System calls such as pkey_alloc and pkey_free are used to allocate and free

pkeys, respectively. The pkey_mprotect system call is used to label a page with a key. In

contrast, userspace functions for getting and setting permissions (pkey_get and pkey_set,

respectively) have a low overhead, as they do not require context switching and execute in

a few cycles.

As the last step of the instantiation process, Cloud Hypervisor creates an event handling

thread, which waits for the I/O events from the associated driver in the VM. In such event,

the handler performs corresponding I/O operations and goes to the wait state after com-

pletion. Before each time the handler goes to the wait state, Redwood disables access to

all tagged memory locations by changing the permission and enable it only when an I/O

event occurs. It helps reduce attacker’s freedom on performing an attack using the device’s

memory.

Any part of the VMM can modify the value of the PKRU, thus we have to prevent unau-

thorized writes. Similar issue is previously solved via runtime checks [77] and static anal-

ysis [131]. Since Rust builds everything statically, except for glibc, no code is loaded after

compilation in Redwood. Therefore, static binary analysis coupled with strict W⊕X is suf-

ficient. If a VM needs more that 16 device instances, which is unlikely for a cloud workload,

we can leverage the technique for pkey virtualization, devised by LibMPK [107].



12.3. UNIKERNEL SUPPORT 119

12.3 Unikernel Support

The emergence of unikernel is popularizing the concept of minimalist single-purpose VMs

to improve the security of cloud applications. Benefiting unikernels with the latest avail-

able features in Cloud Hypervisor and our minimalistic and compartmentalized model will

contribute to improve cloud security. However, most unikernels only support multiboot

for bootloading. On the other hand, Cloud Hypervisor focuses on running regular cloud

OSs and does not have multiboot support. Therefore, we extend Redwood’s support for

unikernels by implementing a multiboot bootloader. As a result, unikernels can now benefit

from our specialized hardened VMMs and, altogether, can contribute to reducing the overall

virtualization attack surface.

Redwood first checks if the provided OS image supports the multiboot protocol reading

the OS image. Then, it loads the kernel’s text, data, and bss sections into the guest VM’s

memory from the image. Next, it writes some multiboot information (MBI) in VM’s memory

so that the OS can retrieve this MBI during execution. The bootloader also sets the GDT

and IDT table with the segment registers according to the multiboot specification. Finally,

it configures other VCPU registers with multiboot magic, kernel entry point, MBI’s start

address, and flags. Redwood avoid any BIOS interaction to make the mutiboot boot process

simpler and faster.

12.4 Isolating Vhost User in OVS-DPDK

We can compare the vhost-user communication to the client-server model, where VMs are

the clients and the OVS-DPDK is the server that contains multiple clients’ information. The

OVS-DPDK stores all the information of the corresponding drivers and the memory of VMs.



120 CHAPTER 12. IMPLEMENTATION OF REDWOOD

Putting the DPDK library or some part of it in a separate compartment, like inter-domain

isolation approaches [77, 90, 124, 131, 132] suggest, will not work because this compartment

will still have the same access to all VMs’ memory. Therefore, we isolate each VMs memory

inside the vhost-user driver.

We tag each VM’s memory with distinct pkeys and keep the access permission on all VM’s

memory disabled by default. Access to the corresponding VM’s memory is enabled only

when a vhost-user needs to operate for a specific client and is disabled immediately once the

operation is completed. As a result, the attacker cannot perform an arbitrary read/write on

a guest’s memory even if gets access to OVS-DPDK. We implement the permission change

operations as inline functions to avoid the overhead of a runtime abstraction interface. We

can use a control-flow integrity check to ensure the legitimacy of permission change operations

on the tagged memory.

12.5 Implementation Effort

Converting the Cloud Hypervisor into a highly flexible VMM and compartmentalizing 13

virtio devices with Intel MPK for prototyping Redwood involves most code changes and

addition. This prototype also extends Redwood’s support for multiboot bootloading. Finally,

we compartmentalize VMs’ memory information in OVS-DPDK with Intel MPK. Table 12.2

summarizes the implementation effort for prototyping Redwood.



12.5. IMPLEMENTATION EFFORT 121

Table 12.2: LOC changed or added for Redwood prototype.

Component Description LOC

Modularization Making highly configurable VMM 1393

Compartmentalization Isolating virtio device and instances 1642

Multiboot Adding multiboot support for unikernels 586

OVS-DPDK Isolating VMs’ memory at vhost-user-net 825

Total 4446



Chapter 13

Redwood’s Performance Evaluation

The design of Redwood emphasizes security enhancement without sacrificing performance.

In this chapter, we assess the performance of the Redwood prototype, which is developed

based on Cloud Hypervisor (v23.0). The performance evaluation evaluates the impact of

our changes on execution overhead. For comparison, we ran the original Cloud Hypervisor

VMM with Linux VMs on the KVM hypervisor. Our results indicate that Redwood is

equally performant as the original Cloud Hypervisor in most scenarios.

Section 13.1 outlines our setup for evaluating Redwood’s prototype. Sections 13.2 and 13.3

present Virtio network and storage device performance evaluations, respectively. Redwood’s

virtio balloon device performance evaluation is discussed in Section 13.4. Finally, OVS-

DPDK network performance evaluation for compartmentalized vhost-user-net is presented

in Section 13.5.

13.1 Experimental Setup for Performance Evaluation

Table 13.1 shows the hardware configurations. In our setup, a client machine is connected

directly by an SFI/SFP+ network cable to a server. The server runs the KVM hypervisor

that hosts guest VMs, while the client generates load for network-related tests. Both the

client and server machines run Ubuntu 18.04.3 LTS with kernel 5.0.0-23-generic. The guest

VM is assigned 4GB of memory and runs Ubuntu 20.04.4 LTS, Linux cloud 5.4.0-126-generic.

122



13.2. VIRTIO NETWORK DEVICE PERFORMANCE 123

Table 13.1: Hardware configuration.

Server Client

CPU Intel Gold 5118 2.30GHz Core i5-6600K 3.50GHz
Cores 24 (w/ HyperThreading) 4
L1/L2 32/1024 KB per core 32/256 KB per core
L3 16896 KB 6114 KB
Memory 48 GB 16 GB
Network Intel 82599ES 10-Gigabit Intel 82599ES 10-Gigabit
Storage Samsung 970 EVO N/A

Plus 500GB NVMe

We ran microbenchmarks such as iPerf3 [17], ping, Netperf [21], dd [15], and pmbw [52]

for performance evaluation of PV I/O devices. We also ran microbenchmarks such as

ApacheBench [127]), Memtier [22], Redis [23], and SysBench [26]. Each benchmark was

run for a considerable amount of time and in several iterations, and we present the average

for comparing performance between Cloud Hypervisor and Redwood.

13.2 Virtio Network Device Performance

In this section, we evaluate virtio-net in Redwood and Cloud Hypervisor using a 10GbE

NIC connection between the server and client machine. We ran both microbenchmarks

(iPerf3 [17], ping, Netperf [21]) and microbenchmarks (ApacheBench [127], and memtier [22])

to measure network throughput and latency of real-life applications relevant to cloud users.

13.2.1 iPerf

We use the iPerf3 [17] microbenchmark (v3.7) to measure network throughput over TCP.

The iPerf3 server is run on the VM, and the client is run on the client machines. We ran



124 CHAPTER 13. REDWOOD’S PERFORMANCE EVALUATION

each experiment for 5 minutes and repeat them 3 times.

0
1
2
3
4
5
6
7
8

Receive Transmit

Th
ro

u
gh

p
u

t 
(G

b
p

s)

Cloud Hypervisor Redwood

Figure 13.1: iPerf3 TCP throughputs for receive and transmit over network.

Figure 13.1 displays the receive and transmit throughputs for a VM running on Cloud

Hypervisor and Redwood. As observed, the virtio-net performance is similar in both VMMs.

It means MPK-based compartmentalization for PV network devices incurs no significant

overhead on throughput. The RSD for these experiments are 0.0329% and 0.034% for Cloud

Hypervisor and Redwood, respectively.

13.2.2 Apache

To evaluate an HTTP server, we ran Apache (v2.4.41) and the Apache benchmark (v2.3)

on a guest VM and client machine, respectively. The server data consists of randomly

generated files of 1KB to 1MB sizes. The benchmark sends 100,000 requests and measures

the server-side throughput. Each experiment is repeated 3 times.



13.2. VIRTIO NETWORK DEVICE PERFORMANCE 125

4

8

12

16

20

5 10 20 40 80 100

Th
ro

u
gh

p
u

t 
(M

b
p

s)

Thread Count

Cloud Hypervisor
Redwood

(a) Varying concurrency.

0

20

40

60

80

1K 4K 64K 256K 1M

Th
ro

u
gh

p
u

t 
(M

b
p

s)

File size

Cloud Hypervisor

Redwood

(b) Varying file size.

Figure 13.2: Apache server throughput measured using Apache benchmark.

Figure 13.2a shows throughput for the Apache server for various numbers of threads, rang-

ing from 5 to 100, at the client machine sending requests for files of size 4KB. Figure 13.2b

shows throughput when the benchmark requests for files of various sizes ranging from 1KB to

1MB using 40 concurrent threads. As we can see from these graphs, the virtio-net device in

Redwood performs similarly to the one in Cloud Hypervisor, meaning that the HTTP server

and clients can enjoy added security without losing network throughput. For these experi-

ments, the maximum incurd RSD is 1.38% and 1.51% for Cloud Hypervisor and Redwood,

respectively.

13.2.3 Network Latency

We evaluate network latency using three tools. We measure the average latency of the guest

VM from the client machine using 100 pings with a one-second interval for both Cloud

Hypervisor and Redwood. Netperf [21] sends 1,000 requests per second to the guest VM

with even intervals. Memtier [22] benchmarks Memcached [18] in the VM by performing

100,000 SET and GET operations with a 1:10 ratio and 8KB data size.



126 CHAPTER 13. REDWOOD’S PERFORMANCE EVALUATION

0

0.2

0.4

0.6

0.8

1

Ping Netperf Memtier

La
te

n
cy

 (
m

s)

Cloud Hypervisor Redwood

Figure 13.3: Network Latency measured using different tools.

The latency of compartmentalized and regular virtio-net devices is compared in Figure 13.3.

The results show that the latency of virtio-net devices in Cloud Hypervisor (0.87ms) and

Redwood (0.83ms) are similar when measured by ping. Netperf recorded latencies of 0.42ms

for Cloud Hypervisor and 0.44ms for Redwood. The Memtier results showed 0.87ms latency

for regular devices and 0.88ms for isolated devices. These similar results for both VMMs

indicate that network device compartmentalization has no impact on latency.

13.3 Virtio Block Device Performance

For the virtio block device performance evaluation, we use an Ext-4 filesystem on an NVMe

SSD attached to the host machine. A 100GB raw file on the SSD is used as a disk for the

guest VM, where we ran the storage benchmarks to observe the difference between regular

and compartmentalized virtio block devices. We use dd [15] as a microbenchmark and

SysBench [26] (v1.1.0), a well-known file I/O benchmarking tool, as a microbenchmark. We

flush the read buffer for each run and use the total I/O size (16GB) larger than the main

memory (4GB) to exercise the disk aggressively.



13.3. VIRTIO BLOCK DEVICE PERFORMANCE 127

13.3.1 dd

We use dd to perform read and write operations on the virtio block devices to measure I/O

throughputs. To minimize overheads, we use /dev/zero and /dev/null devices as the read

source and write destination, respectively. We transfer 1GB of data from/to the device and

repeat each experiment 3 times. Figure 13.4 shows throughputs for read and write operations

using virtio block devices in Cloud Hypervisor and Redwood. As it depicts, both regular

and compartmentalized block devices yield similar throughput. Therefore, we can say MPK-

based isolation does not negatively affect the block device throughput. The maximum RSD

for these experiments are 0.012% and 0.08% for Cloud Hypervisor and Redwood, respectively.

0

200

400

600

800

Write Read

Th
ro

u
gh

p
u

t 
(M

B
p

s) Cloud Hypervisor Redwood

Figure 13.4: Virtio block’s read and write throughput measured using dd.

13.3.2 SysBench File I/O

To measure file I/O performance, we use SysBench. It performs random reads and writes on

a set of 100 files totaling 16GB. The ratio of read to write operations is 3:2, which reflects

the prevalence of read operations in many real-world scenarios. We ran the same experiment

with various numbers of threads (from 1 to 100) and block sizes (from 16KB to 128MB).

Each run took 5 minutes.



128 CHAPTER 13. REDWOOD’S PERFORMANCE EVALUATION

0

20

40

60

80

100

1 5 10 20 40 80 100

Th
ro

u
gh

p
u

t 
(M

B
p

s)

Thread Count

Cloud Hypervisor

Redwood

(a) Varying number of threads.

0

100

200

300

400

16K 256K 4M 32M 128M

Th
ro

u
gh

p
u

t 
(M

B
p

s)

File Size

Cloud Hypervisor

Redwood

(b) SysBench file I/O throughput.

Figure 13.5: File I/O throughput measured using SysBench.

Figures 13.5a and 13.5b show throughput for a block size of 256KB varying concurrency and

different number of block sizes with 20 threads, respectively. Cloud Hypervisor and Redwood

has similar throughput, with average RSD of 0.73% and 0.88% and latency of 23.57ms and

25.33ms, respectively.

13.4 Virtio Balloon Performance

To evaluate the performance of the virtio balloon device on Cloud Hypervisor and Redwood,

we measure memory bandwidth. We launch a VM with 4 CPUs and 10GB of memory, of

which 9GB is balloon memory (i.e., not online at the beginning). We modify the Parallel

Memory Bandwidth Benchmark (pmbw) [52] to vary its memory usage in each run. We

gradually increase the amount of memory usage of pmbw until it reaches a limit of 8GB,

where 7GB of it corresponds to balloon memory utilization. We took an average of 3 runs

for each configuration.



13.5. VHOST USER NETWORK DEVICE PERFORMANCE 129

0

3

6

9

12

15

18

8 32 128 512 2048 8192

B
an

d
w

id
th

 (
G

B
)

Data Size (MB)

Cloud Hypervisor Redwood

Figure 13.6: Memory bandwidth while using ballooning.

Figure 13.6 shows the memory bandwidth reported against different array sizes while using

virtio balloon devices in Cloud Hypervisor and Redwood. As one can see, both regular and

compartmentalized balloon devices exhibit similar memory bandwidth. The RSD for the

Cloud Hypervisor and Redwood measurements are 1.77% and 1.34%.

13.5 Vhost User Network Device Performance

DPDK is known for providing better performance for networking between VMs running on

the same host. Therefore, we measure network throughput, using iPerf3 [17] and Redis [23]

benchmarks, of such two VMs while they are connected through vhost-user-net devices of-

fered by OVS-DPDK.



130 CHAPTER 13. REDWOOD’S PERFORMANCE EVALUATION

13.5.1 iPerf

We ran the iPerf3 to measure TCP throughput for receive and transmit operations while VMs

use OVS-DPDK’s vhost-user-net interfaces. The server is run in one VM and the client in

another. Figure 13.7 shows the network throughput for regular and isolated OVS-DPDK. As

one can see, throughputs are not affected by isolation enforced on the mapped VM memory

at the OVS-DPDK vhost-user side. The RSD for these experiments are 0.023% and 0.017%

for regular and compartmentalized OVS-DPDK versions, respectively.

0

2

4

6

8

10

Recieve Transmit

Th
ro

u
gh

p
u

t 
(G

b
p

s)

Regular vhost-user-net

Isolated vhost-user-net

Figure 13.7: TCP receive and transmit throughput for vhost-user-net devices.

13.5.2 Redis

We utilized one VM to run Redis(v5.0.1) server, a popular key-value store. The Redis

benchmark in another VM runs millions of SET and GET operations, with a pipeline size

of 1000 with varying levels of concurrency, ranging from 5 to 20. Each operation performs a

read/write of 128MB of data using 64-bit keys.



13.5. VHOST USER NETWORK DEVICE PERFORMANCE 131

0

0.4

0.8

1.2

1.6

5 10 15 20

Tr
an

sa
ct

io
n

s(
M

)/
se

c

Thread Count

GET (Regular) GET (Isolate)

SET (Regular) SET (Isolate)

Figure 13.8: Redis throughput for operations under varying degrees of request concurrency.

Figure 13.8 shows the number of SET/GET operations performed per second while using

the regular and compartmentalized version of OVS-DPDK. Overall, the regular and com-

partmentalized DPDK vhost-user-net exhibit similar performance. The RSD for regular and

isolated DPDK is 0.00048% and 0.00051%, respectively.



Chapter 14

Redwood’s Security Evaluation

In this chapter, we explore Redwood’s security evaluation, which involves conducting an

analysis of CVEs and assessing the VMM’s attack surface. The primary objective is to

evaluate how Redwood’s design principles enhance the VMM’s resilience against known

security vulnerabilities, while also reducing the attacker’s flexibility in exploiting the gadgets

and bugs present in the VMM image.

Section 14.1 discusses the security aspect of Redwood in terms of CVE analysis. Section 14.2

compares the Cloud Hypervisor’s VMM image size with images from different configurations

of Redwood. Sections 14.3 and 14.4 present various gadget-oriented analyses with different

metrics to evaluate Redwood’s attack surface in comparison to Cloud Hypervisor.

14.1 CVE Analysis

Common mistakes, such as lack of validation, can create vulnerabilities such as a buffer

overflow leading to severe attacks such as arbitrary code execution. A small time window

between discovering a bug and applying mitigation may allow attackers to steal sensitive data

or disrupt a system. However, isolation techniques can limit attackers’ flexibility and prevent

them from exploiting unresolved bugs to carry out attacks on a VMM. While Redwood is

based on Cloud Hypervisor, the proposed hardening techniques apply to any VMM, including

QEMU, and can protect against many reported CVEs. In this section, we will explore a few

132



14.1. CVE ANALYSIS 133

of these CVEs to understand the resilience of the proposed VMM designs against them.

The VENOM vulnerability [7] (CVE-2015-3456) was discovered in 2015 but introduced in

2004. With this vulnerability, a guest VM user could keep filling a buffer in the emulated

floppy disk controller in QEMU for up to 20ms, resulting in a buffer overflow. It allowed

adversaries to bypass, crash, or gain code execution on the host OS with the QEMU process’s

privilege. Since most VMMs run with root access to the host machine, the potential damage

is severe, such as affecting the execution of other VMs and allowing for the theft of their

data. With our isolation approach, a VMM will deny (a segmentation fault for Redwood)

any attempt to overflow into other compartments to steal or manipulate their data, as access

to memory in those compartments is disabled. This way, even if a fix is not available, the

severity of the attack can be mitigated or significantly reduced.

Even if a guest does not have a floppy disk configured and attached, the VENOM vulnera-

bility is still exploitable. This is because the problem exists in the FDC, which is initialized

for every guest regardless of the configuration and cannot be removed or disabled. User-level

access to a guest with sufficient permissions to talk to FDC I/O ports is all that is required

to exploit this flaw. Redwood creates a specialized VMM that discards features like the

floppy disk if not needed for the VM. This flexibility can prevent adversaries from exploiting

bugs, such as VENOM, present in default devices that are irrelevant to the VM.

We identified 128 QEMU CVEs related to different devices, including 43 related to virtio

devices. For example, CVE-2021-3546 causes an out-of-bounds error when processing a

specific command from a guest on the virtio vhost-user GPU device. This error could allow

a privileged guest user to crash the QEMU process on the host, resulting in a denial of service

or potentially enabling code execution with the privileges of the QEMU process. Enforced

isolation can help prevent attackers from exploiting out-of-bounds vulnerabilities to perform

arbitrary code execution using the memory of a virtio device in another compartment. We



134 CHAPTER 14. REDWOOD’S SECURITY EVALUATION

found 79 out-of-bounds errors in QEMU. Whether QEMU is written in C, software written

in memory-safe languages can also be susceptible to similar issues. For example, we found

370 CVEs related to out-of-bounds errors in software written in Rust.

CVE-2019-18960 [12] allows an attacker to carry out a buffer overflow attack on Firecracker, a

rust-based VMM. The communication between the virtio device on the VMM and the driver

on the VM involve message passing and a shared memory buffer. A virtio-vsock message may

comprise a header, a buffer base address, and a buffer size. However, Firecracker’s virtio-

vsock implementation only verifies the validity of the base address. It does not check whether

the address with base+size is valid or whether the address with base and base+size are

within the same memory region. These flaws enable malicious guests to overflow the shared

memory. Therefore, a buffer overflow on the vsock buffer can eventually affect Firecracker’s

heap and let an attacker steal or manipulate its memory. It is further possible for an attacker

to use a heap overflow to overwrite arbitrary areas of memory, inject malicious code, and

execute arbitrary code with the privilege of Firecracker process.

This CVE demonstrates that it is possible to carry out severe attacks, such as buffer overflow

and arbitrary code execution, even when a VMM is written in a memory-safe language.

Redwood can defend against such memory-related attacks by isolating necessary I/O devices

in separate compartments and discarding unnecessary implementations. Therefore, even if

the security of one device (vsock in this example) is compromised, the attacker cannot

overflow to the memory that belongs to other devices and carry out an attack.

It is worth mentioning that these particular issues stem from the improper handling of raw

pointers in Rust’s unsafe blocks, which do not guarantee memory safety. However, often it

is not possible to avoid using unsafe code in Rust. For example, Cloud Hypervisor and its

dependencies contain approximately 5K lines of unsafe code.



14.2. IMAGE SIZE REDUCTION 135

There are a several CVEs reported for DPDK and OVS as well which are considered fatal.

CVE-2020-14374 allows an attacker within a VM to exploit a buffer overflow vulnerability in

the vhost-crypto DPDK application on the host. It enables the attacker to write arbitrary

data to process’ address and gain code execution. Though the vulnerability arises from

a simple flawed bound check, an attacker can copy up to 4GB application data with full

control over the copied content. CVE-2020-14375, CVE-2020-14376, and CVE-2020-14377

pose similar threats through time-of-check time-of-use, buffer overflow, and buffer over read

vulnerabilities, respectively. OVS-DPDK contains guest memory addresses and mappings

for all VMs connected through vhost-user. Therefore, an adversary within any of these

VMs can potentially steal data from other VMs using these vulnerabilities. However, our

design only allows guest memory access when needed, so an attacker will fail if they try to

arbitrarily read or write to other guest’s memory and will receive a segmentation fault. As a

result, these vulnerabilities will likely only cause the DPDK application to crash, rather than

allowing data stealing. While our design cannot completely prevent future vulnerabilities, it

significantly reduces their severity.

14.2 Image Size Reduction

We compare the default Cloud Hypervisor to Redwood’s various configurations based on

their VMM image sizes. A basic Redwood configuration includes core VMM components,

one bootloading mechanism, and no virtio devices. Adding virtio devices such as virtio-

block, virtio-net, or both slightly increases the image size. As shown in Figure 14.1, the basic

Redwood configuration has 50% smaller VMM image size than that of Cloud Hypervisor,

and the other three Redwood configurations are also significantly more compact.



136 CHAPTER 14. REDWOOD’S SECURITY EVALUATION

Basic

Virtio 
Block

Virtio 
Net

Virtio 
Block+Net

All

0

2

4

6

8

Si
ze

 (
M

B
)

Figure 14.1: Image sizes for Cloud Hypervisor (All) and different configurations of Redwood.

14.3 ROP Gadget Reduction

Reducing the number of ROP gadgets does not always mitigate a known vulnerability. Using

the methodology improve security, but a lower number of ROP gadgets can make it more

difficult for an attacker to construct ROP chains to exploit a known vulnerability. Using

the methodology from Follner et al. [71] and a tool [25], we counted ROP gadgets in the

following categories: Data move, Arithmetic, Logic, Control flow, Shift & Rotate, Setting

flags, String, Floating point, Misc, MMX, NOP, and RET. Each category represents a class

of operations.

Figure 14.2 shows the breakdown of ROP gadgets by category. The basic Redwood has 3x

fewer gadgets than the original Cloud Hypervisor. Redwood with common devices (virtio-net

and virtio-block) also has notably fewer gadgets. This shows a great potential for improving

security via VMM specialization.

14.4 Gadget Set Analysis

We perform a gadget set analysis on the default Cloud Hypervisor and different variations

of Redwood configurations using the GadgetSetAnalyzer tool, like we used it for analyzing



14.4. GADGET SET ANALYSIS 137

0

50

100

150

Basic VirtIO Block VirtIO Net Block+Net All

R
O

P
 G

ad
ge

t 
C

o
u

n
t 

(K
)

DataMove Arithmatic Logic
Control Flow Shift and Rotate Setting Flags
String Floating Misc
MMX Nop Ret

Figure 14.2: Gadgets for Cloud Hypervisor (All) and different configurations of Redwood.

Kite’s gadgets in Section 10.3. The results are depicted in Fiugre 14.3.

1

10

100

1000

10000

R
O

P
 E

xp
lo

it

A
SL

R
-P

ro
o

f
R

O
P

 E
xp

lo
it

Tu
ri

n
g

C
o

m
p

le
te

n
es

s

R
O

P

JO
P

C
O

P

R
O

P

JO
P

C
O

P

JO
P

C
O

P

JO
P

C
O

P

JO
P

Tr
am

p
o

lin
e

In
tr

a-
st

ac
k

C
O

P
 P

iv
o

t

Sy
sc

al
l

Expressivity Quality Quantity Dispatcher Dataloader Others

Basic Block
Net Block+Net
Cloud Hypervisor

Figure 14.3: Gadget set analysis.

The figure in Figure 14.3 shows that none of the Redwood VMMs increase the expressivity

of the fundamental functional gadget. However, the quality and quantity of ROP, JOP, and

COP gadgets increase with the increase in components in a Redwood VMM, exhibiting the

highest values for all default features enabled in Cloud Hypervisor. It essentially suggests

that fewer components help reducing gadget quality and quantity. Redwood also reduces

special-purpose gadgets that load data for and dispatch JOP and COP gadgets, as well as

JOP trampoline, COP intra-stack pivot, and system call gadgets, compared to the default



138 CHAPTER 14. REDWOOD’S SECURITY EVALUATION

Cloud Hypervisor. In summary, Redwood’s flexible configuration options can significantly

reduce an attacker’s freedom to exploit gadgets presented in the VMM.



Chapter 15

Conclusions

Cloud infrastructures are heavily dependent on virtualization technologies. In this disserta-

tion, we focus on the security risks associated with widely used virtualization technologies

and develop several techniques to mitigate them, preserving existing performance.

The device drivers are very crucial yet erroneous components in an OS. While Xen supports

moving device drivers to a separate VM to prevent device-related vulnerabilities from affect-

ing the whole virtualization infrastructure, the OSs in those VMs have considerably bigger

attack surfaces as they are general-purpose and fully featured. In contrast, using lightweight

OSs like unikernels for the driver domain can reduce the attack surface significantly. Un-

fortunately, no existent unikernel works as a driver domain. Though rumprun unikernel

benefits from NetBSD’s rich driver base, it lacks backend drivers, the crucial component of

any driver domain, implemented for Xen PV I/O devices. Rumprun lacks work queues, full

Xen-tools support, and the ability to execute scripts. As these challenges did not receive

adequate attention from prior researchers, this dissertation address them.

At the same time, existing VMMs are designed to be generic and fully featured so that

one VMM can support VMs with a wide range of configurations. Their rigid design does

not allow specializing VMMs based on the need of VMs, creating a large attack surface

for each instance of a VMM. While VMMs provide isolation between VMs, there is no

intra-VMM isolation for existing solutions to limit attackers’ freedom to exploit bugs in

one component and leverage that to steal data from or run arbitrary code on different

139



140 CHAPTER 15. CONCLUSIONS

components. Since the vulnerability in a VMM can negate the security benefit of VMMs,

it is crucial to bring changes to traditional VMM design, allowing per-VM specialization

and intra-VMM compartmentalization. Therefore, this dissertation discusses new VMM

principles addressing the mentioned issues and corresponding designs to implement them.

Performance acceleration architecture, such as DPDK and SPDK, are often incorporated

with VMM and VM to improve I/O performance. However, there are potential security

issues with such architectures, as they involve connecting multiple VM to and storing these

VMs’ sensitive information on the same userspace application. Any compromise in such

software may compromise the security of all connected VMs. This dissertation is the first to

address this issue and proposes security measures to prevent possible future attacks.

15.1 Contributions Revisited

15.1.1 Kite: Unikernelized Storage Domain

This dissertation presents a unikernelized storage driver domain. We leveraged rumprun,

a lightweight and minimalistic unikernel. We imported the physical storage driver from

NetBSD and introduced a Xen PV storage backend driver and a configuration application.

We evaluate the performance of the Kite storage domain with a rich set of well-known

benchmarking tools. We also measure security and deployment properties and compare them

with existing Linux-based OSs. Our evaluation shows that our Kite storage domains provide

competitive performance to Linux-based storage driver domains. The security evaluation

shows Kite has reduced attack surface, resulting from a minimal number of gadgets, smaller

image sizes, and fewer system calls, which helps mitigate known vulnerabilities. Kite also

exhibits a faster boot time.



15.1. CONTRIBUTIONS REVISITED 141

15.1.2 Kite: Unikernelized Network Domain

This dissertation also presents a unikernelized network driver domain, which is also based

on rumprun. Like storage drivers, we leverage NIC drivers from NetBSD. We design and

implement the Xen PV network backend driver and a network bridging application.

Our performance evaluation on the Kite network domain involves running well-known real-

life network applications and measuring their performance with micro- and macro-benchmarks.

The results show that Kite is as performant as Linux-based network domains. Kite network

domains are as secured as storage domains.

15.1.3 Redwood: Flexible Secure VMM

In this dissertation, we also present Redwood - a flexible and compartmentalized VMM based

on new design principles to secure cloud infrastructure, preserving performance benefits. A

flexible VMM model helps to reduce the attack surface significantly. Intra-VMM compart-

mentalization mechanisms provide resilience against vulnerability exploitation in VMMs.

We have implemented Redwood’s prototype VMM, written in Rust, which has 18 features

to choose from when building a VMM for any particular VM. It also separates 13 I/O de-

vices into distinct compartments with the help of hardware features for memory protection.

Our security evaluation reveals that Redwood can protect against many severe CVEs with-

out losing performance or compatibility with cloud OSs and reduces attack surface up to

50%. Moreover, we run a rich set of benchmarks to assess the performance of different

compartmentalized I/O devices in Redwood and compare them with another VMM called

Cloud Hypervisor. The results show Redwood’s compartmentalization does not incur any

noticeable performance penalty. Redwood also enables support for running unikernels.



142 CHAPTER 15. CONCLUSIONS

15.1.4 Vhost User Compartmentalization in DPDK

This dissertation proposes compartmentalizing sensitive VM information inside DPDK. We

isolated each VM’s memory mapping at the vhost-user interface in OVS-DPDK with the

help of hardware-based memory protection keys. Our proposed model enables access to a

VMs memory from the DPDK side only when necessary and keeps it disabled the rest of the

time. Therefore, an attacker cannot arbitrarily access any VMs’ memory from DPDK.

We do a security analysis and performance evaluation on DPDK with our proposed changes.

The analysis shows modified DPDK’s resilience to known CVEs. The enforced isolation does

not incur any performance penalty, measured with popular benchmarking applications.

15.2 Perspective on Dissertation Contributions

Unikernelization approaches have been gaining popularity in recent years due to their ability

to significantly reduce the size of virtual machines and enhance isolation between appli-

cations. Unikernels are therefore a great candidate for running cloud workloads. Prior

approaches have mostly focused on unikernelizing applications, but Kite takes a different

approach by unikernelizing driver domains.

Traditionally, full-fledged operating systems like Linux are capable of running multiple ap-

plications, scripts, physical device drivers, PV backends, and supporting rich workqueues,

which allows them to run driver domains. However, until now, no unikernel has supported

such infrastructure. Kite introduces techniques to overcome these limitations and run driver

domains in a unikernel. Kite’s approach to unikernelizing driver domains brings the benefits

of unikernels in the context of disaggregating the hypervisor and reducing the presence of

unwanted system calls while maintaining the high level of security and performance that



15.2. PERSPECTIVE ON DISSERTATION CONTRIBUTIONS 143

unikernels are known for.

Specialization is critical when developing software in a stack to meet specific requirements.

Although there are numerous existing VMM approaches designed to run VMs for particular

workloads, there is no general VMM approach that offers high flexibility enabling per-VM

specialization. However, the Redwood system breaks down the general VMM architecture

into fine-grained components and proposes highly customized VMMs that keep all existing

features available for VMs. By utilizing Redwood’s devised techniques, it is possible to

achieve flexible specialization for general VMMs.

Many hypervisor disaggregation techniques aim to increase isolation between multiple hy-

pervisor components by running them in separate VMs. This approach reduces the overall

attack surface of the system. However, when it comes to isolating software components

within the same process, intra-process compartmentalization techniques are more commonly

used. These techniques usually focus on isolating different libraries from each other. How-

ever, Redwood breaks down the general VMM architecture into fine-grained components

and proposes highly customized VMMs that retain all existing features available for VMs.

By utilizing Redwood’s techniques, we demonstrate how virtualization infrastructures can

improve cloud security without compromising performance. In general, Redwood’s six design

principles for improving security in virtualization systems can be applied to both existing

and future VMMs.

This dissertation reveals that acceleration architectures, such as DPDK, deployed to improve

performance and isolation in virtualization infrastructure, can introduce security concerns.

Our proposed solution for compartmentalizing sensitive VM information at the DPDK side

demonstrates how hardware-based isolation techniques can be used to protect VMs in the

event of an attack on the acceleration architecture in the cloud. Similar approaches can be

used in other acceleration frameworks that are associated with VMs.



144 CHAPTER 15. CONCLUSIONS

The central theme of the dissertation is improving the security of OS and virtualization soft-

ware by isolation, i.e., by compartmentalizing (OS and virtualization) software into separate

domains, vulnerabilities in one domain cannot be exploited to compromise other domains.

This security principle can also be applied to other software systems, both infrastructure

software as well as non-infrastructure software.

15.3 Limitations and Future Work

15.3.1 Ensuring Protection Key’s Integrity in Redwood

Redwood’s proposed compartmentalization can be implemented with different techniques,

such as protection keys, memory tagging [1], hardware capability [136], etc., to isolate VMM

components. Each technique has its own advantages and disadvantages. The Redwood

prototype uses Intel MPK [67] because of its support in popular x86-based architecture and

low-performance overhead. However, MPK-based memory protection is not perfect. The

prototype assigns one distinct pkey per compartment, where compartments are mutually

distrusting. It uses pkey to change access permission to the memory of a compartment as

per invocation. The permission changes occure at a few distinct locations using a few lines

of trusted code. However, if attackers can manage to inject or manipulate code to change

pkey permission, they can compromise the compartmentalization. Therefore, it is crucial to

ensure that the pkey permission changes only happen at designated locations using legitimate

codes, guaranteeing integrity in VMM’s code control flow.

Even if not for VMM compartmentalization, researchers have addressed this problem in dif-

ferent contexts. For instance, ERIM’s [131] security model compartmentalizes applications

into a trusted and untrusted domain. ERIM assumes the trusted domain is not exploitable.



15.3. LIMITATIONS AND FUTURE WORK 145

ERIM uses call gates and safe instructions to switch between the two domains. Any other in-

structions are considered unsafe and are either replaced by functionally equivalent sequences

or monitored at runtime. At startup, ERIM verifies the absence of unsafe instructions in the

protected application and terminates the program if the monitor finds an unsafe instruction

being executed. Hodor [77] uses a trusted application loader to partition the application

into trusted and untrusted libraries. The pkey-based sandbox monitors the application at

runtime to prevent the abuse of unsafe instructions. When the application marks a page

as executable, the trusted loader first scans the page for unsafe instructions and triggers a

fault if any are found. Hodor requires kernel modification to either put hardware break-

points on the unsafe instructions or single-step through the page to ensure that the kernel

vets all unsafe instructions. If a hardware breakpoint is triggered, the program execution is

terminated. However, their technique comes with execution overhead because of monitoring

and has some security and usability challenges [132].

We propose comprehensive research for finding an appropriate method that ensures attackers

cannot change pkeys permission on a compartment even if they gain control of some part

of VMM. Techniques such as execution monitoring, anomaly detection [122], control flow

integrity, or control flow execution [30] can be taken into consideration to achieve such

a guarantee. It would also be a potential problem to understand incurred performance

penalties in VMMs because of the introduced security mechanisms that ensure pkeys safety.

15.3.2 Automating Compartmentalization

Redwood’s proposed principle and design for compartmentalization help limit an adver-

sary’s freedom to exploit bugs in one VMM component to manipulate an attack in another

component. We exercised a protection key-based memory isolation technique for compart-



146 CHAPTER 15. CONCLUSIONS

mentalizing I/O devices in Redwood’s prototype. We manually identified what memories are

allocated and used for those devices and set the pkey to those memory locations accordingly,

which requires a careful understanding of VMM implementation. However, there is always

a chance that the developer may miss setting a pkey to an expected memory location.

Therefore, we propose automating the compartmentalization process to identify all memory

locations associated with a VMM component after taking a component’s identity as an input.

One way to achieve such automation is by making the compiler analyze the intermediate

representation of a VMM code and annotate all memory locations of a component with a

pkey. Another way would be developing a script that will automatically edit the VMM’s

code for isolating components. We believe figuring out the best method for automatic VMM

compartmentalization would be an interesting future work.

15.3.3 Unikernelized Vhost User Devices

Offloading the implementation of virtio devices, referred to as vhost-user devices, to the

host’s userspace increases isolation and reduces the attack surface of a VMM. Acceleration

technologies such as DPDK and SPDK, as shown in Figure 15.1a, use this approach to

connect to guest VMs. However, running the acceleration application directly on the host

increases the host’s attack surface, as each application has its own vulnerabilities. To address

this, running the entire acceleration application inside a guest VM provides better isolation

between the host and the vhost-user device. The recent introduction of the virtio-vhost-user

device [13] enables a guest VM to act as a vhost-user device, allowing applications such as

DPDK and SPDK to run inside VMs and provide vhost devices to other VMs.

The virio-vhost-user implementation involves running OVS-DPDK inside a full-fledged Linux

VM. As discussed in this dissertation before, a full-fledged Linux suffers from a large attack



15.3. LIMITATIONS AND FUTURE WORK 147

Host

VMM

Hardware

Guest VM

KVM

vhost-user-device virtio-driver

OVS-DPDK

Switch

PMD pmd-driver

(a) Regular vhost-user device.

Host

VMM

Hardware

Guest VM

KVM

virtio-vhost-user-device

virtio-driver

OVS-DPDK

Switch

PMD

pmd-driver

Unikernel

VMM

(b) Unikernelized virtio-vhost-user device.

Figure 15.1: Unikernelized acceleration architectures with virtio-vhost-user devices can pro-
vide VM-level isolation to reduce the attack surface.

surface. On the other hand, a VM with a virtio-vhost-user device does not need to be

generic, as it will mostly run the OVS-DPDK application. Therefore, we propose running

virtio-vhost-user devices as unikernels to reduce attack surface significantly, like Kite driver

domains, as opposed to Linux. Figure 15.1 shows the current OVS-DPK vhost-user archi-

tecture (a) along with the proposed architecture with unikernel (b) for the same setup. It

may need some investigation to fit the application (the one that will run with the virtio-

vhost-user device) and its associated scripts or daemons in the unikernel. The introduced

indirection can cause some performance hits and may require some optimization to minimize

that, which can be another interesting research problem.

15.3.4 Unikernelized Virtio Driver Domain for Xen and KVM

The Virtio specification provides a higher number of PV devices compared to those offered

by Xen device models. Furthermore, Virtio is widely adopted across various hypervisors

in virtualization environments, making its integration with Xen a crucial and ongoing ef-

fort. Despite this, Xen’s driver domain model is a distinctive feature not found in other



148 CHAPTER 15. CONCLUSIONS

hypervisors. Driver domains help to isolate critical components and reduce the scope of vul-

nerability. As a result, the implementation of Virtio devices in Xen and the driver domain

in KVM can enable the virtio driver domain for both hypervisors, which is a very desired

feature.

Dom-0

Xen Hypervisor

Hardware

Unikernelized
Virtio Driver 

Domain

Guest VM
(DomU)

Figure 15.2: Architecture for unikernelized virtio driver domain on Xen.

On the other hand, the Kite driver domain shows how unikernelizing critical device driver

domains can reduce attack surface significantly without losing any performance benefit.

Therefore, this dissertation proposes the unikernelization of the driver domain capable of

running virtio devices on Xen and KVM as future work, as depicted in Figure 15.2. We

expect similar security and performance benefits from the virtio driver domain that Kite

offers. Therefore, a Xen- and Kvm-based virtualization system can enjoy more PV devices

with enhanced security, keeping a minimal attack surface.

15.3.5 Rumprun PVH

As shown in Figure 15.3, Xen offers multiple virtualization modes. For the work presented

in this dissertation, we leveraged rumprun with HVM (or PVHVM to be specific) support

from LibrettOS [103]. However, the last addition to this list is PVH, which is a lightweight

virtualization mode that does not require any QEMU emulation and benefits from hardware-

accelerated virtualization. The PVH support in rumprun is yet to be implemented, which



15.3. LIMITATIONS AND FUTURE WORK 149

can be another direction for future work.

Figure 15.3: Overview of the various virtualization modes implemented in Xen.
(Courtesy: Xen Project [29])



150 CHAPTER 15. CONCLUSIONS

There are similarities between PVHVM and PVH mode. Both use hardware virtualization,

such as Intel VT or AMD-V extensions of the host CPU, for virtualizing. For I/O device

virtualization, such as network and storage, both PVHVM and PVH rely on PV device

drivers. Hardware virtualization features are used for trapping privileged instructions and

manipulating page tables by both modes.

PVHVM uses Software Acceleration, such as Local APIC, Posted Interrupts, Viridian (Hyper-

V) enlightenments, and makes use of guest PV interfaces because they are faster. In con-

trast, PVH leverages hardware acceleration support instead of the PV interface. Unlike

HVM guests, PVH guests do not require QEMU to emulate devices, which makes the PVH

guests lighter than PVHVM.

We expect that enabling rumprun with the PVH mode would make it lightweight and faster

than it is now with the PVHVM mode. However, there are challenges in doing that, such as

adopting PVH for rumprun, which we did not need for PVHVM. Moreover, PVH integration

is still a work-in-progress, and several features are yet to be added to Xen. For instance, PCI

passthrough support is still absent, but it is essential for driver domain implementation. We

anticipate that these missing features will be supported soon and propose to upgrade our

rumprun-based Kite driver domains.



Bibliography

[1] [n. d.]. Armv8.5-A Memory Tagging Extension. https://developer.arm.com/

-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_

Whitepaper.pdf. Accessed: 2022-01-08.

[2] [n. d.]. Open Virtual Machine Firmware. http://www.linux-kvm.org/downloads/

lersek/ovmf-whitepaper-c770f8c.txt. Accessed: 2022-01-08.

[3] [n. d.]. Rust Hypervisor Firmware. https://github.com/cloud-hypervisor/

rust-hypervisor-firmware. Accessed: 2022-01-08.

[4] [n. d.]. vDPA - virtio Data Path Acceleration . https://vdpa-dev.gitlab.io/. Ac-

cessed: 2022-01-08.

[5] [n. d.]. VFIO - “Virtual Function I/O” . https://docs.kernel.org/driver-api/

vfio.html. Accessed: 2022-01-08.

[6] 2015. Dom0. https://wiki.xenproject.org/wiki/Dom0 Online, accessed

02/01/2023.

[7] 2015. The VENOM vulnerability. http://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2015-3456.

[8] 2016. Docker Acquires Unikernel Systems to Extend the Breadth of the

Docker Platform. https://www.docker.com/docker-news-and-press/

docker-acquires-unikernel-systems-extend-breadth-docker-platform.

[9] 2016. Elastic Network Adapter – High Performance Network In-

terface for Amazon EC2. https://aws.amazon.com/blogs/aws/

151

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-c770f8c.txt
http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-c770f8c.txt
https://github.com/cloud-hypervisor/rust-hypervisor-firmware
https://github.com/cloud-hypervisor/rust-hypervisor-firmware
https://vdpa-dev.gitlab.io/
https://docs.kernel.org/driver-api/vfio.html
https://docs.kernel.org/driver-api/vfio.html
https://wiki.xenproject.org/wiki/Dom0
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456
https://www.docker.com/docker-news-and-press/docker-acquires-unikernel-systems-extend-breadth-docker-platform
https://www.docker.com/docker-news-and-press/docker-acquires-unikernel-systems-extend-breadth-docker-platform
https://aws.amazon.com/blogs/aws/elastic-network-adapter-high-performance-network-interface-for-amazon-ec2/
https://aws.amazon.com/blogs/aws/elastic-network-adapter-high-performance-network-interface-for-amazon-ec2/


152 BIBLIOGRAPHY

elastic-network-adapter-high-performance-network-interface-for-amazon-ec2/

Online, accessed 02/01/2023.

[10] 2018. Raspberry Pi 3 Model B. https://www.raspberrypi.org/products/

raspberry-pi-3-model-b/ Online, accessed 09/15/2018.

[11] 2018. Ubuntu 18.04.6 LTS (Bionic Beaver). https://releases.ubuntu.com/18.04/

Online, accessed 02/01/2023.

[12] 2019. CVE-2019-18960. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2019-18960.

[13] 2019. Virtual I/O Device (VIRTIO) Version 1.1. https://uarif1.github.io/vvu/

virtio-v1.1-cs01 Online, accessed 02/02/2023.

[14] 2020. CVE-2020-14377. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2020-14377.

[15] 2020. dd – convert and copy a file. https://man7.org/linux/man-pages/man1/dd.

1.html.

[16] 2020. Intel Trust Domain Extensions (Intel TDX). https:

//www.intel.com/content/www/us/en/developer/articles/technical/

intel-trust-domain-extensions.html.

[17] 2020. iPerf - The ultimate speed test tool for TCP, UDP and SCTP. https:

//iperf.fr/.

[18] 2020. Memcached. http://memcached.org/.

[19] 2020. mongoDB. The database for modern applications. https://www.mongodb.com/

Online, accessed 05/26/2020.

https://aws.amazon.com/blogs/aws/elastic-network-adapter-high-performance-network-interface-for-amazon-ec2/
https://aws.amazon.com/blogs/aws/elastic-network-adapter-high-performance-network-interface-for-amazon-ec2/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://releases.ubuntu.com/18.04/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18960
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18960
https://uarif1.github.io/vvu/virtio-v1.1-cs01
https://uarif1.github.io/vvu/virtio-v1.1-cs01
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14377
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14377
https://man7.org/linux/man-pages/man1/dd.1.html
https://man7.org/linux/man-pages/man1/dd.1.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://iperf.fr/
https://iperf.fr/
http://memcached.org/
https://www.mongodb.com/


BIBLIOGRAPHY 153

[20] 2020. MySQL. https://www.mysql.com/.

[21] 2020. Netperf Manual. http://www.cs.kent.edu/~farrell/dist/ref/Netperf.

html.

[22] 2020. NoSQL Redis and Memcache traffic generation and benchmarking tool. https:

//github.com/RedisLabs/memtier_benchmark/.

[23] 2020. Redis. https://redis.io/.

[24] 2020. Ropper. https://github.com/sashs/Ropper Online, accessed 05/26/2020.

[25] 2020. Ropper. https://github.com/sashs/Ropper.

[26] 2020. SysBench Manual. https://man7.org/linux/man-pages/man1/dd.1.html.

[27] 2020. SYSSTAT Utilities. http://sebastien.godard.pagesperso-orange.fr/.

[28] 2020. The NetBSD Project. https://netbsd.org.

[29] 2020. Xen Project. https://wiki.xenproject.org/wiki/Xen_Project_Software_

Overview Online, accessed 05/26/2020.

[30] 2021. Intel 64 and IA-32 Architectures Developer’s Manual. http://www.intel.com/.

[31] 2021. Nuttcp Welcome Page. https://www.nuttcp.net.

[32] 2021. Xen application CVE search. https://cve.mitre.org/cgi-bin/cvekey.cgi?

keyword=linux+crafted+application.

[33] 2021. Xen application CVE search. https://cve.mitre.org/cgi-bin/cvekey.cgi?

keyword=linux+shell.

https://www.mysql.com/
http://www.cs.kent.edu/~farrell/dist/ref/Netperf.html
http://www.cs.kent.edu/~farrell/dist/ref/Netperf.html
https://github.com/RedisLabs/memtier_benchmark/
https://github.com/RedisLabs/memtier_benchmark/
https://redis.io/
https://github.com/sashs/Ropper
https://github.com/sashs/Ropper
https://man7.org/linux/man-pages/man1/dd.1.html
http://sebastien.godard.pagesperso-orange.fr/
https://netbsd.org
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview
http://www.intel.com/
https://www.nuttcp.net
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+crafted+application
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+crafted+application
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+shell
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+shell


154 BIBLIOGRAPHY

[34] 2022. An alternative to nested virtualization. https://research.ibm.com/blog/

nested-virtualization-free-turtles.

[35] 2022. AMD Secure Encrypted Virtualization (SEV). https://developer.amd.com/

sev/.

[36] 2022. cgroups. https://man7.org/linux/man-pages/man7/cgroups.7.html.

[37] 2022. GadgetSetAnalyzer. https://github.com/michaelbrownuc/

GadgetSetAnalyzer.

[38] 2022. kvmtool. https://github.com/kvmtool/kvmtool.

[39] 2023. Amazon Elastic Compute Cloud Documentation. https://docs.aws.amazon.

com/ec2/index.html Online, accessed 02/01/2023.

[40] 2023. Common Vulnerability Scoring System SIG. https://www.first.org/cvss/

Online, accessed 02/01/2023.

[41] 2023. CVE. https://cve.mitre.org/ Online, accessed 02/01/2023.

[42] 2023. CVE Details. https://www.cvedetails.com/ Online, accessed 02/01/2023.

[43] 2023. What Is a Cloud Server? https://www.rackspace.com/library/

what-is-a-cloud-server Online, accessed 02/01/2023.

[44] IEEE Std 802.11 a. 1999. Wireless LAN medium access control (MAC) and physical

layer (PHY) specification: high-speed physical layer in the 5GHz band. (1999).

[45] Cloud Hypervisor a Series of LF Projects LLC. 2022. Cloud Hypervisor. https:

//www.cloudhypervisor.org/.

https://research.ibm.com/blog/nested-virtualization-free-turtles
https://research.ibm.com/blog/nested-virtualization-free-turtles
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://github.com/michaelbrownuc/GadgetSetAnalyzer
https://github.com/michaelbrownuc/GadgetSetAnalyzer
https://github.com/kvmtool/kvmtool
https://docs.aws.amazon.com/ec2/index.html
https://docs.aws.amazon.com/ec2/index.html
https://www.first.org/cvss/
https://cve.mitre.org/
https://www.cvedetails.com/
https://www.rackspace.com/library/what-is-a-cloud-server
https://www.rackspace.com/library/what-is-a-cloud-server
https://www.cloudhypervisor.org/
https://www.cloudhypervisor.org/


BIBLIOGRAPHY 155

[46] Md Salman Ahmed, Ya Xiao, Kevin Z. Snow, Gang Tan, Fabian Monrose, and Danfeng

Yao. 2020. Methodologies for Quantifying (Re-)randomization Security and Timing

under JIT-ROP. In 26th ACM Conference on Computer and Communications Security

(CCS). 1803–1820.

[47] AMD, Inc. [n. d.]. AMD I/O Virtualization Technology (IOMMU) Specification. http:

//www.amd.com/system/files/TechDocs/48882_IOMMU.pdf.

[48] T. E. Anderson. 1992. The case for application-specific operating systems. In [1992]

Proceedings Third Workshop on Workstation Operating Systems. 92–94. https://

doi.org/10.1109/WWOS.1992.275682

[49] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the Art of Virtual-

ization. In Proceedings of the 19th ACM Symposium on Operating Systems Princi-

ples (Bolton Landing, NY, USA) (SOSP ’03). 164–177. https://doi.org/10.1145/

945445.945462

[50] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and

Christos Kozyrakis. 2012. Dune: Safe User-Level Access to Privileged CPU Features

(OSDI’12). USENIX Association, USA, 335–348.

[51] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El,

Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. 2010.

The Turtles Project: Design and Implementation of Nested Virtualization. In 9th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 10).

USENIX Association, Vancouver, BC. https://www.usenix.org/conference/

osdi10/turtles-project-design-and-implementation-nested-virtualization

http://www.amd.com/system/files/TechDocs/48882_IOMMU.pdf
http://www.amd.com/system/files/TechDocs/48882_IOMMU.pdf
https://doi.org/10.1109/WWOS.1992.275682
https://doi.org/10.1109/WWOS.1992.275682
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/945445.945462
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization


156 BIBLIOGRAPHY

[52] Timo Bingmann. [n. d.]. pmbw - Parallel Memory Bandwidth Benchmark / Measure-

ment. https://panthema.net/2013/pmbw/. Accessed: 2022-01-04.

[53] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh. 2014.

Hacking blind. In 2014 IEEE Symposium on Security and Privacy. IEEE, 227–242.

[54] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge: Split-

ting Applications into Reduced-Privilege Compartments. In Proceedings of the 5th

USENIX Symposium on Networked Systems Design and Implementation (San Fran-

cisco, California) (NSDI’08). USENIX Association, USA, 309–322.

[55] Manel Bourguiba, Kamel Haddadou, Ines KORBI, and Guy Pujolle. 2014. Improving

Network I/O Virtualization for Cloud Computing. Parallel and Distributed Systems,

IEEE Transactions on 25 (03 2014), 673–681. https://doi.org/10.1109/TPDS.

2013.29

[56] Manel Bourguiba, Kamel Haddadou, and Guy Pujolle. 2012. Packet Aggregation Based

Network I/O Virtualization for Cloud Computing. Computer Communications 35 (02

2012), 309–319. https://doi.org/10.1016/j.comcom.2011.10.002

[57] Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E Engelstad, and Kyrre

Begnum. 2015. IncludeOS: A minimal, resource efficient unikernel for cloud services. In

Proceedings of the 7th IEEE International Conference on Cloud Computing Technology

and Science (CloudCom ’15). 250–257.

[58] Michael D. Brown and Santosh Pande. 2019. Is Less Really More? Towards Better

Metrics for Measuring Security Improvements Realized through Software Debloating

(CSET’19). USENIX Association, USA, 5.

https://panthema.net/2013/pmbw/
https://doi.org/10.1109/TPDS.2013.29
https://doi.org/10.1109/TPDS.2013.29
https://doi.org/10.1016/j.comcom.2011.10.002


BIBLIOGRAPHY 157

[59] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. 2017. Hardware and software support

for virtualization. Synthesis Lectures on Computer Architecture 12, 1 (2017), 1–206.

[60] Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining light on shadow

stacks. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 985–999.

[61] Shakeel Butt, H Andrés Lagar-Cavilla, Abhinav Srivastava, and Vinod Ganapathy.

2012. Self-service cloud computing. In Proceedings of the 2012 ACM conference on

Computer and communications security. 253–264.

[62] Yuan Chen, Jiaqi Li, Guorui Xu, Yajin Zhou, Zhi Wang, Cong Wang, and Kui Ren.

2022. SGXLock: Towards Efficiently Establishing Mutual Distrust Between Host Ap-

plication and Enclave for SGX. In USENIX Security Symposium.

[63] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu. 2016.

Shreds: Fine-Grained Execution Units with Private Memory. In 2016 IEEE Sympo-

sium on Security and Privacy (SP). 56–71. https://doi.org/10.1109/SP.2016.12

[64] Long Cheng, Salman Ahmed, Hans Liljestrand, Thomas Nyman, Haipeng Cai, Trent

Jaeger, N. Asokan, and Danfeng (Daphne) Yao. 2021. Exploitation Techniques for

Data-Oriented Attacks with Existing and Potential Defense Approaches. ACM Trans.

Priv. Secur. 24, 4, Article 26 (sep 2021), 36 pages. https://doi.org/10.1145/

3462699

[65] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello, George Coker, Tim Deegan,

Peter Loscocco, and Andrew Warfield. 2011. Breaking Up is Hard to Do: Security and

Functionality in a Commodity Hypervisor. In Proceedings of the 23rd ACM Symposium

on Operating Systems Principles (SOSP ’11). 189–202. https://doi.org/10.1145/

2043556.2043575

https://doi.org/10.1109/SP.2016.12
https://doi.org/10.1145/3462699
https://doi.org/10.1145/3462699
https://doi.org/10.1145/2043556.2043575
https://doi.org/10.1145/2043556.2043575


158 BIBLIOGRAPHY

[66] QEMU contributors. 2022. QEMU: A generic and open source machine emulator and

virtualizer. https://www.qemu.org/.

[67] Jonathan Corbet. 2015. Memory protection keys. https://lwn.net/Articles/

643797/.

[68] Intel Corp. 2018. Intel Clear Containers. https://clearlinux.org/documentation/

clear-containers.

[69] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. https://eprint.

iacr.org/2016/086.pdf.

[70] Andreas Follner, Alexandre Bartel, and Eric Bodden. 2016. Analyzing the Gadgets.

In Proceedings of the 8th International Symposium on Engineering Secure Software

and Systems - Volume 9639 (London, UK) (ESSoS 2016). Springer-Verlag, Berlin,

Heidelberg, 155–172. https://doi.org/10.1007/978-3-319-30806-7_10

[71] Andreas Follner, Alexandre Bartel, and Eric Bodden. 2016. Analyzing the Gadgets.

In Proceedings of the 8th International Symposium on Engineering Secure Software

and Systems - Volume 9639 (London, UK) (ESSoS 2016). Springer-Verlag, Berlin,

Heidelberg, 155–172. https://doi.org/10.1007/978-3-319-30806-7_10

[72] Cloud Native Computing Foundation. 2020. Production-Grade Container Orchestra-

tion. https://kubernetes.io/.

[73] Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and Edouard Bugnion.

2021. Enclosure: Language-Based Restriction of Untrusted Libraries. In Proceedings

of the 26th ACM International Conference on Architectural Support for Program-

ming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association

https://www.qemu.org/
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
https://clearlinux.org/documentation/clear-containers
https://clearlinux.org/documentation/clear-containers
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf
https://doi.org/10.1007/978-3-319-30806-7_10
https://doi.org/10.1007/978-3-319-30806-7_10
https://kubernetes.io/


BIBLIOGRAPHY 159

for Computing Machinery, New York, NY, USA, 255–267. https://doi.org/10.

1145/3445814.3446728

[74] Tom Goethals, Merlijn Sebrechts, Ankita Atrey, Bruno Volckaert, and Filip Turck.

2018. Unikernels vs Containers: An In-Depth Benchmarking Study in the Context of

Microservice Applications. 1–8. https://doi.org/10.1109/SC2.2018.00008

[75] Spyridoula Gravani, Mohammad Hedayati, John Criswell, and Michael L Scott. 2020.

IskiOS: Intra-kernel Isolation and Security using Memory Protection Keys. (2020).

[76] Irfan Habib. 2008. Virtualization with KVM. Linux Journal 2008, 166 (2008), 8.

[77] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell, Michael L.

Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process Isolation for High-

Throughput Data Plane Libraries. In Proceedings of the 2019 USENIX Conference

on Usenix Annual Technical Conference (Renton, WA, USA) (USENIX ATC ’19).

USENIX Association, USA, 489–503.

[78] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias Payer. 2016.

Enforcing Least Privilege Memory Views for Multithreaded Applications (CCS ’16).

Association for Computing Machinery, New York, NY, USA, 393–405. https://doi.

org/10.1145/2976749.2978327

[79] Intel Corporation. [n. d.]. Intel’s Virtualization for Directed I/O. http://www.intel.

com/content/dam/www/public/us/en/documents/product-specifications/

vt-directed-io-spec.pdf.

[80] Mohannad Ismail, Jinwoo Yom, Christopher Jelesnianski, Yeongjin Jang, and Chang-

woo Min. 2021. VIP: Safeguard Value Invariant Property for Thwarting Critical

https://doi.org/10.1145/3445814.3446728
https://doi.org/10.1145/3445814.3446728
https://doi.org/10.1109/SC2.2018.00008
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1145/2976749.2978327
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf


160 BIBLIOGRAPHY

Memory Corruption Attacks. In Proceedings of the 2021 ACM SIGSAC Confer-

ence on Computer and Communications Security (Virtual Event, Republic of Korea)

(CCS ’21). Association for Computing Machinery, New York, NY, USA, 1612–1626.

https://doi.org/10.1145/3460120.3485376

[81] Xuancheng Jin, Xuangan Xiao, Songlin Jia, Wang Gao, Dawu Gu, Hang Zhang, Siqi

Ma, Zhiyun Qian, and Juanru Li. 2022. Annotating, Tracking, and Protecting Crypto-

graphic Secrets with CryptoMPK. In 2022 IEEE Symposium on Security and Privacy

(SP). 650–665. https://doi.org/10.1109/SP46214.2022.9833650

[82] Antti Kantee and Justin Cormack. 2014. Rump Kernels No OS? No Problem!

USENIX; login: magazine (2014).

[83] Samuel T. King, George W. Dunlap, and Peter M. Chen. 2003. Operating system

support for virtual machines. In ATEC ’03: Proceedings of the 2003 USENIX Annual

Technical Conference. 71–84.

[84] Avi Kivity, Dor Laor Glauber Costa, and Pekka Enberg. 2014. OSv - Optimizing the

Operating System for Virtual Machines. In Proceedings of the 2014 USENIX Annual

Technical Conference (ATC ’14). 61.

[85] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopoulos.

2017. No Need to Hide: Protecting Safe Regions on Commodity Hardware. In Pro-

ceedings of the Twelfth European Conference on Computer Systems (Belgrade, Serbia)

(EuroSys ’17). Association for Computing Machinery, New York, NY, USA, 437–452.

https://doi.org/10.1145/3064176.3064217

[86] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020. A Linux

in Unikernel Clothing. In Proceedings of the 15h European Conference on Computer

https://doi.org/10.1145/3460120.3485376
https://doi.org/10.1109/SP46214.2022.9833650
https://doi.org/10.1145/3064176.3064217


BIBLIOGRAPHY 161

Systems (Heraklion, Greece) (EuroSys ’20). Article 11, 15 pages. https://doi.org/

10.1145/3342195.3387526

[87] Stefan Lankes, Simon Pickartz, and Jens Breitbart. 2016. HermitCore: a unikernel for

extreme scale computing. In Proceedings of the 6th International Workshop on Runtime

and Operating Systems for Supercomputers (ROSS ’16).

[88] David Law. 2019. IEEE Standard for Ethernet-Amendment 1: Physical Layer Speci-

fication and Management Parameters for 2.5 Gb/s and 5 Gb/s Operation over Back-

plane. IEEE Std 802.3 cb-2018 (Amendment to IEEE Std 802.3-2018) (2019).

[89] Hojoon Lee, Chihyun Song, and Brent Byunghoon Kang. 2018. Lord of the X86

Rings: A Portable User Mode Privilege Separation Architecture on X86 (CCS ’18).

Association for Computing Machinery, New York, NY, USA, 1441–1454. https:

//doi.org/10.1145/3243734.3243748

[90] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Alexander Jung, Stefan Lucian Teodorescu, Se-

bastian Rauch, Felipe Huici, Costin Raiciu, and Pierre Olivier. 2022. FlexOS: Towards

Flexible OS Isolation. In Proceedings of the 27th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems (Lausanne,

Switzerland) (ASPLOS ’22). Association for Computing Machinery, New York, NY,

USA, 467–482. https://doi.org/10.1145/3503222.3507759

[91] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Ste-

fan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018.

Meltdown. ArXiv e-prints (Jan. 2018). arXiv:1801.01207

[92] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby Bhat-

tacharjee, and Peter Druschel. 2016. Light-Weight Contexts: An OS Abstraction for

Safety and Performance (OSDI’16). USENIX Association, USA, 49–64.

https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1145/3243734.3243748
https://doi.org/10.1145/3243734.3243748
https://doi.org/10.1145/3503222.3507759


162 BIBLIOGRAPHY

[93] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting

Memory Disclosure with Efficient Hypervisor-Enforced Intra-Domain Isolation (CCS

’15). Association for Computing Machinery, New York, NY, USA, 1607–1619. https:

//doi.org/10.1145/2810103.2813690

[94] ARM Ltd. 2009. Building a Secure System using TrustZone Technology. https:

//documentation-service.arm.com/static/5f212796500e883ab8e74531?token=.

[95] A Madhavapeddy, R Mortier, C Rotsos, DJ Scott, B Singh, T Gazagnaire, S Smith,

S Hand, and J Crowcroft. 2013. Unikernels: library operating systems for the cloud..

In Proceedings of the 18th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS ’13). 461–472.

[96] A Madhavapeddy, R Mortier, C Rotsos, DJ Scott, B Singh, T Gazagnaire, S Smith,

S Hand, and J Crowcroft. 2013. Unikernels: library operating systems for the cloud..

In Proceedings of the 18th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS’13). 461–472.

[97] Anil Madhavapeddy and David J Scott. 2013. Unikernels: Rise of the virtual library

operating system. Queue 11, 11 (2013), 30–44.

[98] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit

Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter

(and Safer) Than Your Container. In Proceedings of the 26th Symposium on Operating

Systems Principles (Shanghai, China) (SOSP ’17). 218–233. https://doi.org/10.

1145/3132747.3132763

[99] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,

Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the Art of Network Function

https://doi.org/10.1145/2810103.2813690
https://doi.org/10.1145/2810103.2813690
https://documentation-service.arm.com/static/5f212796500e883ab8e74531?token=
https://documentation-service.arm.com/static/5f212796500e883ab8e74531?token=
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/3132747.3132763


BIBLIOGRAPHY 163

Virtualization. In Proceedings of the 11th USENIX Conference on Networked Systems

Design and Implementation (Seattle, WA) (NSDI ’14). 459–473. http://dl.acm.

org/citation.cfm?id=2616448.2616491

[100] A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran. 2022. Kite: Lightweight

Critical Service Domains (EuroSys ’22). Association for Computing Machinery, New

York, NY, USA, 384–401. https://doi.org/10.1145/3492321.3519586

[101] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent development

and deployment. Linux Journal 2014, 239 (2014), 2.

[102] Derek Gordon Murray, Grzegorz Milos, and Steven Hand. 2008. Improving Xen se-

curity through disaggregation. In Proceedings of the 4th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments (VEE ’08). 151–160.

[103] Ruslan Nikolaev, Mincheol Sung, and Binoy Ravindran. 2020. LibrettOS: A Dy-

namically Adaptable Multiserver-Library OS. In Proceedings of the 16th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments (Lau-

sanne, Switzerland) (VEE ’20). 114–128. https://doi.org/10.1145/3381052.

3381316

[104] Ron Oglesby and Scott Herold. 2005. VMware ESX Server: Advanced Technical Design

Guide (Advanced Technical Design Guide series).

[105] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravin-

dran. 2019. A Binary-Compatible Unikernel. In Proceedings of the 15th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments (Provi-

dence, RI, USA) (VEE 2019). Association for Computing Machinery, New York, NY,

USA, 59–73. https://doi.org/10.1145/3313808.3313817

http://dl.acm.org/citation.cfm?id=2616448.2616491
http://dl.acm.org/citation.cfm?id=2616448.2616491
https://doi.org/10.1145/3492321.3519586
https://doi.org/10.1145/3381052.3381316
https://doi.org/10.1145/3381052.3381316
https://doi.org/10.1145/3313808.3313817


164 BIBLIOGRAPHY

[106] Pierre Olivier, AKM Fazla Mehrab, Stefan Lankes, Mohamed Lamine Karaoui, Robert

Lyerly, and Binoy Ravindran. 2019. HEXO: Offloading HPC Compute-Intensive Work-

loads on Low-Cost, Low-Power Embedded Systems. In Proceedings of the 28th Inter-

national Symposium on High-Performance Parallel and Distributed Computing. 85–96.

[107] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019. Libmpk:

Software Abstraction for Intel Memory Protection Keys (Intel MPK). In Proceedings of

the 2019 USENIX Conference on Usenix Annual Technical Conference (Renton, WA,

USA) (USENIX ATC ’19). USENIX Association, USA, 241–254.

[108] Taemin Park, Karel Dhondt, David Gens, Yeoul Na, Stijn Volckaert, and Michael

Franz. 2020. Nojitsu: Locking down javascript engines. In Proceedings 2020 Network

and Distributed System Security Symposium. Internet Society.

[109] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis Polychronakis, and

Vasileios P. Kemerlis. 2017. KR^X: Comprehensive Kernel Protection against Just-In-

Time Code Reuse. In Proceedings of the Twelfth European Conference on Computer

Systems (Belgrade, Serbia) (EuroSys ’17). Association for Computing Machinery, New

York, NY, USA, 420–436. https://doi.org/10.1145/3064176.3064216

[110] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C.

Hunt. 2011. Rethinking the Library OS from the Top Down. SIGARCH Comput.

Archit. News 39, 1 (March 2011), 291–304. https://doi.org/10.1145/1961295.

1950399

[111] Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drepper, Richard

Jones, Orran Krieger, Renato Mancuso, and Larry Woodman. 2019. Unikernels: The

Next Stage of Linux’s Dominance. In Proceedings of the 17th Workshop on Hot Topics

https://doi.org/10.1145/3064176.3064216
https://doi.org/10.1145/1961295.1950399
https://doi.org/10.1145/1961295.1950399


BIBLIOGRAPHY 165

in Operating Systems (Bertinoro, Italy) (HotOS’19). 7–13. https://doi.org/10.

1145/3317550.3321445

[112] John Scott Robin and Cynthia E. Irvine. 2000. Analysis of the Intel Pentium’s Ability

to Support a Secure Virtual Machine Monitor. In Proceedings of the 9th USENIX

Security Symposium. 129–144.

[113] Rusty Russell. 2008. virtio: towards a de-facto standard for virtual I/O devices. ACM

SIGOPS Operating Systems Review 42, 5 (2008), 95–103.

[114] Joanna Rutkowska and Rafal Wojtczuk. 2010. Qubes OS architecture. Invisible Things

Lab Tech Rep.

[115] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch. 2021. CubicleOS: A Library OS

with Software Componentisation for Practical Isolation (ASPLOS ’21). Association for

Computing Machinery, New York, NY, USA, 546–558. https://doi.org/10.1145/

3445814.3446731

[116] Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and Jonathan Appavoo.

2016. EbbRT: A Framework for Building Per-Application Library Operating Systems.

In Proceedings of the 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16). Savannah, GA, 671–688. https://www.usenix.org/

conference/osdi16/technical-sessions/presentation/schatzberg

[117] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko, Karl Schimpf,

Bennet Yee, and Brad Chen. 2010. Adapting Software Fault Isolation to Contempo-

rary CPU Architectures. In Proceedings of the 19th USENIX Conference on Security

(Washington, DC) (USENIX Security’10). USENIX Association, USA, 1.

https://doi.org/10.1145/3317550.3321445
https://doi.org/10.1145/3317550.3321445
https://doi.org/10.1145/3445814.3446731
https://doi.org/10.1145/3445814.3446731
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/schatzberg
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/schatzberg


166 BIBLIOGRAPHY

[118] Amazon Web Services. 2022. Firecracker: Secure and fast microVMs for serverless

computing. https://firecracker-microvm.github.io/.

[119] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-into-

Libc without Function Calls (on the X86). In Proceedings of the 14th ACM Conference

on Computer and Communications Security (Alexandria, Virginia, USA) (CCS ’07).

Association for Computing Machinery, New York, NY, USA, 552–561. https://doi.

org/10.1145/1315245.1315313

[120] Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo Chen, Binyu Zang, and

Jinming Li. 2017. Deconstructing Xen. In NDSS.

[121] Sushrut Shirole. 2014. Performance Optimizations for Isolated Driver Domains.

[122] Xiaokui Shu, Danfeng (Daphne) Yao, Naren Ramakrishnan, and Trent Jaeger. 2017.

Long-Span Program Behavior Modeling and Attack Detection. ACM Trans. Priv.

Secur. 20, 4, Article 12 (sep 2017), 28 pages. https://doi.org/10.1145/3105761

[123] SPDK Contributors. [n. d.]. Storage Performance Development Kit (SPDK). http:

//spdk.io/.

[124] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran. 2020. Intra-

Unikernel Isolation with Intel Memory Protection Keys. In Proceedings of the 16th

ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-

ments (Lausanne, Switzerland) (VEE ’20). Association for Computing Machinery, New

York, NY, USA, 143–156. https://doi.org/10.1145/3381052.3381326

[125] Sysbench Contributors. [n. d.]. SysBench 1.0: A System Performance Benchmark.

http://sysbench.sourceforge.net/.

https://firecracker-microvm.github.io/
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/3105761
http://spdk.io/
http://spdk.io/
https://doi.org/10.1145/3381052.3381326
http://sysbench.sourceforge.net/


BIBLIOGRAPHY 167

[126] V. Tarasov, E. Zadok, and S. Shepler. 2016. Filebench: A Flexible Framework for File

System Benchmarking. login Usenix Mag. 41 (2016).

[127] The Apache Software Foundation. [n. d.]. ab - Apache HTTP server benchmarking

tool. http://httpd.apache.org/docs/2.2/en/programs/ab.html.

[128] The Linux Foundation. [n. d.]. Data Plane Development Kit (DPDK). http://dpdk.

org/.

[129] Chia-Che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical

Library OS for Unmodified Applications on SGX. In Proceedings of the 2017 USENIX

Annual Technical Conference (Santa Clara, CA, USA) (ATC’17). 645–658. http:

//dl.acm.org/citation.cfm?id=3154690.3154752

[130] Michael S Tsirkin, C Huck, and P Moll. 2018. Virtual I/O Device (VIRTIO) Version

1.1. OASIS Committee: Burlington, MA, USA (2018).

[131] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler, Peter

Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient in-Process Isolation with

Protection Keys (MPK). In Proceedings of the 28th USENIX Conference on Security

Symposium (Santa Clara, CA, USA) (SEC’19). USENIX Association, USA, 1221–

1238.

[132] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. 2022. You

Shall Not (by)Pass! Practical, Secure, and Fast PKU-Based Sandboxing. In Proceed-

ings of the Seventeenth European Conference on Computer Systems (Rennes, France)

(EuroSys ’22). Association for Computing Machinery, New York, NY, USA, 266–282.

https://doi.org/10.1145/3492321.3519560

[133] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.

http://httpd.apache.org/docs/2.2/en/programs/ab.html
http://dpdk.org/
http://dpdk.org/
http://dl.acm.org/citation.cfm?id=3154690.3154752
http://dl.acm.org/citation.cfm?id=3154690.3154752
https://doi.org/10.1145/3492321.3519560


168 BIBLIOGRAPHY

Efficient Software-Based Fault Isolation. SIGOPS Oper. Syst. Rev. 27, 5 (dec 1993),

203–216. https://doi.org/10.1145/173668.168635

[134] Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran. 2020. Se-

cure and Efficient In-Process Monitor (and Library) Protection with Intel MPK. In

Proceedings of the 13th European Workshop on Systems Security (Heraklion, Greece)

(EuroSec ’20). Association for Computing Machinery, New York, NY, USA, 7–12.

https://doi.org/10.1145/3380786.3391398

[135] Jon Watson. 2008. Virtualbox: bits and bytes masquerading as machines. Linux

Journal 2008, 166 (2008), 1.

[136] Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,

Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben

Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and Munraj

Vadera. 2015. CHERI: A Hybrid Capability-System Architecture for Scalable Soft-

ware Compartmentalization. In 2015 IEEE Symposium on Security and Privacy. 20–

37. https://doi.org/10.1109/SP.2015.9

[137] D. Williams and R. Koller. 2016. Unikernel Monitors: Extending Minimalism Outside

of the Box. In Proceedings of the 8th USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud ’16). https://www.usenix.org/conference/hotcloud16/

workshop-program/presentation/williams

[138] Dan Williams and Ricardo Koller. 2016. Unikernel Monitors: Extending Minimalism

Outside of the Box (HotCloud’16). USENIX Association, USA, 71–76.

[139] Bruno Xavier, Tiago Ferreto, and Luis Jersak. 2016. Time provisioning Evaluation

of KVM, Docker and Unikernels in a Cloud Platform. In Proceedings of the 16th

https://doi.org/10.1145/173668.168635
https://doi.org/10.1145/3380786.3391398
https://doi.org/10.1109/SP.2015.9
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams


BIBLIOGRAPHY 169

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-

GRID ’16). 277–280.

[140] Xen Project. 2013. Driver Domain. https://wiki.xenproject.org/wiki/Driver_

Domain.

[141] Xen Project. 2018. Grant Table. https://wiki.xen.org/wiki/Grant_Table.

[142] Lingfang Zeng, Yang Wang, Dan Feng, and Kenneth Kent. 2015. XCollOpts: A Novel

Improvement of Network Virtualization in Xen for I/O-Latency Sensitive Applications

on Multicores. IEEE Transactions on Network and Service Management 12 (06 2015),

1–1. https://doi.org/10.1109/TNSM.2015.2432066

[143] Mingwei Zhang, Ravi Sahita, and Daiping Liu. 2018. eXecutable-Only Memory-Switch

(XOM-Switch).

[144] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba Li, Yaozheng

Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018. KylinX: A Dynamic Library

Operating System for Simplified and Efficient Cloud Virtualization. In Proceedings of

the 2018 USENIX Annual Technical Conference (ATC ’18).

https://wiki.xenproject.org/wiki/Driver_Domain
https://wiki.xenproject.org/wiki/Driver_Domain
https://wiki.xen.org/wiki/Grant_Table
https://doi.org/10.1109/TNSM.2015.2432066

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Attribution
	Introduction
	The Unikernel Operating System Model
	VMM's Security Threats in Clouds
	I/O Acceleration for VMs
	Summary of Research Contributions
	Kite: Unikernelized Storage Domain
	Kite: Unikernelized Network Domain
	Redwood: Flexible Secure VMM
	Vhost User Compartmentalization in DPDK

	Dissertation Organization

	Background
	Xen
	KVM
	Xen I/O Drivers
	Xen Blkfront and Blkback
	Xen Netfront and Netback
	Xen Driver Domain
	Virtual Machine Monitor
	Virtio PV Devices
	OVS-DPDK Vhost User
	Unikernel
	Rump Kernels and Rumprun
	Memory-based Isolation

	Related Work
	Hypervisor Disaggregation Approaches
	Unikernels for Cloud Infrastructures
	Driver Domain and Backend Improvement
	Protection Key-based Memory Isolation
	Virtual Machine Monitors

	Kite: Unikernelized Storage Domain
	Challenges
	Threat Model
	Storage Device Driver
	Storage Backend Driver
	Storage Domain Application

	Kite's Storage Domain Prototype
	Block Device Interface
	Blkback Instantiation
	Blkback Initialization and Connection
	Event Handler and Request Handler Thread
	Handling Device Driver Responses
	Persistent Reference
	Indirect Segments
	Application
	Implementation Effort

	Kite: Unikernelized Network Domain
	Challenges
	Threat Model
	Network Device Driver and Interface
	Netback Driver
	Linking Netback With a Physical Device

	Kite's Network Domain Prototype
	Virtual Network Interface
	Netback Instantiation and Connection
	Transmit
	Receive
	Threaded Implementation
	Physical Network Device Driver
	Bridging Application
	Implementation Effort

	Kite's Storage Domain Evaluation
	Experimental Setup
	dd
	SysBench
	SysBench File I/O
	SysBench MySQL

	Filebench
	Filebench File server
	Filebench MongoDB Server
	Filebench Web server


	Kite's Network Domain Evaluation
	Experimental Setup
	Nuttcp
	Latency
	Apache
	Redis
	MySQL

	Kite's Security Evaluation
	Image Size and Boot Time
	ROP Gadget
	Gadget Set Analysis
	Syscall Reduction and CVEs

	Redwood: Flexible Secure VMM
	Design Principles
	Challenges
	Trusted Computing Base and Trust Model
	Achieving Per-VM Specialization
	VM Bootloading
	Virtual I/O Device
	VM Migration

	Establishing Intra-VMM Isolation
	What to Compartmentalize?
	How to Compartmentalize?
	When to Enable/Disable a Compartment?

	Securing OVS-DPDK Vhost User

	Implementation of Redwood
	Workload-aware Redwood
	Isolation inside Redwood
	Unikernel Support
	Isolating Vhost User in OVS-DPDK
	Implementation Effort

	Redwood's Performance Evaluation
	Experimental Setup for Performance Evaluation
	Virtio Network Device Performance
	iPerf
	Apache
	Network Latency

	Virtio Block Device Performance
	dd
	SysBench File I/O

	Virtio Balloon Performance
	Vhost User Network Device Performance
	iPerf
	Redis


	Redwood's Security Evaluation
	CVE Analysis
	Image Size Reduction
	ROP Gadget Reduction
	Gadget Set Analysis

	Conclusions
	Contributions Revisited
	Kite: Unikernelized Storage Domain
	Kite: Unikernelized Network Domain
	Redwood: Flexible Secure VMM
	Vhost User Compartmentalization in DPDK

	Perspective on Dissertation Contributions
	Limitations and Future Work
	Ensuring Protection Key's Integrity in Redwood
	Automating Compartmentalization
	Unikernelized Vhost User Devices
	Unikernelized Virtio Driver Domain for Xen and KVM
	Rumprun PVH


	Bibliography

