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Numerical Analysis of the Melt Pool Kinetics in Selective Laser Melt-
ing Based Additive Manufacturing of Mg2Si Thermoelectric Pow-
ders

Jagannath Suresh

(ABSTRACT)

Thermoelectric generators convert heat energy to electricity and can be used for waste heat

recovery, enabling sustainable development. Selective Laser Melting (SLM) based additive

manufacturing process is a scalable and flexible method that has shown promising results

in manufacturing high ZT Bi2Te3 material and is possible to be extended to other material

classes such as Mg2Si. The physical phenomena of melting and solidification were investi-

gated for SLM-based manufacturing of thermoelectric (Mg2Si) powders through comprehen-

sive numerical models developed in MATLAB. In this study, Computational Fluid Dynamics

(CFD)-based techniques were employed to solve conservation equations, enabling a detailed

understanding of thermofluid dynamics, including the temperature evolution and the con-

vection currents of the liquid melt within the molten pool. This approach was critical for

optimizing processing parameters in our investigation, which were also used for printing the

Mg2Si powders using SLM. Additionally, a phase field-based model was developed to sim-

ulate the directional solidification of the Mg2Si in MATLAB. Microstructural parameters

like the Secondary and Primary Dendritic Arm Spacing were studied to correlate the effects

of processing parameters to the microstructure of Mg2Si.
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(GENERAL AUDIENCE ABSTRACT)

Thermoelectric generators are devices that transform heat energy into electricity, offering

a way to capture and utilize waste heat for sustainable purposes. A cutting-edge manufac-

turing method called Selective Laser Melting (SLM) has shown great potential in creating

high-performance materials like Bi2Te3 for thermoelectric applications. Researchers are

now exploring the extension of this technique to other materials, such as Mg2Si. This study

delves into the intricate process of melting and solidifying Mg2Si powders using SLM. Ad-

vanced computer models were created in MATLAB, to simulate these processes in detail. By

employing Computational Fluid Dynamics (CFD) techniques, heat and fluid flow within the

molten material was also closely examined. These simulations were vital for fine-tuning the

printing settings used to fabricate Mg2Si powders via SLM. Moreover, a specialized model

based on phase field theory was developed to mimic the solidification of Mg2Si. The ef-

fects of changing manufacturing parameters on the microstructure of the final product were

examined. Understanding these microstructural aspects is crucial for optimizing the man-

ufacturing process and ultimately enhancing the performance of Mg2Si for thermoelectric

applications.
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List of Abbreviations

βs Solute expansion coefficient [K−1]

βT Thermal expansion coefficient [K−1]

∆t Time step[τo]

∆X Grid spacing[W ]

Ṫ Cooling rate[K/s]

ϵ Porosity

ϵ4 Anisotropy strength

ϵb Emissivity

Γ Gibbs thomson coefficient[mK]

λ Coupling constant

µ+ Effective viscosity [kg (ms)−1]

µs, µl Solid and liquid viscosity [kg (ms)−1]

ϕ Phase field order parameter

ψ Limiter function

ρ Density [kg m−3]

σb Boltzmann constant [Wm−2K−4]

ix



σs Surface tension [Nm−1]

τo Relaxation time[s]

θ Energy absorption coefficient

D̃ Dimensionless diffusion coefficient

l̃T Dimensionless thermal length

ṼP Dimensionless pulling velocity

aE, aW , aN , aS, aF , aB, aP TVD coefficients

c Solute concentration[wt%Si]

c∞ Initial solute concentration[wt%Si]

cp Specific heat [J/K.kg]

D Liquid diffusion coefficient[m2s−1]

do Thermal capillary length[m]

Fe, Fw, Fn, Fs, Ff , Fb Convective mass flux[kg/m2s]

fs, fl Solid and liquid mass fraction

G Temperature gradient[K/m]

g Acceleration due to gravity [ms−2]

H, h Enthalpy [J/kg]

hc Convective heat transfer coefficient [Wm−2K−1]

k Partition coefficient



k+ Effective thermal conductivity [W/mK]

kp, kl, kg Solid, liquid, and gas thermal conductivity [W/mK]

L Latent heat [J/kg]

lT Thermal length[m]

m Liquidus line slope[K(wt%Si)−1]

qo Laser intensity [Wm−2]

R Laser diameter [m]

R Solidification rate[m/s]

r Ratio of gradients

Sh Energy source term [Wm−3]

SDC
u Deferred correction source term

T Temperature [K]

t Time [s]

Ta Ambient temperature [K]

TM Material sintering temperature [K]

U Dimensionless supersaturation

u, v, w Velocities in x,y, and z directions [m s−1]

Ub Laser beam velocity [ms−1]

VP Pulling velocity[ms−1]



vs, vn Velocity parallel and perpendicular to the surface [ms−1]

W Interfacial width[m]

AM Additive Manufacturing

CFD Computational Fluid Dynamics

DEM Discrete Element Method

PDAS Primary Dendritic Arm Spacing

SDAS Secondary Dendritic Arm Spacing

SLM Selective Laser Melting

TEG Thermo Electric Generator

ZT Thermoelectric Figure of Merit























The governing equations were transformed into a unified single-phase model applicable to

all regions within the computational domain. This was accomplished within a coordinate

system that accounts for the domain’s motion as follows:

• Continuity Equation

∂ρ

∂t
+

∂(ρ(u− ub))

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
(2.1)

• X-Momentum Equation

∂(ρu)

∂t
+
∂(ρu(u− ub))

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z

= −∂P
∂x

+
∂

∂x
(
µ+∂u

∂x
) +

∂

∂y
(
µ+∂u

∂y
) +

∂

∂z
(
µ+∂u

∂z
) (2.2)

• Y-Momentum Equation

∂(ρv)

∂t
+
∂(ρv(u− ub))

∂x
+
∂(ρvv)

∂y
+
∂(ρvw)

∂z

= −∂P
∂y

+
∂

∂x
(
µ+∂v

∂x
) +

∂

∂y
(
µ+∂v

∂y
) +

∂

∂z
(
µ+∂v

∂z
) (2.3)

• Z-Momentum Equation

∂(ρw)

∂t
+
∂(ρw(u− ub))

∂x
+
∂(ρwv)

∂y
+
∂(ρww)

∂z

= −∂P
∂z

+
∂

∂x
(
µ+∂w

∂x
) +

∂

∂y
(
µ+∂w

∂y
) +

∂

∂z
(
µ+∂w

∂z
)

+ ρgr(T − Te)(βT + βsCs) (2.4)



• Energy Equation

∂(ρh)

∂t
+
∂(ρh(u− ub))

∂x
+
∂(ρhv)

∂y
+
∂(ρhw)

∂z

=
∂

∂x
(
k+∂T

∂x
) +

∂

∂y
(
k+∂T

∂y
) +

∂

∂z
(
k+∂T

∂z
) + Sh (2.5)

The variables used in this context are: u, v, and w representing velocities along the X, Y,

and Z axes correspondingly. P stands for pressure, � denotes density, T signifies tempera-

ture, h represents enthalpy, k+ denotes effective thermal conductivity, µ+ stands for effective

viscosity, βT and βs represent the thermal expansion coefficients for liquid and solute respec-

tively, and Cs stands for the concentration of solute mass. The last term in Eq. 2.4 is the

Boussinesq approximation term that accounts for the buoyancy in the molten pool, which

is a volume effect. The source term Sh in Eq. 2.5 was used to model the enthalpy change

during phase transition.

The powders were assumed to start melting at a temperature TM - ∆ T (∆ T = 200K)

and completely melt at the melting temperature TM . Hence, the mass fraction of liquid was

defined separately in these temperature intervals as follows:

fl =


1 T ≥ TM

TM−T
∆T

TM −∆T < T < TM

0 T ≤ TM −∆T

(2.6)

The fraction of solid powders in the mushy region is hence given by:

fs = 1− fl (2.7)















































Figure 3.3: OpenAdditive PANDA SLM equipment

Figure 3.4: Zoomed-in pictures of the individual components showing the balling as a result
of the respective laser parameter (Top View)
















