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Optimal Operation of Water and Power Distribution Networks

Manish K. Singh

(ABSTRACT)

Under the envisioned smart city paradigm, there is an increasing demand for the coordinated

operation of our infrastructure networks. In this context, this thesis puts forth a comprehen-

sive toolbox for the optimization of electric power and water distribution networks. On the

analytical front, the toolbox consists of novel mixed-integer (non)-linear program (MINLP)

formulations; convex relaxations with optimality guarantees; and the powerful technique of

McCormick linearization. On the application side, the developed tools support the operation

of each of the infrastructure networks independently, but also towards their joint operation.

Starting with water distribution networks, the main difficulty in solving any (optimal-) water

flow problem stems from a piecewise quadratic pressure drop law. To efficiently handle these

constraints, we have first formulated a novel MINLP, and then proposed a relaxation of the

pressure drop constraints to yield a mixed-integer second-order cone program. Further, a

novel penalty term is appended to the cost that guarantees optimality and exactness under

pre-defined network conditions. This contribution can be used to solve the WF problem; the

OWF task of minimizing the pumping cost satisfying operational constraints; and the task

of scheduling the operation of tanks to maximize the water service time in an area experienc-

ing electric power outage. Regarding electric power systems, a novel MILP formulation for

distribution restoration using binary indicator vectors on graph properties alongside exact

McCormick linearization is proposed. This can be used to minimize the restoration time

of an electric system under critical operational constraints, and to enable a coordinated

response with the water utilities during outages.
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(GENERAL AUDIENCE ABSTRACT)

The advent of smart cities has promoted research towards interdependent operation of utili-

ties such as water and power systems. While power system analysis is significantly developed

due to decades of focused research, water networks have been relying on relatively less so-

phisticated tools. In this context, this thesis develops Advanced efficient computational

tools for the analysis and optimization for water distribution networks. Given the con-

sumer demands, an optimal water flow (OWF) problem for minimizing the pump operation

cost is formulated. Developing a rigorous analytical framework, the proposed formulation

provides significant computational improvements without compromising on the accuracy.

Explicit network conditions are provided that guarantee the optimality and feasibility of

the obtained OWF solution. The developed formulation is next used to solve two practical

problems: the water flow problem, that solves the complex physical equations yielding nodal

pressures and pipeline flows given the demands/injections; and an OWF problem that finds

the best operational strategy for water utilities during power outages. The latter helps the

water utility to maximize their service time during power outages, and helps power utilities

better plan their restoration strategy. While the increased instrumentation and automation

has enabled power utilities to better manage restoration during outages, finding an optimal

strategy remains a difficult problem. The operational and coordination requirements for

the upcoming distributed resources and microgrids further complicate the problem. This

thesis develops a computationally fast and reasonably accurate power distribution restora-

tion scheme enabling optimal coordination of different generators with optimal islanding.

Numerical tests are conducted on benchmark water and power networks to corroborate the

claims of the developed formulations.
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Chapter 1

Introduction

The ongoing thrust towards smart cities and internet of things has led to a wide-scale deploy-

ment of sensors and remote control devices across systems such as power, water, transport,

waste-management, security, etc. [1], [2], [3]. The increased situational awareness and con-

trollability as a result, call for enhancing coordinated operation of different infrastructure

networks. A few resulting research areas include the gas-electric nexus [4], [5], [6] ; the

water-electric nexus [7], [8], [9]; and exploring the cyber-physical inter-dependencies [10].

This thesis is an effort towards the development of a generalized analytical framework for

water and power distribution systems, that can give way to solving various optimal coordi-

nation problems.

The first main focus of the work presented in this thesis is a novel analytical framework for

the analysis of water distribution systems (WDS) [12]. The major challenge in the analysis

of WDSs stems from the non-linear equations relating pressure drops to water flows along

pipes and the combinatorial formulations for handling discrete on/off decisions. To deal with

these challenges, existing approaches resort to linearizations; local non-linear solvers; and/or

meta-heuristics; see [12], and the references therein. Alternative approaches result in mixed-

integer non-linear problems, which are oftentimes inefficient and feature no global optimality

guarantees [11]. However, recent advancements in solving mixed-integer conic-programming

motivates development of efficient formulations for (optimal)-water flow yielding feasible

solutions with guarantees [13], [34]. Thus, a novel relaxation of the water-flow equations

1



2 Chapter 1. Introduction

has been proposed in this thesis, along with a penalty term that yields exact solutions

with optimality guarantees under predefined network conditions. The developed framework

enables efficiently solving several useful real-world problems. Among these, minimization

of pumping cost, maximizing service-time during power outages, and solving the water flow

problem have been addressed in this thesis.

The optimal water flow problem that maximizes the service time during power outages helps

the power system operators to efficiently design their restoration strategy during outages.

This leads us to the second main focus of this thesis which is development of efficient restora-

tion schemes for power distribution systems during outages. While the restoration problem

in power distribution systems is quite old, the state-of-the-art has not yet been able to opti-

mally incorporate different types of distributed generators and microgrids, hence limiting the

restoration efficacy; see [14] and the references therein. Thus, a power distribution system

restoration scheme that optimally incorporates different types of distributed generation has

been formulated in this thesis as a mixed-integer linear program.

In general, power distribution system operators perform the system restoration task through

sequentially performing switching operations and generation scheduling over a period of

time [18]. In such a scenario, oftentimes priorities are placed on restoring different loads

based on criticality. Thus, the information of the maximum time a water utility can operate

without power supply assists the power utilities to assign suitable priorities to different

loads during the restoration process. Thus, the developed analytical frameworks for WDS

and power systems lay the path for coordinated operation of the two infrastructure during

extreme events.
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1.1 Contributions

The primary contribution of this work is a suite of computationally efficient analytical tools

that can be used for solving a varied class of optimization problems on water and power

distribution systems. The physics governing both water and power networks is based on

non-linear non-convex equations. To make these problems tractable, alternate reformula-

tions based on tight convex relaxations are proposed in this thesis. Specifically, the key

contributions of this thesis include:

1. A generalized model for various water distribution system components is developed in

Section 2.2. The novel model offers distinct features such as separability of binary and

continuous variables, flexibility of bypassing pumps, bidirectional flows, and precise

tank operation modeling.

2. An OWF problem to minimize electricity operation cost for fixed-speed pumps is for-

mulated in Section 2.3, followed by a convex relaxation yielding an MI-SOCP in Sec-

tion 2.4.

3. To yield a tight relaxation for the OWF developed in Section 2.4, it is later augmented

by a novel penalty term in Section 2.5. Under specific conditions, the penalized relax-

ation is shown to yield a minimizer of the original non-convex OWF problem.

4. Building upon the model and analytical results of Sections 2.2–2.5, an OWF problem

is formulated in Section 2.7 to maximize the service time for a WDS during partial

or complete power outages. The exactness of the proposed MI-SOCP relaxation has

been validated through numerical tests on a benchmark WDS for numerous problem

instances.

5. A single time instant water flow problem is formulated in Section 2.8, and an MI-SOCP
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relaxation is proposed. The proposed relaxation is shown to be exact for a moderately

sized WDS that grossly violates the restrictive conditions analytically identified to

guarantee exactness.

6. A novel power distribution system restoration (DSR) scheme is developed in Chapter 3

as an MILP [14]. The novelty of our DSR stems from the unique use of cycles and

paths on the grid infrastructure graph; the McCormick linearization technique; and an

approximate power flow model.

7. The DSR scheme finds the optimal formation of islands in a single stage, different

from prior works that first identify reference generators and then build islands around

them. It further allows for multiple (non)-black-start DGs running on the same island

and decides their optimal coordination; and it devises an exact, yet linear model for

voltage regulators.



Chapter 2

Optimal Operation of Water

Distribution Systems

2.1 Introduction

While WDS serve as a critical infrastructure, there is an increasing emphasis on improving

their reliability, quality, and efficiency. The cost-intensive installation and maintenance of

WDS components, such as pipelines, pump stations, and reservoirs, have motivated network

planning studies [19], [20], [21], [22]. From an operational perspective, a recent survey on

WDS optimization identifies pump scheduling and water quality as the two focus areas [11].

Recognizing that 4% of the total electricity consumption in the United States is attributed

to water network operations [23], and that the electricity cost for pumping constitutes the

largest expenditure for water utilities [24], stresses the significance of optimal WDS schedul-

ing.

A typical WDS schedule would run pumps mainly at night when electricity prices are low to

transfer water from reservoirs through pipes and fill up elevated tanks located closer to wa-

ter demands. Under the smart city vision, dynamic electricity pricing and demand-response

programs incentivize more flexible WDS schedules to minimize operational costs. For ex-

ample, a surplus of residential solar generation around midday could be locally consumed

to run pumps and fill up pumps, thus serving as an energy storage alternative. Adaptive

5



6 Chapter 2. Optimal Operation of Water Distribution Systems

WDS scheduling and the anticipated joint dispatching of electric power and water networks,

motivate the need for scalable optimization tools and more realistic system models.

The operation of WDS is constrained by minimum pressure requirements; capacity limi-

tations imposed by pumps, pipelines, and tanks; and a set of hydraulic constraints. It is

exactly these hydraulic constraints that give rise to complex mixed-integer and nonlinear

formulations, and have been dealt so far in three broad ways [11]. The first class of meth-

ods enforces pressure and capacity constraints explicitly, while the hydraulic constraints are

included implicitly through water network simulation tools, such as EPANET [25], [26].

Metaheuristic approaches such as genetic algorithms [24], ant-colony optimization [27], or

limited discrepancy search [28], are then used together along with a WDS simulator to obtain

an operating point. Some variants replace the slow but exact simulator with surrogate WDS

models based on artificial neural networks or interpretive structural models [29], [30]. It

has been demonstrated however that WDS optimization using metaheuristics coupled with

a simulator scales unfavorably due to the computational effort required [31].

The second class of methods rely on formulating (mixed-integer) nonlinear programs and

handling them via nonlinear solvers [32]. A mixed-integer second-order cone formulation

for optimal pump scheduling relaxes the hydraulic constraints to render the problem convex

in the continuous variables [33], [34]. The relaxation is shown to be exact presuming all

pipes are equipped with pressure-relieving valves and upon ignoring some pressure tank con-

straints. The water-power nexus has been studied in [8], wherein the non-convex hydraulic

constraints are passed on to a non-convex solver with no optimality guarantees. The se-

curity of interdependent water-power-gas networks has been studied from a game-theoretic

viewpoint in [35], using the non-convex hydraulic constraints.

The third class of methods uses linearization to end up with a computationally tractable

mixed-integer linear program (MILP) formulation [22], [36]. Adopting [34] to find an op-
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timal water-power flow dispatch, reference [37] handles the non-convex constraints arising

from both water and electric power networks via a successive convex approximation tech-

nique. The latter approach features computational advantages without the inaccuracies of

linearization; yet water flow directions and the on/off status of pumps are assumed given.

The participation of WDS in demand response and frequency regulation through pump

scheduling with piece-wise linearization of hydraulic constraints has been suggested in [9],

[38], [39].

Towards computationally convenient WDS solvers, the contribution of this chapter is three-

fold. First, a generalized model for various WDS components is developed in Section 2.2.

Some of its distinct features include separability of binary and continuous variables, flexibility

of bypassing pumps, bidirectional flows, and precise tank operations modeling. Second, an

OWF problem to minimize electricity operation cost for fixed-speed pumps is put forth in

Section 2.3. Sections 2.4–2.5 develop a convex relaxation, which is later augmented by a novel

penalty term to promote minimizers that are feasible for the water network. Under specific

conditions, the penalized relaxation is shown to yield a minimizer of the original non-convex

OWF problem. Third, the developed formulation is extended to solve tow practical problems

in Sections 2.7–2.8, viz. the water flow problem, and an OWF problem that maximizes the

service time of a WDS during a partial/complete power outage in the area. The numerical

tests on benchmark WDS corroborate that the proposed relaxations can yield feasible and

optimal WDS dispatches even when the analytical conditions are grossly violated.

2.2 Water Network Modeling

A water distribution system can be represented by a directed graph Gw := (M,P). Its

nodes indexed by m ∈ M := {1, . . . ,M} correspond to water reservoirs, tanks, and points
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of water demand; and its edges in P with |P| = P |, correspond to water pipes. Reservoirs

serve as primary water sources and constitute the subset Mr ⊂ M. Similarly, the nodes

hosting tanks comprise the subset Mb ⊂ M. The nodes in Mr ∪ Mb do not serve water

consumers. This is without loss of generality, since a potential co-located consumer at a

node m ∈ Mr ∪Mb can be attached to an auxiliary node connected to the node m through

a lossless pipe.

Let dtm be the rate of water injected into the network from node m during period t. Appar-

ently, for reservoirs dtm ≥ 0; for demand nodes with water consumers dtm ≤ 0; tanks may be

filling or emptying; and for junction nodes dtm = 0. The directed edge (m,n) ∈ P models the

pipeline linking nodes m and n. Its water flow will be denoted by dtmn. If water runs from

the node m to n at time t, then dtmn ≥ 0; and negative, otherwise. Water flow conservation

dictates that

dtm =
∑

k:(m,k)∈P

dtmk −
∑

k:(k,m)∈P

dtkm, ∀m, t. (2.1)

In addition to water injections and flows, water distribution system (WDS) operation is also

governed by pressures. Water pressure is typically surrogated by the quantity of pressure

head, which is measured in meters and is linearly related to water pressure [36]. In detail,

a pressure head of h meters corresponds to a water pressure of hρg̃ pascal, where ρ is the

water density in kg/m3, assumed to be a known constant and g̃ is the acceleration due to

gravity in m/sec2. The pressure head (also known as piezometric pressure head) at a node

equals its geographical elevation plus the manometric pressure head attributed to the height

of the water column or pumps.

The pressure head or henceforth simply pressure at node m during time t will be denoted by

ht
m. The operation of water networks requires a minimum manometric pressure at all nodes

m. Adding this common minimum value of manometric pressure to the specific but known
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geographical elevation of each node m ∈ M gives a lower limit on its pressure as

ht
m ≥ hm. (2.2)

Water movement in a pipe results in a quadratic pressure drop. In detail, the pressure drop

across pipeline (m,n) ∈ P is described by the Darcy-Weisbach equation [36]

ht
m − ht

n = cmn sign(dtmn)(d
t
mn)

2 (2.3)

where the loss coefficient cmn := `mnfmn

4π2r5mng̃
depends on the pipe length `mn; its inner radius

rmn; and the Darcy friction factor fmn. The sign function is defined such as sign(0) = 0 and

it ensures that pressure drops in the direction of water flow. To avoid the discontinuity of

the sign, we propose a mixed-integer model using the big-M trick for the pressure drop in

pipeline (m,n) using the binary variables {xt
mn}Tt=1. In particular, the pressure drop equation

of (2.3) can be equivalently expressed through the constraints

−M(1− xt
mn) ≤ dtmn ≤ Mxt

mn (2.4a)

−M(1− xt
mn) ≤ ht

m − ht
n − cmn(d

t
mn)

2 ≤ M(1− xt
mn) (2.4b)

−Mxt
mn ≤ ht

m − ht
n + cmn(d

t
mn)

2 ≤ Mxt
mn (2.4c)

xt
mn ∈ {0, 1} (2.4d)

for a large M > 0. If xt
mn = 1, then constraint (2.4a) guarantees that dtmn ≥ 0; constraint

(2.4b) becomes an equality; and (2.4c) holds trivially. If xt
mn = 0, the flow changes direction

dtmn ≤ 0; constraint (2.4c) becomes an equality; and (2.4b) holds trivially.

To maintain nodal pressures at desirable levels, water utilities use pumps installed on des-

ignated pipes to raise pressure. Let the subset of edges equipped with pumps be denoted
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by Pa ⊂ P . A water pipe equipped with a pump may be modeled as an ideal lossless pump

followed by a pipe with pressure drop dictated by (2.4). Then without loss of generality, all

edges (m,n) ∈ Pa can be assumed lossless, and the constraints in (2.4) are applied to the

set of lossy pipes P̄a := P \ Pa.

If pump (m,n) ∈ Pa is running during period t, its flow is constrained to lie within the range

dmn ≤ dtmn ≤ dmn with dmn ≥ 0 due to engineering limitations [36]. The pump (m,n) adds

pressure gtmn ≥ 0 so that

ht
n − ht

m = gtmn. (2.5)

The pressure gain gtmn depends on the pump speed and the water flow. This dependence is

oftentimes approximated by a quadratic function [40], [36], [34]. The dependence of gtmn on

water flow is relatively weak and may be ignored without significant loss of accuracy [34],

[41]. Thus, for a fixed-speed pump, the pressure gain gmn is constant when the pump is

running; and zero, otherwise. Oftentimes, when a pump is not running, water can flow freely

in either directions through a bypass valve connected in parallel to the pump and without

incurring any pressure difference [41]. The operation of a pump along with its bypass valve

can be captured using the big-M trick via the mixed-integer model for all (m,n) ∈ Pa

ht
m − ht

n = −gmnx
t
mn (2.6a)

−M(1− xt
mn) ≤ dtmn − d̃tmn ≤ M(1− xt

mn) (2.6b)

dmnx
t
mn ≤ d̃tmn ≤ dmnx

t
mn (2.6c)

xt
mn ∈ {0, 1}. (2.6d)

The binary variable xt
mn indicates whether pump (m,n) ∈ Pa is running at time t. When the

pump is running (xt
mn = 1), constraint (2.6a) implies (2.5); otherwise (xt

mn = 0), it enforces

ht
m = ht

n. For xt
mn = 1, constraints (2.6b)–(2.6c) imply that d̃tmn = dtmn and the water flow
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in the pump is kept within the limits [dmn, dmn]. For xt
mn = 0, variable d̃tmn is set to zero

and dtmn represents the water flowing through the bypass valve of the pump. The auxiliary

variable d̃tmn will be useful later in computing the energy consumption of pump (m,n).

Note that a variable-speed pump model is not a generalization of a fixed-speed one unless

non-trivial upper and lower bounds on the pump speeds are enforced. For instance, the OWF

formulation for variable speed pumps in [34, 37] can not be used for fixed-speed pumps.

Although there is an ongoing transition towards variable-speed pumps, the conventional

WDS have a fleet of fixed-speed pumps which give way to on/off and implicit flow control

[26], [36], [31]. Thus, this work considers fixed-speed pumps.

The pressure at a reservoir can assumed constant across days or weeks [34]. Consider reservoir

m ∈ Mr whose constant pressure is h̄m. To draw water from this reservoir, its nodal pressure

ht
m must be smaller than the constant pressure head h̄m of the reservoir. This is enforced

through the constraints

0 ≤ dtm ≤ Mαt
m (2.7a)

ht
m ≤ h̄m +M(1− αt

m) (2.7b)

αt
m ∈ {0, 1} (2.7c)

for all m ∈ Mr and times. The binary variable αt
m indicates if water is drawn from reservoir

m at time t. If αt
m = 1, reservoir m is connected to the WDS and the constraints in (2.7)

ensure that dtm ≥ 0 and ht
m ≤ h̄m. On the other hand, when αt

m = 0, reservoir m is

disconnected, dtm = 0, and constraint (2.7b) is trivially satisfied.

As opposed to reservoirs, the water volume in tanks varies significantly during the day

[34]. Variations in water volume translate to variations in water level, which cause in turn

variations in pressure at the bottom of the tank. To model the operation of tanks, let `tm
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denote the water level in tank m ∈ Mb at the end of period t. To be consistent with the

piezometric pressure head, the water level `tm includes the geographical elevation of tank m.

If δ is the duration of a control period and Am is the uniform cross-sectional area for tank

m, the water level in tank m satisfies the dynamics

`tm = `t−1
m − dtmδ

Am

. (2.8)

Due to its finite volume, the water level in tank m is constrained at all times t as

`m ≤ `tm ≤ `m. (2.9)

Typically, the net water exchange from tanks is kept at zero during the entire period of

operation, that is

`0m = `Tm. (2.10)

inflow 

outflow
 

m
<latexit sha1_base64="CtNBlvh1gZfP7+4+v48993Q12R8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaca9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwBD/ozF</latexit><latexit sha1_base64="CtNBlvh1gZfP7+4+v48993Q12R8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaca9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwBD/ozF</latexit><latexit sha1_base64="CtNBlvh1gZfP7+4+v48993Q12R8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaca9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwBD/ozF</latexit><latexit sha1_base64="CtNBlvh1gZfP7+4+v48993Q12R8=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaca9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwBD/ozF</latexit>

`m
<latexit sha1_base64="9IXS2BXUCEdji4h5oV1ExJEQdLo=">AAAB+nicbVBNS8NAFNzUr1q/Yj16CRbBU0lEUG9FLx4rGC00IWw2L+3SzSbsbsQS8le8eFDx6i/x5r9x0+agrQMLw8wb3tsJM0alsu1vo7Gyura+0dxsbW3v7O6Z++17meaCgEtSlopBiCUwysFVVDEYZAJwEjJ4CCfXlf/wCELSlN+paQZ+gkecxpRgpaXAbHs5j0BU8cIDxsogCcyO3bVnsJaJU5MOqtEPzC8vSkmeAFeEYSmHjp0pv8BCUcKgbHm5hAyTCR7BUFOOE5B+Mbu9tI61EllxKvTjypqpvxMFTqScJqGeTLAay0WvEv/zhrmKL/yC8ixXwMl8UZwzS6VWVYQVUQFEsakmmAiqb7XIGAtMlK6rpUtwFr+8TNzT7mXXuT3r9K7qNproEB2hE+Sgc9RDN6iPXETQE3pGr+jNKI0X4934mI82jDpzgP7A+PwBIHqUsg==</latexit><latexit sha1_base64="9IXS2BXUCEdji4h5oV1ExJEQdLo=">AAAB+nicbVBNS8NAFNzUr1q/Yj16CRbBU0lEUG9FLx4rGC00IWw2L+3SzSbsbsQS8le8eFDx6i/x5r9x0+agrQMLw8wb3tsJM0alsu1vo7Gyura+0dxsbW3v7O6Z++17meaCgEtSlopBiCUwysFVVDEYZAJwEjJ4CCfXlf/wCELSlN+paQZ+gkecxpRgpaXAbHs5j0BU8cIDxsogCcyO3bVnsJaJU5MOqtEPzC8vSkmeAFeEYSmHjp0pv8BCUcKgbHm5hAyTCR7BUFOOE5B+Mbu9tI61EllxKvTjypqpvxMFTqScJqGeTLAay0WvEv/zhrmKL/yC8ixXwMl8UZwzS6VWVYQVUQFEsakmmAiqb7XIGAtMlK6rpUtwFr+8TNzT7mXXuT3r9K7qNproEB2hE+Sgc9RDN6iPXETQE3pGr+jNKI0X4934mI82jDpzgP7A+PwBIHqUsg==</latexit><latexit sha1_base64="9IXS2BXUCEdji4h5oV1ExJEQdLo=">AAAB+nicbVBNS8NAFNzUr1q/Yj16CRbBU0lEUG9FLx4rGC00IWw2L+3SzSbsbsQS8le8eFDx6i/x5r9x0+agrQMLw8wb3tsJM0alsu1vo7Gyura+0dxsbW3v7O6Z++17meaCgEtSlopBiCUwysFVVDEYZAJwEjJ4CCfXlf/wCELSlN+paQZ+gkecxpRgpaXAbHs5j0BU8cIDxsogCcyO3bVnsJaJU5MOqtEPzC8vSkmeAFeEYSmHjp0pv8BCUcKgbHm5hAyTCR7BUFOOE5B+Mbu9tI61EllxKvTjypqpvxMFTqScJqGeTLAay0WvEv/zhrmKL/yC8ixXwMl8UZwzS6VWVYQVUQFEsakmmAiqb7XIGAtMlK6rpUtwFr+8TNzT7mXXuT3r9K7qNproEB2hE+Sgc9RDN6iPXETQE3pGr+jNKI0X4934mI82jDpzgP7A+PwBIHqUsg==</latexit><latexit sha1_base64="9IXS2BXUCEdji4h5oV1ExJEQdLo=">AAAB+nicbVBNS8NAFNzUr1q/Yj16CRbBU0lEUG9FLx4rGC00IWw2L+3SzSbsbsQS8le8eFDx6i/x5r9x0+agrQMLw8wb3tsJM0alsu1vo7Gyura+0dxsbW3v7O6Z++17meaCgEtSlopBiCUwysFVVDEYZAJwEjJ4CCfXlf/wCELSlN+paQZ+gkecxpRgpaXAbHs5j0BU8cIDxsogCcyO3bVnsJaJU5MOqtEPzC8vSkmeAFeEYSmHjp0pv8BCUcKgbHm5hAyTCR7BUFOOE5B+Mbu9tI61EllxKvTjypqpvxMFTqScJqGeTLAay0WvEv/zhrmKL/yC8ixXwMl8UZwzS6VWVYQVUQFEsakmmAiqb7XIGAtMlK6rpUtwFr+8TNzT7mXXuT3r9K7qNproEB2hE+Sgc9RDN6iPXETQE3pGr+jNKI0X4934mI82jDpzgP7A+PwBIHqUsg==</latexit>

¯̀
m

<latexit sha1_base64="jispEbA4dTf7/2h/rRxKtkxudv8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQtlsJ+3SzSbsboQS+je8eFDx6q/x5r9x2+ag1QcDj/dmmJkXZYJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1I6pRcIm+4UZgN1NIk0hgJxrfzPzOIyrNU3lvJhmGCR1KHnNGjZWCIKKqCFCIaT/p1xtu052D/CVeSRpQot2vfwaDlOUJSsME1brnuZkJC6oMZwKntSDXmFE2pkPsWSppgjos5jdPyYlVBiROlS1pyFz9OVHQROtJEtnOhJqRXvZm4n9eLzfxZVhwmeUGJVssinNBTEpmAZABV8iMmFhCmeL2VsJGVFFmbEw1G4K3/PJf4p81r5re3XmjdV2mUYUjOIZT8OACWnALbfCBQQZP8AKvTu48O2/O+6K14pQzh/ALzsc3xDSRtA==</latexit><latexit sha1_base64="jispEbA4dTf7/2h/rRxKtkxudv8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQtlsJ+3SzSbsboQS+je8eFDx6q/x5r9x2+ag1QcDj/dmmJkXZYJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1I6pRcIm+4UZgN1NIk0hgJxrfzPzOIyrNU3lvJhmGCR1KHnNGjZWCIKKqCFCIaT/p1xtu052D/CVeSRpQot2vfwaDlOUJSsME1brnuZkJC6oMZwKntSDXmFE2pkPsWSppgjos5jdPyYlVBiROlS1pyFz9OVHQROtJEtnOhJqRXvZm4n9eLzfxZVhwmeUGJVssinNBTEpmAZABV8iMmFhCmeL2VsJGVFFmbEw1G4K3/PJf4p81r5re3XmjdV2mUYUjOIZT8OACWnALbfCBQQZP8AKvTu48O2/O+6K14pQzh/ALzsc3xDSRtA==</latexit><latexit sha1_base64="jispEbA4dTf7/2h/rRxKtkxudv8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQtlsJ+3SzSbsboQS+je8eFDx6q/x5r9x2+ag1QcDj/dmmJkXZYJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1I6pRcIm+4UZgN1NIk0hgJxrfzPzOIyrNU3lvJhmGCR1KHnNGjZWCIKKqCFCIaT/p1xtu052D/CVeSRpQot2vfwaDlOUJSsME1brnuZkJC6oMZwKntSDXmFE2pkPsWSppgjos5jdPyYlVBiROlS1pyFz9OVHQROtJEtnOhJqRXvZm4n9eLzfxZVhwmeUGJVssinNBTEpmAZABV8iMmFhCmeL2VsJGVFFmbEw1G4K3/PJf4p81r5re3XmjdV2mUYUjOIZT8OACWnALbfCBQQZP8AKvTu48O2/O+6K14pQzh/ALzsc3xDSRtA==</latexit><latexit sha1_base64="X/BbPPQRM1pmBhxdK1enSbL+gJw=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCozbtSd4MZlBccW2qFkMnfa0ExmSO4IpfQFXLhRfDB3vo3pz0KtBwIf5yTk3pOUSloKgi+vtrW9s7tX3/cPGv7h0XGz8WSLygiMRKEK00u4RSU1RiRJYa80yPNEYTeZ3C3y7jMaKwv9SNMS45yPtMyk4OSszrDZCtrBUmwTwjW0YK1h83OQFqLKUZNQ3Np+GJQUz7ghKRTO/UFlseRiwkfYd6h5jjaeLcecs3PnpCwrjDua2NL9+WLGc2uneeJu5pzG9m+2MP/L+hVl1/FM6rIi1GL1UVYpRgVb7MxSaVCQmjrgwkg3KxNjbrgg14zvOgj/brwJ0WX7ph0+BFCHUziDCwjhCm7hHjoQgYAUXuDNG3uv3vuqqpq37uwEfsn7+AaqKYoN</latexit><latexit sha1_base64="ad8mqNKoG4eHEU2jqJy3xUQTqCM=">AAAB53icbZDNSgMxFIXv1L9aq1a3boJFcFVm3Gh3ghuXFRxb6Awlk95pQ5PMkGSEMvQ13LhQ8Y3c+TamPwttPRD4OCfh3pwkF9xY3//2KlvbO7t71f3aQf3w6LhxUn8yWaEZhiwTme4l1KDgCkPLrcBerpHKRGA3mdzN8+4zasMz9WinOcaSjhRPOaPWWVGUUF1GKMRsIAeNpt/yFyKbEKygCSt1Bo2vaJixQqKyTFBj+oGf27ik2nImcFaLCoM5ZRM6wr5DRSWauFzsPCMXzhmSNNPuKEsW7u8XJZXGTGXibkpqx2Y9m5v/Zf3CpjdxyVVeWFRsOSgtBLEZmRdAhlwjs2LqgDLN3a6EjammzLqaaq6EYP3LmxBetdqt4MGHKpzBOVxCANdwC/fQgRAY5PACb/DuFd6r97Fsq+KtajuFP/I+fwB9qJBX</latexit><latexit sha1_base64="ad8mqNKoG4eHEU2jqJy3xUQTqCM=">AAAB53icbZDNSgMxFIXv1L9aq1a3boJFcFVm3Gh3ghuXFRxb6Awlk95pQ5PMkGSEMvQ13LhQ8Y3c+TamPwttPRD4OCfh3pwkF9xY3//2KlvbO7t71f3aQf3w6LhxUn8yWaEZhiwTme4l1KDgCkPLrcBerpHKRGA3mdzN8+4zasMz9WinOcaSjhRPOaPWWVGUUF1GKMRsIAeNpt/yFyKbEKygCSt1Bo2vaJixQqKyTFBj+oGf27ik2nImcFaLCoM5ZRM6wr5DRSWauFzsPCMXzhmSNNPuKEsW7u8XJZXGTGXibkpqx2Y9m5v/Zf3CpjdxyVVeWFRsOSgtBLEZmRdAhlwjs2LqgDLN3a6EjammzLqaaq6EYP3LmxBetdqt4MGHKpzBOVxCANdwC/fQgRAY5PACb/DuFd6r97Fsq+KtajuFP/I+fwB9qJBX</latexit><latexit sha1_base64="D0ZTIQbUCRE+lVYsCyqDl+TQV4s=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m8qLeiF48VjC00oWy2k3bpbhJ2N0IJ/RtePKh49dd489+4bXPQ1gcDj/dmmJkXZYJr47rfTmVtfWNzq7pd29nd2z+oHx496jRXDH2WilR1I6pR8AR9w43AbqaQykhgJxrfzvzOEyrN0+TBTDIMJR0mPOaMGisFQURVEaAQ077s1xtu052DrBKvJA0o0e7Xv4JBynKJiWGCat3z3MyEBVWGM4HTWpBrzCgb0yH2LE2oRB0W85un5MwqAxKnylZiyFz9PVFQqfVERrZTUjPSy95M/M/r5Sa+CgueZLnBhC0WxbkgJiWzAMiAK2RGTCyhTHF7K2EjqigzNqaaDcFbfnmV+BfN66Z37zZaN2UaVTiBUzgHDy6hBXfQBh8YZPAMr/Dm5M6L8+58LForTjlzDH/gfP4AwvSRsA==</latexit><latexit sha1_base64="jispEbA4dTf7/2h/rRxKtkxudv8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQtlsJ+3SzSbsboQS+je8eFDx6q/x5r9x2+ag1QcDj/dmmJkXZYJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1I6pRcIm+4UZgN1NIk0hgJxrfzPzOIyrNU3lvJhmGCR1KHnNGjZWCIKKqCFCIaT/p1xtu052D/CVeSRpQot2vfwaDlOUJSsME1brnuZkJC6oMZwKntSDXmFE2pkPsWSppgjos5jdPyYlVBiROlS1pyFz9OVHQROtJEtnOhJqRXvZm4n9eLzfxZVhwmeUGJVssinNBTEpmAZABV8iMmFhCmeL2VsJGVFFmbEw1G4K3/PJf4p81r5re3XmjdV2mUYUjOIZT8OACWnALbfCBQQZP8AKvTu48O2/O+6K14pQzh/ALzsc3xDSRtA==</latexit><latexit sha1_base64="jispEbA4dTf7/2h/rRxKtkxudv8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQtlsJ+3SzSbsboQS+je8eFDx6q/x5r9x2+ag1QcDj/dmmJkXZYJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1I6pRcIm+4UZgN1NIk0hgJxrfzPzOIyrNU3lvJhmGCR1KHnNGjZWCIKKqCFCIaT/p1xtu052D/CVeSRpQot2vfwaDlOUJSsME1brnuZkJC6oMZwKntSDXmFE2pkPsWSppgjos5jdPyYlVBiROlS1pyFz9OVHQROtJEtnOhJqRXvZm4n9eLzfxZVhwmeUGJVssinNBTEpmAZABV8iMmFhCmeL2VsJGVFFmbEw1G4K3/PJf4p81r5re3XmjdV2mUYUjOIZT8OACWnALbfCBQQZP8AKvTu48O2/O+6K14pQzh/ALzsc3xDSRtA==</latexit><latexit sha1_base64="jispEbA4dTf7/2h/rRxKtkxudv8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQtlsJ+3SzSbsboQS+je8eFDx6q/x5r9x2+ag1QcDj/dmmJkXZYJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1I6pRcIm+4UZgN1NIk0hgJxrfzPzOIyrNU3lvJhmGCR1KHnNGjZWCIKKqCFCIaT/p1xtu052D/CVeSRpQot2vfwaDlOUJSsME1brnuZkJC6oMZwKntSDXmFE2pkPsWSppgjos5jdPyYlVBiROlS1pyFz9OVHQROtJEtnOhJqRXvZm4n9eLzfxZVhwmeUGJVssinNBTEpmAZABV8iMmFhCmeL2VsJGVFFmbEw1G4K3/PJf4p81r5re3XmjdV2mUYUjOIZT8OACWnALbfCBQQZP8AKvTu48O2/O+6K14pQzh/ALzsc3xDSRtA==</latexit><latexit sha1_base64="jispEbA4dTf7/2h/rRxKtkxudv8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQtlsJ+3SzSbsboQS+je8eFDx6q/x5r9x2+ag1QcDj/dmmJkXZYJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1I6pRcIm+4UZgN1NIk0hgJxrfzPzOIyrNU3lvJhmGCR1KHnNGjZWCIKKqCFCIaT/p1xtu052D/CVeSRpQot2vfwaDlOUJSsME1brnuZkJC6oMZwKntSDXmFE2pkPsWSppgjos5jdPyYlVBiROlS1pyFz9OVHQROtJEtnOhJqRXvZm4n9eLzfxZVhwmeUGJVssinNBTEpmAZABV8iMmFhCmeL2VsJGVFFmbEw1G4K3/PJf4p81r5re3XmjdV2mUYUjOIZT8OACWnALbfCBQQZP8AKvTu48O2/O+6K14pQzh/ALzsc3xDSRtA==</latexit><latexit sha1_base64="jispEbA4dTf7/2h/rRxKtkxudv8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQtlsJ+3SzSbsboQS+je8eFDx6q/x5r9x2+ag1QcDj/dmmJkXZYJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1I6pRcIm+4UZgN1NIk0hgJxrfzPzOIyrNU3lvJhmGCR1KHnNGjZWCIKKqCFCIaT/p1xtu052D/CVeSRpQot2vfwaDlOUJSsME1brnuZkJC6oMZwKntSDXmFE2pkPsWSppgjos5jdPyYlVBiROlS1pyFz9OVHQROtJEtnOhJqRXvZm4n9eLzfxZVhwmeUGJVssinNBTEpmAZABV8iMmFhCmeL2VsJGVFFmbEw1G4K3/PJf4p81r5re3XmjdV2mUYUjOIZT8OACWnALbfCBQQZP8AKvTu48O2/O+6K14pQzh/ALzsc3xDSRtA==</latexit><latexit sha1_base64="jispEbA4dTf7/2h/rRxKtkxudv8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQtlsJ+3SzSbsboQS+je8eFDx6q/x5r9x2+ag1QcDj/dmmJkXZYJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1I6pRcIm+4UZgN1NIk0hgJxrfzPzOIyrNU3lvJhmGCR1KHnNGjZWCIKKqCFCIaT/p1xtu052D/CVeSRpQot2vfwaDlOUJSsME1brnuZkJC6oMZwKntSDXmFE2pkPsWSppgjos5jdPyYlVBiROlS1pyFz9OVHQROtJEtnOhJqRXvZm4n9eLzfxZVhwmeUGJVssinNBTEpmAZABV8iMmFhCmeL2VsJGVFFmbEw1G4K3/PJf4p81r5re3XmjdV2mUYUjOIZT8OACWnALbfCBQQZP8AKvTu48O2/O+6K14pQzh/ALzsc3xDSRtA==</latexit>

`tm
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reference elevation 

Figure 2.1: A schematic for a water tank sited at node m. The geographical elevation has
been incorporated by referring heights to a common reference.

Each tank has two separate paths for filling and emptying; see Fig. 2.1. The filling or inlet

pipe is connected near the top, and the emptying or outlet pipe is connected at the bottom.
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The two pipes are controlled by two separate valves. The output pressure of the valves can

equal or less than the input pressure. Therefore, when tank m is being filled in with water at

time t, it should hold ht
m ≥ `m. Conversely, when water flows out of the tank, it follows that

ht
m ≤ `tm. By closing both the inlet and outlet valves, the pressure ht

m at node m becomes

decoupled from the pressure at the bottom of the tank, `tm.

To capture the aforementioned tank operation, let us introduce two binary variables (αt
m, β

t
m)

and the auxiliary continuous variable h̃t
m. The operation of tank m at time t is described by

the constraints

−M(1− αt
m) ≤ h̃t

m − ht
m ≤ M(1− αt

m) (2.11a)

−Mαt
m ≤ dtm ≤ Mαt

m (2.11b)

−Mβt
m ≤ dtm ≤ M(1− βt

m) (2.11c)

`m −M(1− βt
m) ≤ h̃t

m ≤ `tm +Mβt
m (2.11d)

αt
m, β

t
m ∈ {0, 1}. (2.11e)

The variable αt
m indicates if tank m is connected at time t; and if it is, the variable βt

m

indicates if the tank is filling. When the tank is connected (αt
m = 1), constraint (2.11a)

yields h̃t
m = ht

m and (2.11b) holds trivially. If additionally the tank is filling (βt
m = 1), then

dtm ≤ 0 from (2.11c) and h̃t
m = ht

m ≥ `m from (2.11d). If the tank is connected but emptying

(αt
m = 1, βt

m = 0), then dtm ≥ 0 from (2.11c) and h̃t
m = ht

m ≤ `tm from (2.11d). When the

tank is disconnected (αt
m = 0), constraint (2.11b) enforces dtm = 0, the pressure in the tank

is not related to the network pressure and the value of βt
m is irrelevant.

Valves are a vital flow-control component. Popular models for valves include an on/off

switch model; a linear pressure-reducing model; and a flow-dependent nonlinear model [34].

Presuming a combination of on/off and linear valves on lossy pipes, a convex relaxation for
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OWF was put forth in [34]. Although this simplistic setup can be incorporated here, this

work addresses the more realistic WDS setup where valves are present only at reservoirs and

tanks.

2.3 Optimal Water Flow: Minimizing Pumping Cost

With dynamic pricing, the objective here is to minimize the cost of electricity consumed

by water pumps. This section collects the network constraints listed earlier and defines the

OWF problem. The mechanical power consumed by pump (m,n) ∈ Pa during period t

in watts is given by the product of the induced pressure difference gmn measured in pascal,

times the water flow d̃tmn in m3/sec [34]. If the overall energy efficiency of the pump is ηmn, it

consumes electric energy δρg̃gmn

ηmn
d̃tmn during time t of duration δ. For the fixed-speed pumps

considered here, the pressure gain gmn is constant and we can thus define the electricity

consumption coefficient

cmn :=
δρg̃gmn

ηmn

, ∀(m,n) ∈ Pa.

The OWF problem can be formally stated as follows. Given the initial water level in tanks

{`0m}m∈Mb
, the water demands at consumption nodes {dtm}m∈M\Mb∪Mr , the electricity prices

{πt}Tt=1, and network parameters (tank capacities, pipe dimensions, pump pressure gains

and minimum pressure requirements, tank heights); the OWF task aims at minimizing the

electricity cost for running the pumps while meeting water demands and respecting WDS

limitations.

In detail, the pumping cost can be formulated as

f(d̃) :=
T∑
t=1

∑
(m,n)∈Pa

cmnπtd̃
t
mn (2.12)
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where vector d̃ collects the water flows {d̃tmn}t in all pumps (m,n) ∈ Pa and at all times. to

simplify the presentation, the price of electricity πt is assumed invariant across the WDS for

all t. The OWF problem can be posed as the minimization

min f(d̃) (P1)

over {ht
m}m∈M, {dtm}m∈Mb∪Mr , {dtmn}(m,n)∈P ,

{h̃t
m}m∈Mb

, {`tm}m∈Mb
, {d̃tmn}(m,n)∈Pa ,

{xt
mn}(m,n)∈P , {αt

m}m∈Mr∪Mb
, {βt

m}m∈Mb
, ∀t

s.to (2.1), (2.2), (2.4), (2.6) − (2.11).

Problem (P1) involves the continuous variables {ht
m, d

t
m, d

t
mn, h̃

t
m, d̃

t
mn} and the binary vari-

ables {xt
mn, α

t
m, β

t
m}. For fixed-speed pumps, the cost in (P1) is linear. Although most of

the constraints are linear thanks to the big-M trick, the constraints (2.4b)–(2.4c) modeling

the pressure drop are non-linear. In fact, each one of these constraints involves one convex

and one non-convex quadratic inequality. To obtain affordable OWF solutions, Section 2.4

relaxes the non-convex constraints and derives a mixed-integer problem that is convex with

respect to the continuous variables.

2.4 Convex Relaxation

The pressure drop across a lossy pipe (m,n) ∈ P̄a depends on its water flow dtmn through

the quadratic law of (2.3), which can be relaxed to a convex inequality as

• ht
m − ht

n ≥ cmn(d
t
mn)

2 for dtmn ≥ 0; or

• ht
n − ht

m ≥ cmn(d
t
mn)

2 for dtmn ≤ 0.
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Since the sign of dtmn is captured by the binary variable xt
mn, the relaxation can be alterna-

tively performed on (2.4) to yield

−M(1− xt
mn) ≤ dtmn ≤ Mxt

mn (2.13a)

−M(1− xt
mn) ≤ ht

m − ht
n − cmn(d

t
mn)

2 (2.13b)

ht
m − ht

n + cmn(d
t
mn)

2 ≤ Mxt
mn. (2.13c)

Comparing (2.4) to (2.13), the rightmost inequality of (2.4b) and the leftmost inequality of

(2.4c) have been dropped in (2.13). There are exactly the non-convex constraints. Replacing

(2.4) by (2.13) in (P1), leads to the relaxed problem

min f(d̃) (P2)

over {ht
m}m∈M, {dtm}m∈Mb∪Mr , {dtmn}(m,n)∈P ,

{h̃t
m}m∈Mb

, {d̃tmn}(m,n)∈Pa ,

{xt
mn}(m,n)∈P , {αt

m}m∈Mr∪Mb
, {βt

m}m∈Mb
, ∀t

s.to (2.1), (2.2), (2.6) − (2.11), (2.13).

Problem (P2) is convex with respect to the continuous variables, and it could be handled

by existing mixed-integer off-the-shelf solvers. Being a relaxation, the optimal value of (P2)

serves as a lower bound for the optimal value of (P1). If a minimizer of (P2) satisfies (2.13b)

or (2.13c) with equality for all (m,n) ∈ P̄a, the relaxation is deemed exact. In this case, the

minimizer of (P2) coincides with the minimizer of (P1). Nonetheless, the relaxation is not

necessarily exact.

To study the feasible sets of (P1) and (P2), let h collect the nodal pressures {ht
m}m,t; vector

d the water flows {dtmn}t for all (m,n) ∈ P ; and d̃ has been defined after (P1). Define the
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projection of the feasible set of (P1) into (d̃,d,h) as S1, and the projection of the feasible

set of (P2) into (d̃,d,h) as S2. The next result shows there exists a bijection between S1

[resp. S2] and the feasible set of (P1) [resp. (P2)].

Lemma 2.1. Any feasible point of (P1) and (P2) is uniquely characterized by its s :=

{d̃,d,h} components.

Proof. It will be shown that upon fixing (d̃,d,h), the remaining variables listed under

(P1)–(P3) can be determined. Given d, the water injections {dtn}n,t are set by (2.1), and

subsequently, the water levels {`tm}m,t are set by (2.8). The binary variables capturing flow

directions in lossy pipes are

xt
mn =

⌊
sign(dtmn) + 1

2

⌋
, ∀(m,n) ∈ P̄a, t

where bac denotes the floor function. Likewise, the binary variables characterizing flow

directions in pumps are set as xt
mn = sign(d̃tmn) for (m,n) ∈ Pa.

The variables governing reservoirs and tanks are set as

αt
m = | sign(dtm)|, ∀m ∈ Mb (2.14a)

βt
m =

⌊
1− sign(dtm)

2

⌋
, ∀m ∈ Mb (2.14b)

h̃t
m = αt

mh
t
m, ∀m ∈ Mb. (2.14c)

If tank m is disconnected at time t, then αt
m = 0 and the values of βt

m and h̃t
m become

inconsequential. Thus, the unique mapping suggested in (2.14) does not harm feasibility.

Lemma 2.1 asserts that (P1) and (P2) can be equivalently expressed only in terms of

s := {d̃,d,h}. The remaining variables have been introduced merely to avoid discontinuous
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or non-differentiable functions (e.g., sign or absolute value) as well as products between con-

tinuous and binary variables. In light of Lemma 2.1 and with a slight abuse in terminology,

we will henceforth refer to S1 [resp. S2] as the feasible set of (P1) [resp. (P2)]. Due to the

relaxation, it holds S1 ⊆ S2.

When it comes to (P1), a feasible point can be constructed only by its {d̃,d} components,

since a feasible pressure vector h can be recovered from {d̃,d} as follows. Given {d̃,d},

the variables {xt
mn, α

t
m, β

t
m, d

t
m, `

t
m} can be set as in the proof of Lemma 2.1. The values of

pressure differences across pipes can be found by (2.4) and (2.6a). The next question is how

to recover pressures from pressure differences.

To express pressure differences at time t = 1, . . . , T , we need to define an edge-node incidence

matrix depending on the water flow directions at time t. Define dt as the subvector of d

collecting water flows only at time t. Then, introduce the P ×M incidence matrix A(dt) so

that if its p-th row corresponds to pipe p = (m,n), then its (p, k) entry is

Ap,k(dt) :=


− sign2(dtmn) + sign(dtmn) + 1 , k = m

sign2(dtmn)− sign(dtmn)− 1 , k = n

0 , otherwise.

In this way, vector A(dt)ht captures the pressure differences taken across the direction of

flow. For zero flows, the standard pipe direction (m,n) is selected without loss of generality.

If (ht, d̃t) are the subvectors of (h, d̃) corresponding to time t, the pressure differences can

be expressed as

A(dt)ht = b(d̃t,dt), ∀t (2.15)

where b(d̃t,dt) is the mapping induced by (2.4) and (2.6a). Since {d̃,d} is feasible for (P1),

the overdetermined system in (2.15) is consistent. However, its solution is not unique: The
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all-one vector 1 belongs to the nullspace of A(dt) by definition, so if ht satisfies (2.15), then

ht + c1 satisfies (2.15) too for any c.

Satisfying (2.15) alone is not sufficient for ht to be feasible for (P1). It should also satisfy

the inequality constraints (2.2), (2.7b), (2.11a), and (2.11d), which are abstractly expressed

as

h(d̃,d) ≤ h ≤ h(d̃,d). (2.16)

Given {d̃,d} for a feasible point of (P1), a feasible pressure vector h can be found by ensuring

(2.15)–(2.16). A water utility would implement h by controlling the pressures at reservoir

valves. The aforesaid procedure proves the following claim.

Lemma 2.2. Any feasible point of (P1) is characterized by its {d̃,d} components. A vector

of feasible pressures h can be recovered by solving the linear program (LP)

find h (2.17)

s.to (2.15) − (2.16).

Let H(d̃,d) be the set of vectors h solving the feasibility problem in (2.17). Lemma 2.2

implies that any solution to (2.17) provides a feasible point for (P1).

Given Lemma 2.2, let us see if one can find a feasible point for (P1) by solving (P2). Consider

a minimizer s1 = {d̃1,d1,h1} of (P1) attaining the cost f1 := f(d̃1); and a minimizer

s2 = {d̃2,d2,h2} of (P2) with f2 := f(d̃2) with f2 ≤ f1 due to the relaxation. The next

cases can be identified:

C1. If the relaxation is exact, then h2 ∈ H(d̃2,d2), the costs agree f2 = f1, and s2 can be

implemented in lieu of s1.
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C2. If the relaxation is inexact, h2 satisfies only the equations in (2.15) related to pumps,

whereas some of the constraints related to lossy pipes in (2.13) are satisfied with strict

inequalities. In this case, one may try to recover a vector of WDS-feasible pressures

by enforcing (2.15)–(2.16). The following subcases are identified.

C2.a. The linear system of (2.15) is consistent for b(d̃2,d2). Again, two cases can be

identified.

C2.a.i. The LP in (2.17) is feasible for (d̃2,d2) with ȟ2 ∈ H(d̃2,d2). The point

š2 := {d̃2,d2, ȟ2} is feasible for (P1) and attains the cost f̌2 := f(d̃2) = f2.

Because š2 is feasible for (P1), the optimal cost has been attained, i.e., f̌2 =

f2 = f1.

C2.a.ii. The LP in (2.17) is infeasible for (d̃2,d2). A feasible point for (P1)

cannot be recovered.

C2.b. The linear system of (2.15) is inconsistent for b(d̃2,d2). A feasible point for

(P1) cannot be recovered.

Cases C1 and C2.a.i are computationally useful since they recover an optimal point. Cases

C2.a.ii and C2.b on the other hand, do not provide any practically useful output. Based on

numerical tests with different WDS networks and under various pricing/demand scenarios,

we have empirically observed that:

• Case C1 occurs rarely.

• Case C2.a.i is encountered frequently in radial networks.

• Case C2.a.ii occurs frequently in meshed networks.

Spurred by these observations and to improve the chances for an exact relaxation of (P1),
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the next section adds a penalization term in the objective of (P2) and studies the feasibility

and optimality of this penalized convex relaxation.

2.5 Penalized Convex Relaxation

Toward an exact relaxation of (P1), define the penalty

g(h) :=
T∑
t=1

∑
(m,n)∈P̄a

|ht
m − ht

n| (2.18)

which sums up the absolute pressure differences across lossy pipes and over all times. Let

us formulate a penalized convex relaxation by replacing the cost of (P2) by

min f(d̃) + λg(h) (P3)

s.to (2.1), (2.2), (2.6) − (2.11), (2.13)

for λ > 0. We next study the feasibility and optimality of (P3).

2.5.1 Improving Feasibility

Although (P2) and (P3) share the same feasible set, this section shows that (P3) features

two advantages over (P2):

a1) Problem (P3) eliminates the unfavorable case C2a-i. The problem instances falling

under C2a-i with (P2), fall under the useful case C1 for (P3).

a2) Under some conditions, problem (P3) does not encounter the unfavorable case C2b

either.
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Starting with advantage a1), the following result shown in the appendix is presented first.

Theorem 2.3. If s3 := {d̃3,d3,h3} is a minimizer of (P3) and H(d̃3,d3) is non-empty,

then h3 ∈ H(d̃3,d3).

Proof. Being a minimizer, s̃3 is also feasible for (P3). A feasible point of (P3) satisfies only

those equations in (2.15) related to pumps. The equality constraints in (2.15) corresponding

to lossy pipes are replaced by one-sided linear inequality constraints in (P3). To express these

facts in a matrix-vector notation, partition A(dt) into submatrix Ap(dt) having the rows of

A(dt) related to pumps; and submatrix Al(dt) having the rows related to lossy pipes. The

rows of A(dt) can be permuted without loss of generality so that

A(dt) =

 Ap(dt)

Al(dt)

 . (2.19)

Likewise, the mapping b(d̃t,dt) in (2.15) can be partitioned into bp(d̃t) and bl(dt). A vector

h is feasible for the relaxed problem (P3) if instead of (2.15), it satisfies

Ap(dt)ht = bp(d̃t), ∀t (2.20a)

Al(dt)ht ≥ bl(dt) ≥ 0, ∀t. (2.20b)

Granted H(d̃3,d3) is non-empty by hypothesis, there exists an ȟ3 ∈ H(d̃3,d3) so that

š3 := {d̃3,d3, ȟ3} satisfies (2.15)–(2.16). Because š3 satisfies (2.15), it satisfies the constraints

(2.20b) with equality. Thus, vector š3 is feasible for (P3). Moreover, the cost of (P3) for š3 is

f(d̃3)+λg(ȟ3) = f3+λ
∑T

t=1 ‖Al(dt
3)ȟt

3‖1, where f3 := f(d̃3), and ȟt
3 and dt

3 are accordingly

the subvectors of ȟ3 and d3 collecting the entries corresponding to time t. Since š3 satisfies

(2.20b) with equality, the cost becomes f3 + λ
∑T

t=1 ‖bl(dt
3)‖1.
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Proving by contradiction, suppose h3 /∈ H(d̃3,d3). This implies h3 does not satisfy the

left-hand side of (2.20b) with equality. Instead, there exists a sequence of εt ≥ 0, such that

Al(dt
3)ht

3 = bl(dt
3) + εt for all t and

∑T
t=1 ε

t 6= 0. Evaluating the objective of (P3) for the

minimizer s3 yields

f(d̃3) + λg(h̃3) = f3 + λ
T∑
t=1

‖Al(dt
3)ht

3‖

= f3 + λ

T∑
t=1

(
‖bt

l(dt
3)‖1 + ‖εt‖1

)
> f3 + λ

T∑
t=1

‖bt
l(dt

3)‖1

where the second equality stems from bl(dt) ≥ 0 and εt ≥ 0 for all t; and the strict inequality

holds because λ > 0 and
∑T

t=1 ε
t 6= 0. This inequality contradicts the optimality of s3, and

nullifies the hypothesis that h3 /∈ H(d̃3,d3).

From Theorem 2.3 and Lemma 2.2, the next result follows.

Corollary 2.4. Under the assumptions of Theorem 2.3, the minimizer s3 := {d̃3,d3,h3} of

(P3) is feasible for (P1).

Corollary 2.4 asserts that if the water flows obtained via (P3) can be mapped to physically

feasible pressures, then the minimizer of (P3) contains already physically feasible pressures

and this shows advantage a1).

Before moving to a2), some graph theory preliminaries are reviewed. Given an undirected

graph G := (M,P), the degree is the number of incident edges. A graph is connected if there

exists a sequence of adjacent edges between any two of its nodes. A minimal set of edges PT

preserving the connectivity of a connected graph constitutes a spanning tree of G; is denoted

by T := (M,PT ); and apparently, |PT | = |M| − 1. The edges not belonging to a spanning



24 Chapter 2. Optimal Operation of Water Distribution Systems

tree T are referred to as links with respect to T . A cycle is a sequence of adjacent edges

without repetition that starts and begins at the same node. A tree is a connected graph with

no cycles. In a directed graph, each edge is assigned a directionality. A path from node m to

n is defined as a sequence of directed edges originating from m and terminating at n. Given

the undirected graph (M,P) modeling a WDS and the vector dt of flows at time t, let us

define the directed graph (M,P(dt)) where edge p runs from node m to node n if dtm,n ≥ 0;

and vice versa, otherwise.

To show a2), we study the consistency of (2.15). Had the WDS graph been a tree, the

edge-node incidence matrix would have been full row-rank [42], and hence (2.15) consistent

for any b(d̃t,dt). This implies that possible inconsistencies in (2.15) arise from cycles in

the WDS graph. Because studying the generic case of cycles is not obvious, we consider the

special case of a cycle where all but one nodes have degree two. This subset of edges will

be henceforth termed a ring rooted at the node with degree larger than two. We provide

conditions under which a minimizer of (P3) satisfies the constraints in (2.13) with equality

for all edges of a ring.

Lemma 2.5. Let s3 = {d̃3,d3,h3} be a minimizer of (P3) and dt
3 be the subvector of d3

collecting the flows at time t. If the directed graph (M,P(dt
3)) contains a ring R ⊆ P(dt

3)

rooted at node m, such that

• all nodes incident to R have identical pressure limit h;

• all nodes incident to R but m host no tanks or reservoirs;

• all edges in R host no pumps;

then ht
i − ht

j = cij(d
t
ij)

2 for all directed edges (i, j) in R.
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Proof. Since this proof refers to a particular time, the superscript t is omitted for simplicity.

Given a point {d̃,d,h}, an edge will be termed (in)exact if constraint (2.13) is satisfied

with (in)equality for that point. Since all nodes incident to R excluding m host no tanks or

reservoirs, they must have non-positive injections. Therefore, its two incident edges cannot

both have outgoing water flows from (2.1). This implies that the ring can either consist of two

parallel paths, or a directed cycle. In the latter case, adding the constraints hi−hj ≥ cij(dij)
2

around R would give
∑

(i,j)∈R cijd
2
ij ≤ hm − hm = 0, implying dij = 0 for all edges in R,

which is a contradiction. Thus, the ring R consists of two parallel paths from m to some

node n, henceforth termed P1 and P2.

The rest of the proof proceeds in two steps. The first step shows there exists a minimizer of

(P3) with at most one inexact edge in R. The second step reduces the number to none.

For the first step, we will modify the pressure vector in s3 to construct ŝ3 := {d̃3,d3, ĥ3} for

which there exists at most one inexact edge in R. The new point ŝ3 is feasible for (P3) and

attains smaller or equal cost than s3. To do so, for each node k incident to R excluding m

and n, assign the pressure consistent with (2.3) along the path Pmk from m to k:

ĥk := hm −
∑

(i,j)∈Pmk

cijd
2
ij ≥ hk ≥ h

where the first inequality stems from summing up the constraints hi − hj ≥ cijd
2
ij for all

edges (i, j) along Pmk, and guarantees that ĥk is feasible.

For the terminal node n, assign the pressure

ĥn := min
l∈{1,2}

{
hm −

∑
(i,j)∈Pl

cijd
2
ij

}
. (2.21)
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Adding the constraints hi − hj ≥ cijd
2
ij for all edges (i, j) in Pl and P2 separately, yields

hm − hn ≥
∑

(i,j)∈Pl

cijd
2
ij, l ∈ {1, 2}. (2.22)

Hence, we get that

hn ≤ min
l∈{1,2}

{
hm −

∑
(i,j)∈Pl

cijd
2
ij

}
= ĥn (2.23)

implying ĥn ≥ hn ≥ h.

Since the pressures on the nodes within R have been increased and they are not upper

bounded in the absence of tanks or reservoirs, the point ŝ3 is feasible. The difference in the

objective of (P3) attained by s3 and ŝ3 is

f(d̃3) + λg(h3)− f(d̃3)− λg(ĥ3)

= λ
∑

(i,j)∈R

(
|hi − hj| − |ĥi − ĥj|

)
.

Since all directed edges in P1 and P2 have positive flows

∑
(i,j)∈R

|hi − hj| =
∑

(i,j)∈P1

(hi − hj) +
∑

(i,j)∈P2

(hi − hj)

= 2(hm − hn).

Applying the same argument for ĥ3, it follows that

f(d̃3) + λg(h3)− f(d̃3)− λg(ĥ3) = 2λ(ĥn − hn) ≥ 0. (2.24)

If for s3 there exist inexact edges in both P1 and P2, then (2.22) holds with strict inequality

for both paths. It follows from (2.23) that ĥn > hn, and so ŝ3 contradicts the optimality of
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s3. This proves that all inexact edges in R must belong exclusively to P1 or P2. In the latter

case, the inequality in (2.23) holds with equality, and from (2.24) the point ŝ3 becomes a

minimizer of (P3). Note ŝ3 has at most one inexact edge in R, and that is the last edge in

P1 or P2.

For the second step of this proof and proving by contradiction, suppose there exist exactly

one inexact edge for the minimizer s3 in P1. That means that (2.22) holds with inequality

for l = 1, and equality for l = 2, implying

∑
(i,j)∈P1

cijd
2
ij <

∑
(i,j)∈P2

cijd
2
ij. (2.25)

From d3, construct a water flow vector ď3 with entries

ďij =


dij + ε , (i, j) ∈ P1

dij − ε , (i, j) ∈ P2

dij , (i, j) ∈ P \ (P1 ∪ P2)

(2.26)

for some ε > 0. This redistribution of flows satisfies (2.1). Moreover, for increasing ε,

the LHS of (2.25) increases and the RHS decreases. This is because cijd
2
ij is an increasing

function for positive dij. The goal is to select ε, so that

∑
(i,j)∈P1

cij ď
2
ij =

∑
(i,j)∈P2

cij ď
2
ij <

∑
(i,j)∈P2

cijd
2
ij. (2.27)

While increasing ε to achieve (2.27), some of the {ďij}(i,j)∈P2 may become negative. This

case is ignored for now.

Construct next a new pressure vector ȟ3 by changing the entries of h3 corresponding to the
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non-root nodes in R as

ȟk := hm −
∑

(i,j)∈Pmk

cij ď
2
ij. (2.28)

For k = n, the sum in the RHS of (2.28) can be evaluated over P1 or P2, since these two

sums are equal from (2.27). The constructed pressures for nodes incident to R satisfy

ȟk ≥ ȟn > hn ≥ h. (2.29)

The first inequality holds because node n has the largest value for the sum in (2.28); and

the second inequality because

ȟn = hm −
∑

(i,j)∈P2

cij ď
2
ij > hm −

∑
(i,j)∈P2

cijd
2
ij = hn.

The inequalities in (2.29) prove that ȟ3, and hence the point š3 := {d̃3, ď3, ȟ3} is feasible

for (P3). The difference in the objective of (P3) attained by s3 and š3 is

f(d̃3) + λg(h3)− f(d̃3)− λg(ȟ3) = 2λ(ȟn − hn) > 0

which contradicts the optimality of s3.

Since all water injections at non-root nodes over R are non-positive, the water flows are

non-increasing along P2. This implies that dij ≥ dn1,n for all (i, j) ∈ P2, where (n1, n) is the

last edge of P2. Thus, by increasing ε, the flow dn1,n may become negative. In that case, the

edge (n1, n) is removed from P2 and appended to P1, forming a new pair of parallel paths

with n1 as the new terminal node. The second step of this proof can be repeated on the new

parallel paths.
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Leveraging Lemma 2.5, the ensuing result shows the advantage a2 of (P3) over (P2) for a

large class of practical WDS.

Theorem 2.6. Let s3 := {d̃3,d3,h3} be a minimizer of (P3) and (d̃t
3,dt

3) be the subvectors

of (d̃3,d3) corresponding to time t. The system of equations in (2.15) is consistent for s3

at time t, if all undirected cycles in (M,P(dt
3)) constitute rings satisfying the conditions of

Lemma 2.5.

Proof. Let T := (M,PT ) be a spanning tree of (M,P(dt
3)). Reorder the equations in (2.15)

as  AT (dt
3)

AT̄ (dt
3)

ht =

 bT (d̃t
3,dt

3)

bT̄ (d̃t
3,dt

3)

 (2.30)

where AT (dt
3) and bT (d̃t

3,dt
3) are the rows of A(dt

3) and b(d̃t
3,dt

3) corresponding to the

edges in PT ; and AT̄ (dt
3) and bT̄ (d̃t

3,dt
3) the rows corresponding to the edges in P \ PT .

Being an edge-node incidence matrix for a tree, matrix AT (dt
3) is full row-rank [42], and

hence the system AT (dt
3)ht = bT (d̃t

3,dt
3) is consistent. The rows of AT̄ (dt

3) correspond to

the links defined by T . By the hypothesis, every undirected cycle in (M,P(dt
3)) is a ring.

Then, all but one of its edges belong to T , and the remaining edge belongs to T̄ . In fact,

every edge in T̄ must belong to a ring. Since by the conditions of Lemma 2.5, no pumps are

allowed on a ring, every equation in the bottom part of (2.30) corresponds to a lossy pipeline

(k, l) and will be of the form ht
k − ht

l = ckld
2
kl.

Since we refer to time t, the superscript t is omitted to unclutter notation. Consider link

(k, l) ∈ T̄ that belongs to the pair of parallel paths P1 and P2 with origin node m and

destination n. Without loss of generality, let also (k, l) ∈ P1. From Lemma 2.5, it holds that
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hi − hj = cijd
2
ij for all (i, j) ∈ P1 ∪ P2. Summing these constraints along P1 and P2 yields

∑
(i,j)∈P1

(hi − hj) =
∑

(i,j)∈P1

cijd
2
ij = hm − hn (2.31a)

∑
(i,j)∈P2

(hi − hj) =
∑

(i,j)∈P2

cijd
2
ij = hm − hn (2.31b)

so that (2.31a) equals (2.31b). Separating the contribution of edge (k, l) from P1 in the

leftmost and central parts of (2.31a) provides

hk − hl =
∑

(i,j)∈P2

(hi − hj)−
∑

(i,j)∈P1\(k,l)

(hi − hj) (2.32a)

ckld
2
kl =

∑
(i,j)∈P2

cijd
2
ij −

∑
(i,j)∈P1\(k,l)

cijd
2
ij. (2.32b)

Note that the pressure drop equations along for all edges (i, j) ∈ P1 ∪ P2 \ (k, l) are rows in

the system AT (dt
3)ht = bT (d̃t

3,dt
3). From (2.32), the pressure drop equation corresponding

to edge (k, l) ∈ T̄ has been expressed as a linear combination of the rows of AT (d3)h =

bT (d̃3,d3). The argument holds for all equations in the bottom part of (2.30), thus making

the overall system in (2.15) consistent.

To appreciate the claim of Theorem 2.6, recall that for a point to be feasible for (P1), it is

sufficient to satisfy (2.15) and (2.16). Since A(dt)1 = 0, the next result can be inferred.

Corollary 2.7. Under the assumptions of Theorem 2.6, if the left or right inequality in

(2.16) are omitted, then a minimizer of (P3) is feasible for (P1).

Corollary 2.7 asserts that (P3) can be advantageous for coping with OWF tasks with no

upper bounds on pressures; see also [33]. An important problem complying to this setup is

the water flow (WF) task. Different from OWF, the WF problem solves the WDS equations

over a single period upon specifying nodal water demands and a reference pressure.
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2.5.2 Optimality

The previous section documented the advantages of the penalized convex relaxation of (P3)

over (P2) in terms of providing physically feasible WDS dispatches. However, the objective

in (P3) differs from the one of (P1): If a minimizer s3 = {d̃3,d3,h3} of (P3) is feasible

for (P1), it will achieve in general a larger pumping cost than a minimizer of (P1), that is

f(d̃3) ≥ f1. However, this suboptimality gap diminishes for decreasing λ as explained next;

see e.g., [43, Sec. 4.7.5].

Lemma 2.8 ([43]). Consider the minimization problem

xλ := argminx∈X f(x) + λg(x).

If λ2 > λ1 ≥ 0, then f(xλ2) ≥ f(xλ1).

Lemma 2.8 implies that for decreasing λ, a minimizer of (P3) gives lower f(d̃3(λ)). For

λ = 0, problem (P3) degenerates to (P2), and gives a lower bound on f1. Overall, we get

that

f(d̃2) ≤ f1 ≤ f(d̃3(λ)). (2.33)

From Theorems 2.3 and 2.6, the advantage of the penalty term g(h) does not depend on

the value of λ > 0. So λ can be chosen arbitrarily small to tighten the second inequality in

(2.33). The caveat behind the bounds of (2.33) are the conditions assumed by Lemma 2.5

and Theorem 2.6. Even though these conditions were grossly violated during the tests of

Section 2.6, the inequalities in (2.33) were frequently tightened to equalities. Albeit (P2)

oftentimes attained the optimal cost f1, its minimizer was not feasible for (P1). In fact, there

is no direct way of converting the minimizer of (P2) to a feasible point. Instead, problem

(P3) found a minimizer for (P1) in most tests.
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Figure 2.2: Benchmark water distribution system. The length for lossy pipes and head gain
for pumps are shown in meters.

2.6 Numerical Tests

The new OWF solver was evaluated on the benchmark WDS of [37], [41], and shown in

Figure 2.2. It consists of 10 nodes including 2 reservoirs and a tank; 3 fixed-speed pumps;

and 7 lossy pipes. All lossy pipes have a diameter of 0.4 m and friction coefficient fm,n = 0.01.

The efficiency for all pumps is 85% and for their motors 95%, resulting in an overall efficiency

of η = 0.81. The minimum and maximum water flows for all pumps are 100 m3/hr and

1, 500 m3/hr, respectively. The pressure at reservoir nodes 1 and 2 is accordingly −2.5 m and

5 m. The minimum pressure requirement hm for nodes 3 to 10 is {10, 7, 12, 10, 5, 10, 10, 10} m.

Tank node 10 has an area of A10 = 490.87 m2; water level limits `10 = 10 and `10 = 30 m;

and initial water level `010 = 20 m.

The WDS was scheduled hourly for a horizon of T = 12 hours for the demands of Figure 2.3;

see [37]. The prices {πt}12t=1 were set to the average day-ahead locational marginal prices

during 8:00–20:00 on April 1, 2018 from the PJM market, and are shown in Fig. 2.4. The

OWF tests were solved using the MATLAB-based optimization toolbox YALMIP along with

the mixed-integer solver Gurobi [44], [45]. All tests were run on a 2.7 GHz, Intel Core i5

computer with 8 GB RAM.
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Figure 2.3: Per-node water demand across time.

We first checked whether the convex relaxation was exact. A minimizer of (P3) was deemed

feasible for (P1) if |ht
m − ht

n| − cmn (d
t
mn)

2 ≤ 10−4 for all pipes and times. A minimizer for

(P3) was obtained in 8.34 sec for λ = 0.1. The minimizer was in fact feasible for (P1).

Figure 2.4 presents the power consumed by pumps (top) and the water level in tank 10

(bottom). The pumps run for the hours with the lowest prices over which tank node 10 is

filled, as expected. The tank is emptied during the hours of higher electricity prices, and its

level is brought to its initial level at the end of the horizon.

Table 2.1: Pumping cost attained by a minimizer of (P3) for different λ

λ 0 0.01 0.1 1
f(d̃3) 5,699.0 5,699.0 5,699.0 5,704.2

comment lower bound (P2) infeasible feasible feasible

The effect of λ on the feasibility and optimality of a minimizer of (P3) with respect to (P1)

was next evaluated. We first solved (P2) to obtain a lower bound f(d̃2) on f1. As a heuristic

for setting λ, we computed S :=
∑T

t=1

∑
(m,n)∈P̄a

cmn(d
t
mn)

2 from the minimizer of (P2), and

chose λ = 1 so that λS was approximately f(d̃2)/100. For λ = 1, the minimizer of (P3)

was feasible for (P1) and provided an upper bound for f1. To tighten (2.33), problem (P3)

was solved for decreasing values of λ obtaining the results of Table 2.1. The minimizer of

(P3) for λ = 0.1 was feasible for (P1) and attained the same pumping cost as f(d̃2). Hence,



34 Chapter 2. Optimal Operation of Water Distribution Systems

1 2 3 4 5 6 7 8 9 10 11 12
Time, t [hr]

0

100

200

300

400

500

600

700

800

P
o

w
e
r 

[k
W

]

Pump (1,4)
Pump (2,5)

0 2 4 6 8 10 12
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

E
le

c
tr

ic
it
y
 p

ri
c
e

Electricity price

0 1 2 3 4 5 6 7 8 9 10 11 12
Time, t [hr]

0

5

10

15

20

25

T
a

n
k
 w

a
te

r 
le

v
e
l 
[m

e
te

r]

Figure 2.4: Top: Power drawn by pumps during hour t. Pumps (1, 4) and (2, 5) were
turned on during the same hours of lower electricity prices, whereas pump (3, 7) was not
operated. Albeit the two pumps add the same pressure gain, they exhibit different electricity
consumption due to different water flows. Bottom: Water level in tank node 10 at the end
of hour t.

the minimizer of (P3) constitutes a minimizer for (P1) as well. Heed that even though the

benchmark WDS of Figure 2.2 does not meet the conditions of Lemma 2.5 and Theorem 2.6,

an exact relaxation has been achieved.

Similar tests were conducted for the PJM prices between March 10–19, 2018 during 5:00–

17:00; see Fig. 2.5. The results are summarized in Table 2.2. For all 10 days, problem (P3)

succeeded in finding a feasible point for the values of λ reported in Table 2.2. Moreover, the

upper and lower bounds f(d̃3) and f(d̃2) were close implying small suboptimality gaps. It

is worth stressing that the relaxation in (P2) was inexact for all tests. Albeit cost f(d̃2) was

equal to f(d̃3) and hence the optimal cost f1 for some cases, there was no way to obtain a
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Table 2.2: Suboptimality gap attained by feasible points obtained through (P3)

Date (Mar’18) 10 11 12 13 14 15 16 17 18 19
f(d̃2) 6, 968.5 6, 915.0 8, 524.6 8, 404.6 8, 220.5 7, 237.9 7, 206.8 6, 807.4 6, 404.0 7, 206.8

f(d̃3) 7, 042.8 7, 010.9 8, 524.6 8, 404.6 8, 461.8 7, 264.7 7, 206.8 6, 807.4 6, 527.1 7, 206.8
f(d̃3)−f(d̃2)

f(d̃2)
[%] 1.06 1.39 7 · 10−9 3 · 10−7 2.93 0.37 2 · 10−7 7. · 10−4 1.92 2 · 10−7

λ 5 5 0.5 1 10 2 0.2 0.83 6 0.6
Sol. time [min:sec] 00 : 07 21 : 00 00 : 09 00 : 06 22 : 19 00 : 29 00 : 10 00 : 51 20 : 50 00 : 18
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Figure 2.5: Day-ahead PJM electricity prices [¢/kWh] for March 10–19, 2018.

feasible dispatch from the minimizer of (P2).

Figure 2.6: A simple WDS for which the relaxation is inexact.

To provide an example of inexact relaxation, we built the WDS of Figure 2.6. Problem (P3)

and the OWF scheme of [33] were solved on this WDS for minimum pressures at nodes 3, 4,

and 5, set to 6, 0, and 0. This setup features a unique feasible point: Since all edges but (1, 3)

are lossless, nodes 2–5 must have equal pressures. Because h3 = 6 m, the second reservoir



36 Chapter 2. Optimal Operation of Water Distribution Systems

Table 2.3: Inexact relaxation with the WDS of Fig. 2.6

Variable (P3) OWF in [33] (P1)
h1 10 10 22
h2 5 5 6
h3 6 6 6
h4 5 5 6
h5 5 5 6
d13 2 2 4
d34 0 0 2
d24 2 2 0
d45 2 2 2

comment inexact inexact optimal

with h̄2 = 5 m cannot supply water, the entire demand must be fulfilled by reservoir 1. This

feasible point is shown in Table 2.3, along with the minimizers of (P3) and [33]. Both relaxed

schemes yielded an infeasible point for (P1). The solver of [33] was not tested on the 10-node

WDS earlier because it presumes: i) variable-speed pumps with speeds that can reach zero;

and ii) that once a solution (d̃,d) is found, a feasible pressure h can be always obtained.

2.7 Optimal Water Flow: Maximizing Service Time

During Power Outage

The water distribution utilities need pumps that are generally driven by electric motors, to

overcome the pressure drop due to friction and to transport water uphill. Oftentimes, there

is enough water stored in elevated water tanks to supply consumer demands and maintain

the minimum pressure requirement, even without running the pumps. Thus, the utilities

run the water pumps only for few hours in a day. In section 2.3, the pump running times

were scheduled optimally to minimize the overall energy cost.

In this section, we aim at finding optimal operational strategies for water utilities during
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partial/complete power outages. Outages in power distribution systems are inevitable and

could range from single-line outages caused by faults to widespread outages due to extreme

events [15], [16]. The damages and disruptions caused during such outages could spread

beyond the power network and affect essential services like water distribution, transport,

healthcare etc. However, such disruptions may not be immediate. For instance, once a

water utility loses power, it still might have some stored water in elevated water tanks that

can be used to serve the water demands. In this scenario, finding the optimal operational

strategy by the water utilities during partial or complete power outages is a critical problem.

While partial power outages affect the operation of some of the pumps in water networks, a

complete power outage implies that no pump can be turned on.

The objective of the proposed OWF is maximizing the time for which a water utility can

continue serving its customers once a power outage has occurred. The OWF problem in-

volves mixed-integer quadratic equalities emancipating from the pressure drop equations.

Therefore, to efficiently solve the OWF problem, an MI-SOCP relaxation, similar to sec-

tion 2.4, is proposed. Numerical tests demonstrate that the relaxed problem yields exact

solution for all of the numerous problem instances considered. Such performance motivates

for detailed analytical investigation that can establish conditions for guaranteed exactness.

However, such investigation is left for future research.

The solution sought from the problem being formulated is the maximum time t ∈ {1, . . . , T},

for which all the constraints of the OWF problem (P1) may be satisfied. However, in doing

so, constraint (2.10) equating the initial and final tank levels is relaxed because restoring

the water-level in tank is not a priority during outages. To control the activation of different

constraints during service, introduce binary variables {yt}Tt=1 such that yt = 1 indicates that

the water utility can provide service during time t; and vice versa. Considering that the

objective is to maximize the total service time
∑T

t=1 yt, the OWF problem can be formulated
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as:

min −
T∑
t=1

yt (2.34)

s.to (2.4), (2.6a) − (2.6c), (2.7), (2.8), (2.9), (2.11)

dtmyt =
∑

k:(m,k)∈P

dtmk −
∑

k:(k,m)∈P

dtkm, ∀m, t (2.35)

ht
m ≥ hmyt −M(1− yt), ∀m, t (2.36)

yt ≥ yt−1, ∀ t (2.37)

xt
mn ∈ {0, 1}, ∀(m,n) ∈ Ps

a; xt
mn = 0, ∀(m,n) ∈ Pa \ Ps

a. (2.38)

Reviewing the constraints in problem (2.34), constraint (2.35) is the nodal flow conservation

if the water service is on yt = 1, else the demand served is zero and constraint (2.35) is

trivially satisfied with zero flows. Constraint (2.36) enforces the minimum nodal pressure

requirement during service (yt = 1), and is trivially satisfied when the service is unavailable

(yt = 0). Constraint (2.37) enforces the operational constraint implying that the service

duration is maximized in continuation, i.e., once the service is discontinued, it is considered as

end of the service period. Remaining constraints include the mixed-integer Darcy-Weisbach

equation from (2.4); the pump-model from (2.6), where (2.38) provide flexibility in operation

of pumps that have power service Ps
a, and turn off the pumps with no power service; the

reservoir model (2.7); and the constraints on tank operation (2.8)-(2.9), (2.11).

As observed in section 2.3, the mixed-integer Darcy-Weisbach equation from (2.4) are non-

convex even after fixing the binary variables. Thus, a penalized relaxation similar to sec-

tion 2.5 is proposed next where (2.4) is replaced with (2.13) to solve the OWF in (2.34).
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The penalized relaxation is formulated as

min −
T∑
t=1

yt + λ
∑

(m,n)∈P̄a

|hm − hn| (2.39)

s.to (2.6a) − (2.6c), (2.7), (2.8), (2.9), (2.11), (2.13), (2.35) − (2.38)

where λ ≥ 0 is a tuning parameter for the penalty term. Problem (2.39) is an MI-SOCP

and can be solved using off the shelf solvers. We skip a formal and rigorous analysis on

the feasibility and optimality of the penalized relaxation in (2.39) for the original problem

(2.34). Rather, the performance is empirically tested on the benchmark water distibution

system shown in Figure 2.2. The numerical tests are discussed next.

2.7.1 Numerical Tests

The new OWF formulation was evaluated on the benchmark WDS shown in Figure 2.2. All

the pipeline parameters, minimum pressure requirements, and tank dimensions were kept

same as that used in Section 2.6. The WDS in Figure 2.2 consists of 3 fixed-speed pumps,

all of which were assumed to be turned off due to complete power outage. As before, the

tank at node 10 has water level limits `10 = 10 and `10 = 30 m. The tuning parameter for

penalty was set to λ = 10−3 for all tests in this section.

The WDS was scheduled hourly for a horizon of T = 12 hours for the demands of Figure 2.3.

The OWF tests were solved using the MATLAB-based optimization toolbox YALMIP along

with the mixed-integer solver CPLEX [44], [46]. All tests were run on a 2.7 GHz, Intel

Core i5 computer with 8 GB RAM. The OWF was solved for different initial tank levels

and the maximum service time obtained is shown on Figure 2.7. It may be observed that

the maximum service time is zero for initial tank levels less than 22 m and rises steeply
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Figure 2.7: Maximum service time for different initial tank level, `10 ∈ [10, 30].

after that. Such trend may be attributed to the high water demands in the initial hours of

Figure 2.3, followed by a low demand region. It was found that even for the maximum tank

level of 30m, the demand for the WDS could not be served for the entire scheduling period of

24 hours. The maximum inexactness as defined in Section 2.6, was found to be of the order

of 10−4 for all tests, while the solving time was between [1.73, 61.97] sec with a median of

5.87 sec.

2.8 Water Flow Problem

Different from the OWF task where the operation of tanks and pumps is scheduled over

a time horizon to serve objectives such as minimizing the electricity cost, or maximizing

service time during power outages, the water flow (WF) problem simply solves the equations

governing the flows in a WDS. The latter task is needed in everyday WDS operations and

planning. However, the non-convex quadratic pressure drop equations make the problem

hard and traditional methods rely on Newton-Raphson (NR) based methods, see for example

[25]. A critical limitation of NR-based approaches is the requirement of an initialization
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point, which may not be trivial in general. While solving the WF problem for day-to-day

operation, a good initialization point may be found from experience, or using previous system

states. However, finding good initialization points remains complex for planning studies and

contingency analysis. Recently, a fixed-point iteration based WF solver has been proposed in

[47]. However, the applicability of the developed solver is limited to water networks without

pumps, which is quite restrictive. In this section, a convex-relaxation based WF solver is

developed that can accommodate pumps, as well. The WF problem is formally introduced

next and an MI-SOCP relaxation is provided.

The WF problem is solved for a single time instance and thus the equations to be solved

include the conservation of flow (2.1), the pressure drop equations (2.4) and the pressure

added by on pumps (2.5). Formally, given the water demands at consumer nodes; water

injections at reservoirs and tanks; pump statuses; and the pressure at a reference node, the

WF task aims at finding all pipe flows and nodal pressures. It can be posed as

find {d̃,d,h} (2.40)

s.to dm =
∑

k:(m,k)∈P

dmk −
∑

k:(k,m)∈P

dkm, ∀m, (2.41)

−M(1− xmn) ≤ dmn ≤ Mxmn, ∀(m,n) ∈ P̄a, (2.42)

−M(1− xmn) ≤ hm − hn − cmn(dmn)
2 ≤ M(1− xmn), ∀(m,n) ∈ P̄a, (2.43)

−Mxmn ≤ hm − hn + cmn(dmn)
2 ≤ Mxmn, ∀(m,n) ∈ P̄a, (2.44)

xmn ∈ {0, 1}, ∀(m,n) ∈ P̄a, (2.45)

hn − hm = gmn, ∀(m,n) ∈ Pa,with xmn = 1, (2.46)

hm = hn, ∀(m,n) ∈ Pa,with xmn = 0, (2.47)

where constraint (2.41) enforces the flow conservation; (2.42)-(2.45) represent the pressure
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drop constraints (2.4) for single time instant; and (2.46)-(2.47) represent the pressure added

by on and off pumps, respectively. Problem (2.40) is solved for a single time instant. In

addition, pressure bounds are checked after solving the WF task, rather than imposed as

constraints.

The non-convex quadratic inequalities in (2.43)-(2.44) make the WF problem (2.40) hard to

solve. In line with the convex relaxation (2.13), the double-sided inequalities in (2.43)-(2.44)

may be relaxed to

−M(1− xmn) ≤ hm − hn − cmn(dmn)
2 (2.48a)

hm − hn + cmn(dmn)
2 ≤ Mxmn. (2.48b)

To attain an exact relaxation from (2.48), a penalization may be introduced as in section 2.5.

A similar formulation has been employed to solve the steady state natural gas flow problem

in [48]. Thus the following MI-SOCP problem may be formulated to surrogate the feasibility

problem (2.40)

min
∑

(m,n)∈P̄a

|hm − hn| (2.49)

s.to (2.41), (2.42), (2.45) − (2.47), (2.48),

where the cost of (2.49) sums up the absolute pressure differences across lossy pipes. Drawing

parallels from the OWF problem (P3), the results of Corollary 2.7 translate to the following

claim.

Corollary 2.9. Under the assumptions of Theorem 2.6, a minimizer of (2.49) is feasible

for the WF problem (2.40).

While the assumptions of Theorem 2.6 are restrictive, a WDS network grossly violating
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these assumptions is used to assess the performance of the penalized relaxation of (2.49).

The numerical tests are discussed next.

Figure 2.8: A 50-node WDS built upon connecting 5 copies of the WDS of Fig. 2.2.

2.8.1 Numerical Tests

We studied the use of (2.49) for solving the WF problem. To this end, a 50-node WDS

was constructed by connecting 5 copies of the 10-node WDS of Figure 2.2 as shown in

Figure 2.8. We randomly generated 500 feasible instances of the WF problem in (2.40) upon

fixing pressure h1 = 10 m and drawing the remaining pressures independently as Gaussian

random variables of mean 10 m and variance 2 m2, or N (10, 2). The statuses of pumps were

drawn as independent Bernoulli random variables with equal probabilities for being on or

off. If pump (m,n) was selected to be on, the pressure at its receiving node was updated

as hn := hm + gmn. The water flow in all lossy pipes was calculated from the so obtained

pressures and the Darcy-Weisbach equation in (2.3). Flows within pumps were drawn from

N (200, 20), with positive direction for operating pumps and random direction for off pumps.

Once the complete flow vector was obtained, the injections were computed from (2.41), thus

yielding random placement of water withdrawals and injections over the meshed WDS of
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Fig. 2.8. The obtained vector of injections and pressure h1 served as a feasible input for the

WF task.
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Figure 2.9: Maximum inexactness for 500 random instances of the WF task.

Problem (2.49) was solved using YALMIP and CPLEX [46]. Given a minimizer of (2.49),

we defined the inexactness over lossy pipe (m, n) as |hm − hn| − cmnd
2
mn. For each run

of (2.49) with a random input, the maximum inexactness over all lossy pipelines is shown

on Figure 2.9. For 90% of the cases, the maximum inexactness was less than 1.1 × 10−3.

Further, the maximum solving time over all 500 cases was found to be 6.56 sec and median

time was 2.35 sec. Despite the restrictive conditions of Lemma 2.5 and Theorem 2.6, the

penalized relaxation developed for the WF problem performs well. We also conducted 500

similar WF tests on the 10-node WDS of Figure 2.2. Even though, the 10-node WDS does

not satisfy the conditions for Lemma 2.5 and Theorem 2.6, the maximum inexactness over

all 500 random cases was 1.5× 10−3.



2.9. Conclusions 45

2.9 Conclusions

To cater a more adaptive WDS operation, optimal pump scheduling has been formulated

here as an OWF task. Different from existing formulations, the developed OWF model

includes critical pressure constraints capturing the operation of tanks, reservoirs, pipes, and

valves. The original mixed-integer non-convex problem has been modified to a mixed-integer

second-order cone program over a relaxed feasible set. Moreover, its objective augmented

by a judiciously designed penalty term, so that under specific conditions, this modified

problem can recover minimizers of the original problem. Numerical tests validate that by

properly tuning the penalization parameter λ, the modified problem solves the original one

over different water demand and electricity pricing setups.

The developed penalized relaxation approach has been further used for two practical tasks:

i) Solving an OWF problem that maximizes the time for which a water utility can continue

service in an event of a power outage in the area; ii) Solving the WF problem. The novel

formulation towards optimal operation of a WDS during power outages can incorporate

partial and complete power outages alike. Numerical tests demonstrate that the relaxed

MI-SOCP yields exact solutions within seconds for the benchmark WDS. Similarly, the nu-

merical tests for the proposed MI-SOCP based WF solver demonstrate that it scales well

for moderately sized water distribution networks. While the analytical conditions for exact-

ness are restrictive, the numerical tests show that the developed formulation yields exact

relaxation even when the assumptions are grossly violated. The favorable optimality and

feasibilty of the minimizers of the two relaxed problems motivate for more rigorous analyt-

ical investigation. Finding explicit conditions for exactness and bounds on suboptimality

constitutes our future research. Generalizing the developed penalized relaxation approach

towards scheduling variable-speed pumps, coupled WDS–electric power distribution network
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operation, incorporating stochasticity in future water demands constitute pertinent research

directions.



Chapter 3

Optimal Power Distribution System

Restoration

Note: Reproduced from Reference [14]

3.1 Introduction

Outages in power distribution systems are inevitable and could range from single-line outages

caused by faults to widespread outages due to extreme events [15], [16]. Extreme events in

the form of natural disasters, accidents, or cyber attacks, could result in a tremendous loss

of distribution infrastructure [17], [18]. Meticulously designing the response to outages could

significantly improve system resiliency [49]. Conventionally, distribution system restoration

was predominantly manual, and was based on trouble calls, the operator’s prior experience,

and field search crews. Currently, the rampant deployment of smart meters, grid sensors,

and controlled switches, offers improved situational awareness and remote control [50]. To

expedite grid restoration, many efforts have been put towards its automation based on

available resources.

The task of distribution system restoration (DSR) is initiated after the post-outage status

of the distribution grid has been assessed. Operators traditionally resort to network recon-

figuration schemes to limit the impact of an outage while satisfying operational and design

47
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constraints. The DSR task is typically formulated as a combinatorially complex non-linear

minimization. Traditionally, it has been approached using dynamic programming [51]; expert

systems [52]; fuzzy logic [53]; genetic algorithms [54]; and mixed-integer non-linear program-

ming [55]. Nonetheless, with the advent of distributed generators (DG) and microgrids, new

challenges and opportunities have been introduced in the DSR problem.

Distributed generators and microgrids could enable islanded operation, thus improving re-

siliency against extreme events. The coordinated operation of heterogeneous DGs introduces

different operational and control requirements [56]. Although several recent works deal with

DGs and microgrids [18], [57], [58], [59]; they all presume that each DG features black-start

capability and/or preclude running multiple DGs on the same island. The former does not

hold for solar DGs without energy storage. The latter over-simplifies the operational capa-

bilities of DGs and thus constitutes a restriction of the actual DSR task. Albeit [16] allows

for multiple DGs operating on the same island, their control mode is decided through a

suboptimal two-stage process. In a nutshell, a realistic coordination of DGs and microgrids

for DSR remains largely under-explored.

This work puts forth a novel system restoration scheme with three major improvements

over existing alternatives: i) Our DSR scheme finds the optimal formation of islands in a

single stage, different from prior works that first identify reference generators and then build

islands around them; ii) It further allows for multiple (non)-black-start DGs running on the

same island and decides their optimal coordination; and iii) It devises an exact model for

voltage regulators. Through the novel use of cycles and paths on the grid infrastructure

graph, and by leveraging the McCormick linearization and an approximate grid model, our

optimal DSR task can be posed as an MILP, which scales well on a moderately-sized feeder.
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3.2 Preliminaries

Before defining the DSR task, we review some preliminaries from graph theory and the

McCormick linearization. Consider an undirected graph G := (N , E) with N being its node

set and E its edge set. The graph is connected if there exists a sequence of adjacent edges

between any two of its nodes. A path from node i to j is defined as the sequence of edges

Pij starting at node i and terminating at node j. A cycle is a sequence of adjacent edges

without repetition that starts and ends at the same node. A tree is a connected graph with

no cycles. If every edge e ∈ E is assigned a direction, the obtained graph is termed directed.

As a brief review, the McCormick linearization is a widely used technique for handling

products of optimization variables x1x2 · xN by their linear convex envelopes [60]. Since

this relaxation is not necessarily exact, there is a rich literature on tightening approaches;

see for example [61] and references therein. In fact, the McCormick linearization becomes

exact for the special case of bilinear terms involving at least one binary variable: Consider the

constraint z = xy, according to which the variable z equals the the binary variable x ∈ {0, 1}

times the continuous variable y. If y is constrained within y ∈ [y, ȳ], the constraint z = xy

can be equivalently expressed by the four linear inequality constraints

xy ≤ z ≤ xȳ, (3.1a)

y + (x− 1)ȳ ≤ z ≤ y + (x− 1)y. (3.1b)

The equivalence can be readily verified by observing that for x = 1, constraint (3.1b) yields

z = y and (3.1a) holds trivially. When x = 0, both (3.1a) and (3.1b) yield z = 0. Combining

the two cases provides z = xy indeed. Henceforth, all bilinear products of binary and

(bounded) continuous variables could be handled by the McCormick linearization of (3.1).
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3.3 Problem Formulation

During an outage, protection devices isolate certain parts of a distribution system including

the faulty elements. While replacing faulty elements may be time-consuming, remotely-

controlled switches could reconfigure the system to alleviate the outage effect. Given the

post-fault status, the single-step DSR task finds the grid topology that minimizes the outage

impact while complying with operational constraints. The presumption is that the system

transitions instantaneously from the post-fault to the final condition. In practice, this tran-

sition is implemented via a sequence of reconfiguration steps involving one control action at

a time. Due to space limitations, here we consider the single-step DSR task on a single-phase

grid model.

A distribution system can be represented by a graph G := (N , E). Its nodes are indexed

by i ∈ N := {0, . . . , N} correspond to buses, and its edges E to distribution lines, switches,

and voltage regulators. An edge running between nodes i and j is assigned an arbitrary

direction, and is denoted as e : (i, j) or e : (j, i) ∈ E . Although multiple islands may be

formed by opening switches, graph G is connected since the distribution system is structurally

connected.

3.3.1 Nodal Variables and Constraints

Each bus i ∈ N hosts at most one generator or load. This is without loss of generality

since a bus with multiple loads can be modeled as a set of single-load buses, all connected

by non-switchable zero-impedance lines. Moreover, to ensure that all substations remain

disconnected from each other, they are combined into a single root node indexed by 0 as

in [57]. The power limit of a substation can be imposed as a limit on the line connecting

the substation with its feeder. To simplify the exposition, on-load tap changers (OLTCs)
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are ignored and all substations are assumed to operate at the nominal voltage.

Figure 3.1: A modified IEEE 37-bus feeder showing existing lines and generators.

To capture which buses are energized, introduce the vector of bus statuses x ∈ {0, 1}|N |.

Its i-th entry equals 1 if bus i is energized, and 0 otherwise. If vi is the squared voltage

magnitude and pi + jqi the complex power injection on bus i, we enforce the constraints

xi ∈ {0, 1}, ∀ i ∈ N (3.2a)

xivi ≤ vi ≤ xiv̄i, ∀ i ∈ N (3.2b)

xipi ≤ pi ≤ xip̄i, ∀ i ∈ N (3.2c)

xiqi ≤ qi ≤ xiq̄i, ∀ i ∈ N . (3.2d)

Constraint (3.2b) ensures that voltages remain within voltage regulation limits for energized

buses (e.g., ±3% per unit); and set voltages to zero for non-energized buses. The substation

voltage can be set by selecting v0 = v̄0 = v0. Constraints (3.2c)–(3.2d) limit the complex

power injections at energized nodes. The signed values for {p
i
, pi, qi, qi} determine whether

an injection corresponds to a generator; a fixed load with lagging or leading power factor;

or an elastic load.

Not all DGs have black-start capabilities [62]: For instance, rooftop solar generators without
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energy storage can generate power only if the corresponding bus is already energized. On

the other hand, diesel and gas-fired generators may feature black-start and grid-forming

capabilities. To capture this functionality, define SB ⊆ N as the set of buses hosting black-

start generators, and SNB ⊆ N as the set of buses with non-black-start generators.

3.3.2 Edge Variables and Constraints

Let us now partition the set of edges E into:

• the subset EO of out-of-service lines;

• the subset EI of in-service lines;

• the subset ES of switches; and

• the subset ER of in-service voltage regulators.

Since non-remotely controlled switches cannot participate in DSR, they are handled as lines

and belong to EI . Figure 3.1 depicts a feeder hosting 3 solar generators; 2 black-start diesel

generators; 5 switches; and 1 voltage regulator.

Similar to buses, the vector of edge statuses y ∈ {0, 1}|E| indicates which edges are closed.

Vector y should satisfy

ye ∈ {0, 1}, ∀ e ∈ ES (3.3a)

ye = 0, ∀ e ∈ EO (3.3b)

ye = 1, ∀ e ∈ EI ∪ ER (3.3c)

yeP e ≤ Pe ≤ yeP̄e, ∀ e ∈ E (3.3d)

yeQe
≤ Qe ≤ yeQ̄e, ∀ e ∈ E (3.3e)
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where Pe+jQe is the complex flow on line e. Power flow limits are typically set as P e = −P̄e

and Q
e
= −Q̄e.

Even though apparent flow limits of the form P 2
e +Q2

e ≤ S2
e can be added to our formulation,

they result in a mixed-integer quadratic program, which does not scale as gracefully as an

MILP. Alternatively, apparent constraints on line flows and bus injections can be handled

by a polytopic inner or outer approximation of P 2
e +Q2

e ≤ S2
e ; see e.g., [63]. This approach

is not adopted here to keep the formulation uncluttered.

3.3.3 Voltage Drops and Regulators

To relate power injections, power flows, and voltages, we adopt the linearized distribution flow

(LDF) model [64]–[65]. Albeit approximate, the LDF model has been engaged in various grid

optimization tasks with satisfactory accuracy [66]. Given the complexity and uncertainty

involved in DSR, the approximation error incurred by LDF becomes inconsequential.

Upon ignoring ohmic losses on lines, the LDF model expresses bus injections as

pi =
∑

e:(i,j)∈E

Pe −
∑

e:(j,i)∈E

Pe, ∀ i ∈ N (3.4a)

qi =
∑

e:(i,j)∈E

Qe −
∑

e:(j,i)∈E

Qe, ∀ i ∈ N . (3.4b)

Constraint (3.4) essentially imposes the complex power balance at each node. For node

i = 0, it implies that the injected power equals the total power withdrawn by the feeder.

According to the LDF model, the voltage drop along line e with impedance re + jxe can be

approximated as

ye (vi − vj − 2rePe − 2xeQe) = 0, ∀ e : (i, j) ∈ E \ ER. (3.5)
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The drop occurs only if line e is closed (ye = 1); and (3.5) is not enforced for voltage

regulators.

Constraint (3.5) involves the bilinear terms yevi, yevj, yePe, and yeQe. As discussed in

Section 3.2, each one of these products can be replaced by an auxiliary variable, so that

(3.5) can be posed as a linear equality constraint relating the four auxiliary variables. The

auxiliary variable associated with yevi is related to ye and vi via four linear inequalities

as in (3.1). The same holds for the other three bilinear terms. Luckily, the McCormick

linearization is used scarcely, since only a few edges represent switches.

We proceed with voltage regulators, which are modeled as ideal. This is without loss of

generality since the impedance of a non-ideal regulator can be modeled as a line connected

in series with the ideal regulator. A regulator can scale its secondary-side voltage by ±10%

by increments of 0.625% using tap positions [67]. The taps can be changed either remotely, or

based on some automated control usually based on local voltage (and current) measurements.

Due to space limitations, all regulators are assumed to be remotely controlled.

Consider regulator r : (i, j) ∈ ER. Its voltage transformation ratio can be set to 1+0.00625·tr,

where tr ∈ {0,±1, . . . ,±16} is its tap position. The transformation in terms of squared

voltage magnitudes is

vj = (1 + 0.00625 · tr)2vi. (3.6)

The quadratic dependence on tr is often replaced by a linear approximation [68]. Waiving this

approximation, we pursue a simple yet exact regulator model: The term in the parenthesis of

(3.6) can take one out of 33 possible values. These values are collected in vector c ∈ R33 whose

k-th entry is ck := [1 + 0.00625 · (k − 17)]2. Vector c is known beforehand and is common

for all regulators. By introducing the tap status vectors tr, the operation of regulators is
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modeled as

vj = vi · t>r c, ∀ r : (i, j) ∈ ER (3.7a)

tr ∈ {0, 1}33, ∀ r : (i, j) ∈ ER (3.7b)

t>r 1 = 1, ∀ r : (i, j) ∈ ER. (3.7c)

There is only one non-zero entry in tr due to (3.7c). The bilinear product in (3.7a) can be

handled via the McCormick scheme.

3.3.4 Topological Constraints

To deal with network constraints, let us introduce indicator vectors for paths and cycles.

Because G is connected, there exists at least one path for each pair of nodes i and j. For

path P , define its indicator vector πP ∈ {0, 1}|E|, such that πP
e = 1 if e ∈ P , and πP

e = 0

otherwise. In essence, vector πP indicates which edges comprise P , regardless their direc-

tionality. Similarly, for any cycle C in G, define the cycle indicator vector nC ∈ {0, 1}|E|, such

that nC
e = 1 if e ∈ C, and nC

e = 0 otherwise.

Distribution grids are typically operated in a tree (radial) structure to ease protection coordi-

nation. To enforce radiality, previous works were confined to unidirectional power flows [57].

Anticipating increasing penetration of renewables, we facilitate radiality even with reverse

flows. To avoid the formation of cycles, we add the constraint

y>nC ≤ 1>nC − 1, ∀C (3.8)

for all cycles C in G. Constraint (3.8) limits the number of closed edges along cycle C to

be less than the total number of edges in C. Due to the limited number of switches, there
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are few cycles C. For instance, the system of Figure 3.1 has five switches giving rise to two

cycles.

In addition, if line e : (i, j) ∈ E is closed, the buses i and j must share the same status (both

energized or not)

|xi − xj| ≤ 1− ye, ∀ e : (i, j) ∈ E . (3.9)

3.3.5 Coordinating Generators

Non-black-start generators (e.g., rooftop photovoltaics) can generate power only when they

are connected to a substation or a running black-start generator; see [18], [62]. If there exists

such path for generator i ∈ SNB, then constraint (3.9) implies xi = 1. Otherwise, the status

xi = 0 must be enforced explicitly. To this end, identify all paths from generator i ∈ SNB

to all j ∈ SB. These paths are denoted by Pi,k for k = 1, . . . , Ki and all i ∈ SNB; there are

21 such paths in the feeder of Fig. 3.1. For path Pi,k, let πi,k be its indicator vector and

introduce the binary variable δi,k for which

δi,k ∈ {0, 1}, ∀Pi,k (3.10a)

δi,k · 1>πi,k ≤ y>πi,k, ∀Pi,k (3.10b)

xi ≤
∑
k

δi,k, ∀i ∈ SNB. (3.10c)

By definition of the indicator vector πi,k, we have that y>πi,k ≤ 1>πi,k with equality only if

path Pi,k is energized. If Pi,k is not energized, then (3.10a)–(3.10b) imply δi,k = 0. If Pi,k is

energized, then δi,k can be either 0 or 1; yet bus i is guaranteed to be energized by applying

(3.9) along Pi,k. Constraint (3.10c) entails that for bus i to be energized, at least one of

the paths {Pi,k}k is energized. In other words, each non-black-start DG can run only if it is
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connected to a running black-start DG or a substation.

When an island includes multiple black-start DGs, a simple coordination scheme is that the

largest DG i operates in PV mode (vi = v0), and the rest in PQ mode [62]. Moreover,

if black-start DGs operate in grid-connected mode, the substation should be treated as the

largest generator and all DGs operate in PQ mode. To model this, identify all paths between

each i ∈ SB and all generators j ∈ SB of larger rating. These paths are denoted by Li,` and

indexed by ` = 1, . . . , Li for i ∈ SB; there are 8 such paths in the feeder of Fig. 3.1. The

indicator vector for path Li,` is denoted by `i,l. For each Li,`, introduce the variable εi,`,

which equals 1 if Li,` is energized; and 0, otherwise. With the help of εi,`’s, the coordination

of generators can be captured by

εi,` ∈ {0, 1}, ∀Li,` (3.11a)

(y − 1)>`i,l + 1 ≤ εi,` ≤
y>`i,l
1>`i,l

, ∀Li,`. (3.11b)

If path Li,` is energized, then y>`i,l = 1>`i,l, and (3.11) entails εi,` = 1. If Li,` is not

energized, then y>`i,l < 1>`i,l. Because y>`i,l counts the number of closed lines in Li,`, it

holds y>`i,l ≤ 1>`i,l − 1 and so (3.11) entails εi,` = 0.

To model the operation mode for generator i ∈ SB, introduce variable εi that equals 1 if the

generator operates in PQ, and 0 when in PV mode. Using ε′i,`s, the coordination of generator

modes is accomplished as

εi ∈ {0, 1}, ∀i ∈ SB (3.12a)

max
`

εi,` ≤ εi ≤
∑
`

εi,`, ∀i ∈ SB (3.12b)

|vi − v0| ≤ εiv0, ∀i ∈ SB. (3.12c)
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Constraint (3.12b) ensures that if any of the paths {Li,`}` is energized, then εi = 1 and

(3.12c) follows trivially due to voltage regulation. This scenario means that generator i is

connected to a larger black-start generator or the substation, and hence operates in PQ

mode. On the other hand, if εi,` = 0 for all `, generator i is the largest on the island. In this

case, constraint (3.12b) yields εi = 0, and (3.12c) sets vi = v0.

3.3.6 Objective Function

Let vectors x0 and y0 represent the post-outage statuses of nodes and lines. A meaningful

restoration objective is to find a grid topology y and generation dispatch that maximize the

total served load. Among several restoration schemes, an operator may prefer the schemes

with fewer line switching operations. Moreover, a usual practice dictates that the restoration

process must not de-energize an already energized bus. The DSR problem can be now

formulated as

min
∑

i∈N\(SB∪SNB∪{0})

pi + λ1>|y − y0| (3.13)

s.to (3.9) − (3.12),x ≥ x0 (3.14)

where parameter λ ≥ 0 quantifies the importance of restoration schemes with fewer switching

operations. Setting λ = 0 yields the scheme with the maximum load served. Problem (3.13)

is an MILP and can be solved by off-the-shelf solvers.
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3.4 Numerical Tests

The developed DSR approach was tested on a modified version of the IEEE 37-node feeder

converted to its single-phase equivalent [69]; see Figure 3.1. Two black-start DGs of capacities

459.3 and 918.5 kW were placed on nodes 705 and 710, respectively. Three non-black-start

DGs were placed on buses 718, 730, and 738 with capacities set to half the load on the

associated buses. The switchable lines include 3 existing and two additional lines shown

as dashed. The (re)active loads on buses 701, 722, 737, and 738 were elastic with their

minimum set to half the nominal bus load. All tests were run using MATLAB-based toolbox

YALMIP along with the mixed-integer solver CPLEX [44], [46]; on a 2.7 GHz Intel Core i5

computer with 8 GB RAM; and for λ = 10−3.

Figure 3.2: The feeder of Figure 3.1 restored after a 3-line outage.

The performance of our DSR scheme was tested for an outage scenario of three line outages

shown in Figure 3.2. The restored system comprises of two sub-networks, while buses 706

and 725 could not be restored. The DG on bus 710 serves as the reference bus for the second

island.

The computational performance of the MILP in (3.13) was tested using 1, 000 random outage

scenarios, 200 scenarios for each number of 1 − 5 lines in outage. The maximum available
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Figure 3.3: The (ordered) percentage of load restored after 1–5 line outages.

solar generations were drawn from a uniform distribution based on the respective rated

sizes. The running times for solving (3.13) reported in Table 3.1 demonstrate that our DSR

scales well for single- and multiple-line outages alike. The percentage load restored for the

various line outages is shown (ordered) in Figure 3.3. As anticipated, the total load restored

decreases as the number of outages increases.

Table 3.1: Running times for the MILP of (3.13)

Number of outaged lines 1 2 3 4 5

Maximum running time [sec] 1.04 0.96 2.69 3.96 1.77
Median running time [sec] 0.79 0.78 0.77 0.81 0.73

3.5 Conclusions

The developed DSR scheme features optimal formation of islands; incorporates voltage reg-

ulators; allows for multiple DGs on each island and establishes a coordination hierarchy

amongst them. Numerical tests demonstrate the correctness of the MILP formulation and

that its complexity scales well in moderately-sized feeders. Its scalability can be attributed
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to three key points: i) the unique use of indicator vectors for cycles and paths over the

infrastructure graph; ii) the McCormick linearization; and iii) the approximate LDF model.

Although framed within the DSR paradigm, this work sets the solid foundations for several

grid optimization tasks including reconfiguration for power loss minimization and Volt/VAR

control. We are currently working towards extending this scheme to its multi-step vari-

ant; incorporating switched capacitor banks and locally-controlled voltage regulators; and

considering unbalanced multi-phase feeders.



Chapter 4

Summary and Future Work

A computationally efficient frameworks towards analysis and operation of water and power

distribution networks individually, and in cohesion has been developed in this thesis. The

various problems addressed in this thesis are in general non-convex, even on fixing the discrete

decision variables. Thus, convex relaxations have been proposed to make the problems

tractable. Moreover, novel penalty terms have been designed tp promote exact relaxations.

Next, analytical guarantees for exactness have been found under pre-defined conditions. The

developed formulations are shown to apply to a broader class of practical problems. Relaxing

the assumptions laid in Chapters ??-3 and further generalizing the developed framework is

a natural subject of future research. Specifically, our pertinent research efforts include:

• Incorporating variable speed pumps in the developed (optimal) water flow framework.

• The generalized OWF formulations developed in this thesis motivate us towards cou-

pled optimization and scheduling of water and power networks.

• The WF problem in Section 2.8 yields exact solution numerically even when the iden-

tified assumptions are violated. This motivates us towards analytically relaxing the

assumptions.

• The OWF of Section 2.7 is a modified special case of the OWF of Section 2.3. Hence

further analysis may help in relaxing the stringent conditions found for the OWF of

Section 2.3.

62
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• The DSR scheme developed in Chapter 3 finds an optimal final topology for load

restoration. However, in practice, restoration is a sequential activity with time-coupling

constraints such as ramping, monotonic energization of nodes, cold-load pick-up, finite

energy storage and maximum down-times. Thus, developing a sequential T -time step

DSR scheme with consideration of power system dynamics constraints constitutes our

current research efforts.
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