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Spatial optimization problems (SOPs) are characterized by spatial relationships governing the decision variables, objectives,

and/or constraint functions. In this article, we focus on a speci�c type of SOP called spatial partitioning, which is a combinatorial

problem due to the presence of discrete spatial units. Exact optimization methods do not scale with the size of the problem,

especially within practicable time limits. This motivated us to develop population-based metaheuristics for solving such

SOPs. However, the search operators employed by these population-based methods are mostly designed for real-parameter

continuous optimization problems. For adapting these methods to SOPs, we apply domain knowledge in designing spatially-

aware search operators for e�ciently searching through the discrete search space while preserving the spatial constraints. To

this end, we put forward a simple yet e�ective algorithm called SPATIAL and test it on the school (re)districting problem.

Detailed experimental investigations are performed on real-world datasets to evaluate the performance of SPATIAL. Besides,

ablation studies are performed to understand the role of the individual components of SPATIAL. Additionally, we discuss

how SPATIAL is helpful in the real-life planning process, its applicability to di�erent scenarios, and motivate future research

directions.

CCS Concepts: � Mathematics of computing! Combinatorial optimization; � Theory of computation! Optimization

with randomized search heuristics.

Additional Key Words and Phrases: Metaheuristic, Redistricting, Spatial Optimization

1 INTRODUCTION

Spatial optimization has been an active research area, especially in disciplines such as economics, engineering,
environmental studies, geography, operational research, and regional science. Church [17] noted that �spatial
optimization involves identifying how land use and other activities should be arranged and organized spatially in
order to optimize e�ciency or some other quality measure.� It includes many districting, layout, location and
network problems that involve design, operations, and planning [14]. Solving a spatial optimization problem
(SOP) is equivalent to searching for an optimal assignment of a set of discrete spatial units representing some
geographic areas such that some well-de�ned objectives and/or constraints are satis�ed. Alternatively, we can
also de�ne this as the use of mathematical or computational techniques for �nding solutions to geographic
decision problems subjected to design constraints [57]. The optimization variables in a SOP relate to the decision
being made with the objective function quantifying the quality of the decision. The constraints impose a set of
necessary design considerations that needs to be satis�ed. The functions and constraints usually encode spatial
properties/topological relationships, including adjacency, contiguity (connectivity), similarity (distance), shape
(compactness), and so on [87].

*This work is a part of the author’s doctoral dissertation [7].
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Broadly, SOPs are usually classi�ed as either a selection or a partitioning problem [93]. Spatial selection
problems identify a subgroup of spatial units. Additional spatial constraints need to be satis�ed for certain
problems, while others only impose continuations on the selected spatial units. Spatial partitioning problems, on
the other hand, seek to group the spatial units into a number of districts or territories. For instance, consider the
districting problem [46], where the objective is to partition a geographic area into groups of contiguous districts
(regions) such that each district is balanced with respect to some activity measure, like residing population. Due
to the discrete nature of spatial units, SOPs su�er from combinatorial explosion, i.e., the phenomenon where
the computing time cost to �nd the optimal solution of a NP-hard problem increases exponentially with the
problem size [31, 62]. Thus, exact optimization techniques like Integer Programming (IP) or mixed-integer Linear
Programming (MILP) cannot solve the problem optimally under practical time constraints [35]. This is why
researchers often resort to using approximation methods like heuristics and metaheuristics since these methods
can �nd good, but not necessarily optimal, solutions to the problem in a reasonable time. Thus, computational
e�ciency is the key to designing these methods for solving SOPs [94].

Heuristic methods are mainly designed for solving a particular problem. For instance, let us consider the
p�median problem in location sciences, where the aim is to �nd facilities or services on p nodes of a network
such that the distance from each node to its nearest facility or service node is minimized [36]. Teitz and Bart
[86] proposed a heuristic called the vertex-exchange algorithm to solve this problem. This heuristic starts with
a randomly selected subset of p nodes from the network and keeps �ipping these nodes with unselected ones
until such exchange can no longer improve the quality of the solution. In contrast to heuristics, metaheuristics
refer to a general problem-solving framework that is composed of a set of high-level problem-independent
instructions or strategies for developing heuristic optimization algorithms [84]. Some well-known examples
of metaheuristics include evolutionary algorithms [42], simulated annealing [51], tabu search [33], variable
neighborhood search [39], etc. Oftentimes, these methods are inspired by some natural processes and they can
be adapted to solve di�erent kinds of problems. Hence, metaheuristics have become a popular choice amongst
practitioners and researchers for solving medium to large instances of combinatorial optimization problems [11],
specially in location sciences [65].

Motivated by this, we devise a simple, easy-to-use population-based metaheuristic inspired by the emerging �eld
of Swarm Intelligence.1 In particular, our approach builds on top of the Arti�cial Bee Colony (ABC) algorithm that
is based on the foraging behavior of the swarm of bees [1]. It maintains multiple trial solutions to the SOP under
consideration and combines a local search technique with a spatially-aware recombination operator resulting in
what is commonly known as a memetic algorithm [67]. Hence the name swarm-based spaatial memetic algorithm
(SPATIAL). The search move of the algorithm is modi�ed to explore the discrete search space while preserving
the spatial relationships/constraints. preliminary version of this work appeared in [8]. In this paper, we present
further additions based on theoretical and experimental investigations of our framework. The summary of the
extensions and contributions are elucidated below.

� An overview of background details is provided in Section 2, specially in context of spatial partitioning
problems like districting in Section 2.1. We then show in Section 2.2 spatial partitioning problems are
accompanied by an underlying graph structure which enables the problem to be solved as a graph parti-
tioning problem. Section 2.3 brie�y reviews graph-partitioning techniques that motivate our algorithmic
approach and the role of domain knowledge in algorithm design.
� Section 3 de�nes the optimization problem corresponding to a generalized spatial partitioning by leveraging

the notions from graph partitioning. We also show how the given formulation can be adapted to problems

1Swarm Intelligence is de�ned as the study and design of computational optimization techniques based on the collective intelligence emerging

from a large population of search agents with simple behavioral patterns for communication and interaction. These methods instantiate

search moves the closely mimic the complex social behavior of animals such as ant colonies, beehives, bird �ocks, and so on [19].
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like school districting in Section 3.1 and provide some pointers on how to adapt other types of spatial
partitioning problems using the given framework.
� A detailed outline of the SPATIAL method is proposed in Section 4. In particular, we focus on the two

improvement steps: local search and spatially-aware recombination. Additionally, the relationship between
locals search and the sampling of partitions based on the theory of Markov Chain is discussed. This is
followed by an in-depth discussion on how the recombination operation e�ciently searches for solutions
in the discrete search space.
� We used the dataset for the school year 2020-21 here as compared to 2019-20 used in the previous work [8].

At the onset of the pandemic in 2020, many parents unenrolled their children from public schools in these
two districts thereby creating a serious imbalance between the student population and the school capacity.
This presented more challenging problem instances to work with.
� We included more sophisticated baseline methods and performed an exhaustive comparison in Section 5.

Additional discussions on how solution initialization a�ects performance and how the algorithms can be
made more e�cient using alternative measures. We also include a case study showcasing the applicability
of SPATIAL in real-life planning.

2 BACKGROUND

This section provides a basic outline of the background details necessary for understanding this research. Firstly,
an introduction to spatial partitioning problems are provided in Section 2.1. This is followed by Section 2.2
highlighting how graphs can encode relationships between the spatial units in most of the spatial problems. In
fact, the graph-based representation can be used to pose spatial partitioning as a graph partitioning problem. A
brief review of di�erent graph partitioning approaches is provided in Section 2.3.

2.1 Spatial partitioning problems

The �eld of spatial optimization is �rmly rooted in the classical works on graph theory, where mathematical
formalism and theories about spatial arrangement and movement were made. In spite of its historic origin, the
term spatial optimization �rst appeared in the literature during the late 1960s and the early 1970s, when a series
of articles made use of the term within the context of regional science [2, 60, 61]. Interestingly, this research
domain has followed the developments in Computer Science, which is rich in works on graphs and other discrete
data structures.

The term �spatial optimization� was initially used by Ghosh and Craig [29] to describe a set of location-
allocation problems, namely the warehouse-location problem [59], the p�median problem [73], and the location
set-covering problems [88]. Similarly, researchers in resource management use the term spatial optimization
to refer to optimization models for allocating various land-use areas within a forest [40, 41]. In fact, spatial
optimization problems appear in di�erent disciplines in di�erent context�location sciences [37, 54, 98], regional-
ization [23, 53], spatial data mining [38, 63], territory design [45, 78, 99], etc. Most of these developments have a
commonality�optimizing an objective function subjected to a number of constraints (spatial or aspatial) that
de�ne the feasibility of solutions. These include a large number of simplistic variations of well-known problems,
including the location set covering, p�median, simple plant location problems, etc. Such normative location
problems have garnered a lot of interest in spatial optimization, especially from the research community and
the industry. In fact, SOPs are too broad to be addressed all at one time and is outside the scope of this work. In
this article, we focus on a spatial partitioning problem called territory design problem, often popularly known as
districting or zone design in location sciences [54]. Note that the term redistricting is also used to refer to these
problems. However, redistricting actually means rearrangement of existing territories. For the sake of clarity, we
shall use the term �districting� to refer to these problems.

ACM Trans. Spatial Algorithms Syst.
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2.1.1 Districting problems. Districting is a sub-�eld of discrete optimization involving some form of partitioning
decision. In a typical districting problem, a set of smaller geographic areas, called basic units or spatial units, are
group together into larger geographic areas, called districts or territories, such that they meet a series of planning
criteria and requirements as speci�ed from the application or context [76]. Districting problems arise in di�erent
real-life application domains, ranging from political districting over the design of districts for police patrols,
schools, social facilities, waste collection, or winter services, to sales and service territory design [46].

Based on the application domain, each category of districting problem is unique from the perspective of
modeling, criteria, or constraints. Nonetheless, several common criteria, including balance, compactness, unique
assignment, can be generally applied to most districting problems. �Balance� means that a total amount of
resources need to be fairly allocated among the districts. The term resources implies a particular attribute or
multiple attributes of each spatial unit. Examples include the number of customers, product demand, population
size, workload, etc. �Compactness� aims to obtain districts composed of basic units with geographical proximity,
which can be optimized by minimizing a dispersion function that measures how tightly the area of a district
is packed within its perimeter. Unique assignment indicates that each spatial unit must be assigned to only
one district, and this requirement assures a complete partitioning of all the spatial units. Additionally, territory
�contiguity� needs to be considered while designing the districts/territories.

Interestingly, there is no single approach to model the aforementioned criteria. Therefore, existing works have
studied various methods to represent these requirements. During the 1960s to 1980s, the majority of research has
focused on sales territory design [99] and political districting problems [75]. In the last three decades, a lot of
studies on other applications such as distribution territory design, service-related districting, and, more recently,
districting in health care [97], have emerged. Scant attention has been paid to the problem of school districting
till now.

School districting. In countries like the US, school districts play a vital role in the operation of the public school
systems. A school district is an administrative unit for overseeing the jurisdiction of public schools and represent
a large geographical region that is coterminous with the boundary of a county, city, or a subdivision. The spatial
con�guration of a school district is composed of smaller spatial units called planning zones or student planning
areas (SPAs). These SPAs are grouped to form a larger geographically-contiguous area, called the school attendance

zone (SAZ), which de�nes the boundary of a school. The schools at every grade-level (elementary, middle, and
high) have a well-de�ned boundary often arranged in a hierarchical manner. In a school district, the rule of thumb
is that students attend the school assigned to their residing SPA. Figure 1 illustrates a map of a school district
along the school locations, school boundaries and constituent SPAs. Note that in districting problems, a large
geographical area, like a county, is partitioned in multiple �districts� or territories. However, in school districting,
the term �school district� refers to the entire geographic area, like county or city. To avoid this confusion, one
can imagine a school district being composed of contiguous districts or territories, each of which represent a
school boundary.

School districting is the process by which the boundaries of public schools (within a school district) are
adjusted/redrawn in response to projected growth/decline of student enrollment, change in school capacities,
opening/closure of a school, etc. This is an annual/biannual event that involves the school boundary planners,
board members, parents, and other stakeholders, and takes up a signi�cant amount of time in reaching a consensus
about the �nal districting plan to implement. Multiple factors (geographic, economic, social) are considered in
deciding the school boundaries, thereby making school districting a technically and socially challenging to solve.
The complexity of the process piqued the curiosity of the research community, specially in Operations Research.

Sutcli�e et al. [85] summarized the work in this direction till the early 1980s. Since then not many works
have been reported in this direction [26, 55, 80]. Among the few, Schoep�e and Church [80] introduced the term
Generic School Districting Problem, which refers to a class of school boundary problems involving allocation of
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Fig. 1. ArcGIS visualization of the school district of Loudoun county, VA, USA. The smaller polygons (with blue-colored

border) represent the SPAs, while the larger polygons (with brown-colored border) represent the SAZs of elementary schools.

The dark blue dots represent the locations of all the public schools.

students to schools while minimizing a cost/distance function, subject to a set of balancing/activity constraints.
Most of the approaches to school redistricting usually solves a continuous LP or a derived transportation problem
in order to get an optimal or a near-optimal solution (which requires split-resolution) [5, 56]. However, the
computational bottleneck does not allow these methods to scale. Caro et al. [15] proposed an IP approach to
the school districting problem by minimizing the total distance travelled by the students. Their model was
inspired by the sales territory alignment model of [99] and was perhaps the �rst approach to account for all the
problem-speci�c constraints, including connectivity. Their model was applied to only 2 (out of 22) clusters that
the school district of the City of Philadelphia is divided into.

2.2 Graph-based representation in spatial optimization

A geographical area composed of smaller-sized spatial units can be represented as nodes of a graph G =
�

V; E
�

,

whereV = fv1;v2; : : : ;vN g is the set of nodes representing the N smaller-sized spatial units and E is the set
of edges connecting adjacent nodes. G is commonly called the contiguity graph or the dual graph. It is a planar
connected graph with the nodes encoding the spatial entities and the edges capturing the spatial adjacency
relationship between the entities. An edge connects two nodes if their corresponding spatial units share a common
boundary (more than a single point). Figure 2 illustrates a toy example depicting the graph-based encoding of a
geographical area.

A node v may also be represented by its index, i.e., v 2 f1; 2; : : : ;N g. These nodes may have features, i.e.,
F (G) = fF1; F2; : : : ; FN g, where Fv is the set of features corresponding to node v . Let Fv be represented by a

tuple
�

Lv ;Av

�

, where Lv =
�

(x1;y1); (x2;y2); : : : ; (xt ;yt ); (x1;y1)
�

is the list of geographic coordinates (latitude-

longitude) that de�ne the boundary polygon of the v th spatial unit and Av is the vector of feature values. Usually,

a similarity matrix W (G) =
�

W uv

�

u=1; :::;N v=1; :::;N captures the relationship between any pair of nodes. Popular
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choices for the similarity metric include the distance function or the binary adjacency matrix. Similarity can also
be de�ned for edges connecting adjacent nodes.

Center nodes

Source nodes

Zone 1

Zone 2

Zone 3

Zone 4

Fig. 2. A large geographical area composed of smaller spatial

units can be represented by a planar connected graph. The color

coding represents an instance of spatial partitioning, where the

each color correspond a territory/zone obtained by partitioning

the graph into connected subgraphs.

Solving a SOP involves the search for a feasible

solution G0 =
�

V 0; E 0
�

, such that the spatial con�g-

urations of V 0 � V and E 0 � E satisfy prede�ned
problem criteria/constraints while minimizing certain
objective(s). In spatial partitioning problems like dis-
tricting, we seek a K�partition of the graph G, i.e.,
E 0 � E and V 0 = V such that the nodes in V 0 are
grouped into K connected subgraphs. Figure 2 shows
an instance where a geographic area, encoded by a
graph containing N = 33 nodes, is partitioned into
K = 4 territories, each of which is represented by
a connected subgraph. Thus, the spatial partitioning
problem is equivalent to the graph partitioning prob-
lem (GPP) [13] described next.

Given a positive integer K 2 N
>1 and an undirected

graph G =
�

V; E
�

with non-negative edge weights,

! : E ! R
>0, the solution to a GPP seeks a partition

� of G with blocks of nodes � =
�

V 1; : : : ;V K

�

such

that V 1 [ : : : [ V K = V and V i \ V j = � 8i; j 2

f1; 2; : : : ;K g ; i , j. Alternatively, the output of a GPP can be represented by a plan on G described by an

assignment function � : V ! f1; 2; : : : ;K g, where �
�

v
�

= i implies that node v is assigned to block i . A

node v is a neighbor of node u if there is an edge
�

u;v
�

2 E. If a node v 2 V i has a neighbor w 2 V j , i , j,

then v is called boundary node. Correspondingly, an edge that connects two boundary nodes is called cut

edge and Ei j =

(
(u;v ) 2 E : u 2 V i ;v 2 V j

)
is the set of cut edges between two blocks, namely V i and V j . An

extra balance constraint may exist and enforces that all blocks have roughly equal weights, i.e., it requires that

8i 2 f1; : : : ;K g :
���V i

��� �
�

1 + �
�

jV j =K for some threshold parameter � 2 R�0. Sometimes we also use weighted

nodes with node weights. Weight functions on nodes and edges are extended to sets of such objects by summing
their weights. Note that a clustering is also a partition of the nodes. However, K is usually not given in advance,
and the balance constraint is removed. Note that a partition is also a clustering of a graph. In both cases, the
goal is to minimize a particular objective called the dispersion function. This is also identical to the connected
K�partition problem, which partitions a graph into K connected sub-graphs where K � 3, is a well-known
NP-hard problem [24].

2.3 Approaches

In computer science, graphs constitute a preferred abstraction when modeling an application problem. Even if
the application involves a di�erent problem, partitioning a graph into smaller subgraph is often an important
fundamental operation that helps to reduce problem complexity. Next, we brie�y survey the di�erent class of GP
techniques broadly, an important end-application relevant to the spatial partitioning problems, and discuss the
role of domain knowledge in designing spatial search techniques.

(1) Global algorithms seeks a partition by directly working on the entire graph. Well-known global methods
include exact algorithms [4, 12, 20, 27, 47, 58, 81] that rely on the branch-and-bound techniques [52], spectral

partitioning techniques based on eigendecomposition of the Laplacian matrix, graph growing approach based
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primarily on breadth-�rst search, �ow-based methods that make use of the max-�ow min-cut theorem, and
lastly the geometric partitioning techniques that utilize the coordinates of graph nodes in space [30, 83, 91].
The global algorithms are more suited to smaller graphs owing to high computation time, specially the exact
methods. Also, these methods are mostly con�ned to bipartitioning but can be generalized to k�partitioning
when k is small.

(2) Iterative heuristics start with an initial solution and tries to improve it through a variety of search operations.
Local search is the most widely used approach that updates a given solution by selecting a new one from the
neighborhood. Di�erent ways of de�ning the neighborhood and the selection strategy gives rise to a variety
of techniques. Initial methods like the KL/FM method [28, 49] was more suited for graph bisection. Later,
k�way extensions to this method were proposed [48, 70]. Most existing local search algorithms swaps
nodes between adjacent blocks of the partition trying to minimize a dispersion function. This results in
highly restrictive scope of possible improvement. For instance, the METIS approach cannot create balanced
and contiguous partitions [96].

(3) Multi-level approaches perform graph partitioning by varying the granularity of the graphs [79, 89, 90]. It
consists of the three main phases: coarsening, initial partitioning, and uncoarsening. Coarsening helps
to reduce the problem size by iteratively approximating the original input graph with fewer degrees of
freedom. This translates to substituting the parallel edges in the input graph with a single edge in the
coarsened graph. Coarsening is terminated when the original graph is su�ciently small enough to be
initially partitioned using some (possibly expensive) exact methods discussed earlier. Uncoarsening happens
in two steps. Firstly, the partition in the coarse-level graph is translated back to a �ne-level graph. Then,
iterative improvement methods (discussed earlier) are usually applied to improve the partition. While
multi-level approaches are successful for partitioning large graphs, it becomes challenging to tune this
methods for graphs with �xed centers and highly varying degree of balance between the partitions.

(4) Metaheuristics have been increasingly applied to the GP domain recently [50]. There is a two-fold advantage
of using metaheuristics. First, these frameworks are de�ned in a general sense, and hence can be modi�ed
to suit the needs of real-life optimization problems in terms of practical constraints like solution quality and
execution time. Secondly, metaheuristics do not put any restriction on the optimization problem formulation
(like constraints/ objective functions to be expressed as a linear function of the decision variables). Our
focus is on population-based metaheuristics like Evolutionary Algorithms (EAs), which are derivative-free
global optimization methods inspired by the process of natural evolution [25]. An EA starts by initializing
a population of trial solutions to the optimization problem, then it tries to improve the solutions via search
operations, like recombination and selection, till a termination criteria is reached. In our work, we augment
EAs with local search techniques for solving SOP.

Capacity-Constrained Network-Voronoi Diagram. Problems like districting, specially school districting, can be
treated as a Capacity Constrained Network-Voronoi Diagram (CCNVD): �Given a graph and a set of service center

nodes, a CCNVD partitions the graph into a set of contiguous service areas that meet service center capacities and

minimize the sum of the shortest distances from graph-nodes to allotted service centers� [95, 96]. For the school
districting problem, the service centers represent the spatial units containing schools inside them. The Pressure
Equalizer (PE) algorithm and its variants were proposed by Yang et al. [95, 96] to address CCNVD. However,
some important di�erences do exist. In the PE approach, the objective was to minimize the sum of the shortest
distances from graph-nodes to their allotted service centers. Additionally, the following assumptions were made:
all service centers have the same capacity, each non-service-center node has unit demand and all the service
centers together could serve the demand of all the non-service-center nodes at any point of time. These simplistic
assumptions may not apply for problems like districting. For instance, in school districting, the capacity of the
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schools and the student population corresponding to the graph nodes can vary considerably. Also, compactness
is preferred to distance-based measures due to arbitrary shapes of spatial units forming a school district.

2.3.1 Hybrid metaheuristics. Recently, researchers try to assimilate ideas from di�erent classes of metaheuristics
into a �hybrid� framework. One such framework, called memetic algorithm [66], combines the local search
technique with the recombination operator of EAs in order to balance exploration-exploitation. Thus, memetic
algorithms bene�t from the synergy between iterative improvement (exploitation) of the local search and the
recombination operation (exploration) of the population-based methods. We take a step in this direction by
integrating a randomized local search within a swarm-intelligent algorithm that mimics the foraging behavior
of honeybees [1]. However, adapting EAs to SOPs is non-trivial due to the following: Firstly, EAs are designed
to solve continuous-valued real-parameter global optimization problems. As such, they employ linear search
moves for exploring the decision space by perturbing the incumbent solutions. This strategy is hardly suitable
for discovering promising solutions in the discrete decision space of SOPs. Secondly, the presence of spatial
constraints (topological properties), like contiguity, make SOPs highly constrained in nature and harder to �nd
feasible solutions. In fact, the infeasible solutions signi�cantly outnumber the feasible solutions with an increase
in problem size. This often results in expending tremendous computational e�ort in �nding a feasible solution,
especially when the search operators are not spatially cognizant. Lastly, EAs tend to reinitialize the solutions
when they stagnate or violate constraints. In SOPs, such a move is detrimental to preserving the goodness of
solutions and lead to loss of valuable information.

2.3.2 Domain knowledge for spatial search. In view of the above challenges, it is increasingly impracticable for
vanilla EAs to solve SOPs [43]. This is mostly because the linear search moves are not suited to the discrete
nature of problems we encounter. Besides, the traditional constraint handling techniques used in conjunction
with EAs are of little help [64]. Hence, we use domain knowledge to guide the search process. Domain knowledge
refers to any auxiliary information that may enable a metaheuristic to e�ciently search for feasible solutions.
It includes both model-speci�c and problem-speci�c instructions. Next, we discuss how model-speci�c domain
knowledge is helpful in conducting spatially-aware search within an EA framework.

The �rst step in solving SOPs is to instantiate initial feasible solution(s) and then improve the solution(s)
locally by �ipping spatial units between the adjacent (neighboring) territories [68, 69]. There are two types
of possible moves: a) move one unit from its present (donor) territory to a neighboring (recipient) territory; b)
swap/ exchange units between two neighboring territories. The new solution produced by these moves are kept
only if it is feasible and leads to an improvement in the objective function. Additionally, the local nature of the
moves restricts the exploration of the decision space beyond the immediate neighborhood of the incumbent
solution. However, these moves may also result in breaking the spatial contiguity of the territories involved in
the move, thereby leading to an infeasible solution. Path relinking can be helpful in such scenarios for repairing
the solutions if they enter the infeasible search space [34]. When infeasible solutions are made feasible again
via repair operation, these solution(s) undergo strategic oscillations between the feasible and infeasible decision
space, and may �nd better intermediate solutions [32].

3 SPATIAL PARTITIONING AS AN OPTIMIZATION PROBLEM

The optimization formulation corresponding to spatial partitioning problems can be written as

ACM Trans. Spatial Algorithms Syst.
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(P0)
minimize

X 2 X J
�

X

�

=

NX

u=1

NX

v=1

Xuv � Duv (1a)

s. t.

NX

u=1

Xuv = 1; 8v = 1; 2; : : : ;N ; (1b)

NX

u=1

Xuu = K ; (1c)

(1 � � ) � � Xuu �

NX

v=1

Xuv � Av ; 8u = 1; 2; : : : ;N ; (1d)

NX

v=1

Xuv � Av � (1 + � ) � � Xuu ; 8u = 1; 2; : : : ;N ; (1e)

X

v 2
S

l2SN
l nS

Xuv �
X

v 2S

Xuv � 1 � jS j;8u = 1; 2; : : : ;N ; S � f1; 2; : : : ;N gn(Nu [ fug) (1f)

Xuv 2
(
0; 1

)
; 8u = 1; 2; : : : ;N ; 8v = 1; 2; : : : ;N : (1g)

where, u and v are the indices corresponding to the nodes of graph G; X 2 f0; 1gN�N is a binary assignment
matrix, where Xuu = 1 implies that node u is center node of a given subgraph; D 2 RN�N is the distance (or

dissimilarity) matrix, where Duv is a distance2 between nodes u and v ; A 2 RN�1
+

is the activity matrix, where Av

is an activity measure with respect to node v . (P
0
) is a constrained optimization problem with binary decision

variables encoded by X. Solving (P0) exactly will output an optimal partitioning plan encoded by the solution

X
� that minimizes the objective function (1a), i.e., J

�

X
�
�

� J
�

X

�

, 8X 2 X, subjected to a set of constraints

(1b)-(1f). X is the set of all possible partitioning plans, i.e., the assignment of N spatial units to K territories as
show in Figure 2. As spatial partitioning is analogous to graph partitioning, we shall interchangeably use the
following groups of terms�spatial units/nodes and territories/subgraphs.

Constraint (1b) enforces that each node is assigned uniquely to a subgraph. Constraint (1c) ensures that the
number of center nodes is K implying that are exactly K subgraphs since each subgraph has an unique center
node. Constraints (1d)-(1e) restricts the total activity measure in a given subgraph to lie within a range of the
mean activity measure � (which is computed as � = 1

K

PN
v=1 Av ) as measured by the tolerance parameter � .

Usually the value of � is kept in the range [0:01; 0:1] depending on the application. These constraints are designed
to ensure that a given subgraph has zero activity if it does not contain any center node, i.e., Xuu = 0. Lastly,
the contiguity constraint (1f) that ensures that each subgraph is connected, where Nu refers to all the nodes
adjacent to a given node u. The connectivity constraint ensures that each territory is geographically contiguous,
i.e., we can travel between any two points within a territory without crossing over to another adjacent territory.

However, connectivity is expressed by an exponential number of comparisons, i.e., O
�

KN2N
�

[22], thereby

making it impracticable to exactly solve moderate to large instances of this problem within a reasonable amount
of time.

2Normally, the Euclidean distance between the centroids of two spatial units is considered.
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Remarks. Equation (1) can be solved by exact methods, like Linear Programming (LP), Integer Programming (IP),
mixed-integer LP (MILP) [6]. However, in trying to do so we made some interesting observations. Firstly, these
methods minimize a linear objective function based on dispersion, as in the p�median problem or the p�center
problem [78]. These linear measures of dispersion cannot account for optimizing the non-linear compactness
metric. Secondly, the exponentially big connectivity constraints may not guarantee territorial contiguity. Lastly,
it may be di�cult to �nd feasible solutions when the bound constraints (1d) and (1e) are tightened by setting the
value of � to be su�ciently low.

Computational complexity. Though the problem (P
0
) with exponential number of connectivity constraints, if

we are given a p�partition G0 =
�

V 0; E 0
�

of a graph G =
�

V; E
�

, we can check whether each subgraph of G0 is

connected or not in polynomial time by using breadth-�rst-search algorithms. The feasibility of a solution to the
problem can be veri�ed in polynomial time, i.e., P0 is NP. Next, let us consider a particular instance where G
is a planar connected graph. If we take high values of tolerance parameter � , we can ensure that the balancing
constraints (1d) and (1e) are always satis�ed. Then it becomes a p�Median Problem (pMP), which is a well-known
NP-hard problem [36]. Since pMP is reducible to P0 in polynomial time, we can say that P0 is NP-hard. Interested
readers may refer to [24] for an in-depth analysis of the computational complexity.

3.1 School districting

The school districting problem follows a spatial partitioning structure where the spatial units (or SPAs) are
the nodes of a graph and the school boundaries (or SAZs) are the balanced, connected subgraphs. Hence, we
reformulate (1) to de�ne the school districting problem. We do make some adjustments in the optimization model
based on the above-mentioned remarks and problem-speci�c domain knowledge. We shall visit them in turn.

Let a graph G =
�

V; E
�

represent a school district with N SPAs and K schools. The number K varies with the

school level L := ES, MS or HS, since we solve the problem at each level independently. Each node (SPA) can be

represented as Av =

�

ESpv ;MSpv ; HSpv ; EScv ;MScv ; HScv

�

; v 2 f1; 2; : : : ;N g ; where Lpv is the student population

residing in SPA i corresponding to the school level L (ES: elementary school, MS: middle school, HS: high school),
and Lcv is the program capacity of the schools contained in the same SPA. We assume that all the schools in
a school district follow a consistent grade structure with respect to the school levels. For majority of the SPAs
that don’t enclose any school inside them, we have EScv = 0; MScv = 0 and HScv = 0. We consider a set of center

nodesV =
�

v jXvv = 1
	

,V � V corresponding to the SPAs containing schools inside them. Alternatively, we

may writeV = fv1;v2; : : : ;vK g, where vi is the node containing the ith school.
While drawing school boundaries, the following must be considered. Firstly, each school has a di�erent capacity

to accommodate students. This is equivalent to the bound constraints (1d) and (1e), except that mean activity
measure � is replaced by the corresponding school’s capacity Lcv . Secondly, Euclidean distance between the
centroid of the spatial units in (1a) may not be a good representative of the commute time due to the widely
varying shapes of these units. Compactness measures that take into account the geometric shape can be a better
alternative. These two considerations are linearly weighed using the weight factor �; 0 � � � 1, in formulating
the optimization problem.

minimize

X 2 XJ s

�

X

�

= �

KX

i=1

����������

1 �

NP

u=1
Xuv

i
� Lpu

NP

u=1
Xuv

i
� Lcu

����������
|                        {z                        }

target balance (aspatial)

+ (1 � �)

KX

i=1

�������

1 �
4� � Area

�S N
u=1fu jXuv

i
= 1g

�

f
Peri

�S N
u=1fu jXuv

i
= 1g

�g2

�������
|                                               {z                                               }

target compactness (spatial)

: (2)
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Several remarks are in order. 1) The target balance measures the discrepancy between the schools’ capacity and
their attending student population. It attains the ideal value of 0 when every school’s attending student population
(numerator) is equal to its program capacity (denominator). Note that target balance consolidates the bound
constraints (1d) and (1e) into an objective or a soft constraint. This helps to deal with solutions that cannot satisfy
both these constraints in (1) by penalizing them heavily. 2) The target compactness measures how far is a school’s
boundary from a perfectly compact shape (like a circle). We use the non-linear Polsby-Popper score [72], which is
the ratio of the area of a zone to the area of a circle whose circumference is equal to the perimeter of the zone. The
more compact the school boundaries become, the closer the value of target compactness gets to 0. 3) Most of the
school (re)districting happen to balance the student populations between existing schools. Hence, target balance

is given more weightage than target compactness. In our setting, we always ensure that �=1�� � 2. 4) Pre�xing the

center nodesV helps to satisfy the hard constraint (1c) and automatically reduce the size of the optimization
problem. Due to this advantage, we prefer to use problem-speci�c domain knowledge to perform pre�xing. In
the absence of any such information, clustering algorithms like K�medoids [71] can be used to determine a
set of initial center nodes. 5) The remaining hard constraints, i.e., mutually exclusive assignment of nodes (1b)
and subgraph connectivity (1f), can be satis�ed when initializing a feasible solution X and then perturbing it
locally. 6) In solving (2), the minimizer seeks a K�partition of a geographical area such that the territories are
well-balanced, compactly-shaped and geographically contiguous. Overall, this approach generalizes to other
spatial partitioning problems, like commercial territory design [77] and political redistricting [92], that involve
optimization of similar dispersion metric and subjected to constraints like balance, contiguity and compactness.

4 THE SPATIAL ALGORITHM

In this section, we describe our SPATIAL method for solving spatial partitioning problems. SPATIAL starts
by initializing a population of randomly generated trial solutions as detailed in Section 4.1. These solutions
are iteratively improved till a termination criterion is met. The improvement takes place in two phases, local

improvement and spatially-aware recombination, as detailed in Sections 4.2 and 4.3, respectively. The outline of
our approach illustrated in Figure 3.

4.1 Initialization of trial solutions

Given a graphG =
�

V; E
�

, the initialization module instantiates a set of Np trial solutions,X = fX(1);X(2); : : : ;X(N p ) g,

where the ith solution, X(i ) , represents a particular partitioning of G. Note that we are overloading the notation
on X The feasibility of these solutions are ensured by the seeding phase followed by the guided growth phase as
shown in Figure 4. The pseudocode of initialization is provided in Algorithm 1.

Seeding. This step helps to identify the seed units (pre�x the center nodes) by leveraging problem-speci�c
domain knowledge and assign each such unit (center node) to an unique territory (subgraph). In the context of
school districting, seeding identi�es each of the K school-containing SPAs as center nodes as shown in Figure 4a.
This leads to creation of K partial subgraphs with just a single node in it, thereby ensuring that constraint (1c) is
satis�ed. The assignment of these center nodes remain �xed throughout the partitioning process.

Guided growth. In the next step, the adjacency relationship between the spatial units are leveraged to grow
the seed units into complete territories. This generates K connected subgraphs representing a K�partition of G.
Figure 4b shows the guided growth phase, where a territory is randomly picked and grown by adding an adjacent
(unassigned) spatial unit to it. The process is repeated till all the spatial units have been assigned to a territory,
thereby satisfying constraints (1b) and (1f).
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Seeding phase

Guided growth phase 

Local search

Spatially-aware recombination

Data Sources

school location

student planing area

Final Solution

Solution 2

Initialization Iterative Improvement Solution Candidates

Seeding phase

Guided growth phase 

Local search

Spatially-aware recombination Solution 1

Seeding phase 

Guided growth phase 

Local search

Spatially-aware recombination Solution N

 Find the best 

solution

Fig. 3. Outline of the SPATIAL approach for solving the school redistricting problem.

(a) Seeding phase (b) Guided growth phase

Fig. 4. The seeding phase (a) followed by the guided-growth phase (b) results in a new solution. Seeding identifies the spatial

unit corresponding to the center nodes. The guided-growth phase helps to grow the territories by assigning the free spatial

units (marked in light grey) based on the adjacency relation.

Note that during the growth phase, the adjacent spatial units are added in a random manner to grow the
territories without consideration for the quality of the trial solutions generated. Hence, it is more than likely that
the trial solutions will have low solution quality. To improve these solutions, we perform two steps of re�nement
discussed next.

4.2 Local improvement

The local improvement searches the immediate neighborhood of an incumbent solution for improving the solution

quality. Given the ith solution, X(i ) , we randomly pick a pair of subgraphs V z and V w (w; z 2 f1; 2; : : : ;K g, w , z)
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Algorithm 1: Initialization

Input :Contiguity graph G, Population size Np, School level L.
Output :X : Population of trial solutions
begin

Determine the center nodesV for school level L and set K  jVj

X  fg . Empty population
for i =

�

1; 2; : : : ;Np
	

do

V : Get the set of nodes in G

Seeding phase .

Set an initial assignment, i.e., X(i ) 2 0N�N

for v 2 V do

X
(i )

vv
 1 . Assignment

V  Vn fvg

Guided-growth phase .

do

Randomly pick a center node v; v 2 V

Determine the subgraph V containing v , i.e., V =
(
u ju 2 V; X

(i )

uv
= 1

)

Find unassigned nodes adjacent to V , i.e., N (V ) =
(
u ju 2 V;

P

v 2V X
(i )
uv = 0

)

while jN (V ) j > 0 do

u: Randomly select a node from N (V )

X
(i )

uv
 1 . Assignment

N (V )  N (V ) n fvg ,V  Vn fvg

while jV j > 0

X  X
S (

X
(i )

)

return X

such that they are adjacent, i.e., jEz;w j > 0. Then we may move a boundary node from V z to V w or vice-versa.

This �ipping of nodes between adjacent subgraphs result in a new solution �X(i ) . If this newly produced solution

is of better quality, i.e., J ( �X(i ) ) < J (X(i ) ), then �X(i ) replaces X(i ) in the population. Note that the connectivity

of subgraphs V z and/or V w may be broken during �ipping, thereby making �X(i ) infeasible. To prevent such
infeasibility, we only allow a move if it does not break the contiguity of the involved subgraphs. The local
improvement operation is illustrated in Figure 5 and the pseudocode is provided in Algorithm 2. Since the local
improvement of a solution is independent of other solutions, it can leverage the parallel architecture of the
computing platform.

The random selection of subgraphs, i.e., V z and V w , for performing node swaps may lead to redundancy. To
prevent this, one may sequentially pick a subgraph, say V z , from a randomized list of subgraphs and determine
adjacent subgraphs, say V w , for �ipping the node. This is continued till a node �ip is made. A �ip is made when

we �nd a better neighboring solution or we accept an inferior solution, i.e., J ( �X(i ) ) > J (X(i ) ), with a very small
probability pr . While the former approach is greedy and prone to getting stuck at local optima, latter one helps in
randomization of the search move and is applied in metaheuristics like Simulated Annealing (SA) [51].
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Reject the flip

Accept the flip

Flip proposal

Fig. 5. The local improvement helps to search for neighboring solutions that can be reached by flipping the membership of a

boundary node. The Flip proposal involves changing the assignment of a boundary node followed by acceptance/rejection of

the new solution.

Algorithm 2: Local improvement

Input : Population of solutions X, Contiguity graph G
Output :Updated solution
begin

for i =
�

1; 2; : : : ;Np
	

do
�X(i )  X

(i ) , f lipped  False

while not �ipped do

Randomly pick two adjacent subgraphs V z and V w , i.e., jEzw j > 0

Find boundary nodes in V w : N
�

V z

�

=

�

v j(u;v ) 2 Ezw ;u 2 V z

	

while jN
�

V z

�

j > 0 && not moved do

v : From N (z) pick a random node v

Move node v from zone V w to V z , i.e., �X
(i )
zv  1, �X

(i )
zw  0

if V w and V z are contiguous then

if J ( �X(i ) ) < J (X(i ) ) j j rand (0; 1) � pr then

X
(i )  �X(i ); f lipped  True . Fitness-based replacement

else
�X

(i )
zv  0, �X

(i )
zw  1 . Revert back the assignment

N
�

V z

�

 N
�

V z

�

n fvg

Markov Chains and Local Search. The local search mechanism here can be thought as instantiating the Flip-
based walk, i.e., generating a new solution or districting plan by changing the assignment of a single node as
shown in Figure 5. Instantiating a series of �ips to generate a sample of districting plans is akin to performing
a random walk on the states of graph partitions and is encoded by a Flip-based Markov Chain [18]. Relatedly,
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Markov chain Monte Carlo, popularly known as MCMC, is an e�ective technique for sampling owing to strong
underlying theory, in the form of mixing theorems and convergence properties [21]. In context of redistricting,
lets imagine each districting plan representing a state and a random walk is being performed on this state
space. As the walker traverses from one state to another, we collect each state. On terminating the walk, this
collection constitutes the representative sample of the plans. Performing the Flip-based walk involves changing
the assignment of individual geographic units along district borders. In the standard MCMC paradigm, altering
this basic step adjusts the stationary distribution. Figure 6 gives a rough approximation of the idea.

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Fig. 6. Theoretically if the flip proposal is carried out su�icient number of times, one may approximate the stationary

distribution of transitions of the state space, where each state correspond to a districting plan.

The main purpose of these sampling-based techniques is to compare the a given districting plan in context of a
representative sample, i.e., a set of valid alternative plans. Closely following this is the need to relate the sampling
distribution to the criteria set forth by domain experts. This may be a tough ask since any redistricting e�ort can
be accompanied by a varying set of criteria, some of which are di�culty to quantify objectively. Our objective
here is di�erent. We use a customized sampling distribution to generate an ensemble of plans and save the best
quality plan, as determined by an objective function.

4.3 Spatially-aware recombination

During local improvement, the individual solutions are improved independently without any exchange of
information between them. Interestingly, it is possible to determine a better intermediate solution by combining
features from two solutions. Population-based methods enable mixing of solutions through the recombination
operation [25]. This results in better exploration of the search space. However, the vanilla recombination operation
is not suitable for spatially-constrained problems. Hence, we develop the spatially-aware recombination operation.

The recombination operation is motivated by the exchange of genetic material between di�erent organisms

which leads to production of o�spring. In this process, two (parent) solutions, say X
(i ) and X

(j ) , are selected

such that X(i ) is picked randomly while solution X
(j ) is selected probabilistically based on the �tness value.

The �tness function is de�ned to allow solutions with lower functional value have higher �tness as this is a
minimization problem. For maximization, the �tness can be set equal to the objective functional value. We expect

that X(j ) is �tter than X
(i ) and thus X(i ) can learn from X

(j ) . The steps of recombination operation are provided
in Algorithm 3.
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Algorithm 3: Spatially-aware recombination

Input :X : Population of solutions, G : Contiguity graph
Output :Updated solution
begin

Find the �tness values:H (i )
=

1
1+ jJ (X(i ) ) j

����
8i = 1; 2; : : : ; jXj

for i = f1; 2; : : : ; jXjg do
�X(i )  X

(i ) , �X(j ) : Probabilistically selected jth solution based on the �tness value

Randomly pick a subgraph V such that 0 <
���V

(i ) \V (j ) ��� < min
�

jV (i ) j; jV (j ) j
�

Find the set of incoming nodes IV =

(
v jv 2 V (j ) nV (i ) and 9u 2 V (i ) s.t. (u;v ) 2 E

)
and outgoing

nodes OV =

(
u ju 2 V (i ) nV (j ) and 9v 2 V (j ) s.t. (u;v ) 2 E

)

Randomly pick an incoming node v 2 IV and an outgoing node u 2 OV

Simultaneously insert node v into V (i ) and remove node u from zone V (i ) ; also update the

assignments in �X(i )

If V (i ) has rendered non-contiguous by the swap operation, repair �X(i )

for i = f1; 2; : : : ; jXjg do

if F
�

�X(i )
�

� F
�

X
(i )

�

then

X
(i )  �X(i ) . Fitness-based update

Incoming spatial units

Outgoing spatial units

Solution i

Solution i

Solution j

A B C D

Fig. 7. Illustrating the individual steps involved in the spatially-aware recombination operator.

Suppose a subgraph V is present in both solutions i and j, marked as V (i ) and V (j ) , such that they have a
common node. Every subgraph should satisfy this condition since the center nodes remain unchanged. The

subgraph V (i ) is modi�ed by simultaneously inserting a node v (present in V (j ) but not in V (i )) and deleting a

node u (present in V (i ) but not in V (j )). This swapping of node steers solution X
(i ) towards the �tter solution X

(j )

as illustrated in Figure 7. In doing so, we expect to �nd intermediate solutions that may have better �tness than

the incumbent solution X
(i ) .

Interestingly, the swapping of the nodes may break the connectivity of the involved subgraphs. To reduce the
chances of such undesirable scenarios, we perform the swap operation using boundary nodes. Nevertheless, a
repair operation still needs to be applied in case the connectivity of the subgraphs are broken. To repair a solution,
we use the breadth-�rst search (BFS) traversal for enumerating the connected components in the disconnected
subgraph, say V . Then, each connected component is analyzed for the presence of the center node. If center node
is absent, all the nodes in this component is reassigned to the neighboring subgraphs. When no prior information
about the center nodes is available, we may retain the largest-sized connected component of V and reassign

the other components. The repaired solution �X(i ) might be few steps away from the incumbent solution X
(i ) in
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