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(Abstract) 

Narrow beamwidth antenna systems are important to remote sensing 

applications and point-to-point communication systems. In many applications 

the main beam of the antenna radiation pattern must be scannable over a 

region of space. Scanning by mechanically skewing the entire antenna assembly 

is difficult and in many situations is unacceptable. Performance during scan is, 

of course, also very important. Traditional reflector systems employing the 

well-focused paraboloidal-shaped main reflector accomplish scan by motion of a 

few feeds, or by phase steering a focal plane feed array. Such scanning systems 

can experience significant gain loss. 

Traditional reflecting systems with a spherical main reflector have low 

aperture efficiency and poor side lobe and cross polarization performance. This 

dissertation introduces a new approach to the design of scanning spherical 

reflector systems, in which the performance weaknesses of high cross 

polarization and high side lobe levels are avoided. Moreover, the low aperture 

utilization common in spherical reflectors is overcome. As an improvement to 

this new spherical main reflector configuration, a flat mirror reflector is 

introduced to minimize the mechanical difficulties to scan the main beam. 

In addition to the reflector system design, reflector antenna performance 

evaluation is also important. The temperature resolution issue important for 

earth observation radiometer antennas is studied, and a new method to evaluate 

and optimize such temperature resolution is introduced.
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Chapter 1 

INTRODUCTION 

Narrow beamwidth antenna systems are used in applications such as 

point-to-point communication systems which demand high gain antennas and in 

remote sensing systems which require high resolution. The antenna system of 

choice usually employs a large main reflector antenna because of its high gain 

and feed system simplicity. In many applications the main beam of the antenna 

radiation pattern must be scannable over a region of space. In communications 

applications varying traffic demands dictate the scan coverage region. In remote 

sensing applications a scanning scenario is employed to collect data over a 

desired observation region. Narrow beamwidth antennas are often physically 

large. Scanning by mechanically skewing the entire antenna assembly is difficult 

and in many situations is unacceptable. For example, in space-based systems 

large-mass mechanical motions would disturb the space platform that might also 

support other systems which are vibration sensitive. It is, therefore, desirable to 

have a scanning system which does not involve motion of the main reflector. 

Then scan is accomplished through mechanical motion of the feed subassembly 

and/or through electronic scanning using a phased array feed. 

Performance during scan is, of course, also very important. In 

communications gain loss over the scan range should be as small as possible, 

while for passive remote sensing systems constant beam efficiency during scan is 

usually the most important. Traditional reflector systems employing the well- 

focused paraboloidal-shaped main reflector accomplish scan by motion of a few 

feeds, or by segmental excitation of several displaced feeds, or by phase steering 

a focal plane feed array. Such scanning systems can experience significant gain 

loss [2, 3]. 

Traditional reflecting systems with a spherical main reflector have low 

aperture efficiency and poor side lobe and cross polarization performance and, 

therefore, are not often used. However, in theory, the spherical reflector offers 

the significant advantage of constant performance during scan [4]. For wide 

scanning, high gain systems it was worth including the spherical reflector family 
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in tradeoff studies. This dissertation introduces a new approach to the design of 

scanning spherical reflector systems, in which the performance weaknesses of 

high cross polarization and high side lobe levels are avoided. Moreover, the low 

aperture utilization common in spherical reflectors is overcome. As an 

improvement to this new spherical main reflector configuration, a flat mirror 

reflector is introduced to minimize the mechanical difficulties to scan the main 

beam. 

The application which motivated this study is that of microwave remote 

sensing from a geostationary platform in support of the Mission-to-Planet-Earth 

program. There are significant science benefits from a geostationary antenna of 

the 25-m size class [5]. Of course, there are many other applications for wide- 

scan, high gain antenna systems [10, 11]. 

In order to thoroughly explain the concept of the new spherical main 

reflector antenna design, the basics of reflector antenna performance evaluation 

and design are discussed first in Chapter 2. The temperature resolution issue 

important for earth observation radiometer antennas is studied. In addition, a 

new method to evaluate and optimize such temperature resolution is introduced 

in Chapter 3. Chapter 4 starts the spherical reflector antenna studies by 

introducing previous research results. The new spherical main reflector 

configurations resulting from our study are explained in Chapters 5 and 6, 

followed by an analysis of the results in Chapter 7.



Chapter 2 

BACKGROUND ANTENNA PRINCIPLES 

Antennas are essential parts of all radio transmission and sensing systems. 

They transmit radio frequency (RF) power from the connected power source in a 

spatial radiation pattern. In many applications transmitted power density is 

required to be concentrated in a specific direction; that is, the antenna pattern 

should be highly directive. An antenna operating in the receiving mode must 

collect as much power as possible from the incident wave which arrives from a 

fixed direction. Except for certain special circumstances, the performance of an 

antenna operating in the transmission mode is identical to that during reception, 

i.e. antennas are reciprocal [6]. 

The performance of an antenna is usually quantified by its radiation 

pattern which includes the information to evaluate the directivity D, antenna 

gain G, aperture efficiency fap, beam efficiency «, and cross polarization level I, 

etc; these terms are defined in Section 2.4. The overall efficiency of complex 

antenna systems, which includes the performance of the feeding network, will not 

be discussed in this document. The radiation pattern can be determined either 

numerically or experimentally. Numerical results are usually most cost effective 

and are suitable for initial evaluation and for engineering decisions involving 

trade-off studies. Moreover, numerical results give insight into the basics of 

antenna design because they can eliminate external factors such as truss 

structures and mechanical errors common in antenna construction. This 

approach permits isolation of the primary effects; secondary effects can be 

included in sophisticated numerical methods such as those discussed in Chapter 

8. Efficient numerical techniques can be used in antenna design as well, such as 

to optimize an antenna configuration. With the use of optimization techniques 

and a high speed computer, the most cost effective antenna design satisfying the 

desired performance values can be determined within a matter of hours. 

The most commonly used numerical method uses physical optics (PO) 

integration. However, this method involves numerical integration and is highly 

time consuming; also, it is subject to round-off error in a digital computer. 

Therefore, alternative methods must be available to augment PO. The most 
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common such approximate method is the use of geometrical theory of diffraction 

(GTD). The combination of PO for evaluation of far field points in the main 

beam and GTD for the far out scene (PO/GTD) plays an important role in 

analysis. Geometrical optics (GO) is used almost exclusively in reflector antenna 

synthesis. Although GO is exact only when the frequency approaches infinity, it 

produces accurate results for electrically large reflectors and is efficient and offers 

physical insight into the reflector antenna operation mechanisms. Therefore, GO 

is widely used to establish the physical model of reflector antenna systems and to 

estimate the performance parameters of reflector antenna systems. An example 

is the establishment of partial differential equations (PDE) for reflector system 

synthesis problems based on GO. Optimizing reflector performance by varying 

the parameters of the configuration is most efficiently accomplished with GO 

techniques. 

In this chapter the PO method is discussed first, followed by a discussion 

of GO methods. Since GO is the essential part of our reflector antenna design 

method, it will be studied in detail. The consistency between GO and PO will 

be proved and general GO methods will be explained. Fermat’s principle and its 

applications will be emphasized, since Fermat’s principle leads to various 

efficient GO analysis algorithms and optimization techniques. Fermat’s principle 

is also important to the understanding of the derivation of the PDE for our 

reflector antenna synthesis problem. 

2.1 Basic Reflector Antenna Analysis Technique-PO 

The most commonly used method in reflector pattern numerical analysis 

is physical optics (PO). It is a short wavelength approximation of Maxwell’s 

equations. It includes the lowest order diffraction terms, and therefore, describes 

the relatively detailed wave nature of electromagnetic radiation from a reflecting 

surface. PO is the most accurate reflector analysis method to determine the 

main beam peak and near-in side lobes of a reflector antenna pattern where 

diffraction is the predominant effect for beam spreading. It performs especially 

well when the reflecting surfaces are close together such as in beam waveguide 

and subreflector feed assemblies, because the electrically small size and short 

distances of the reflecting surfaces make diffraction effects significant. 
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In this section the PO method is explained using Huygen’s principle for 

wave propagation. Although PO can be derived from Maxwell’s equations with 

the short wavelength approximation, it follows more directly from simplified 

physical models. The mathematical derivation of PO from Maxwell’s equations 

was presented in [6] and [18]. Here the derivation is based on the simplified 

physical model of Huygen’s principle, which assumes the following: 

1) The reflected electromagnetic field arises from the surface current created 

by the field incident on the reflecting surface. 

2) The reflecting surface can be divided into differential surface elements and 

each surface element can be modeled as a dipole (called differential dipole). 

3) The reflected electromagnetic field can be calculated by integrating the 

individual electromagnetic fields caused by each differential dipole on the 

reflecting surface. 

In the following discussion we first calculate the radiation field caused by a 

differential dipole and then derive the physical optics surface integral equation 

(PO/SI). 

Figure 2-1 shows a surface current element with surface current density J 

and surface area dS. Since dS is infinitesimal, it can be treated as being planar. 

The coordinate system is set up such that the x’-axis is in the same direction as 

J. With no loss of generality, the surface element is chosen to be rectangular 

and the boundaries are parallel to x’ and y’ directions. Therefore, dS=dx’. dy’; 

moreover, the total surface current dI in the surface element is J dy’, because J 

is in the x’-direction and y’ is the direction perpendicular to it along the surface. 

If this surface current element is treated as a dipole, then the dipole carries 

current dI in the x’-direction and has length dx’. Thus, the dipole moment of 

the surface element can be written as 

dp = (J dy’) dx’ = J dS (2-1) 

The differential dipole moment of (2-1) will cause a radiated 

electromagnetic field which can be written in the far field as (see (1-71) in [6]) 

~ -}BR A 
di = 2 joet dpxR (2-2)   

where R= RR is the distance vector from the surface element dS to the far field 

5



observation point P and 8=27/\=%. Therefore, the total radiated field from the 

reflecting surface is 

H = [ [a= J [ Riek avek (2-3) 

Substituting (2-2) into (2-3) results in the following physical optics surface 

  

integral: 

  

~ -jPR. «7 
f= // die JxR dS (2-4) 

In (2-4) R=f-z" where 7 is the location of the observation point and 7” is the 

location of the surface element dS being integrated. In the far field the only 

factor that depends strongly on R is eI? R. this permits simplification of (2-4). 

Since the far field observation point P is much farther away from the coordinate 

origin than the surface element dS, r>>r’, we can assume that nxt and R =f. 

Moreover, the phase term eIPR can be approximated by Rx~r-r-r’. Therefore, 

(2-4) can be rewritten as 

H=ijp ev” {f [el Fas}xe (2-5)   

This equation is commonly implemented in computer codes to calculate the 

radiated field from a surface current distribution and is referred to as the PO/SI 

method. 

The current density on the reflecting surface, J in (2-5), is determined 

from the incident electric field. The assumption that J is due entirely to the 

incident electromagnetic field is also an approximation; there is, in general, a 

field scattered from the reflecting surface (especially on reflector rims) that will 

be reflected twice or more times. However, in most cases the scattered field is 

usually much weaker than the direct incident electromagnetic field. The 

calculation of the surface current density from the direct incident field is 

performed by finding the surface current that satisfies the boundary condition on 

a reflecting surface (assumed to be a perfectly smooth conductor), i.e. surface of 

a conductor with zero field inside. It is shown in [6] that the current density 
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satisfying this boundary condition is 

J=2ax H,. (2-6) 
where fi is the surface normal and Hinc the incident magnetic field at the surface. 

= 

Of course, H.. is complex and contains the phase delay between the source and 

the point on the reflecting surface. In reflector antenna analysis Hine is found 

from the pattern of the feed antenna if the reflector is directly illuminated by the 

feed, or it is calculated from the scatter pattern of the previous reflector in 

multireflector configurations. 

2.2. GO Fundamentals and Fermat’s Principle 

In the previous section we explained how antenna patterns are obtained 

using PO. However, PO can require significant computing time and can be 

inaccurate in the far-off-axis region. More efficient algorithms must be employed 

in cases of repeated pattern evaluation such as in synthesis using optimization. 

Also, a simplified model is needed to obtain an understanding of the reflector 

antenna operating mechanisms. Therefore, GO becomes an essential part in 

reflector antenna design and analysis. We first discuss the consistency between 

GO and PO, and follow by introducing a new ray tracing method and its 

implications. 

GO is the high frequency approximation of PO. The foundation of GO is 

Snell’s law of reflection which states (see Figure 2-2) that for the incoming ray 

AB striking the reflecting surface at point B, the outgoing ray BC must be in the 

same plane with AB and the surface normal at point B, if; moreover, the 

included angle between BC and fi is the same as that between AB and fi. Snell’s 

law (stated as “The angle of reflection equals the angle of incidence”) is a well- 

known principle and is one of the most important properties of wave propagation 

and is a consequence of PO. In order to understand the relationship between 

Snell’s law and PO, we must first introduce another famous theorem, Fermat’s 

principle. 

2.2.1 Derivation of Fermat’s Principle from PO 

Fermat’s principle states that for the ray emitted from a source located at 
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point A, reflected by the reflecting surface at point B and finally being received 

at point C, the total length of AB+BC (optical path length) must be extremum, 

and is minimum in most applications, including the scope of this dissertation. In 

other words, as the reflection point moves from B along the reflecting surface to 

point B’, which does not satisfy Snell’s law, then AB’+B’C>AB+BC, see Fig. 2- 

2. Mathematically, Fermat’s principle holds only when the reflecting surface is 

second order differentiable; that is, when the surface is smooth without 

discontinuities. Fermat’s principle is more general than Snell’s law. We will 

first prove Fermat’s principle from PO, followed by proof of Snell’s law from 

Fermat’s principle. The implications of Fermat’s principle in reflector antenna 

system design is discussed in the next section. 

Although Fermat’s principle was known before the wave nature of light 

was discovered, it remains a useful result of wave propagation. As a high 

frequency approximation for wave functions, it simplifies the wave propagation 

model and is, therefore, widely used in optical system design and for studies of 

wave propagation in continuous media. Here we show the consistency between 

Fermat’s principle and electromagnetic theory by deriving Fermat’s principle 

from PO. 

Consider a region surrounding the reflection point B in Fig. 2-2. Implicit 

in the use of a ray is the assumption that the wavelength, 4, of the incident 

beam is much smaller than any other dimensions of interest. As in deriving the 

PO integration formula, we divide the reflecting surface into small surface 

elements with surface area AS such that the surface element is small compared 

with the size and curvature of the reflecting surface, therefore, it can be treated 

as flat and the surface current on it has constant amplitude and polarization. 

Yet, this surface element differs from the one used for PO discussion in that it is 

much larger than the wavelength, i.e. AS >> 2. Hence, the surface element. here 

cannot be treated as a short dipole and the phase variation on the surface 

element is important. The foregoing conditions must hold for GO to be valid 

and are summarized as follow: 

1) Amplitude and polarization variation on the reflecting surface are slow, so 

that the amplitude and polarization can be treated as constants in regions with 

size >A. This implies a reflector’s size > A. 
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2) The radius of curvature of the reflecting surface > A, so that the regions with 

constant amplitude and polarization can be treated as flat. 

The radiation at point C in Fig. 2-2 arising from the surface element AS 

induced by a source located at point A can be calculated from the PO integral of 

(2-4) as 

ae | 
He J [a ig? a Ix(Zo-#) dS (2-7) 

where fr” is the location of dS in integration. The surface current J is assumed to 

be constant in amplitude and polarization over AS, j= Joe et lFa-F I The 

locations of the points A, B’ and C are referenced to a fixed origin (not shown in 

Fig. 2-2) as illustrated in Fig. 2-1 and are denoted ry, 7, and rc. Substituting 

this surface current into (2-7) yields 

3 -_ _ =f 3 _ _ —/ 

Ho f fevltc rl dele, las 

A —_—_—— —— 

_ [fhe rP as (2-8) 

where B’ is the point at the terminus of r’ that locates the integration variable 

dS. The other factors in (2-7) are ignored because they are constant due to the 

small size of AS. We introduce the notation 6(B’C+AB’) for the change of 

(B’C+AB’) as B’ moves within AS. It is obvious that as B—oo, even small 

6(B’C+AB’) will cause a large phase variation in the region of AS and the 

integral of (2-8) will approach zero. Therefore, it is necessary to have 

6(B’C+AB’)=0 within the surface element AS in order that (2-8) contributes to 

the amplitude of the reflected field at point C. On the other hand, the whole 

reflector surface is divided into many small elements among which only the 

surface element that satisfies 6(B’C+AB’)=0 will be responsible for the reflected 

field to point C from a source at A; and this surface element AS is located by 

point B on the reflector surface. We use the notation 6(BC+AB) for the change 

of BC+AB when B moves an infinitesimal amount on the surface of the reflector 

  

(this movement of point B is referred to as érp); then point B must satisfy 

§(BC+AB)=0 (strictly, this should be written as 6(BC+AB)=O(érg)). That is a 
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statement of Fermat’s principle of minimum path for a reflection point; it was 

derived here from PO. 

The pattern values obtained from PO approach the GO approximation 

gradually as frequency is increased. In order to calculate the field at point C 

reflected by the reflecting surface and originating from a source at point A, it is 

in general necessary to PO integrate the induced current on the whole reflecting 

surface; however, when the frequency is very high, it is sufficient to carry out the 

PO integration on a small surface element AS that is located at point B 

satisfying Fermat’s principle. In GO sense the surface element AS is infinitely 

small, but as the frequency decreases AS must increase in order to offer 

reasonable accuracy for the PO integration; when the AS reaches the size close to 

the whole reflecting surface, the transition is made from GO to PO. 

2.2.2 Applying Fermat’s Principle to Multiple Reflectors 

Although AS is important in the transition between GO and PO, it is 

never used when GO is performed. GO only involves ray reflectional points, 

such as B in Fig. 2-2. With the powerful tool of GO, the reflected radiation field 

can be conveniently derived from ray tracing without integration. Ray tracing in 

reflecting systems uses Snell’s law. However, Snell’s law describes a local 

phenomenon that does not reveal the relationship between adjacent rays. More 

sophisticated ray tracing methods based on Fermat’s principle are necessary to 

analyze optical systems and reflector antenna systems where a bundle of rays 

must be traced to evaluate the performance such as aperture field distribution 

and phase error, or to establish a physical model for reflector antenna synthesis 

problems such as the PDE method discussed in Chapter 6. In the following 

discussion, we will prove Snell’s law from Fermat’s principle to show that the 

more general Fermat’s principle is indeed consistent with Snell’s law, and more 

importantly, to derive the mathematical formulation of Fermat’s principle for 

our future discussion of GO methods. 

The geometry for the ray tracing problem is shown in Fig. 2-3. A ray 

emerging from a source located at point Pp» reflects from the first reflector at 

point P,, then from the second reflector at Py and so on, finally it is reflected by 
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the n’th reflector at P, and is received at an observation point at P,,). Points 

{P,,} are located in space at the terminus points of vectors {7,} from a fixed 

origin O. The problem is to find the reflection points P,, Pw, ...... , Py that 

satisfy Fermat’s principle once the source point Po, the observation point P,.4 

and all the reflectors are specified. Fermat’s principle requires that the total 

path length L of PoP 1 Po---Pn41 be minimum. An equivalent statement is that 

the partial derivatives of L with respect to the movements of Pj, Po, ..., Puy 

that are constrained to reflector surfaces must be zero. Using the symbol 

Vi= a for the gradient of L with respect to the coordinates of P;, r,, the change 

of Lis * 

dL = VoL-dry + V,L-dr, +...... +V 4 ,L-dri4y (2-9) 

We use the symbol ér; for dr; (i=1, ..., n) constrained to the surface of the i’th 

reflector, and 6L for dL subject to any change of 67; (i=1, ..., n); then Fermat’s 

principle becomes 

6L= V{L-6f, + Vol- 6% +... $V gh: ofp = (2-10) 

which is a general ray tracing equation for n reflectors and is equivalent to 

V .L-6r;=0 (i=1, ..., n) because any 6éf; in (2-10) is an independent variable. 

Notice that rg and r,,, are left out in (2-10) because they are fixed as source 

and observation points when variation takes place to verify Fermat’s principle. 

In order to prove Snell’s law, the following explicit expression is first. derived for 

the gradients in (2-10): 

n+] 

J= 

Vi Fy - Falta - Fl) 

~  .-f. 
where t.= iz. oo | is the unit vector from P,_, to P;. This in (2-10) yields 

i “i-l 
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(t, —t.44) Or: = 0 for i=l oeaees n (2-12) 

which means that (t. -t; 41) has to be perpendicular to 6r; in order to satisfy 

Fermat’s principle. Since éf; is along any direction on the surface of the i’th 

reflector at point f;, (t -t; 41) must be perpendicular to the surface of the i’th 

reflector at point r;. Therefore, 

(t.-t,,) x i, =0 (2-13) 
where ii; is the surface normal of the i’th reflector at point P;. It is obvious that 

(2-13) is Snell’s law because t. and t, 41 are directions of the incident and 

reflected rays and fi; is the surface normal at the point of reflection. Hence, 

Snell’s law is proved from Fermat’s principle. 

If instead of using classical Snell’s-law-based ray tracing, one uses 

Fermat’s principle of (2-10), the reflector design problem becomes an 

optimization problem. That is, a ray tracing problem in an n-reflector system 

can be stated as follows: find a ray that is represented by the vector (fp, Fj, .-., 

7,41) which minimizes the total path length L subject to the constraint that fr; 

(i=1, 2, ..., n) has to be on the surface of the i’th reflector. Note that we are 

specifying points not ray directions as in classical ray optics. (2-10) can be 

solved by numerical minimization of the optical path such as Newton’s method 

to find the roots of V ,L- 6r;=0 (i=1, ..., n). The fact that (2-10) is solvable leads 

to functional relationships 

T; =T; (Fo, Tag) for i=1, ..., n (2-14) 

except the cases for ry and r,,,, being the object and the corresponding image 

point in a imaging reflector system, for example when rg and r,,,, are two focal 

points of an elliptical reflector or when fg is the focal point of a parabolic 

reflector and r,, 1 is at oo. Fermat’s principle in the mathematical form of (2- 

10) is a powerful tool. In the next section, we will use this general mathematical 

formulation of Fermat’s principle to show: 

1) The equal-path-length law in a reflector system with parallel ray output from 

the aperture. 

2) A method to solve for the shape of a reflector surface from the equal-path- 

length law and the known shapes of other reflectors in a multireflector system. 
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3) Field intensity calculation based on ray tracing. 

2.3. Applications of Fermat’s Principle 

In the last section we showed that Fermat’s principle, which is a classical 

GO result, is consistent with PO. We also derived the general mathematical 

formulation of GO based on Fermat’s principle. In this section the general 

formulation of (2-10) is used to prove some of the most fundamental theorems 

used in GO-based reflector antenna synthesis /analysis. 

The equal-path-length law in a reflector antenna system 

The equal-path-length law is one of the most fundamental principles in 

reflector antenna design. It states that for a reflector system which consists of a 

feed and multiple reflectors, the total path length from the feed to the aperture 

(the plane that is perpendicular to the output rays) is the same for all rays if and 

only if the output rays from the final reflector (the main reflector) are parallel. 

The proof begins by assuming that one ray satisfies (2-10); this ray emerges from 

the feed location rp, and strikes the main reflector aperture at point r,, 1; see 

Fig. 2-3. Once this ray (the initial ray) is found, an aperture plane is erected 

perpendicular to this ray. We use the symbol ér,,, for any variation of r,,, 

constrained to this aperture plane. Then the total variation of the path length 

becomes 

6L = VL oF, + Vol fy +. +V QL Sint V4 L-6Fy 44 - (2-15) 

This relation is a generalization of (2-10). In (2-10) only r), ..., T, are allowed to 

change and r,, is fixed, but all n+1 points are free to move in (2-15). Of 

course, if a ray satisfies Fermat’s principle, then the first n terms in (2-15) are 

zero as stated in (2-10). Therefore, for any set of points, rj, ..., 7, and Thad 

forming a ray originated at ry that satisfies Fermat’s principle (2-10), the total 

path length variation in (2-15) can be reduced to 

6b = Vy yb yay (2-16) 

In a manner similar to (2-11), 
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Vasil - ttl (2-17) 

This in (2-16) gives 

6L = ta. ona (2-18) 
Parallel rays exiting the aperture plane, {t,, a}; are also perpendicular to this 

aperture plane since the initial ray is. Also since {ér,,,,} are confined to the 

aperture plane, then 5L=0 by (2-18). In other words, when exiting rays are 

parallel, the total path length for all rays are identical (e.g. “equal path length”). 

Conversely, if the path length is constant for all rays, 5L=0, then th 41 of the ray 

that passes through any point r,,, in the aperture must be perpendicular to 

6f,41 according to (2-18); therefore, all output rays are parallel. 

In the above discussion, we proved the equivalence between parallel 

output rays and equal path length. This equivalence can be expressed more 

generally in both PO and GO terms. In the PO sense, this equivalence is stated 

as: a uniform aperture phase distribution is the necessary condition for a plane 

wave output. In the GO sense it shows the underlying equivalence between 

length-measuring Fermat’s principle and angle-measuring Snell’s law, which 

applies not only to plane wave output, but also to a general wave front output, 

such as a spherical wave output. This equivalence theorem has direct usage in 

practice. For example, calculation of the path length error gives a estimate for 

the aperture phase error in a reflector antenna system. An important application 

of this theory appears in reflector antenna design which usually requires a 

uniform phase in the aperture plane. Path length error is often evaluated by the 

aperture output ray pointing error, which is equivalent and more accurate; this is 

easily seen in (2-18). This equivalence theorem will be repeatedly used in this 

dissertation. 

Solving for the shape of one unknown reflector in a multireflector system 

Fermat’s principle can also be used in shaped reflector synthesis. It 

reduces the number of degrees of freedom in the reflector shape synthesis 

problem once the equal path length law restriction is imposed, and therefore, 

simplifies the reflector shape synthesis process. In general, the equal-path-length 

law is a necessary, not sufficient, condition for satisfaction of Fermat’s principle; 

this is because Fermat’s principle of (2-10) requires the path length variation to 
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be zero on each reflector, i.e. V ,L-6f;=0 (i=1, ..., n) on each reflector where L is 

a function of independent variables fr), .... f,. That is, the equal-path-length law 

only states that the total path length variation is zero, which does not guarantee 

that the variation on each reflector is zero, i.e. each term in (2-10) must be zero. 

However, the equal-path-length law can be used as a constraint in the reflector 

system design that eliminates one independent variable among fr), ..., Ty; so to 

synthesize an n-reflector system is equivalent to determining the shapes of n—1 

reflectors, and the remaining one is automatically determined. 

The theorem for the determination of the shape of one reflector in an n- 

reflector system with n-1 shapes given is as follows: In an n-reflector system if 

there is a set of rays with equal path lengths that satisfy zero path length 

variation on n—1 reflectors, then zero path length variation is also satisfied on 

the remaining reflector. The proof of this theorem is rather obvious. Without 

loss of generality, we assume that the reflector to be determined is the first one. 

Returning to (2-15), we see that if V ,L-6r;=0 for i=2, .... n+1 and if 6L=0, then 

V ,L-6r,=0, and thereby, proving the theorem. 

This theorem has profound consequences for reflector shape synthesis. 

For example, in a spherical dual reflector system, the shape of the subreflector 

can be found by calculating the total path length from the feed to the aperture 

to correct for spherical aberration and Snell’s law on the subreflector will be 

automatically satisfied. This method will be discussed in Chapter 3 for the 

spherical dual-reflector system synthesis performed by Holt [8]. In the synthesis 

of the new spherical tri-reflector system in Chapter 6, this theorem is used to 

reduce the number of parameters in the synthesis equation so that a partial 

differential equation becomes an ordinary differential equation. 

Field intensity calculation 
  

GO as the high frequency approximation of PO is often used to calculate 

ray directions, but it can also be extended to evaluate the field amplitude of 

electromagnetic radiation. In this section we discuss how the information 

obtained from ray tracing can be used to calculate the aperture field distribution 

of a reflector antenna system. The tool for this calculation is the mapping function 
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which is derived from the ray correspondence between the feed antenna field and 

the aperture field. This concept can be easily generalized to other situations 

such as to the calculation of the far field of antenna radiation. We will limit our 

discussion to field intensity calculation and will not include polarization. 

However, polarization effects can be included; in fact, the aperture cross 

polarization amplitude can be found using ray tracing. 

Ray tracing establishes the correspondence between feed angles and points 

in the aperture of a reflector antenna system. In Fig. 2-3 we see that there is 

only one ray which starts at feed point ry) in the direction ty, reflects from the 

reflectors and then exits the aperture at point r,,,. This gives a functional 

relationship between {, and T,41 that is written as r), 44(t}) and is called the 

mapping function. A ray cone at the feed and centered on the direction ty will 

strike the aperture in a contour centered at r,,;. The area enclosed by this 

contour on the aperture is related to the size of the feed ray cone as follows: 

OFn41 
da 2-19 - (2-19) dA = 

    

where dA is the aperture differential area and dQ is the differential solid angle 

surrounding the feed ray. |6T,44 /st, | in (2-19) is the Jacobian factor of the 

mapping function r, 41(t1)- If r,,,; im the aperture plane is described by 

cylindrical coordinates (p, ¥, z) with z=0 for the aperture plane, and ty is 

described by spherical coordinates (r, @,, ¢,) with r=1 and centered at the feed 

point rp, then the Jacobian factor becomes 

    

Op dy 
ér 00, O05 n+l | _ p f f (2-20) 

ty op Ob 
Ob, Ode 

Therefore, (2-19) in these coordinates becomes 

Op dy 
0, 0, 

dA=p/ 7 fF da, (2-21) 
op OW 
be Ody 
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But since, in GO, power is confined within ray tubes, the power contained within 

the feed ray cone (dQ) is the same as the power striking the corresponding the 

aperture circular area (dA). This assumption of power conservation is based on 

the high frequency assumption of GO and is generally accepted in reflector 

antenna synthesis procedures [14]. The results are reasonably close to that from 

PO analysis. Based on the power conservation assumption, we have (in the 

coordinate system described above), 

I(p, b) dA = U(6,, o) dQ, (2-22) 

where I is the aperture radiation flux density (aperture intensity) and U is the feed 

radiation intensity. Substituting (2-21) into (2-22) we have 

Op dy 
00 06 f f = 6 . 2-2 I(p, ») = U(%, 4) / { p op Oe } (2-23) 

Obs Obs 

which will be used repeatedly in this dissertation, for example, to establish the 

mapping relationship of (5-7). Equation (2-23) offers a method to analyze the 

aperture intensity distribution in a reflector antenna system, which can be used 

to optimize the aperture distribution by synthesizing the antenna system with 

desired mapping to generate low cross polarization, low side lobe levels and high 

beam efficiency [14]. 

2.4 Antenna Performance Parameters (Gain, HP, SLL, «,,, XPOL) 

In this section we define and discuss basic parameters used to evaluate 

antenna performance; they are summarized in Table 2-1. The angular variation 

of the power intensity of a transmitting antenna is often quantified with U(é, ¢), 

which is the radiated power per unit solid angle: 

dP, (2) - (2-24) U(6, ¢) =   

where P,(Q) is the radiated power contained within a solid angle 2. The 
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directivity of an antenna, D(6, ¢), is a measure of how much the radiation is 

concentrated in specific directions, and is defined by 

D(0, ¢) = Wes) (2-25) 
7 Vaverage 

where Uaverage is the average radiation intensity over 47 solid angle, or 

Po 
Vaverage — ix (2-26) 

where Py is the total radiated power from the antenna. The gain of the antenna 

includes the effect of the loss on the antenna structure and relates to the 

directivity as follows 

G(o, 4) =e, D(6, 8) (2-27) 
where e, is the radiation efficiency and includes loss effects in the feed network. 

In practical reflector antenna systems, e, ~ 1, therefore, G(0, ¢) ~ D(@, ¢). In this 

dissertation, we assume lossless conditions and then gain and directivity are 

identical. 

The antenna gain as a function of direction (or gain pattern), G(6, ¢), is 

the most important antenna performance parameter. The peak gain value, Gp, is 

often called just gain. The related angular variation normalized to unity 

maximum, F(6, ¢), is called the antenna pattern, and then 

G(6, ¢) = Gp F(@, ¢) . (2-28) 

Smoothly varying antenna patterns are well represented by principal plane pattern 

cuts, F(6, ¢=0°) and F(6, ¢=90°). Several important parameters can be extracted 

from the antenna pattern, such as gain (Gp), side lobe level (SLL) and half power 

beamwidth (HP). Table 2-1 lists the definition of these parameters. 

The Gain, Gg, is related to the physical aperture area of the antenna. 

With uniform phase excitation on the aperture, an antenna will be most directive 

when the aperture is uniformly illuminated; then the gain is [6]: 

_ An Gu= ~5 Ap (2-29) 

where A, is the physical area of the antenna aperture. G, in (2-29) is an upper 
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bound for the achievable gain of an antenna with physical aperture area Ap. A 

practical antenna will have a lower gain; and this is represented through 

Go = fap Guy (2-30) 

where Eap 1s called aperture efficiency, and has value in (0, 1). 

The vector nature of antenna radiation is represented with orthogonally 

polarized components and their associated patterns. For these orthogonal 

polarizations one is usually wanted and the other unwanted; these are called co- 

and cross-polarization, respectively. The associated gain patterns are G(6, ¢) and 

G,(0, ¢). It is usually desired to keep the cross-polarization level as low as 

possible compared to the co-polarized radiation. This is quantified through a 

single parameter called cross-polarization level, XPOL, and is defined as the ratio of 

peak co-pol gain to the peak cross-pol gain; see Table 2-1. 

The parameters listed in Table 2-1 are the most popular quantities used 

to characterize antennas for communication links and radar applications. 

However, these parameters are not sufficient to evaluate radiometer antennas for 

remote sensing and radio astronomy applications. In Chapter 3, a new 

parameter, beam efficiency, will be introduced, which is more appropriate to 

radiometer antennas. In addition to beam efficiency, we introduce another 

parameter, residue beam efficiency ratio, which directly specifies the temperature 

measurement accuracy of a radiometer antenna. 
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Table 2-1 

Common Antenna Performance Parameters 

  

  

  

  

  

  

Parameter | Definition Calculation 

— 4 dP, (2) 

G(8, ¢) Gain pattern Po = total radiated power 

P.. = radiated power contained in 2 

Go Peak gain of an antenna Gp = max[G(@, ¢)] 

= G(0, 0) 

F(6, ¢) Normalized antenna pattern F(6, ¢) = a #) 
0 

  

Side lobe level: the ratio of the 

  

  

  

SLL maximum pattern gain value outside {SLL = max[G(@, ¢)] / Go 
| . : (6,6) ¢ main lobe 
|the main lobe to the peak gain 

Half power beamwidth: the angular separation HP =6 1 + A 

HP of points on the main lobe where the power | where G(@ D ¢) = Go / 2 

pattern falls to half value and G(9, ot+ 7) = Gp/2 

€ap Aperture efficiency fap = Go / [ “aAp | 

XPOL Cross polarization XPOL = Gp / max[G,(9, ¢)]     
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Chapter 3 

BEAM EFFICIENCY AND TEMPERATURE SENSITIVITY 

In Section 2.4 we discussed the commonly used pattern parameters of 

gain, half-power beamwidth, side lobe level and cross polarization. For remote 

sensing applications, the additional parameter of beam efficiency is needed to 

fully characterize system performance. In this chapter we discuss the importance 

of beam efficiency and its relationship to the temperature sensitivity of a remote 

sensing antenna. To overcome the difficulties common in beam efficiency 

calculations, we introduce a simplified model that is used to evaluate the 

temperature sensitivity of earth observing radiometers. We also propose 

methods to optimize the temperature sensitivity and estimate the overall noise 

performance of these antennas. 

3.1 Difficulties in Beam Efficiency Calculation 

Beam efficiency is the most important performance evaluation parameter 

for a radiometer antenna. It is defined as the fraction of the total radiated power 

that is contained in the main beam: 

p= Pod | Wa, 4) a0 (3-1) 
main 

where Pp is the total radiated power and 1),;,, is the solid angle for the main 

beam. Using the definition of gain in (2-27) and (2-25), this can also be 

expressed as 

m=z | G(6, 4) a0 (3-2) 
Qnain 

Beam efficiency is usually calculated by direct evaluation of (3-2). This 

approach, however, can introduce error because of the inaccuracies in the 

numerical evaluation of G(6, ¢). For example, direct PO evaluation of G(8, ¢) 

can yield as much as 2% error in the beam efficiency value calculated with (3-2) 

[19]. 
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In Section 3.2 a new method will be introduced to overcome the 

inaccuracies in beam efficiency evaluation of (3-2). The new method uses an 

alternate form of (3-2), which is derived by using the normalized pattern as in 

(2-28): 

G t= qe / / F(6, 6) dQ (3-3) 
Qnain 

The pattern F(6, ¢) can be evaluated with high accuracy near the main beam 

axis [19] but a remaining source of error is the accuracy of Gp. We will exploit 

the accuracy of F(6, ¢) to calculate the temperature sensitivity in Section 3.2. 

Another problem associated with (3-2) is the definition of main beam. 

Several methods are in use to define the main beam. One straight forward 

method is to use the first null at the edges of the main beam to define the main 

beam extent. Another popular method is to use the solid angle of cone angle 2.5 

times the half-power beamwidth. Both methods have disadvantages for 

radiometers. This point will be explored further in the following discussion for 

integrated pattern functions. 

The concept of beam efficiency can be generalized to integrated pattern 

functions. In the beam efficiency definition of (3-1), the integral is performed 

over the solid angle of the main beam. A generalized form of pattern integral is 

the fraction of the total radiated power contained in any specified solid angle: 

n(0) = [ UG, 4) 40 /Pp=z f[ [G(@, ¢) a0 (3-4) 
Q Q 

This fraction of power as a function of N, n(Q), is called integrated pattern function. 

This definition of integrated pattern function is very general and contains 

all antenna pattern information because can change in both size and shape. 

For simplicity, the shape of 2 is taken to be conical, with its axis along the main 

beam axis and the size specified by spherical polar angle 6 away from its axis. 

With this simplified definition, the integrated pattern function can be written as 

0 2m 

n(0) = 2 / sin 6 dd / G(o, ¢) aa 
0 0 
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G 0 2x 

= 7! / sin 6 dé / F(6, ¢) dO (3-5) 
0 0 

The integrated pattern function is illustrated with an example of a large 

gain reflector antenna. The reflector for the example is axisymmetric, with a 

1000 diameter and F/D = 2.0, and is fed with a Gaussian feed which has a taper 

of —17.5 dB at the reflector rim. Fig. 3-1 shows the integrated pattern function 

of the example prime focus paraboloida]l antenna, and Fig. 3-2 shows the 

integrated pattern function of the same antenna with a distorted main reflector. 

The distortion is that the main reflector has wrong focal length which is 100A 

longer than the vertex-to-feed distance. The gain of the distorted reflector is 10 

dB lower than the undistorted reflector. In spite of this performance 

degradation, the distorted reflector has a beam efficiency value close to the 

undistorted reflector, because its main beam solid angle for the boundary of 

integration in (3-2) is much larger than the undistorted one. In practice, it is 

desirable to use the solid angle of the desired object in the beam efficiency 

integration; this definition is called object extent beam efficiency. The integrated 

pattern function offers a way to evaluate the object extent beam efficiency for 

objects with various angular extent, which is done by evaluating the integrated 

pattern function at the solid angle of the desired object. 

It is difficult to obtain accurate values for integrated pattern functions 

because of the accuracy of Gg. Traditionally the integrated pattern function is 

used directly to estimate the temperature measurement accuracy of a radiometer 

antenna. In the following discussion, we first introduce the concept of antenna 

temperature, then explain the temperature distribution model for earth 

observation which leads to a method to overcome the error of integrated pattern 

functions in evaluating the temperature measurement accuracy. 

3.2. Temperature Distribution Model for Earth Observation Antennas 

A radiometer antenna receives noise power from its surrounding 

environment. The spectral power density of the noise received by the antenna is 
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characterized by antenna noise temperature (or just antenna temperature) [17]: 

=a | [ Te, 4) GE, 4) 40 (3-6) 
4a 

where T(6, ¢) is the temperature distribution of the environment. Of course, the 

greatest contribution to the antenna temperature arises from the main beam near 

6=0; thus, the object to be observed is usually located at ¢=0 direction, and the 

antenna temperature measured by the radiometer is used to approximate the 

temperature of the object. However, since G(6, ¢) is not zero outside the main 

beam, the antenna temperature is affected by the noise outside the observed 

object. 

The earth observation problem is modeled by the following three 

temperature regions shown in Fig. 3-3: a pixel of solid angle 9, and temperature 

T, the remaining portion of the earth with uniform temperature T+6T and solid 

angle 2. =2_-—Mp, and off-earth cosmic background of uniform temperature T) 

and solid angle 4x-),. Using this model, the antenna temperature of (3-6) 

becomes 

Tam de J [CO dott 
p 

  ~~ | {¢ odarre [fe (0,¢) da (3-7) 
2,! 

Using the integrated pattern function of (3-4), (3-7) can be written as 

Ta= Tn(p)+(T+6T)n( 04") +Ton(4e ~ 2) 
= Typ + (T+ 6T)n, + Tons (3-8) 

n(Qp)=Np is called pizel beam efficiency because it refers to the fraction of the total 

radiated power contained in the solid angle of the desired pixel. 7(Q,')=n, is 

called the residue beam efficiency and refers to the fraction of the total radiated 

power toward the portion of the earth outside the pixel, which is the main source 

of measurement error. 7, is based on near main beam side lobes that can be 

evaluated by PO method. n(4x7-—2.)=n, is called spillover beam efficiency 

because it is caused by the radiated power from the antenna not striking the 
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earth. We want to measure the temperature of the pixel, T, using the antenna 

temperature, T,, which is measured by the radiometer. Solving (3-8) for the 

pixel temperature gives: 

T = [T, —(T+6T)n, — Tonsl/np (3-9) 

The temperature measurement error of the radiometer depends on the error of 

each term in (3-9). In most remote sensing applications for beam scanning or 

imaging, the most important quantity is the smallest resolvable temperature 

difference between different pixels. The absolute temperature measurement 

accuracy is also important, but it has a much higher tolerance to error. It is 

analogous to an imaging system that has small error tolerance for contrast but 

large error tolerance for brightness. The temperature resolution that reflects 

such contrast is defined as follows: 

where T, and To are the real temperature values of pixels 1 and 2, and T,, and 

Tg are the antenna temperature values corresponding to these two pixels. 

Equation (3-10) refers to the maximum possible antenna temperature difference 

for two pixels on the earth with identical temperature values. This temperature 

difference is caused by the second and third terms in (3-8), which are caused by 

the near side lobe pointing towards the remainder of the earth and the spillover 

of the antenna beam outside the earth. Substituting (3-8) into (3-10), we obtain 

the following expressing for R: 

R = max{6[(T + 6T)n, + Tons]} (3-11) 

where the operator max{é[-]} refers to the maximum variation of the quantity 

when the antenna scans across the earth’s surface. To further simplify the 

temperature resolution model, we rewrite the variation in (3-11) as 

6[(T+6T)n, + Tons] = T bn, + 6T ny + 6T bn, + d(T ns) (3-12) 

The quantities used in (3-12) are summarized in Table 3-1 along with typical 
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values. 

Table 3-1. Parameters Affecting Radiometer Antenna Temperature 
  

  

  

  

  

  

    

Symbol | Parameter Definition Typical Value 

T Temperature of the pixel 200K 

éT RMS temperature fluctuation of the earth + 50K 

To Cosmic background temperature 3K 

Np Pixel beam efficiency 0.95 

Nr Residue beam efficiency 0.01 

Ns Spillover beam efficiency 0.05       
  

The change of 7, is on the same order of magnitude as n, itself when the 

antenna beam scans across the earth, because different portions of the side lobe 

region point toward the earth. Therefore, we assume 67, = 7,, thus the term T 

én, in (3-12) gives much higher contribution to the temperature variation than 

other terms. Therefore, the other terms in (3-12) can be ignored and the 

temperature resolution becomes 

R=Tn, (3-13) 

The physical meaning of (3-13) is that the pixel temperature, T, can be used as 

the representative temperature of the earth to estimate the contribution to the 

antenna temperature from the portion of the earth surface outside the pixel. 

Such contribution equals the minimum temperature difference resolvable by the 

antenna when it scans from one pixel to another. The term 6(T 97.) refers to the 

contribution from the background, and according to Table 3-1, is much smaller 

than T 67,, because the cosmic background is much colder than the earth. 

Using (3-13) as the sensitivity for the measurement of temperature 

difference between various pixels on the earth, the relative sensitivity of such 

measurements can be expressed as the ratio between the variation of the antenna 

temperature due to scan and the desired value of the antenna temperature (Typ), 

that is 

<= Tin (3-14) 
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where € is called residue beam efficiency ratio. The simplification of the temperature 

measurement sensitivity from (3-8) to (3-14) overcomes the difficulty of 

obtaining accurate values for np and ny and relies only on the ratio of efficiencies, 

which can be evaluated by the normalized pattern function, F(6, ¢), as follows 

E[fc@ea | [F@,¢) a0 
  

= Tr Me __2 _ 
«=p i | [ee ¢) da | [Fe ¢) da 18) 

Mp Op 

The normalized pattern function can be evaluated accurately with PO in the 

region near main beam. Methods to extrapolate the integrated pattern function 

to calculate « and to optimize the antenna temperature sensitivity using « as the 

objective function are discussed in the following sections. 

3.3 Calculation for Residue Beam Efficiency Ratio 

The residue beam efficiency ratio of (3-14) is the relative temperature 

measurement error for earth observation antennas, and forms the primary 

performance evaluation parameter. To accomplish this, more approximation 

techniques are needed because the calculation for « involves integration for F(0, 

¢) over solid angle ,’, which is much larger than the main beam for high gain 

antennas. For example, the requirement for Mission-to-the-Planet-Earth remote 

sensing antenna is approximately 800 pixels along the equator of the earth, which 

makes the cone angle of the earth approximately 800 times the antenna 

beamwidth. It is impossible in practice to PO evaluate a pattern up to such an 

angular extent. 

In order to calculate ¢«, extrapolation for the integrated pattern function is 

required. The asymptotic approximation of pattern functions is used to perform 

this extrapolation. Our result shows that the integrated pattern function can be 

approximated by a linear function of 1/sin 6 when @ is much greater than A/D. 

The derivation and numerical results will be shown in the discussion that follows. 

The pattern of antennas with a circular aperture (axisymmetric) can be 

expanded in terms of Bessel functions as [19] 
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G(o) =[ x C, 5,(2)/2 (3-16) 

where z=2z (D/A) sin 6. When z—0o (the same as 6 > A/D), 

J,(2) = Vz {cos (2-din—¥) } (3-17) 

therefore, (3-16) can be approximated by taking the most significant term as 

follows 

G(0) = [Cy Jy(2)/2]? = (C12 cos(z-3 x-4))?-2 (3-18) 

3 which shows that the level of side lobes decreases as z~ * when z->00, but the 

period of side lobes, which is controlled by the factor cos(z — din —f), remains 

unchanged. So integration of the pattern yields the following approximation 

n(z—00) = J / G(o, 4) da~ A/z+B (3-19) 

22-300 

where A and B are constants to be determined. We will discuss the method to 

determine A and B at the end of this section. Constant B is the asymptotic 

limit of the integrated pattern function, which can be used to determine the 

residue beam efficiency ratio. Since the earth has much greater angular extent 

than the pixel, the following approximation can be used 

1(Me) = H(Q|p-400) = B (3-20) 

Thus, the residue beam efficiency can be calculated from B as follows: 

Mr = 1(M% — Mp) = (Me) — (Np) = B- Np (3-21) 

This in (3-14) yields 

e= ie 1 (3-22) 
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In practice, PO is first performed and (3-5) is used to evaluate the integrated 

pattern function in an angular region ~20\/D in extent. Then the portion of 

this integrated pattern function with large z values is least-squared fitted to 

A/z+B to determine constants A and B, and the resultant B value is used in (3- 

22) to calculate the residue beam efficiency ratio. 

Numerical verification for our method to calculate residue beam efficiency 

ratio is performed using a prime focus paraboloidal reflector system. The pattern 

of the example antenna is shown in Fig. 3-4, and is plotted as a function of 1/z. 

The plot is very close to a straight line, which verifies that the integrated pattern 

function indeed approaches its asymptotic limit as A/z +B. 

3.4. Optimization for Temperature Sensitivity 

Residue beam efficiency ratio is the relative temperature resolution of a 

radiometer antenna, and, therefore, should be optimized within the design 

constraints such as the maximum physical aperture size and angular extent of 

the object to be observed. To simplify this optimization problem, we are 

concerned about only three parameters in the design process and assume a 

circular aperture and Gaussian aperture illumination. These parameters are: 

object angular extent (0), aperture edge taper (C) and aperture diameter (D). 

Based on the three parameter assumption, the optimization problem becomes 

one dimensional, and can be expressed as follows: 

min €(C, 6, D) 

constraint: 6 = object angular extent = constant 

D = aperture diameter = constant (3-23) 

To illustrate the relationship between aperture edge taper and residue 

beam efficiency ratio, we plot the integrated pattern functions and residue beam 

efficiency ratios with various taper values in Figures 3-5 and 3-6, respectively. 

The curves in Fig. 3-6 can be expressed as 

€é(8) =e(C;, 9, D)lp = constant With i=1, 2, 3, 4 (3-24) 

It can be shown from Fig. 3-6 that the value of taper for the smallest « increases 

with the object angular extent. This is because when the object angular extent 
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is small, high gain is needed to concentrate the radiation onto the object, but 

when the object angular extent is large, high edge taper is needed to reduce the 

far-out side lobe level. 

With a fixed aperture diameter, optimization can be performed to obtain 

the smallest « and the corresponding taper for each value of object angular 

extent. First, the curves of residue beam efficiency ratio as functions of object 

angular extent were obtained for various taper values in the same fashion as (3- 

24), but with i=1 to 240 as in the example of Fig. 3-7. Typically, values of C, 

are chosen between 10 dB and 40 dB. Then, for each 6, the minimum ¢« among 

the values of 240 curves was obtained, which gives 

op(0) = aremin (0) (3-25) 

In order to find an accurate minimum, a parabolic interpolation was performed 

among three pairs of (C;, ¢;(9)) with 1=i,, _ 1, lop and i,,, 4 1, to find Cop(9) and 

Eop(9). The functions Cop(8) and €9p(9) resulting from this optimization process 

are plotted in Fig. 3-7. 

The optimization above assumes a fixed aperture diameter. However, the 

result can be generalized to high gain reflector antennas with arbitrary D. This 

is accomplished by scaling the abscissa of Fig. 3-7 with factor D/A, because for 

high gain antennas with different aperture diameter, the patterns scaled by D/A 

are the same, and so does the integrated pattern function and residue beam 

efficiency ratio. The scaling with D/X generalizes the curves in Fig. 3-7 to all 

circular aperture antennas. 

Fig. 3-7 can be used as a design tool for radiometer antennas. There are 

two situations in designing a radiometer antenna: 

(1) Knowing 6 and D, find the optimal C to minimize e€ 

(2) Knowing 6 and the tolerance for e, find the optimal C to minimize D 

In the first situation, D/\ sin @ can be calculated and used as the abscissa, then 

the smallest € and the corresponding optimum edge taper can be found directly 

from the two curves of Fig. 3-7. In the second situation, the abscissa can be 

determined using the curve for optimum e and the given value for «. Then D is 

calculated with this abscissa and the given value for 9; meanwhile the optimum 
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taper value is read from the curve for optimum taper and the value of this 

abscissa. The design accomplished in the second situation offers the smallest 

aperture size with the desired temperature error tolerance. 

To conclude this chapter, we point out that residue beam efficiency ratio 

is the most important parameter in the evaluation for earth observation 

radiometer antennas. It directly relates the antenna pattern to the relative 

temperature measurement error, and can be calculated with higher accuracy 

than beam efficiency. Therefore, in a design process, it should be the primary 

parameter. 
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Chapter 4 

PRINCIPLES OF SPHERICAL MAIN REFLECTOR ANTENNAS 

4.1. Introduction to Spherical Main Reflector Antennas 

In many applications it is often required to scan the main beam of an 

antenna without rotating the whole antenna structure. For satellite 

communication ground stations, tracking several satellites with the same antenna 

can be much more cost-effective than building one antenna for each satellite. 

This requires the antenna to produce several simultaneous main beams, which is 

referred to as a multibeam application. Multibeam antennas are also desirable 

for space-borne satellites. In remote sensing such as earth observation from 

geostationary orbit, it is required to scan the antenna main beam through the 

whole observed region. However, mechanically slewing an entire large antenna 

structure to scan the main beam is usually prohibited in such applications 

because of mechanical difficulties, reliability, and vibrations induced on the 

platform. 

Traditionally, scanning the main beam without rotating the main reflector 

is achieved by displacing the feed in the focal plane of a paraboloidal main 

reflector. This scanning approach can cause significant GO aberration and 

pattern degradation [2]. Improvements on this scheme include the use of a 

phased array feed in the focal field to correct for the GO aberration [2]. The 

disadvantage of a phased array feed is the electrical complexity introduced by 

the phasing network and the noise increase due to multiple feeds and the phasing 

network. 

On the contrary, spherical main reflector antennas can scan at relatively 

low cost with constant performance during scan, if proper suboptics systems are 

used to correct for the spherical aberration. The geometry of the scanning 

scheme of a spherical main reflector is illustrated in Fig. 4-1. For simplicity of 

illustration, a single feed is used to illuminate a portion of the spherical reflector. 

Scan is accomplished by rotating the feed about the center of the sphere, which 

moves the illumination to a different portion of the main reflector and, since the 

main reflector is spherical, this feed rotation is equivalent to rotating the whole 

antenna system, including the main reflector and the feed; therefore, electrical 
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performance is unchanged during scan. 

4.2. Phase Error in Prime Focus Spherical Reflector Systems 

The configuration shown in Fig. 4-1 is called a prime focus spherical 

reflector system because only a single feed is used and is located at the 

approximate focal point of the spherical reflector. Due to spherical aberration, 

the focal point is not a well defined point; but instead, power is distributed in a 

caustic region around the point. The aberration depends mostly on the F/D’ 

ratio of the spherical reflector, where D’ is the diameter of the illuminated 

portion of the reflector and F is the focal length. 

As discussed in Chapter 2, aberration can be measured by the path length 

error from the feed to the aperture plane. Since a prime focus paraboloidal 

reflector has zero path length error, the paraboloid can be used as the reference 

to calculate the path length error of a spherical reflector with the same focal 

length. For simplicity we present results in two dimensions with no loss in 

generality because of the rotational symmetry. The shape of an axisymmetric 

paraboloid with a generator parabola given by 

z=x%.—F (4-1) 

where F is the focal length and the focal point is located at x=0 and z=0. The 

spherical reflector is represented by 

(z-F)?+x?=(2F)? (4-2) 
where the focal point is located at x=0 and z=0. Expanding (4-2) in a Taylor 

series yields 

  Z~ -P+2 +35 (4-3) 

The difference in shape between the sphere in (4-3) and the paraboloid in (4-2) is 

x1/(64F°). The path length of a ray emerging from the feed and being reflected 

by the spherical reflector is 2x4/ (64F°) shorter than the same ray reflected by 

the paraboloid, including both the path length difference before and after 

reflection. Thus, the path length error for a spherical reflector is 
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AL(x) ~ x4/(32F°) (4-4) 

The maximum path length error occurs on the edge of the spherical reflector 

where x=D'/2. Therefore, the maximum path length error is 

AL ~ D!4/(29°F3) (4-5) 
which shows that the aberration measured by path length error grows rapidly as 

D’ increases; we call this the D’4 rule. Equation (4-5) can be used to calculate an 

upper bound on D’ or lower bound on F/D! during the design of spherical 

reflector antennas. 

In a design situation it is convenient to specify the maximum phase error 

in the aperture and then calculate the maximum D’ or minimum F using (4-5). 

The maximum phase error from (4-5) is 

Ag ~ 2" D'4/(29 F3) (4-6) 

Typically, A¢ is required to be less than 27/32, then the following design criteria 

must be satisfied: 

= < 24 (4-7) 

For example, in earth remote sensing systems requiring a 25-m diameter 

aperture and operating at 30 GHz (A1=0.01 m), the minimum focal length is 

134.7 m according to (4-7), which is impractical to achieve in space applications. 

Moreover, the large F/D’ value will cause unacceptably low aperture efficiency as 

discussed in the Section 4.3. Therefore, prime-focus spherical reflectors are 

rarely used in high gain reflector antenna designs. However, they can be used in 

low gain systems for low cost. 

4.3. Aperture Efficiency Analysis for Spherical Main Reflector Systems 

In addition to spherical aberration, spherical reflectors also suffer from 

poor aperture efficiency. Poor aperture efficiency is primarily caused by the 

motion of the illuminated area on the spherical main reflector during scan. In 

the prime focus spherical reflector antenna shown in Fig. 4-1, the center of the 

illuminated portion is located at x=R sin 6, where R is the radius of the sphere 

and @ is the scan angle. The illuminated portion on the spherical reflector moves 
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during scan; therefore, oversizing the main reflector is necessary in order to keep 

the illuminated portion within the reflector, which reduces the aperture 

efficiency. 

The evaluation of aperture efficiency in spherical main reflector systems is 

straight forward. Suppose that the angular extent of the illuminated portion of 

the main reflector as seen from the spherical center is , and the angular scan 

range is Aé, then the angular extent of the whole spherical reflector must be 

€+Aé@ in order to avoid spillover. The ratio between the illuminated area and the 

area of the whole main reflector is called aperture utilization, €,. Since the 

reflector is spherical, €, can be calculated as follows 

A; R?Q, 
— 1 f\2 - —— ~~ (2 4-8 

E+A0 
  

where A; and A, are the areas of the illuminated portion and physical reflector, 

respectively; 9; and (91, are the corresponding solid angles as seen from the 

spherical center. Aperture efficiency is further reduced by the taper of the 

illumination within the illuminated portion. According to Table 2-1, the overall 

aperture efficiency will be 

fap = fu G/ | 2 Aj] (4-9) 

Since €, is related to the oversizing of spherical reflectors, we confine our 

attention to €, in this chapter. 

The angular extent of the illuminated portion, £, is related to F/D’ of the 

antenna as follows: 

NY 1 - F/D' = R/(2D’) = Tsin(e/2) (4-10) 

In normal design situations with F/D’ > 1, (4-10) can be approximated by 

ex > (F/DY! (4-11) 
This, in (4-8), yields 

ex (1 +2 A0-(F/D’)] ~2 (4-12) 
which reveals that increasing F/D’ reduces the aperture utilization. This is in 

conflict with the phase error requirement of (4-7), which requires a large F/D! for 
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low phase error. For example, the 25-m diameter class earth observation 

antenna requires F/D’=5.4 according to (4-7), and the angular scan region has 

Ad=10° for + 5° of scan; therefore, the aperture utilization is only 12% according 

to (4-12), which is unacceptable. 

In designing a practical reflector antenna, the phase error must be below 

tolerance and the aperture efficiency is usually above 40%. In order to 

implement a spherical reflector that meets these goals, the F/D’ must be reduced 

to improve the aperture utilization while maintaining the phase error within the 

tolerance. This requires correction for spherical aberration. 

4.4. Methods to Correct for Spherical Aberration 

Methods to correct for spherical aberration can greatly reduce the F/D’ 

value of high gain spherical main reflector systems while maintaining the phase 

error below tolerance, and therefore, improve the aperture efficiency. Of course, 

these methods also reduce the aperture phase error and offer significant 

improvement in antenna pattern. In reflector antenna design the aperture 

amplitude distribution is also important. So methods to correct for the spherical 

aberration must take into consideration both phase error and feed-to-aperture 

amplitude mapping. 

The first method to correct for the spherical aberration was proposed by 

Holt [8] in 1964. His method employed a subreflector in a Gregorian 

configuration to correct for the path-length error from the feed to the aperture. 

As mentioned in Chapter 2, for n-reflector systems, once the shapes of n—1 

reflectors are known, the remaining reflector shape can be solved by equal path 

length law. In Holt’s system there are only two reflectors with the main reflector 

being spherical; therefore, the subreflector can be solved by the equal-path-length 

law. There are two parameters to determine the shape of such a subreflector, 

one is the feed location and the other is the vertex location of the subreflector 

along the axis of the main reflector. 

By employing the Gregorian subreflector the aperture phase error can be 

reduced to zero in theory. However, the feed-to-aperture mapping is not taken 

into consideration. Consequently, this dual-reflector system does not control the 
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aperture amplitude distribution. Indeed, the aperture amplitude distribution has 

an inverted taper, i.e. higher illumination on the edge of the aperture than at the 

middle of the aperture. The inverted aperture taper leads to significant side lobe 

level which makes the dual-reflector system unsuitable for remote sensing 

applications. 

More degrees of freedom are needed to include the feed-to-aperture 

mapping in the subreflector shape synthesis; this requires another subreflector. 

By enforcing the equal-path-length law, the shape of one subreflector can be 

solved; by restricting the feed-to-aperture amplitude mapping, the shape of the 

second subreflector can be determined. Kilda] [12] and Watanabe et al. [13] 

performed a synthesis on spherical main reflector systems with dual 

subreflectors. Similar concepts were developed by Galindo-Israel et. al. for dual- 

shaped reflector systems with high aperture efficiency. Our generalization of 

Galindo-Israel’s concept led to the new approach for spherical tri-reflector 

systems discussed in Chapter 5. 

There are two approaches to synthesize dual subreflector systems: a 

partial differential equation approach and an optimization approach. Kaldal et 

al. reported on both the analysis [11] and the synthesis [12] of the proposed 

Arecibo Observatory antenna system which consists of two  subreflectors. 

Kildal’s synthesis approach includes an approximate numerical solution for a set 

of partial differential equations derived from kinematic and dynamic ray tracing 

[12]. 

Watanabe et al. [13] developed a synthesis method for a spherical tri- 

reflector system and verified the technique by building a multibeam earth station 

antenna. Their method represents the subreflector surface shapes by functional 

expansions. Each basis function in the expansion series satisfies the equal-path- 

length condition. The coefficients in the series expansion were optimized to 

achieve the desired aperture distribution. Both the approaches of Kildal et al. 

and Watanabe et al. solve the problems of high side lobes and high cross 

polarization. 

All these traditional spherical main reflector system design approaches 

have an aperture utilization factor «, that is less than unity, which leads to low 
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aperture efficiency ¢,,. This problem is solved by the new approach discussed in 

Chapter 6. Also, spherical tri-reflector systems require motion of the whole 

suboptics assembly that consists of a feed and two subreflectors; the motion is 

simplified by the method proposed in Chapter 6. 
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Chapter 5 

THE PROPOSED SPHERICAL TRI-REFLECTOR ANTENNA 

In the previous chapter traditional spherical main reflector systems are 

discussed. They all have poor aperture efficiency because the illuminated portion 

of the spherical main reflector moves during scan. In this chapter a new 

spherical tri-reflector system design approach is introduced. It avoids the poor 

aperture efficiency problem by fixing the illuminated portion on the main 

reflector during scan. Therefore, it can achieve the same aperture efficiency as a 

prime focus paraboloid, and moreover, it provides the same wide angle scan with 

constant electrical performance as for traditional spherical tri-reflector systems. 

5.1. Overview of the Proposed New Approach 

The new approach uses a spherical tri-reflector configuration that scans 

without gain loss and has perfect aperture utilization (i.e. «, ~ 1), while providing 

an aperture illumination that is controlled by the feed pattern. The 

configuration consists of an offset spherical main reflector, a subreflector, and a 

tertiary reflector as shown in Fig. 5-3. The key to our approach is the synthesis 

of axially symmetric suboptics reflector shapes that perform both a mapping of 

an isotropic feed pattern to a uniform aperture plane distribution and the 

correction for spherical aberration. This synthesis procedure is an extension of 

Galindo-Israel’s method of solving partial differential equations exactly to obtain 

reflector surface shapes for dual reflector systems [14]. 

The mapping between an isotropic feed and a uniform aperture offers the 

following two major advantages. 

1) Scan can be accomplished by rotating the suboptics assembly (including the 

feed, the tertiary and the subreflector) along the R/2 spherical surface about the 

center of the main spherical reflector, while tilting the feed relative to the 

suboptics assembly to maintain illumination over the same part of the main 

reflector. (See Fig 5-3 and further explanation in Section 5.2.) This unique 

feature of a constant illumination of the entire main reflector eliminates the need 

for an oversized main reflector which is common among scanning spherical 
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reflector systems. The tilting feed method is possible only with the isotropic-to- 

uniform mapping, as will be explained. 

2) The aperture distribution is controlled by the feed pattern. The first step in 

the design process is to use an isotropic feed to synthesize the subreflector 

shapes. Then the isotropic feed is replaced by a real feed with the desired 

radiation pattern. Still, a perfect one-to-one correspondence exists between the 

feed pattern and the aperture distribution. For example, if the feed has a 

Gaussian pattern, the aperture distribution will be Gaussian as well. This leads 

to very low side lobe and cross polarization levels. 

Analysis of the new configuration has shown excellent performance during 

scan; see Chapter 7. The details of this new method are discussed in the 

following two sections which begin with the synthesis of an axially symmetric 

system followed by an offset system based on an axially symmetric parent 

system. 

5.2. Synthesis for the Axially Symmetric Spherical Reflector System 

The new design approach is best understood by examining its evolution 

from an axially symmetric spherical tri-reflector system, which has correction for 

spherical aberration and an exact power mapping from an isotropic feed pattern 

to a uniform aperture amplitude distribution. This axially symmetric 

configuration is the parent configuration for the new design to be developed in the 

next section. The shapes of the subreflector and the tertiary are derived from an 

ordinary differential equation. This is a generalization of Galindo-Israel’s two- 

dimensional partial differential method [14]. 

Geometry for the Synthesis Problem 
  

A profile view of the geometry used in the new synthesis method is shown 

in Fig. 5-1. Parent reflectors, from which the final reflectors are derived, are 

generated by rotating the profile in Fig. 5-1 360° about the 2’ axis. (Primed 

coordinates are introduced here and will be fixed relative to reflector optics that 

40



move to achieve beam scanning.) This forms an axisymmetric system that can 

be synthesized in two dimensions (2D), which is a significant simplification of the 

problem. 

We now explain the behavior of the system of Fig. 5-1 using geometrical 

optics (GO) principles. The ray P'-P’3P’oP’;P’p originating from the feed 

located at P', (0, 2',) is reflected at P’g (x'g, 2'g) on the tertiary, P’y (x'p, 2’9) on 

the subreflector, and P’; (x’;, 2';) on the main reflector; finally, it leaves P's 

parallel to the z’ axis striking the aperture at P'9 (x'), 0). The feed angle, 6’, is 

the angle of the ray P',P’s (the feed ray) off the feed axis (—z’ axis). The length 

of P’ f , 3 ist’. Therefore, P’3 can be described in polar coordinates (6’, r’), which 

are related to the corresponding rectangular coordinates (x's, z'3) as follows: 

x’3= 1’ sin 6! 

Z'g= —r' cos & + 2'g (5-1) 

The ray reflection points on the main reflector and the subreflector, P’, 

(x'1, z'1) and P’y (x’o, Z'9), respectively, are uniquely related to the feed ray 

‘Pg by ray tracing. In other words, (x’,, z';) and (x’9, 2’9) are functions of (6’, 

r’). Moreover, r’ is a function of 6’ (written as r'(@’)) through the tertiary shape 

function. The function r‘(#’) can be solved by numerical methods for ordinary 

differential equations (ODE) if ar can be calculated at each point (6’, r’). Thus, 

after solution of the ODE all surface shapes are known as sets of points P’5(x'o, 

Z'y) and P’.(x'g, z'g) as functions of the angle 6’. 

Three Steps to Establish the ODE 
  

There are three steps in the derivation of the ODE required to perform 

the synthesis of the suboptics shapes. These steps are detailed below. They 

enforce the conditions of parallel] rays exiting the main spherical reflector, of 

satisfaction of Snell’s law of reflection on all reflectors, and of a mapping of an 

isotropic feed pattern into a uniform aperture distribution. 

Step 1: Determining the feed-to-aperture mapping 

The first step is to determine the feed-to-aperture mapping by evaluating 

the aperture point P’p (x’), 0) for each 6’. The mapping between the feed 
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pattern and the aperture power distribution leads to a functional relationship 

between 6’ and x’), which can be uniquely solved in 2D (it is then immediately 

applicable to 3D axially symmetric systems) [14]. (In 3D non-axisymmetric 

systems, an exact mapping from a given feed pattern to the desired aperture 

power distribution exists [14], but there is no unique functional relationship 

between each feed output ray direction and its aperture output location [12, 13, 

14].) The function x’, (6’) is obtained by solving the following power conservation 

relation between a feed ray cone and its corresponding aperture ray tube for the 

3D axisymmetric system (6; Section 8.6]: 

Sap(x’y) x’; dx’; dg’ = U,(6’) sin 0’ da’ d¢’ (5-2) 

where Sap is the aperture power intensity distribution in W/m? and Us is the 

feed radiation intensity in W/steradian. Canceling d¢’ from both sides of (5-2) 

gives the following result: 

Sap x’; dx’) = Us sin 6’ do’ (5-3) 

The case of an isotropic feed pattern and a uniform aperture distribution results 

in taking Sap and U, to be constants in (5-3); then Sap and U; are related to 

each other through the total power conservation as follows: 

+D/2 6'm 

/ Sap x" dx’) =/ Us sin 6! de’ (5-4) 

0 0 

where D is the diameter of the axially symmetric parent main reflector. The + 

and — signs on D/2 in the limits of integration correspond to the single-caustic 

and dual-caustic configurations, respectively, which are discussed at the end of this 

section. The ray corresponding to the feed angle 6’;, determines the edge of each 

of the three parent reflectors as shown in Fig. 5-1; 6’y, sets the synthesis limit for 

the feed angle. The feed pattern is isotropic interior to 6’y, and is zero for feed 

angles 6’ larger than 6’); i.e. the feed has a sectoral pattern. Equation (5-4) 

determines U,/ Sap- For convenience we define a mapping normalization factor 

q=3(U,/ Sap)R”’, where R is the radius of curvature of the main reflector. Then 

(5-3) can be rewritten as 

xy dx’, =q R? sin 6’ dé6’ (5-5) 

Integrating both sides yields 

x)? = C-R? q cos 6’ (5-6) 
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The constant of integration, C, is determined by evaluating (5-6) for the vertex 

ray; this ray leaves the feed along the —z’ axis (6’=0) and arrives in the aperture 

along the 2’ axis (x’;=0). Using x';=0 and 6’=0 in (5-6) gives C= q R?. This in 

(5-6) gives 

x’; = +R 1/q (1 —cos 6’) (5-7) 

The + (—) sign correspond to the dual-caustic (single-caustic) solutions discussed at 

the end of this section. Note that evaluation of (5-7) for the edge ray (6’=6' 

and x’;=+D/2) gives D/2=R ,/q (1-cos 6m), which satisfies the total power 

conservation relation of (5-4); this relation shows how the parent main reflector 

diameter D depends on q. 

Since the main reflector is of spherical shape, once x’, is determined 2’, is 

readily obtained by the spherical surface relationship between x’, and z', as 

Z'4 = - JR? - x’)? (5-8) 

To summarize, the first step establishes the functional relationship, (5-7), 

follows: 

between the aperture point P’p and the feed angle 6’ which satisfies the isotropic- 

to-uniform mapping. The ray exiting the feed at angle 6’ eventually strikes the 

aperture at the point P'p (x’), 0), where x’, is found from 6’ by (5-7). Once the 

aperture point P’) is found, the main reflector ray reflection point is found to be 

P’, (x’), 2';), where z’, is found from x’, using (5-8). 

Step 2: Correcting for Spherical Aberration 

The second step is to correct for spherical aberration. This is 

accomplished by shaping the subreflector, i.e. by evaluating P'y (x’5, 2'9) based 

on the given P’, (x’;, 2';) and P's (x'g, 2’g). The spherical surface normal at P’, 

is first obtained. Knowing that the main reflector aperture output ray must be 

parallel to the z’-axis and applying Snell’s law determines the ray that goes 

through P’5 and P’;. The ray P’5P’) gives the following linear relationship 

between x'5 and 2’ 9 (see Appendix 5A for details): 

/ 22 
x5 =[14+ pee (2’5 — 2';)] xy (5-9) 
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This relation is based on the fact that the point P’y (x’, 2’9) lies along the ray 

P’5P’;. The location of the subreflector ray reflection point P', along this ray 

path is determined by the constant total path length condition for the ray 

P/pP!1P'oP’3P'e: 

L = 

- ary ey — 2!) +(x! - x’) y (2! —2!3)°+(x'p x's) (2's —2!)?-+x!q” 
(5-10) 

where the total path length L is a design parameter. This constant path length 

condition guarantees the correction of spherical aberration. Substituting (5-9) 

  

into (5-10) gives a single equation in terms of 2’ that can be solved explicitly in 

terms of the given values for P’p, P’;, P’3 and L. At this point one can calculate 

the reflection points (x’,, 2';), (x'o, Z'5) and (x’g, 2'g) for an arbitrary ray that 

hits the tertiary at (assumed) point (r’, 6’) which is equivalent to (x's, z’g) from 

(5-7) and (5-8) which yield (x’), z',), then (5-9) and (5-10) yield (x'o, 2’9). 

Step 3: Forming the ODE at the Tertiary 

The third step establishes the required ODE based on the information 

from the previous steps which, in turn, is used to calculate the surface derivative 

on the tertiary reflector. The surface derivative is essentially equivalent to the 

surface normal which can be found from Snell’s law. Snell’s law requires that the 

surface normal at point P’s on the tertiary bisects the angle between the feed-to- 

tertiary ray P'-P’s and the tertiary-to-subreflector ray P’3P’5. The feed-to- 

tertiary ray is determined by the end points P', (0, z'¢) and P's (x’g, z's). The 

tertiary-to-subreflector ray is determined by the end points P's (x’g, Z'3) and P', 

(x’9, Z'9). Minimization of the ray path length P’P’3P'5 will satisfy Snell’s law 

and, as shown in Appendix 5B, yields the following surface derivative relation: 

dr’ —r! [(2'g ~2'9) sin 6’+(x’, — x'9) cos 6'] 
gr 

do V(e's — z'o)*+(x'g — x'o)?+| — (2'g —2'9) cos 6'+(x'g —x’9) sin 6] 
    (5-11) 

Reflector Shape Synthesis: Solving the ODE 
  

Note that (5-11) is an ODE because the dependent variable in the 
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derivative, r’, also appears in the right hand side (RHS), and the RHS can be 

evaluated using steps 1 and 2 once (r’, 6’) are known. Synthesis is performed by 

numerically solving the ODE (5-11) subject to a set of initial given conditions 

(initial value ODE problem). 

The initial values are those associated with the vertex ray. That is, the 

initial values are the coordinates of the vertex of each reflector. The radius R of 

the main reflector is chosen so that the main reflector vertex is at (x'=0, 

z';=—R). The subreflector vertex is located at (x'9=0, 2'9=2'oq); the tertiary 

vertex is at (x’3=0, z'3=2'39); the feed is at (0, z',). In addition to these initial 

values, q in (5-7) is an assumed value that is usually taken to be unity. The 

synthesis limit 6’,, is another design parameter which when combined with q 

value will determine the main reflector aperture diameter. Although the total 

path length L in (5-10) is also a design parameter, it depends on the other initial 

given values. L is constant for all rays and is equal to that for the vertex ray 

from (0, z's) to (0, 2'39) to (0, 2'g9q) to (0, —R) to O which is given by 

L= |2'3q —2'sl+|2'99 —2’39/+1 -R-2'o9 I+ R (5-12) 

which relates L to the initial conditions. From this vertex ray with 6’=0 and 

t'=|2'3q—2',|, the 8th-order Runge-Kutta method is used to solve the ODE. 

The Runge-Kutta method is analogous to the following procedure: for each 

iteration, 6’ is incremented by Aé’ and dr is calculated from the three steps 

discussed above; then r’ is incremented to the next value as r’+ dr Ao’. The 

Runge-Kutta iteration 1s performed up to the maximum feed angle when 6/=6'p. 

The choice of the sign in (5-7) yields different solutions. The two basic 

configurations corresponding to + and — are the dual-caustic and single-caustic 

systems, respectively. The dual-caustic system shown in Fig. 5-1 has caustics 

between the tertiary and the subreflector, and between the subreflector and the 

main reflector. The single-caustic system shown in Fig 5-2 has only one caustic 

between the subreflector and the main reflector. In the dual-caustic system, the 

tertiary blocks the parent main reflector aperture. Also, the performance of the 

dual-caustic configuration is limited at lower frequencies because of the extra 

caustic due to the cusp diffraction [11]. This is not a problem with the single- 

caustic design and, therefore, it is usually the preferred configuration. However, 

in the single-caustic system the feed must be located along the z’ axis between 
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the spherical reflector focal point and the subreflector to avoid blockage; see Fig. 

5-2. In the dual-caustic system the feed can be placed anywhere along the z’ axis 

facing the tertiary. Thus, the dual-caustic system is worth consideration when 

feed location control is important. 

5.3. Design of a New Offset Spherical Main Reflector System 

The synthesis procedure described in Section 5.2 gives the shapes of the 

parent axially symmetric reflectors. A multistage evolution is then performed to 

determine the reflector perimeters in the final system (which can be constructed). 

In this section the scan principles are discussed first, followed by an explanation 

of the perimeter determination process. Finally, comments on system design are 

presented. 

The configuration shown in Fig. 5-3 is used in this section to illustrate 

main beam scanning. The axially symmetric configuration derived from the 

synthesis procedure of Section 5.2 for the single caustic system of Fig. 5-2 

provides a family of parent reflector shapes. Of course, the axisymmetric parent 

reflector configuration is not practical because of the total blockage. The offset 

intermediate reflector system with rectangular perimeters is formed from the axially 

symmetric parent system to avoid the blockage. During scan the intermediate 

reflector system together with the z’ axis shown in Fig. 5-3 are treated as a rigid 

system; that is, all three reflectors, the feed and the z’ axis moves as a unit. 

In the synthesis process of Section 5.2 a sectoral feed pattern with cone 

angle 6’;, was used to achieve uniform illumination on the parent main reflector. 

The feed for the intermediate reflector system (intermediate feed) is similar but has 

a sectoral pattern with a narrower cone angle. The intermediate feed has cone 

angle 6,, with 6;,<6'm. The choice of 6, is discussed in the comments on 

system design at the end of this section. In the design for the final reflector 

system, the intermediate feed serves to specify the spillover limit; i.e. for the real 

feed (e.g. a Gaussian feed) used in the final system, the spillover is the portion of 

its pattern that is beyond the beam cone of the intermediate feed. 

Scan Principles 
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Scan is described in a spherical coordinate system (scan coordinate system) 

with a fixed z axis passing through the center of the illuminated portion of the 

main reflector, V, and the main reflector center of curvature, O, as shown in Fig. 

5-3. The z’ axis points in the direction (6, ¢) which is parallel to the output 

beam direction. Angle 6 is between the z’ and the z axes, and angle ¢ measures 

the rotation of the z’ axis about the z axis; see Fig. 5-3e. 

6 scan is best visualized as a two step process. First, the entire 

intermediate system (including the z’ axis, the intermediate main reflector and 

suboptics assembly) is rotated about the spherical center O by angle 6. Of 

course, this rotation steers the main beam which is parallel to the z’ axis. 

Although the intermediate main reflector rotates with the intermediate system, 

the final main reflector can be fixed because it is spherical. If no other changes 

were made, the final main reflector would have to be oversized to accommodate 

the changing illuminated region. In order to avoid oversizing the main reflector, 

we use the tilting feed method described in the next step to fix the main reflector 

illumination center in space. 

In the second step, the feed is tilted relative to the 2’ axis within the 

intermediate system in order to keep the main reflector illumination center V 

fixed in the scan coordinates, see Fig. 5-3 b and d. In the first step (without the 

feed tilt), the illumination center moves with the intermediate main reflector. In 

the second step, the feed tilt moves the illumination center V relative to the 

intermediate main reflector. The relative motion between V and _ the 

intermediate main reflector cancels the movement caused by the motion of the 

intermediate main reflector so that V is stationary in the scan coordinate. Note 

that this step is possible because of the isotropic-to-uniform mapping; i.e. the 

feed pattern can be scanned with no resulting change in aperture taper. 

We now determine the amount of the feed tilt angle required to fix the 

main reflector illumination center V. The angle of feed tilt 6’, is the angle 

between the feed axis and the —z’ axis. The ray emanating from the feed along 

its axis is called the principal ray. The principal ray is reflected by the tertiary 

and the subreflector striking the main reflector at V, which is x’, away from the 

z’ axis as shown in Fig. 5-3f; and x’y is related to the scan direction 6 by 
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x'y = R sin 0 (5-13) 

The mapping function (5-7) evaluated under the condition x’)=v'y, 6’=6's gives 

(xy)? =[R \/q (1=cos 6%) (5-14) 
Substituting (5-13) into (5-14) gives 6’, in terms of the scan angle @ as follows: 

6’, = arccos( 1 -4 sin26 ) (5-15) 

The intermediate configuration is shown for different 6-scan angles in Fig. 

5-3 a and c. The ¢ scan is accomplished by rotating the intermediate system 

about the z axis. This rotation steers the z’ axis and the output beam direction 

in a conical fashion. Fig. 5-3 c and d illustrate cases with ¢=0 and ¢>0 beam 

directions, respectively. Since the z axis passes through the main reflector 

illumination center V, V does not move during ¢ scan. This permits the 

illuminated portion of the spherical main reflector to remain fixed during ¢ scan. 

Determination of Reflector Perimeters — The Final Configuration 

The parent reflectors derived from the synthesis process in Section 5.2 

were visualized as having rectangular perimeters. The final subreflector and 

tertiary reflector are derived from the intermediate subreflector and intermediate 

tertiary reflector by trimming the edges to reduce their sizes. The final main 

reflector is derived according to the requirement that it has to cover the 

illuminated potion of the main sphere at all scan angles. In this section, methods 

to obtain the edge perimeter for each of the final reflectors are discussed. 

The intermediate feed (sectoral feed with beam cone angle @,)) is used for 

perimeter determination. The illuminated portions of the intermediate 

subreflector and tertiary change during 6 scan due to the feed tilt. For each scan 

angle 6 the axis of the intermediate feed is tilted relative to the z’ axis according 

to (5-15). The illumination edge contours on the intermediate tertiary and 

subreflector are obtained by tracing the cone of edge rays from the intermediate 

feed. The perimeters of the final subreflector and tertiary reflector are obtained 

by sampling these illumination edge contours at several different 9 angles over 

the desired 6-scan range; the resulting illumination edge contours, which do not 

coincide, are used to select a final reflector perimeter which just accommodates 

those contours. 
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The entire suboptics assembly in the final system is rotated about the z 

axis during ¢ scan as shown in Fig. 5-3e, with no relative motion within the 

suboptics assembly (including the feed). Therefore, the final subreflector and the 

tertiary need not be oversized to accommodate ¢ scan, and their perimeters can 

be determined from @ scan alone. This feature reduces the subreflector and 

tertiary reflector sizes of the final design, because both reflectors are elongated 

only in one dimension. 

The determination for the perimeter of the final main reflector is different 

from that for the final subreflector and tertiary reflector because the final main 

reflector does not move during scan while the intermediate main reflector does. 

The final main reflector can remain stationary because of the spherical 

symmetry; rotating the main reflector alone about the center O does not have 

any effect on the performance of the antenna system. 

The final main reflector must have a perimeter such that the edge rays 

strike it at all scan angles. Although the center of the main reflector 

illumination does not change, the illumination distribution changes slightly 

during the scan. This is because the mapping in (5-7) is nonlinear, which leads 

to an elliptical aperture edge ray contour from a feed with a circularly symmetric 

edge ray cone. Since a sectoral feed is used, we define the aperture ellipse as the 

aperture illumination edge contour caused by the edge ray cone of the sectoral 

feed. The ratio between the two axes of the aperture ellipse is controlled by the 

Mapping normalization factor, q. 

The two axes of the aperture ellipse are along the @ and the ¢ directions 

associated with the @ and ¢ angles in the scan coordinate system shown in Fig. 5- 

3e. A prudent choice for q is one that makes the minor axis of the aperture 

ellipse along 6. As the 6-scan angle increases the minor axis along @ decreases as 

seen in (5-7). When this aperture ellipse is projected onto the main reflector 

surface, an ellipse on the main reflector surface (the surface ellipse) is created. The 

surface ellipse specifies the main reflector surface illuminated area. The minor 

axis of the aperture ellipse along @ has to be multiplied by sec 6 to obtain the 

length of one axis of the surface ellipse. The sec @ factor arises from the 

aperture-to-surface projection. The other axis of the surface ellipse has the same 

49



length as the major axis of the aperture ellipse along ¢. Since the minor axis is 

expanded by the sec @ factor, the surface ellipse is closer to a circle than the 

aperture ellipse. 

The fact that the surface ellipse is very close to circular is demonstrated 

by our test cases discussed in Chapter 7. For example, in our single-caustic test 

case with 10° @ scan the surface ellipse has two axes of 9.9 m and 9.8m. A 

circular main reflector illumination is important to ¢ scan, because the 

illumination rotates relative to the fixed final main reflector during ¢ scan. In 

general, oversizing the final main reflector is necessary to accommodate the 

illumination rotation. However, the design which yields an approximately 

circular surface illumination makes the oversizing unnecessary. 

Although oversizing the final main reflector can be made unnecessary 

during ¢ scan, the size of the illuminated area on the main reflector will change 

when @ scan is performed. This is because we chose an isotropic feed to uniform 

aperture mapping rather than to uniform main reflector surface power 

distribution mapping. For the same sectoral feed the area A of the aperture 

ellipse remains constant independent of the 6-scan angle. When the aperture 

ellipse area A is projected onto the main reflector surface, the area of the surface 

ellipse is A sec 6 , which increases with 6. So the surface area of the final main 

reflector has to be determined according to the maximum 6-scan angle. By doing 

so, the main reflector is fully illuminated at the maximum 6-scan angle, and 

partially illuminated at smaller 6-scan angles. This is an automatic gain control 

process which guarantees constant gain throughout the scan region. 

Final Comment on the Design Technique 
  

The cone angle 6,, for the intermediate feed determines the final reflector 

perimeters. The illuminated area moves across the intermediate reflectors during 

@ scan; this requires extra area on each intermediate reflector. Smaller 6,, will 

result in smaller illuminated areas on the intermediate reflectors, which leads to 

smaller final reflector sizes and larger F/D, but a greater 6@-scan range. 

Therefore, the choice of @,, involves a tradeoff. We use the following formula to 
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estimate @,): 

2 O)=6'm — 4g (5-16) 

where 6m is the synthesis limit used in Section 4 and 6’ fm 38 the feed tilt angle 

at the maximum 6-scan angle. 6’, follows from (5-15) as 

6's = arccos(1 —g sin’#max) (5-17) 

where @max 18 the maximum 6-scan angle which is a design parameter. 

5.4. Appendices 

Appendix A: Derivation of Equation (5-9) 

Consider a spherical reflector illuminated by a plane wave parallel to the 

z'-axis as shown in Fig. 5-4. The incident ray strikes the reflector at point (x',, 

z',) is reflected as ray P’';P’y . The surface normal of the spherical reflector at 

point (x’), 2’)) is along the spherical radius from the center of the sphere O. 

From Snell’s law the angles a and # in Fig. 5-4 are equal. Also, a=y because the 

incident ray is parallel to z’-axis. On the other hand ¢=$+y7 because of the 

trigonometrical relationship shown in Fig. 5-4. Therefore, we conclude that 

&=27 (5-18) 

From the geometry in Fig. 5-4 we also have 
x 

tany = -—} (5-19) 
Z 

Substituting (5-18) into (5-19) leads tol 

2 tan 7 2 xy 24 tan ¢= RY A171 2 
an é 1—tan? y 2? —x!,? (5-20) 

Since tan € is the same as the slope of ray P’,P’5 , it can be used to obtain the 

linear equation for ray P’)P’5. Knowing that ray P’, P’5 goes through (x’), 2’ 1) 

every point (x, z) on ray P’ 1P’» can be expressed as, 

x') -X 
  

Z—2'4 = tan é (5-21) 

Substituting (5-20) into (5-21) gives the following linear equation for every point 

(x, z) on ray P'; Py 

/ 

x" -x = — (z _ z'1) (5-22)



Evaluating this for the point where ray P’; P's strikes the subreflector, (x’5, 2'9)s 

yields 

2 xy z! 

12 
a 1 L (2'5 _- z's) (5-23) x’, —x'5 =— 

1 2 
x") 

Recall x’)?+z’ = R?, so that (5-23) can be rewritten as 

2 x’, z’ 
x") _ x'9 =— Dae POR? (2'5 - z'4) (5-24) 

which is (5-9). 

Appendix B: Derivation of Equation (5-11) 

The surface derivative on the tertiary is derived from ray P’ fP’3P'o which 

starts at the feed location (0, z’ .) is reflected from the tertiary at (x’g, Z'3), and 

ends at the subreflector point (x'5, 2’9). This part of the ray has a path length ! 

which is evaluated from 

(x's, 2'3)=/(x'3 - 0)’+(z’s - z's)” +/(%'g - x'3)*+(2'5 - z'g)° (5-25) 

where (x's, z'3) are the only variables since points (0, z's) and (x’o, 2’9) are fixed. 

Since (x's, 2’g) is a function of (r’, 6’) according to (5-8), | can be expressed as a 

function of (r’, 6’) with the partial derivative relations shown in (5-26) 

    

al at. X's , 2 d2's 
a0" Bx', 30" + Bal, Ba! 

Ox! 2! al_ al. —P*3 al 9% 3 (5-26) 
ar’ x's Or" Ba!g Or’ 

where the partial derivatives are easily evaluated from (5-8) as 

Ox’ 

6 r’ cos6’ 

dz! 
ae = r’ sin6’ 
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ox’ 

—? = sing’ 

a2! 
=? = — cos6! (5-27) 

where dr, is the surface derivative of the tertiary at (x’g, 2’). Substituting (5- 

27) into (5-26) yields 

ol_ = al ! Ol ote a 391 = ax’, rcos? + 2! rsin@ 

al_ dl ww — Al ' _ a = x's sin8 x! cos8 (5 28) 

The remaining partial derivatives in (5-28) are derived from (5-25) as 

  

él (x’ — 0) (x’s — x’9) 
axa ’ 21 fo! 1 \2 + / 1 \2 (0! 1 \2 3 /(x's —0)*+(2’s — 2’) y(x'3-x’9) +(2's —2'9) 

al _ (2g 2's) 1: (2'3 ~2'9) (5-29)   

d2's ~ V's _ 0)?+(2's _ z',)? (x's _ x'5)?+(2'g _ 2'5)? 

Substituting the remaining partial derivatives in (5-28) according to (5-29), and 

using the geometrical relationship r’ =/ (x's -0)?+(2's —z’s)” , we have 
  

  

  

  

  

x! tows 
Ot - (3 + (x 37? 2) r'cos@’ 
00 ! 1 1 \2 1 \2 

Pf (x'g —x'0)?+(2'3 -2'9) 

z'g —z! zg —2! 

(5 ; , Py 1 as 2 1 \2 ) r’sind’ 
. J 0's -x/0)*#(2!g ~ 2/9) 

x (x's — x) | 
Z- (+ ! = 2 1 y\2 ) sina! 

(x3 - x’9) +(z's -—2'9) 

(2! —2'r) (2! —2z'5) 

-( : ' ‘ + Fi +. z 1 \2 ) cose" (5-30) 
. J (x'g —x/9)?+(2!g — 2/9) 
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x! 

The geometrical relationship (5-8) can be rewritten as —P=sind! and 

(2's - 2!) ae 
— cosé’. So (5-30) can be further simplified to 

( (x'3 =*'9) ) r’cosO! + ( (2'3=72) ) r’sind’ Al 
06’ V3 _ x'9)?-+(2!g _ z'9)? V's _ x'o)?+(z'a _ z’9)? 

    

Ol 
Or’ 

oat ! oo 

(sind’+ : “3 <2 — ) sino’+ cos6’ — ; <3" 2 — } cose” 

V(x'3— 2/9)? +(a!g —2'9) V(x'3— 2/9)? +(2!g ~2'9) 

(5-31) 
di _ @l Ol dr’ =0, which Furthermore, Snell’s law on the tertiary requires that ao’ = 90° t Or ae’ = 

is equivalent to 

  

dr’ 30! / 
ag = Ol (5-32) 

ar’ 

Substituting (5-31) into (5-32), (5-11) can be obtained. 
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Chapter 6 

THE IMPROVED SPHERICAL TRI-REFLECTOR SYSTEM 

WITH A FLAT MIRROR 

The low aperture efficiency problem common in spherical tri-reflector 

systems was overcome by the tri-reflector design as described in the previous 

chapter. In order to further simplify the mechanical motion, and therefore, 

improve the economy of such systems, studies were made on techniques to 

reduce the degrees of motion. In a typical configuration, the moving subreflector 

and tertiary should be as small as possible and the feed should remain fixed. 

Watanabe et al. [16] proposed a beam waveguide configuration which permits a 

fixed feed. The beam waveguide portion consists of two prime focus parabolic 

reflectors which creates the image of the real feed. The beam waveguide moves 

in such a way that the image of the real feed moves as required for scan. This, 

of course, reduces the complexity of the feed; however, the massive beam 

waveguide must move in addition to the subreflector and tertiary. 

In order to reduce the mass of moving parts in the antenna system, we 

investigated various optical configurations which form movable images of the 

suboptics assembly. As a result, we found that with proper placement of a plane 

mirror, an image of the entire suboptics assembly is created without blockage. 

Scan can then be achieved by rotating the mirror creating a rotating image of 

the suboptics assembly. The system designed for the test case in the next 

chapter scans +5° in both orthogonal directions. Since the mirror creates the 

image of the entire suboptics assembly, not only is the feed fixed, but the 

subreflector and the tertiary are all fixed. 

6.1. Fixing the Suboptics Assembly by Mirror Imaging 

The configuration that permits the suboptics assembly to remained fixed 

uses a mirror as illustrated in Fig. 6-1, which shows a dual-caustic spherical tri- 

reflector system [1] in Fig. 6-la and the version with a mirror in Fig. 6-1b. The 

mirror creates the image of the suboptics assembly as shown in Fig. 6-lc, and 

behaves effectively the same as the real suboptics assembly in Fig. 6-la during 
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scan. This is because, according to geometrical optics (GO) principles, a mirror 

creates an image without aberration. Physical optics (PO) shows that diffraction 

loss is present because of the finite size of the mirror. However, in the designs 

we have encountered (mirror diameter ~ 70), diffraction loss is negligible. 

The suboptics in Fig. 6-1 is synthesized by the method discussed in 

Chapter 5, and such suboptics forms a dual-caustic configuration. The suboptics 

assembly in Fig. 6-la is placed in such a way that the output main beam is 

parallel to the z axis. The spherical coordinate system with z axis as its axis is 

the antenna coordinate. In Fig. 6-1b the real suboptics assembly is identical to that 

in Fig. 6-la. The plane containing the mirror in Fig. 6-1b passes though the 

center, O, of the spherical main reflector. Thus, the image of the suboptics 

assembly in Fig. 6-lc creates an output main beam that is parallel to the z’ axis 

and forms an angle 6 from z axis. Scan is achieved by rotating the mirror about 

O, and therefore, rotating the virtual suboptics and the main beam. 

Two angles are required to determine the rotation of the mirror about the 

spherical center. One is the angle between the mirror plane and the z axis (a), 

and the other is the azimuthal angle of the mirror surface normal (¢); see Fig. 6- 

2 for the geometry. The mirror creates the image of the z axis; this virtual axis 

is called z' and is parallel to the output main beam from the spherical main 

reflector. Therefore, the angle 6 between the virtual axis (z’) and the z axis (0- 

scan angle) is 2a. On the other hand, it is obvious from Fig. 6-2 that the 

azimuthal angle of the mirror surface normal (f) is the same azimuthal angle as 

for the virtual z’ axis (¢-scan angle). These geometrical relationships are 

summarized as follows: 

2a 6 

“orn (6-1) 
Pmirror = % 

This simple equation specifies the mechanical rotation of the mirror required for 

scan of the main output beam. 

6.2. Improving the Aperture Efficiency by Tilting the Feed in Azimuth 

The movement of the mirror described in the last section scans the main 
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beam; however, it also introduces movement of the main reflector illuminated 

area, assuming the feed remains fixed during scan. This, of course, reduces the 

aperture efficiency. In fact, the motion of the main reflector illuminated area 

can be so severe (especially during ¢-scan) that the aperture utilization becomes 

unacceptable (<30%) for +5° circular scan coverage. 

The problem of poor aperture utilization can be alleviated to large extent 

by implementing the feed tilt method as described in the last chapter. By tilting 

the feed in both azimuth and elevation, the main reflector illuminated area can 

be totally fixed during scan, and therefore, the aperture efficiency can be as high 

as 70% (see the next chapter). In practice, it is much easier to tilt the feed only 

in azimuth than in both angles. Azimuth feed tilt greatly reduces the motion of 

the aperture illuminated area, although it allows the aperture illumination to 

move during 6-scan. The aperture efficiency for azimuth only feed tilt (about 

50% as seen in the next chapter) is less than the 70% aperture efficiency 

obtained when the feed is tilted in both azimuth and elevation. However, it is a 

great improvement from the fixed feed case. For most practical applications, the 

azimuth-only feed tilt method is the most advantageous considering the trade-off 

between aperture efficiency and feed system complicity. 

Detailed aperture utilization analysis is necessary to show the 

effectiveness of feed tilting method and to obtain the proper feed tilting angle as 

a function of scan angle. The key to the aperture utilization analysis is to study 

the motion of the center of the aperture illuminated area, which is marked C’ in 

Fig. 6-2. The mirror image of C’ is C, which is the center of “illumination” for 

the virtual main reflector. C does not move when the mirror is rotated to scan, 

it only moves when the feed tilts. Point C is found from the mapping equations 

(5-7) and (5-8) for the feed ray that is along the axis of the feed. C’ is the mirror 

image of C, and is found by (6-2) 

ro=r, —-2(a-r,) a (6-2) 

where ft is the surface normal of the mirror. A mirror coordinate system is 

established with x,, axis along i, and y,, axis in the plane of x and y; see Fig. 6- 

2. The coordinate transformation between the antenna coordinates (x, y, z) and 

the mirror coordinates can be written as 
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r cos a cos ¢ —sin ¢ sin a Cos ¢ z xz 

y|= cos asin ¢ cos¢ sinasing | |y’/|=T|y’ (6-3) 

z —sin a COS a z z 

This coordinate rotation matrix, T, with i=*,, permits (6-2) to be written as (in 

the antenna coordinates) 

x’. -1 0 0O Ze Zo 

y{|=T} 0 1 =O Tt ye l=Rihy (6-4) 

z. 0 O 1 Ze Ze 

where T° is the transpose of T. The general mirror reflection matrix, which gives 

the mirror image of any vector, is formed by multiplying out the three matrices 

in (6-4) giving 

sin2d¢d 
  

  

_~ cos#cos“¢-+sin-¢ — (cos0+1) 5 sin? cos¢ 

R=| - (coso4.1) 20+ ~cos6 sin2¢-+cos”¢ sin® sing (6-5) 

sin@ cos¢d sin@ sing 1 

where @ and ¢ are scan angles in antenna coordinates and (6-1) is used to replace 

a with 6. 

For simplicity, we first consider a fixed feed which causes the 

“illumination” center of the virtual main reflector, C, to lie in the xz-plane 

(¢,=0); the direction to C, r., forms angle 6, from the —z axis. Therefore, point 

C’ on the sphere is expressed in antenna coordinates as 
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(cosé cos?¢ — sin?¢)sin@, — sind cos¢ cos6, 

rmo=Rro= (cose-+1) 02 sind, —sin@ sing cosé, (6-6) 

—siné cos¢ sin6, — cosé, 

  

where the angle between f’, and —z axis is 6’,, and the azimuth angle of f’, in 

the xy plane is ¢’,; they are found by coordinates of f’, in (6-6) as 

x’, _ (cosd cos?¢ —sin?$) sind, — sin@ cos¢ cos6, (6-7) 
a — —~ tan 6. = ZI sin@ cos¢ siné,.+cos6, 

and sin2¢ 
x! (cosé-+1)—5— sin#, — sind sing cosé, 

y'c (cos@ cos”¢ — sin*¢) sind, — sind cos¢ cos6, 

Qa 

  tan = —f= (6-8) 

—
 

The functional relationship between ¢’, and ¢ given in (6-8) is of particular 

interest, and is plotted as the ¢, = 0° curve in Fig. 6-3 (0° feed tilt). This curve 

shows that the change of ¢’, is more than double the change of ¢. This means 

that the azimuth angle of the main reflector illumination center C! is very 

sensitive to ¢ scan, due to mirror rotation during ¢-scan. Furthermore, as 

explained in the following discussion, a large dynamic ¢-scan range is required to 

cover a normal circular scan region; e.g. +5 scan requires +28° ¢-scan range for 

our test case in the next chapter. 

The large ¢-scan range requirement is a disadvantage of this system. This 

requirement is explained in Fig. 6-4. The z, axis in Fig. 6-4 is directed toward 

the center of the scan region and forms an angle 6, from the z axis. The angle 6) 

is non zero because of the offsetting for the antenna system explained in Chapter 
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5. However, the offsetting only occurs in the xz plane. We establish a scan 

coordinate system with x, axis in the xy plane and y, axis the same as y axis. 

The coordinate transformation between scan coordinates and antenna coordinates 

is 

z cos 6, 0 sin % || zs 

y |= 0 1 0 Ys (6-9) 

z —sin 6) 0 cos 4% || 2s 

For a main beam direction (z’ direction) with scan angles 6, from z, axis and 

azimuthal angle ¢, in the scan coordinates, the (6, ¢) angles in the antenna 

coordinates can be found from (6-9) as 

sin§ cos¢ cos6, sind, cos¢,+sin#, Cosé, 

sind sing | = sind, sind, (6-10) 

cosé — sind, sin@, cos¢,+cos8, cos, 

The azimuthal angle ¢ in antenna coordinates is, therefore, 

  

sin#, sing, (6-11) 

tang = cos#, sind, Cosd.+siN8p Cosd, 

Since we are interested in the maximum (mirror rotation) ¢ angle required to 

perform scan, the change of ¢ along the boundary of the scan region is of 

particular interest. This boundary for our test case (see the next chapter) is 
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6,=5 and ¢,=0°~ 360°. The corresponding values of ¢ as a function of ¢, along 

the boundary are plotted in Fig. 6-5, which shows that a maximum of + 28° is 

required for the dynamic ¢ range. 

In the above discussion we first showed that the location of the main 

reflector illumination is very sensitive to ¢ scan, and then showed that a large ¢- 

scan range is required to perform a circular scan coverage. These two points 

make it necessary to tilt the feed to reduce the motion of the main reflector 

illuminated area. 

The azimuthal feed tilt method can be explained using Fig. 6-6. Since the 

antenna system was synthesized according to a parent reflector system that is 

axisymmetric about the z axis, the azimuthal feed tilt about the z axis, given by 

the angle ¢,, is equivalent to rotating the whole antenna about the z axis by an 

angle ¢, Therefore, (6-8) becomes 

n2(¢— 
(coso+1) $= #0 sind, — sind sin(¢ — ¢¢) cos, 

(cosé cos*(¢ — $4) - sin’(¢ _ 9) sin§, — sin# cos(¢ — ?¢) cos6, 
  tan (¢'¢— 5) = 

(6-12) 

The values of ¢', as functions of ¢ in (6-12) with various feed tilt angle ¢, are 

plotted in Fig. 6-3. The intersections between constant ¢, curves and the 

horizontal axis of Fig. 6-3 correspond to conditions for ¢/.=0 (no azimuthal 

motion for the main reflector illuminated area). While the antenna is scanning, 

(6-12) can be solved in real time for the ¢'.=0 condition to obtain the correct 

feed tilt angle ¢, for each ¢-scan angle. 
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6.3. Choosing Mirror Motion Axes to Reduce the Mirror Size 

The mirror is the major moving part in the reflector system; therefore, 

minimizing the size of the mirror is very important. The size of the mirror is 

determined by the illuminated area in the plane of the mirror and the relative 

motion between this illuminated area and the mirror. The mirror must cover 

the directly the illuminated area in the plane of the mirror at all scan angles (in 

GO sense). Moreover, the mirror must be oversized in order to reduce 

diffraction loss. In order to reduce the size of the mirror, the relative motion 

between the mirror and its illuminated area must be minimized; 1.e. the mirror 

motion must follow the motion of the illuminated area in the mirror plane during 

scan. 

The mirror motion during scan can be achieved by one degree of linear 

translation and rotation about two axis; see Fig. 6-6. In theory, the direction of 

the translational axis t has many possible values, so does the location of the 

rotational axes y’;, and z’,,. Once all the axes are chosen, the amount of 

translation and rotation is determined from scan angles by a coordinate 

transformation from antenna coordinates to mirror coordinates. In order to 

reduce the relative motion between the mirror and its illuminated area, the t 

axis is best chosen to be along the ray from the subreflector illumination center 

to the virtual main reflector illumination center at zero ¢-scan angle. 

Naturally, the z’,, axis is chosen on the surface of the mirror. This, 

however, introduces a relative motion between the mirror and its illuminated 

area during ¢ scan because of the feed azimuth tilt. To alleviate this problem, 
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the rotational axis z’,, is chosen to be above the plane of the mirror; see Fig. 6-6. 

Since the rotational axis is off the mirror, the mirror translates during the 

rotation to follow the motion of illuminated area. 

The choices for z’,, axis can be performed numerically by analyzing the 

coordinate data for the illumination center on the mirror at different scan angles. 

The graphical display of such data shows that the mirror area can be reduce by 

50% by properly choosing the z’,, axis. 
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Chapter 7 

PO ANALYSIS RESULTS 

Physical optics analysis was performed to evaluate the performance of the 

proposed spherical main reflector scanning system. The analysis includes three 

stages. First, the spherical tri-reflector system without the mirror was analyzed 

to verify the synthesis method discussed in Ch. 5 and to verify that its 

performance remains constant during @-scan. In the second analysis phase PO is 

performed on the spherical tri-reflector system with a mirror. The performance 

degradation due to the mirror was studied. In the third phase of investigation 

the effects of mechanical distortion were studied and the results showed that the 

proposed spherical tri-reflector system with a mirror has high tolerance to 

deterministic mechanical distortions. 

7.1. PO Analysis of the Spherical Tri-Reflector System without Mirror 

The spherical tri-reflector configuration used for PO analysis verification 

was the single-caustic system of Fig 5-2a with dimensions listed in Table 7-1. 

The choice for this geometry is motivated by NASA’s test program to verify the 

25-m diameter class space antenna concept. The test bed, which is called the 

Bush model, requires a D=10 m diameter main reflector with focal length 

F~12.7 m. The proposed configuration in Table 7-1 closely fits that 

requirement. The parameters of the proposed configuration were selected for 

smallest subreflector size by inspecting the graphics simulation of the 

configuration on a computer screen. The parameters modified during such 

optimization are the subreflector location, the tertiary location, the feed location 

and the mapping normalization factor q = 1 used in the synthesis (see Ch. 5). 

The GRASP7 code [15] was used for the PO analysis. It is a state-of-the- 

art commercial code mainly designed for dual-reflector antenna analysis. 

Multiple steps were required to analyze multireflector systems using GRASP7. 

First, the feed-tertiary-subreflector system was treated as a dual reflector system 

and PO analysis was performed, yielding the current distribution on the 

subreflector. This current distribution is saved in a data file, and then used in 
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PO analysis to calculate the current distribution on the main reflector. Finally, 

GRASP7 PO integration is used in the main reflector to obtain the far field 

pattern. 

The GRASP7 PO analysis results are summarized in Table 7-1. Pattern 

data from GRASP7 are shown in Fig. 7-1 for three 6-scan angles. Note from Fig. 

7-1 that the feed tilt motion required to accomplish the main beam scan does not 

change the critical performance parameter values such as gain and side lobe 

level. Cross polarization does increase with 6-scan angle; however, it is within 

the tolerance (< —35 dB). 

These results verify the synthesis method discussed in Ch. 5. They also 

show that the 6-scan method maintains constant gain while offering aperture 

efficiency (€agp = 70%) as high as that from a prime focus unscanned paraboloidal 

reflector. 

7.2. PO Analysis for Spherical Tri-Reflector System with Mirror 

The test configuration of spherical tri-reflector system with mirror was 

shown in Fig. 6-1. It is based on a dual-caustic spherical tri-reflector system 

synthesized by the method explained in Ch. 5. The dimensions of this test 

configuration are those of the NASA test bed, and are listed in Table 7-2. 

The PO analysis for this test system involves three steps. In the first 

step, the feed-tertiary-subreflector is treated as a dual reflector system for 

GRASP7 PO analysis. The resultant subreflector current distribution was saved. 

Then the subreflector-mirror was treated as a dual reflector system; the 

subreflector current was used to calculate the mirror current. In the last step, 

the mirror-main reflector was treated as a dual reflector system; the mirror 

current is used to calculate the main reflector current and then, the far field 

pattern. 

The resultant pattern is shown in Fig. 7-2 for the spherical tri-reflector 

system with mirror. Fig. 7-3 shows the pattern for the parent spherical tri- 

reflector system without a mirror. The patterns in Fig. 7-2 are approximately 

the mirror image of those in Fig. 7-3. Therefore, the mirror did not cause 

significant performance degradation. The performance parameters extracted 
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from Fig. 7-2 are listed in Table 7-2. The cross polarization level in Fig. 7-2 and 

Fig. 7-3 is higher than the one in Fig. 7-1. This is because the configuration is 

highly offset in order to place the mirror without blockage; high offset introduces 

high cross polarization. This is a disadvantage of the spherical-tri-reflector-with- 

mirror system. 

7.3. Mechanical Error Sensitivity Analysis 

The sensitivity of the antenna performance to mechanical distortion is 

important in space applications. The mechanical error is caused by 

manufacturing imperfections, thermal expansion and zero gravity in space. Such 

errors are deterministic, i.e. the overall reflector surface shape or reflector 

location is changed, but the surface is kept smooth and monotonic. Our 

mechanical error sensitivity study uses PO analysis on the spherical tri-reflector 

with mirror system mentioned in Table 7-2. Errors are introduced by displacing 

each reflector sequentially. 

The error sensitivity analysis includes three steps. First, the feed was 

translated in x and z directions of the antenna coordinates (see Fig. 6-4 for 

coordinate definition), and PO analysis was performed as discussed in Section 

7.2. Then, the tertiary was displaced and the same PO analysis was performed. 

Finally, the subreflector was dislocated and then the same PO analysis was 

performed. The main reflector and mirror dislocation was not analyzed because 

it was equivalent to the overall dislocation for feed-tertiary-subreflector. 

The results in Table 7-3 show that the proposed spherical tri-reflector 

system is tolerant to mechanical distortion. For 0.54 (or 1 cm at 15 GHz) 

displacement of the feed, tertiary and subreflector individually, the performance 

degradation is negligible. This demonstrates that our antenna design is practical 

for space applications. 
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Table 7-1 

Geometry Data and PO Analysis Results for the Single-Caustic Test 

Quantity 

Antenna Configuration: 

§-scan range 

¢@-scan range 

Feed tilt range 

Frequency 

Main spherical reflector 

Shaped sub-reflector size 

Shaped tertiary size 

Gaussian feed 

Main reflector location 

Subreflector location 

Tertiary location 

Feed location 

PO Results from GRASP7: 

Gain 

Gain variation in scan 

Aperture efficiency 

Side lobe level 

Cross polarization 

Beam efficiency 

Configuration 

Value 

10° 

360° 

11.38" ~ 21.38° 

30 GHz 

D=10m 

R=25m 

3.0m x 1.6m 

2.4m x 1.7m 

—12 dB taper at +16 

zig = — 25 m* 

Z' 90 = —12 m* 

Z'gq = ~15 m* 
z'p= —12 m* 

68.4 dB 

+0.03 dB 

70% 

<-25 dB ** 

<-35 dB ** 

85% 

* See Fig. 5-2 for the geometry and symbol definition 

** relative to the main beam peak



Table 7-2 

Geometry Data and PO Analysis Results for the Dual-Caustic 

with Mirror Test Configuration 

Quantity 

Antenna Configuration: 

6-scan range (see Fig. 6-4) 

antenna coordinates 

scan coordinates 

¢-scan range (see Fig. 6-4) 

antenna coordinates 

scan coordinates 

Frequency 

Main spherical reflector 

Major axis 

minor axis 

radius 

Shaped sub-reflector size 

Shaped tertiary size 

Mirror size 

Gaussian feed 

Main reflector location 

Subreflector location 

Tertiary location 

PO Results from GRASP7: 

Gain 

Gain variation in scan 

Aperture efficiency 

Side lobe level 

Cross polarization 

Beam efficiency 

* See Fig. 6-1 for Geometry, 

** relative to the main beam peak 
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Value 

5 ~ 15° 
5° 

+ 28° 

360° 

15 GHz 

12m 

10m 

25 m 

3.2 mx4.6 m 

2.7mx4.2 m 

<2.8mx4.2m 

—15 dB taper at +22.4° 

Z19 = — 20 m* 

Zog = —12 m”* 

Z3q = — 27 m”* 

63 dB 

+0.4 dB 

50% 

<-28 dB ** 

<-25 dB ** 

93%



Table 7-3 

Summary of Mechanical Error Sensitivity Analysis at 15 GHz 

  

  

  

  

          

Motion Parameter | Peak Shift? G Change“ E change SLL Change 

Feed Motion 

Ax = 0.5) 0.02° + 0.07 dB | —1.2% +3 dB 

Az =0.5A 0.04° —0.04 dB | —1.2% +0.5 dB 

Tertiary 

Ax =0.5A — 0.02° —0.01 dB | 0.0% +0.3 dB 

Az =0.5) 0.00° —0.01 dB +0.8 dB 

Ag =0.1° — 0.09° -—0.2 dB | —0.5% +0.9 dB 

Subreflector 

Ax =0.5A 0.04° —0.1 dB +1.7 dB 

Az =0.5A — 0.04’ ~—0.14 dB | -0.5% +2 dB 

Ay =0.5A — 0.05° + 0.01 dB | -0.1% +0.03 dB 
  

1: Peak Shift: Main beam pointing angle change 

2: G Change: The change in peak gain 
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Chapter 8 

CONCLUSIONS 

A simple method for the synthesis of scanning spherical reflector antenna 

systems was presented in Chapter 5. The method yields a reflector configuration 

which avoids the traditional spherical reflector problems of poor aperture 

illumination and oversizing. Our PO results (see Table 7-1) for a 10-m sphere 

operating at 30 GHz show excellent antenna patterns and negligible gain loss 

over a 10° scan range. The spherical tri-reflector configuration has potential in 

reflector antenna systems with requirements for both wide scan and high gain. 

The spherical reflector antenna system design can be applied to both GSO 

and low earth orbit satellite wide scanning antennas. If the z axis of the scan 

coordinate (see Fig. 3e) is directed from the satellite to the center of the earth, 

both the incidence angle of the beam and that of the polarization remain 

constant during ¢ scan. This is desirable in many remote sensing applications. 

The design described in Chapter 5 offers two options. The first option 

uses an oversized main reflector and the suboptics assembly (consisting of the 

feed, subreflector and tertiary reflector) is rotated as a rigid unit to scan the 

main beam. The distribution across the illuminated portion of the main reflector 

can be controlled by the feed pattern due to the isotropic-to-uniform mapping. 

This could be applied to some traditional spherical main reflector systems such 

as the Arecibo Observatory. The second option, which was detailed in this 

paper, is to tilt the feed as the suboptics assembly is rotated so that the main 

reflector does not have to be oversized. 

Mechanical properties can be further improved to realize a low cost 

system. For example, our study shows that if the main reflector illuminated area 

is allowed to move slightly during scan, the subreflector size can be reduced 

substantially; this, however, reduces the aperture efficiency. Also, if the F/D for 

the spherical main reflector is increased, the subreflector size can be reduced; of 

course, this increases the length of the antenna system. A tradeoff study can be 

performed to reduce the mass of the suboptics assembly. 

Further simplification for the mechanical movement of the antenna 

system is achieved by the design of spherical tri-reflector with mirror discussed 
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in Ch 6. Tilting the plane mirror about two axes and translating in one 

dimension allows the whole suboptics assembly (including the feed, the 

subreflector and the tertiary reflector) to be fixed during scan. The feed in this 

system is required to tilt in azimuth during ¢ scan to achieve 50% aperture 

efficiency. 

For the spherical tri-reflector system with mirror of Fig. 6-1, the overall 

mechanical motion is much simpler than previous spherical main reflector 

scanning systems, and the performance is superior to paraboloidal main reflector 

scanning systems because of the greater scan range and constant beam efficiency 

during scan. The mechanical simplification makes the spherical tri-reflector 

system with mirror practical for space as well as ground applications. 
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Figure 4-1. Geometry of a prime-focus spherical reflector. 
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(a) The 3D view of the intermediate configuration for a small 0-scan angle and ¢=0° 

Intermediate Main Reflector — / 

  

  

  

  

ee, 
am, oe, 

~. 

     Intermediate Tertiary — Intermediate Subreflector 

(b) Profile view in the plane containing the z’ and z axes for the case in Figure 4a 

Figure 5-3. The intermediate reflector configuration for various scan angles. The whole intermediate 
configuration is moved as a unit (main reflector, suboptics, and feed) with, in addition, tilting of the 

feed pattern to maintain the illumination centered on point V. (The prime coordinates are fixed with 
the moving reflector configuration.) The output ray tube is always parallel to the z’ axis. 
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Figure 5-3. (Page 2) 
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Figure 5-4. The geometry for the derivation of (5-9). See Appendix 5A. 
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. Figure 7-1. H-plane patterns of the tested single caustic 

configuration of Table 7-1 for various scan angles 
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Figure 7-2. Patterns for the spherical tri-reflector system with mirror of Table 7-2 and 

as shown in Fig. 6-1. The solid (dashed) curves are Co (Cross) polarized patterns 
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of Table 7-2 and as shown in Fig. 6-lc 
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