
   
 

Investigating the Valley Fever – Environment Relationship in the Western U.S. 

 

Elizabeth Ann Weaver 

 

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State 

University in partial fulfillment of the requirements for the degree of 

 

Doctor of Philosophy 

In 

Geospatial and Environmental Analysis 

 

Korine N. Kolivras, Chair 

Kaja M. Abbas 

Valerie A. Thomas 

R. Quinn Thomas 

 

March 26, 2019 

Blacksburg, Virginia 

 

Keywords: Valley fever, coccidioides, modeling, disease distribution, climate and health 

 

 

Copyright 2019, Elizabeth Ann Weaver



   
 

Investigating the Valley Fever – Environment Relationship in the Western U.S. 

 
Elizabeth Ann Weaver 

 
 

ABSTRACT 
 
 

Valley fever, or coccidioidomycosis, is a disease caused by the Coccidioides 
immitis and Coccidioides posadasii fungal species that dwell in the soil but can become 
airborne and infect a human or mammalian host through their respiratory tract.  Disease 
rates in the western U.S. have significantly increased over the past two decades, creating 
an emerging public health burden.  Studies have been conducted that attempt to elucidate 
the association between environmental conditions and the growth and dispersal of the 
pathogen, yet the specific ecology of and environmental precursors to the disease remain 
uncertain.   

This research project investigates the relationship between environmental 
variables and valley fever by modeling the spatial and temporal dynamics of the disease 
using varying techniques.  Chapter 1 discusses relevant literature before discussing the 
challenges associated with studying valley fever. Chapter 2 analyzes the temporal 
relationships between valley fever and climatic variables, focusing on Kern County, 
California, an understudied region in the U.S. where valley fever is highly endemic.  
Chapter 3 focuses on a regional spatial analysis using ecological niche modeling to better 
understand the environmental factors that influence the overall spatial distribution of 
valley fever in the U.S. Finally, combining both spatial and temporal components, 
Chapter 4 uses a hierarchical Bayesian spatio-temporal model to investigate the patterns 
and drivers of this disease, focusing on state of California, which saw an approximate 
200% increase in cases from 2014 to 2018.   

Cumulatively, this work offers new insights on relationships between climate, 
landcover, and valley fever disease risk. Significant findings include climate variables 
explaining up to 76% of valley fever variability in Kern County, California, the 
significance of both climatic and landcover variables in characterizing the geographic 
distribution of the disease, and identification of patterns increasing risk in geographic 
regions of California not currently considered highly endemic.  These findings advance 
scholarly understandings of valley fever’s environmental disease drivers. The results of 
this research can be applied by public health officials in the allocation of surveillance and 
public education resources, focusing upon regions that are most likely to encounter the 
illness. 
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GENERAL AUDIENCE ABSTRACT 
 
 

Valley fever is a fungal disease that causes illness in over ten thousand people in 
the western U.S. every year.  Disease rates have been increasing for the past two decades 
for unknown reasons, although previous research suggests that climatic variations are 
likely contributing factors. This research evaluated environmental factors with 
hypothesized relationships to valley fever disease rates. First, this dissertation explored 
time-series relationships between climatic factors and valley fever incidence in an 
understudied county in California. Research findings identified that climatic factors 
including precipitation from previous seasons and temperature were significantly 
associated with valley fever incidence in this county. Second, this dissertation assessed 
where valley fever is found in the western U.S.  The likely spatial distribution for the 
disease was mapped and environmental variables influential to this distribution were 
identified; they included both climate and landcover variables.  Finally, a model was 
developed to analyze patterns of disease risk in California that considered both space and 
time, and environmental risk factors potentially contributing to the observed patterns 
were assessed. Counties with increased risk were identified and significant environmental 
relationships with valley fever risk were confirmed. The results of this research can be 
applied by public health officials in allocating surveillance and public education 
resources, focusing upon regions that are most likely to encounter the illness. 
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Chapter 1. Introduction 

1.1 Background 

 This research investigates environmental drivers influencing the spatial and 

temporal distribution of a fungal disease called coccidioidomycosis, commonly referred 

to as valley fever, affecting over ten thousand people in the U.S. each year.  Per Centers 

for Disease Control and Prevention statistics, in 2017 there were over 14,000 reported 

cases of valley fever in the U.S. with a steady rise in cases observed over the past two 

decades (CDC, 2018).  Valley fever symptoms typically include fever, cough, fatigue, 

and other flu-like symptoms (Jin, 2013).  Between 1% and 5% of the infected population 

will experience a more severe form of the disease where the spherules and endospores 

disseminate through the lymphatics and bloodstream to the skin, bones, joints, or other 

parts of the body (Saubolle, McKellar, & Sussland, 2007).  In these rare cases, valley 

fever can be fatal (Ampel, 2007).  In addition to the health burden, there is also a 

significant economic burden associated with this disease. An enhanced surveillance study 

conducted in Arizona for 2007 - 2008 estimated that valley fever health hospital costs for 

that year totaled over $85 million (Tsang et al., 2010).  Overall, it is believed that valley 

fever is underdiagnosed and underreported, which is likely due to a combination of lack 

of recognition among health care providers, the mildness of most cases, and the 

requirement of a laboratory-confirmed diagnosis (Ampel, 2010; Tsang et al., 2013).   

Valley fever is caused by the Coccidioides fungal species.   A basic understanding 

of Coccidioides’ species lifecycle is helpful in understanding its relationship with the 

environment and how the fungus causes illness.  The Coccidioides’ species lifecycle has 

two different phases.  During the first phase, the pathogen gets nutrients from inorganic 



   
 

  2 

or decaying organic matter in the soil.  After periods of heavy precipitation, a hyphal 

form (strand) grows in the soil (Thompson III, 2011).  The hyphae then break apart into 

microscopic spores called arthroconidia, which can easily become airborne (Thompson 

III, 2011). The arthroconidia range in size from 5 to 30 μm in length and 1.5 to 4.5 μm in 

width (Kolivras, Johnson, Comrie, & Yool, 2001).   Airborne arthroconidia can be 

inhaled by a host or can return to the soil and grow into more hyphae.  The fungus 

transitions to the parasitic phase when it enters a human or animal host through inhalation 

(Cole, Hurtgen, & Hung, 2012).   This is the primary method of infection; valley fever is 

not spread from person to person.  The transition to the second phase occurs inside the 

host; the arthroconidia transform into a spherule that separates into many small 

endospores, with each endospore potentially growing into a new spherule and causing 

illness (Cole et al., 2012).  The illness then manifests as primary coccidioidomycosis, 

chronic pulmonary coccidioidomycosis, or acute/chronic coccidioidomycosis (Laniado-

Laborin, 2007).     

Valley fever is endemic in the semi-arid regions of the southwestern U.S., parts of 

Mexico, and in Central and South America, and has recently been found in south-central 

Washington state (Marsden-Haug et al., 2013). The two different Coccidioides species 

that cause valley fever have different geographical distributions, though there is some 

overlap. C. immitis is predominantly in central California while C. posadasii has a wider 

distribution that includes Arizona and other regions in the southwestern U.S., Mexico, 

and South America (Fisher, Koenig, White, & Taylor, 2002; Thompson III, 2011).  

Pathogenically, there is little difference between these two species; their infections lead 

to similar outcomes (Engelthaler et al., 2016).  Suitable environmental conditions, such as 
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temperature, moisture, and soil conditions, are necessary for the growth of Coccidioides 

spp., though the specifics of these conditions are not well understood in the natural 

environment (Fisher et al., 2007).   Skin testing that occurred over 50 years ago forms the 

basis of our understanding of the disease’s endemic range (Edwards & Palmer, 1957).  

The most infective areas in the U.S. were found to be Kern County in California; Pima, 

Pinal, and Maricopa Counties in Arizona; and a few counties in southwestern Texas 

(Maddy, 1958).    

This research is situated in medical geography, a sub-discipline of geography that 

began in the 1950s with a focus on the mapping of infectious diseases (May, 1950), and 

broadly focuses on the spatial patterns and processes associated with health and disease.  

Specifically, this research is influenced by the landscape epidemiology framework within 

medical geography.  In the 1960s, E. Pavlovsky, a Russian parasitologist, defined the 

nidus or foci of infectious disease by analyzing association between vegetation, fauna, 

soils, climate, and other environmental factors (Pavlovsky, 1966).  It was found that 

landscape patterns could be used to assess the presence of disease agents.  The ability to 

assess the natural landscape for conditions permissible for disease transmission allowed 

for preventative measures to be taken based on geographic analysis.  Building upon this 

initial framework, the significance of human contributions to this permissible 

environment were recognized (Meade, 1977).  Today, the landscape epidemiology 

framework considers the temporal and spatial interactions between the host, pathogen, 

vector, and environment in the enabling of disease transmission (Reisen, 2010). This 

research uses this framework in developing studies to better understand the specific 

conditions, interactions, and environments that combine to produce a pathway for 
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transmission of valley fever.  Overall, this research contributes to medical geography by 

improving our understanding of the spatial patterns and processes associated with an 

emerging infectious disease. 

 

1.2 Explanation of the Problem 

1.2.1 Environmental Risk Factors 

For over 50 years, Coccidioides’ spp. relationship with environmental factors has 

been questioned and examined, yet we are still uncertain of what environmental risk 

variables are associated with this disease.  Coccidioides spp. research in the U.S. began in 

early 1900s (Hirschmann, 2007), but many insights into the disease and its distribution 

were not discovered until the early 1940s when military members began training for 

WWII in the San Joaquin Valley of California and elsewhere around the southwestern 

U.S. (Smith, Beard, Rosenberger, & Whiting, 1946).  One of the first environmental 

connections made was that between disease incidence and dust exposure.   Smith et al. 

(1946) found that new trainees became infected at rates of 8-25% per year, with infection 

rates reduced after dust control measures had been put in place.   In the 1950s, Maddy 

(1957) published research on the geographical distribution of C. immitis, connecting the 

disease to the Lower Sonoran Life Zone’s environmental and climatic characteristics 

(Maddy, 1957).   In addition to the observational studies occurring in the 1950s, 

Friedman et al. (1956) performed laboratory testing to determine the temperature and 

humidity limits of C. immitis, concluding that it was well-suited to arid habitats.  

Research on valley fever and the environment picked up again in the early 2000s, the 

same time that a valley fever outbreak at Dinosaur National Monument in Utah drew 
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interest (Petersen et al., 2004).  Research during the 2000s included studies that sought to 

quantify the relationship between climate and valley fever incidence as well as 

descriptive studies that explored environmental factors where positive Coccidioides 

samples had been found.   

Much of what we know about Coccidioides’ spp. ecological niche comes from 

limited field observations and laboratory experiments. Regarding climate and soil 

conditions, Coccidioides spp. are typically found in drier soils and is not found in 

saturated soils (Fisher et al., 2007); rainfall greater than 20 inches per year decreases the 

prevalence of the fungus in the soil (Reed, 1960).   Conversely, Coccidioides spp. seem 

to do well in areas where there is a hot and dry period that sterilizes the soil surface and 

removes competitors (Maddy, 1957).  In a laboratory setting, researchers found that C. 

immitis’ growth was more abundant in soil that had been sterilized (Maddy, 1965).   

Laboratory testing has shown that Coccidioides spp. can survive temperatures ranging 

from 15°C to 37°C (Friedman et al., 1956), but the optimal range is suspected to be 

between 20-40°C (Fisher et al., 2007).  In taking repeated soil samples from multiple 

depths at a known growth site over the course of a few years, Maddy (1965) found that 

during the hottest months, the fungus had moved deeper into the soil. 

  Since the identification of valley fever in the early 1900s, there have been 

multiple events and occurrences that have connected this disease with dust inhalation.  

For example, a dust storm in central California in 1977 resulted in a valley fever outbreak 

that infected hundreds as far north as San Francisco (Pappagianis & Einstein, 1978).  A 

1994 earthquake in Northridge, California also created a cloud of dust that settled in 

Ventura County along the California coast, where valley fever is not considered highly 
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endemic, and infected over 200 people with the disease (Schneider et al., 1997).  There 

was also a valley fever outbreak in 2001 at Dinosaur National Monument, Utah among a 

group of workers digging at an archeological site (Petersen et al., 2004).  Finally, 

between 2011 and 2014, there was a valley fever outbreak among solar farm workers in 

California with research concluding that solar farm workers who only infrequently wore 

respirators had significantly increased odds for coccidioidomycosis (Cooksey et al., 

2017). 

  Consolidating information learned from nine locations with positive soil 

isolations, Fisher et al. (2007) wrote a review of the environmental conditions in which 

Coccidioides spp. has been found.   He summarized the key factors influencing the 

growth of the Coccidioides spp. as: “amount and timing of rainfall and available 

moisture, soil humidity, soil temperature, soil texture, alkalinity, salinity, organic content 

of soils, degree of exposure to sunlight and ultraviolet light, and competition with other 

microorganisms or plant species or both” (p. 50).   His review found that temperature, 

precipitation, and soil textures were indicative variables for presence of Coccidioides 

spp., with the most common shared feature among sites being very fine sand and silt.  

While much has been learned in the last decade, there is still a lot of uncertainty 

surrounding valley fever’s ecological niche, mainly due to research challenges, including 

difficulty isolating of the fungus from the soil, and data limitations.  

The significant limitations related to direct analysis of Coccidioides spp. have led 

researchers to use valley fever incidence data to make inferences about the relationship 

between environmental conditions and risk of infection from Coccidioides spp.   

Research over the past 15 years has found correlations between valley fever incidence 
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and environmental factors such as precipitation, wind, temperature, soil moisture, and 

dust, but the findings have varied in time and location, along with more nuanced 

differences in model lag times and degrees of explanation.  Kolivras and Comrie (2003) 

created a statistical model for Pima County, AZ that found antecedent temperature and 

precipitation to be important predictors of incidence.  Park et al. (2005) conducted a state-

wide study in AZ finding the following climate variables to be statistically significant: 

drought indices, wind, mean temperature, dust, and rainfall.  They also noted that hot, dry 

conditions had the strongest association.  Zender et al. (2006) found that in Kern County, 

CA, climate factors explained very little of monthly incidence variability. Tamerius and 

Comrie (2011) found precipitation to be associated with rates of exposure for Maricopa 

and Pima Counties in Arizona with overall models explaining between 54 and 69% of the 

valley fever variance.  Stacy, Comrie, and Yool (2012) used a vegetation index as a proxy 

for soil moisture and found moist soils in spring correlated with increases in incidence up 

to one year later.  Using soil moisture sensors, Coopersmith et al. (2017) found that in 

California, summer and fall incidence was related to soil moisture from previous the 

previous winter/spring and in Arizona, winter/spring incidence was related to the 

previous summer’s soil moisture.  Finally, Gorris et al. (2017) conducted a regional 

analysis that found annual associations between valley fever incidence and temperature, 

precipitation, soil moisture, surface dust concentration, and cropland area, but seasonal 

and monthly associations varied by region. 

Looking across previous research efforts and disease occurrences, a couple of 

gaps are identified. First, there is a relative lack of research in California, the state with 

the second highest incidence rates in the U.S. The results from the few studies that have 
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focused on California have been inconsistent regarding the significance of associations 

between environmental factors and valley fever incidence.  Second, the unexpected 2010 

discovery of a Coccidioides spp. growth site in Washington State, an area far to the north 

of the commonly accepted endemic region for valley fever, along with concurrent human 

cases there, highlights that environmental conditions that control the spatial distribution 

of Coccidioides remain unclear (Marsden-Haug et al., 2013).  Finally, past studies have 

mainly approached valley fever research from either a purely spatial or purely temporal 

perspective.  Research is needed that assesses potential environmental risk factors that 

may interact in both space and time.   

 

1.2.2. Research Challenges 

Coccidioides spp. are difficult to analyze directly because it is very difficult and 

costly to isolate the fungus from the soil or detect it in air samples (Baptista-Rosas, 

Hinojosa, & Riquelme, 2007; Barker, Tabor, Shubitz, Perrill, & Orbach, 2012; Chow, 

Griffin, Barker, Loparev, & Litvintseva, 2016; Greene, Koenig, Fisher, & Taylor, 2000). 

A study done in the 1960s took over 700 soil samples, from 13 different suspected sites, 

with only 23 testing positive for Coccidioides spp. (Swatek, Omieczynski, & Plunkett, 

1967).  In a more recent study, Greene et al. (2000) found only 4 genetically distinct 

isolates from a sample size of 720 taken from the San Joaquin Valley in California.  The 

ability to detect Coccidioides spp. in the soil improved in the early 21st century with 

polymerase chain reaction (PCR) techniques that test the soil directly and allow microbial 

detection and isolation of DNA, but positive samples have still proven to be patchy and 

hard to find (Fisher et al., 2007).    
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There are quite a few limitations to using incidence data to make inferences about 

the environmental niche and phenology of Coccidioides spp.  One of the limitations to 

using incidence data is how far removed it is from the environmental variables acting on 

the pathogen.  Environmental factors influence the growth and distribution of the fungus, 

but then individuals have to inhale the spores, become symptomatic, visit a doctor, get 

tested for valley fever, and have the results reported.  Temporal analyses using incidence 

data would ideally be based on exposure date, but there are time gaps between date of 

exposure, onset of symptoms, and valley fever diagnosis with physicians not always 

recording or being able to determine exposure dates.  Comrie (2005) thoroughly analyzed 

over 3,000 records and found that they were inconsistent in recording estimated symptom 

onsets dates and that no simple adjustments could be made for all records to improve 

accuracy in estimating exposure dates; thus, estimating exposure dates required more 

complicated data manipulation.  

Other concerns with the use of incidence data include changes in reporting 

criteria, improved disease awareness, changes in testing methods, changes in the 

susceptible population, and inconsistent data availability across political boundaries 

(Comrie, 2005; Kolivras & Comrie, 2003).  Some increases in incidence may be 

attributed to increased awareness of the disease, however, in a 2006 study, only a small 

proportion of patients (2-13%) in a valley fever endemic area with symptoms similar to 

those of valley fever were found to be tested for the disease, which indicates the disease 

is greatly underreported (Tsang et al., 2013).  Changes in definitions, reporting 

requirements, and testing procedures can also affect incidence levels. For example, 

California began using a laboratory-based reporting system in 2010, which may explain 
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some of the increase in cases seen in 2011 (Tsang et al., 2013).  Arizona might have had 

artificially high numbers around the same period due to a commercial laboratory that 

changed their definition to only require positive enzyme immunoassay (EIA) results 

(Tsang et al., 2013). Valley fever is a reportable disease in many, but not all, of the states 

where it is endemic.  The differences in reporting requirements, and in how long each 

state has been collecting data, makes the use of incidence data challenging when 

conducting studies that cross political boundaries.  All these factors contribute to uneven, 

heterogeneous data that must be taken into consideration when conducting valley fever 

studies (Comrie, 2005).  While the use of incidence data is not ideal, it is the only time 

series data currently available to compare to temporal environmental conditions.    

 

1.3 Statement of Purpose, Significance, and Dissertation Outline 

1.3.1. Statement of Purpose and Significance of Research 

This research aims to contribute to the body of literature seeking to better 

understand and quantify how environmental factors are related to valley fever incidence.  

This work is organized around three different research questions, each leading to three 

different objectives of the dissertation project. Through these, the associations between 

environmental variables and valley fever incidence is explored and models are developed 

to assess and quantify relationships. 

• Research Question 1: Are the statistically significant relationships between 

valley fever incidence rates and climatic factors in Pima County, Arizona also 

significant in Kern County, CA?   
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• Research Question 2: Which environmental variables are the most influential in 

explaining the probable distribution of valley fever in the western U.S.? 

• Research Question 3: What are the spatio-temporal trends of valley fever risk in 

California? Do variations in climate and land cover explain these trends? 

 

The objective of the first research question is to examine and quantify climatic 

relationships in an understudied valley fever endemic area.  The second question aims to 

improve our ecological understanding of the Coccidioides habitat and characterize the 

current disease distribution area across the western U.S.  The third question identifies 

areas of current and future concern and assesses drivers of spatio-temporal patterns in 

California. Overall, this research improves our understanding of underlying ecological 

relationships that connect humans, the valley fever pathogens, and the environment, and 

it brings us a step closer to forecasting disease distributions and emergence events based 

on environmental conditions. The results of this research can be applied by public health 

officials in the development of an early warning system and in the allocation of scarce 

surveillance and public education resources.   

 

1.3.2 Structure of the Dissertation 

The dissertation is organized in five chapters: Chapter 1 provides a review of the 

literature regarding the valley fever and its environmental connections along with 

identified gaps in past analyses. Chapter 2 assesses the temporal relationship between 

valley fever and climate in an understudied region.  Chapter 3 focuses on a regional 

spatial assessment of Coccidioides’ ecological niche, expanding the region of study 
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beyond previous analyses. Chapter 4 details a new method used in the study of this 

disease, a hierarchical Bayesian spatio-temporal model developed to analyze observed 

patterns and assess environmental drivers of valley fever in California. Chapter 5 

provides the overall conclusions reached as a result of the previously described research. 

It also identifies research obstacles and limitations of this work and includes future 

avenues for research. 



   
 

  13 

1.4 References 

Ampel, N. M. (2007). The complex immunology of human coccidioidomycosis. Annals 

of the New York Academy of Sciences, 1111, 245–258. 

https://doi.org/10.1196/annals.1406.032 

Ampel, N. M. (2010). What ’s Behind the Increasing Rates of Coccidioidomycosis in 

Arizona and California? Current Infectious Disease Reports, 12, 211–216. 

https://doi.org/10.1007/s11908-010-0094-3 

Baptista-Rosas, R. C., Hinojosa, A., & Riquelme, M. (2007). Ecological Niche Modeling 

of Coccidioides spp. in Western North American Deserts. Annals of the New York 

Academy of Sciences, 1111, 35–46. https://doi.org/10.1196/annals.1406.003 

Barker, B. M., Tabor, J. A., Shubitz, L. F., Perrill, R., & Orbach, M. J. (2012). Detection 

and phylogenetic analysis of Coccidioides posadasii in Arizona soil samples. Fungal 

Ecology, 5, 163–176. https://doi.org/10.1016/j.funeco.2011.07.010 

Centers for Disease Control and Prevention. (2018). Valley Fever (Coccidioidomycosis) 

Statistics. Retrieved January 4, 2018, from 

https://www.cdc.gov/fungal/diseases/coccidioidomycosis/statistics.html 

Chow, N. A., Griffin, D., Barker, B., Loparev, V. N., & Litvintseva, A. P. (2016). 

Molecular detection of airborne coccidioides in tucson, arizona. Medical Mycology, 

54(6), 584–592. https://doi.org/10.1093/mmy/myw022 

Comrie, A. C. (2005). Climate Factors Influencing Coccidioidomycosis Seasonality and 

Outbreaks. Environmental Health Perspectives, 113(6), 688–692. 

https://doi.org/10.1289/ehp.7786 

Cooksey, G. L. S., Wilken, J. A., Mcnary, J., Gilliss, D., Shusterman, D., Materna, B. L., 



   
 

  14 

& Vugia, D. J. (2017). Dust Exposure and Coccidioidomycosis Prevention Among 

Solar Power Farm Construction Workers in California, 107(8), 1296–1304. 

https://doi.org/10.2105/AJPH.2017.303820 

Coopersmith, E. J., Bell, J. E., Benedict, K., Shriber, J., McCotter, O., & Cosh, M. H. 

(2017). Relating coccidioidomycosis (valley fever) incidence to soil moisture 

conditions. GeoHealth, 51–63. https://doi.org/10.1002/2016GH000033 

Edwards, P. Q., & Palmer, C. E. (1957). Prevalence of sensitivity to coccidioidin, with 

special reference to specific and nonspecific reactions to coccidioidin and to 

histoplamin. Dis. Chest, 31, 355–360. 

Engelthaler, D. M., Chandler, R., Litvintseva, A., Keim, P., Driebe, E. M., Schupp, J. M., 

… Barker, B. (2016). Local Population Structure and Patterns of Western 

Hemisphere Dispersal for Coccidioides spp., the Fungal Cause of Valley Fever. 

MBIO, 7(2), 1–37. https://doi.org/10.1101/024778 

Fisher, F. S., Bultman, M. W., Johnson, S. M., Pappagianis, D., & Zaborsky, E. (2007). 

Coccidioides niches and habitat parameters in the southwestern United States: A 

matter of scale. Annals of the New York Academy of Sciences, 1111, 47–72. 

https://doi.org/10.1196/annals.1406.031 

Fisher, M. C., Koenig, G. L., White, T. J., & Taylor, J. W. (2002). Molecular and 

phenotypic description of Coccidioides posadasii sp. nov., previously recognized as 

the non-California population of Coccidioides immitis. Mycologia, 94(1), 73–84. 

Friedman, L., Smith, C. E., Pappagianis, D., & Berman, R. J. (1956). Survival of 

Coccidioides immitis under controlled conditions of temperature and humidity. 

American Journal of Public Health, 46, 1317–1324. 



   
 

  15 

Gorris, M. E., Cat, L. A., Zender, C. S., Treseder, K. K., & Randerson, J. T. (2017). 

Coccidioidomycosis dynamics in relation to climate in the southwestern United 

States. GeoHealth, 1–19. https://doi.org/10.1002/2017GH000095 

Greene, D., Koenig, G., Fisher, M. C., & Taylor, J. W. (2000). Soil isolation and 

molecular identification of Coccidioides immitis. Mycologia, 92(3), 406–410. 

Hirschmann, J. V. (2007). The Early History of Coccidioidomycosis: 1892-1945. Clinical 

Infectious Diseases, 44(9), 1202–1207. https://doi.org/10.1086/513202 

Jin, J. (2013). Valley Fever (Coccidioidomycosis). Journal of the American Medical 

Association, 310(22), 2470. 

Kolivras, K. N., & Comrie, A. C. (2003). Modeling valley fever (coccidioidomycosis) 

incidence on the basis of climate conditions. International Journal of 

Biometeorology, 47, 87–101. https://doi.org/10.1007/s00484-002-0155-x 

Kolivras, K. N., Johnson, P. S., Comrie, A. C., & Yool, S. R. (2001). Environmental 

variability and coccidioidomycosis (valley fever). Aerobiologia, 17, 31–42. 

Laniado-Laborin, R. (2007). Expanding understanding of epidemiology of 

coccidioidomycosis in the western hemisphere. Annals of the New York Academy 

of Sciences, 1111, 19–34. https://doi.org/10.1196/annals.1406.004 

Maddy, K. T. (1957). Ecological Factors of the Geographic Distribution of Coccidioides 

Immitis. Journal of the American Medical Association, 130(11), 475–476. 

https://doi.org/10.1017/S000748530002229X 

Maddy, K. T. (1958). The geographic distribution of Coccidioides Immitis and possible 

ecologic implications. Arizona Medicine: Journal of Arizona State Medical 

Association, 15(3), 178–188. https://doi.org/10.1017/S000748530002229X 



   
 

  16 

Maddy, K. T., & Coccozza, J. (1964). The Probable Geographic Distribution of 

Coccidioides Immitis in Mexico. Boletin de La Oficina Sanitaria Panamericana. Pan 

American Sanitary Bureau, 57, 44–54. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/14175564 

Maddy, K. T. (1965). Observations on Coccidioides Immitis Found Growing Naturally in 

Soil. Arizona Medicine: Journal of Arizona State Medical Association, 22, 281–288. 

https://doi.org/10.1017/S000748530002229X 

Marsden-Haug, N., Goldoft, M., Ralston, C., Limaye, A. P., Chua, J., Hill, H., … Chiller, 

T. (2013). Coccidioidomycosis acquired in Washington State. Clinical Infectious 

Diseases, 56(6), 847–850. https://doi.org/10.1093/cid/cis1028 

May, J. M. (1950). Medical Geography: Its Methods and Objectives. Geographical 

Review, 40(1), 9–41. https://doi.org/http://dx.doi.org/10.1016/0037-7856(77)90157-

3 

Meade, M. S. (1977). Medical Geography as Human Ecology: The Dimension of 

Population Movement. The Geographical Review, 67(4), 379–393. 

National Oceanic and Atmospheric Administration (NOAA). (2018). Climate of Texas.  

Retrieved Febrary 25, 2019 from 

https://www.ncdc.noaa.gov/climatenormals/clim60/states/Clim_TX_01.pdf 

Pappagianis, D., & Einstein, H. E. (1978). Tempest from Tehachapi takes toll or 

Coccidioides conveyed aloft and afar. The Western Journal of Medicine, 129, 527–

530. 

Pavlovsky, E. (1966). Natural Nidality of Transmissible Diseases with Special Reference 

to the Landscape Ecology of Zooanthroponses (University). Urbana, IL. 



   
 

  17 

Petersen, L. R., Marshall, S. L., Barton-Dickson, C., Hajjeh, R. A., Lindsley, M. D., 

Warnock, D. W., … Morgan, J. (2004). Coccidioidomycosis among Workers at an 

Archeological Site, Northeastern Utah. Emerging Infectious Diseases, 10(4), 637–

642. https://doi.org/10.3201/eid1004.030446 

Reed, R. E. (1960). Ecology and Epizoology of Coccidioidomycosis. In Reports of 

papers delivered at the 1959-1960 Conventions of the Intermountain Veterinary 

Medical Association. 

Reisen, W. K. (2010). Landscape epidemiology of vector-borne diseases. Annual Review 

of Entomology, 55, 461–483. https://doi.org/10.1146/annurev-ento-112408-085419 

Saubolle, M. A., McKellar, P. P., & Sussland, D. (2007). Epidemiologic, clinical, and 

diagnostic aspects of coccidioidomycosis. Journal of Clinical Microbiology, 45(1), 

26–30. https://doi.org/10.1128/JCM.02230-06 

Schneider, E., Hajjeh, R. A., Spiegel, R. A., Jibson, R. W., Harp, E. L., Marshall, G. A., 

… Werner, S. B. (1997). A Coccidioidomycosis Outbreak Following the Northridge, 

Calif, Earthquake. The Journal of the American Medical Association, 277(11), 904–

908. https://doi.org/10.1001/jama.277.11.904 

Smith, C. E., Beard, R. R., Rosenberger, H. G. M., & Whiting, E. G. M. (1946). Effect of 

Season and Dust Control on Coccidioidomycosis. The Journal of the American 

Medical Association, 132(14), 833–838. 

Stacy, P. K. R., Comrie, A. C., & Yool, S. R. (2012). Modeling Valley Fever Incidence in 

Arizona Using a Satellite-Derived Soil Moisture Proxy. GIScience & Remote 

Sensing, 49(2), 299–316. https://doi.org/10.2747/1548-1603.49.2.299 

Swatek, F. E., Omieczynski, D. T., & Plunkett, O. A. (1967). Coccidioides immitis in 



   
 

  18 

California. In Papers from the 2nd Symposium on Coccidioidomycosis. (pp. 255–

265). Tucson, AZ: University of Arizona Press. 

Talamantes, J., Behseta, S., & Zender, C. S. (2007). Statistical modeling of valley fever 

data in Kern County, California. International Journal of Biometeorology, 51(4), 

307–313. https://doi.org/10.1007/s00484-006-0065-4 

Tamerius, J. D., & Comrie, A. C. (2011). Coccidioidomycosis incidence in Arizona 

predicted by seasonal precipitation. PLoS ONE, 6(6). 

https://doi.org/10.1371/journal.pone.0021009 

Thompson III, G. R. (2011). Strategies to combat coccidioidomycosis: Are we making 

any progress? Current Fungal Infection Reports, 5(4), 215–223. 

https://doi.org/10.1007/s12281-011-0066-6 

Tsang, C. A., Tabnak, F., Vugia, D. J., Benedict, K., Chiller, T., & Park, B. J. (2013). 

Increase in Reported Coccidiodomycosis - United States, 1998-2011. Morbidity and 

Mortality Weekly Report, 62(12), 217–221. 

https://doi.org/http://dx.doi.org/10.1108/17506200710779521 

Zender, C. S., & Talamantes, J. (2006). Climate controls on valley fever incidence in 

Kern County, California. International Journal of Biometeorology, 50(3), 174–182. 

https://doi.org/10.1007/s00484-005-0007-6 

 



   
 

  19 

Chapter 2. Investigating the Relationship between Climate and Valley Fever 

(Coccidioidomycosis) 

 

2.1 Introduction  

This chapter assesses and quantifies relationships between valley fever and 

temperature, precipitation, wind, and dust in a California county.  It uses a time-series 

analysis, regressing the climatic variables with valley fever incidence in Kern County, 

CA at the seasonal temporal scale using data from 2001 to 2015. The objective is to 

identify whether variables found to be significantly related to valley fever in highly 

endemic Arizona counties are also significant in the most endemic California county.   

 

2.2 Publication  

The manuscript related to this chapter was published in EcoHealth journal and can 

be found in Appendix A.  

 

Weaver, E. A., and Kolivras, K. N. (2018). Investigating the Relationship Between 

Climate and Valley Fever (Coccidioidomycosis). EcoHealth, 15(4), 840-852.
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Chapter 3. Environmental factors affecting ecological niche of Coccidioides (spp.) 

and spatial dynamics of valley fever in the United States 

 

3.1 Introduction  

This chapter analyzes the spatial distribution of valley fever in the western United 

States. Maximum Entropy ecological niche modeling is used to identify the probable 

spatial distribution of valley fever based on climate, elevation, soil, and land cover 

variables using disease case data from 2001 to 2016.  The aim is to characterize the 

disease’s spatial distribution and identify environmental factors influential in the model’s 

development.     

 

3.2 Publication  

Appendix B contains the draft of the original manuscript submitted to an 

academic journal for review on 18 December 2018.  

 

Weaver, E.A., Kolivras, K., Thomas, V., Thomas, R.Q., and Abbas, K.  Under Review.  

Environmental factors affecting ecological niche of Coccidioides (spp.) and spatial 

dynamics of valley fever in the United States .  Spatial and Spatio-temporal 

Epidemiology.
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Chapter 4. Spatiotemporal modeling of relative risk of coccidioidomycosis in 

California 

 

4.1 Introduction  

This chapter details the development of a hierarchical Bayesian spatio-temporal 

model used to analyze patterns of disease risk in California using valley fever case data 

from 2001-2018.  The objective of this study is to identify patterns in disease risk that 

may not be apparent in purely spatial or purely temporal analyses and to evaluate 

hypothesized environmental risk factors in accounting for the patterns observed.  The 

covariates assessed include temperature, precipitation, cultivated land cover, and 

temperature of the driest quarter. 

 

4.2 Publication  

The draft manuscript for this analysis is found in Appendix C.  It is currently 

being revised for submission to a peer-reviewed journal.  

 

Weaver, Elizabeth A and Thomas, R.Q.  In preparation.  Spatiotemporal modeling of 

relative risk of coccidioidomycosis in California 
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Chapter 5. Conclusions 

Valley fever rates are increasing in the United States, creating a public health 

burden in affected areas.  This research contributes to our knowledge regarding how 

valley fever incidence rates are related to varying environmental conditions.  Focusing on 

the western U.S., this dissertation broadly aimed to: (1) assess the temporal relationship 

between climate and valley fever in an understudied area; (2) identify factors influencing 

the regional spatial distribution of the disease; and (3) analyze the spatio-temporal 

distribution of valley fever risk along with environmental factors hypothesized to 

influence that distribution. The dissertation research resulted in several findings with 

public health applications.   

First, this dissertation found that some climatic variables have significant 

relationships with valley fever in the most endemic counties in Arizona also had 

significant relationships in Kern County, California when assessed at the seasonal scale.  

Specifically, winter precipitation was identified as a significant factor in explaining 

valley fever variability in multiple models.  This is an important insight that can be used 

in the future development of early warning systems.  With previous research focused 

mainly in Arizona, the significant relationships identified in this California study created 

a basis for further regional analysis regarding valley fever-environment associations. 

Second, this dissertation contributed to a better understanding of the U.S. endemic 

region for this disease.  Using a new ecological niche modeling technique and expanding 

the study’s range to take into consideration the discovery of Coccidioides spp. growth 

sites in the state of Washington, the probable distribution of valley fever was identified.  

The distribution based on environmental variables was characterized and the Columbia 
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Plateau region of Washington and Oregon was identified as having more favorable 

conditions for fungus presence than surrounding areas.  This identification of potential 

disease habitats is important for public health officials watching for potential outbreaks 

and looking to allocate educational and awareness resources.   This research also 

identified climatic and land cover variables important in explaining the spatial 

distribution of the disease, which can be used in future predictive models to assess how 

environmental changes will affect disease distribution.   

Finally, this research developed a Bayesian spatio-temporal model that identified 

counties at increased risk in California by assessing geographic patterns in temporal 

trends.  Counties outside of the known highly endemic areas were identified for elevated 

risk, which may be useful in prioritization of public health resources.  This 

methodological framework can be replicated in other states to assess disease risk, and it 

provides a foundation for future forecasting of valley fever risk based on environmental 

conditions.   

Overall, this dissertation used various modeling techniques to advance our 

knowledge regarding the relationship between valley fever and environmental risk 

factors.  This research expanded on past studies by assessing relationships in new 

regions, assessing new environmental variables, and assessing variable interactions in 

space and time. The major limitations to this research involved the use of case data as a 

substitute for pathogen presence and abundance.  In using case data, assumptions were 

made that disease report locations were geographically connected to exposure locations 

and that report dates were associated with exposure dates. To minimize the impact of any 

error in these assumptions, relatively course spatial and temporal scales were used in 
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capturing trends and identifying significant associations.  Overall, these findings support 

past research regarding the significance of alternating cool/wet and hot/dry seasons.  

Added to this body of research are the significance of land cover variables, specifically 

barren and cultivated land covers, and the identification areas of concern based on spatio-

temporal patterns.  Future research can use these quantified associations to forecast where 

and when disease emergence may occur based on environmental conditions, allowing for 

more focused disease prevention, awareness, education, and monitoring efforts.   
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Appendix – Publications related to this research 
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Appendix A.  Weaver and Kolivras (2018) Climate and valley fever paper 
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Investigating the Climate - Valley Fever Relationship in Kern County, California, U.S.A. 

 

Abstract 

Valley fever (coccidioidomycosis) is a disease caused by inhalation of spores from the soil-

dwelling Coccidioides fungal species.  The disease is endemic to semi-arid areas in the western 

United States and parts of Central and South America.  The region of interest for this study, Kern 

County, California, accounts for approximately 14% of the reported valley fever cases in the U.S. 

each year.  It is hypothesized that the weather conditions that foster the growth and dispersal of 

the fungus influence the number of cases in the endemic area.  This study uses regression-based 

analysis to model and assess the seasonal relationships between valley fever incidence and 

climatic variables including concurrent and lagged precipitation, temperature, Palmer Drought 

Severity Index, wind speed, and PM10 using data from 2000 – 2015.  We find statistically 

significant links between disease incidence and climate conditions in Kern County, California.  

The best performing seasonal model explains up to 76% of the variability in fall valley fever 

incidence based on concurrent and antecedent climate conditions.  Findings are consistent with 

previous studies suggesting that antecedent precipitation is an important predictor of disease.  The 

significant relationships found support the “grow and blow” hypothesis for climate-related 

coccidioidomycosis incidence risk that was originally developed for Arizona. 

Introduction 

 Valley fever, or coccidioidomycosis, is a fungal disease that can infect a human or other 

mammalian host through their respiratory tract.  The fungi responsible, Coccidioides immitis and 

Coccidioides posadasii, normally dwell in the soil but can become airborne, and thus inhaled, if 

the soil is disturbed.  Approximately 40 percent of those who inhale the fungal spores 

(arthroconidia) will become ill (Thompson III, 2011).   Common symptoms associated with 

valley fever include fever, cough, chest discomfort, and fatigue; the typical time between 
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exposure and onset of symptoms is 7 to 21 days (Saubolle, McKellar, & Sussland, 2007).  In a 

small portion of the population, fungal endospores disseminate from the lungs to other parts of 

the body, including the skin, lymph nodes, and skeletal system (Saubolle et al., 2007).  These 

endospores can also spread to the brain causing meningeal disease, though this is less common.  

Valley fever is not spread from person to person; inhalation of fungal spores is the only method 

of infection other than rare cases in which it has been acquired through an open cut or wound 

(Eckmann, Schaefer, & Huppert, 1964).  In rare cases, the disease can be fatal, especially if not 

treated (Hector et al., 2011).  Valley fever rates in the U.S. have been generally increasing over 

the past two and a half decades (Centers for Disease Control and Prevention, 2018), creating an 

emerging public health burden.  In California alone, there were over 1,000 deaths attributed to the 

disease between 2000 and 2013, equating to 2.2 deaths per 1 million population (Sondermeyer, 

Lee, Gilliss, & Vugia, 2016).   

Valley fever is endemic in the western U.S., northern and central Mexico, and in parts of 

Central and South America. These regions are characterized as arid and semi-arid with hot 

summers and few winter freezes (Maddy & Coccozza, 1964).  It is hypothesized that the weather 

conditions that foster the growth and dispersal of the fungus influence the number of cases in the 

endemic area (i.e. Comrie, 2005; Coopersmith et al., 2017; Kolivras, Johnson, Comrie, & Yool, 

2001; Park et al., 2005).   This hypothesis is based on our understanding of the Coccidioides spp. 

dimorphic lifecycle.  During the saprobic phase of the pathogen’s lifecycle, the fungus lives in the 

top layer of the soil and gets nutrients from inorganic or decaying organic matter.  To grow, 

Coccidioides spp. require suitable temperature, moisture, and soil conditions that allow it to 

develop into a hyphal form (strand) (Fisher, Bultman, Johnson, Pappagianis, & Zaborsky, 2007).  

During the hot/dry season, the hyphal strands can break apart into arthroconidia, or microscopic 

spores that range in size from 5 to 30μm in length and 1.5 to 4.5μm in width (Pappagianis, 1988).  

Coccidioides spp. can spend their whole life cycle in the soil, but if the soil is disturbed by wind 
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gusts or another disturbance mechanism, the arthroconidia can easily become airborne.  These 

spores either return to the soil where they can grow into more hyphae, or they can be inhaled by a 

host.  In the host, the arthroconidia begin the parasitic phase of the lifecycle as they transform 

into a spherule that can separate into many small endospores and potentially initiate another 

generation of spherules within the host (Cole, Hurtgen, & Hung, 2012).  Thus, the “grow and 

blow” hypothesis suggests that soil moisture facilitates the growth of the fungus, subsequent dry 

conditions result in spore fragmentation, and a disturbance event enables the spores to become 

airborne, ultimately resulting in human exposures (Comrie & Glueck, 2007; Tamerius & Comrie, 

2011).     

Alternating wet and hot/dry seasons are thought to be critical for the growth and dispersal 

of the fungal spores.  In direct observations, it was found that during the hottest months of the 

year, Coccidioides spp. survive by moving deeper into the soil (Maddy, 1965).  High summer 

temperatures likely remove competitors in the top layer of soil, effectively sterilizing the soil, 

allowing for more abundant Coccidioides spp. growth when moisture returns to optimal levels 

(Maddy, 1965).  Areas with approximately 130 to 500 mm of rainfall seem to have the best 

conditions for fungal growth (Maddy, 1958).   Coccidioides spp. are not found in soils that are 

frequently or continually saturated (Fisher et al., 2007); if the soil is too moist, it is speculated 

that competitors of the Coccidioides spp. thrive and decrease its prevalence (Reed, 1960).  

Coccidioides spp. can survive a wide range of temperatures in a laboratory setting (Friedman, 

Smith, Pappagianis, & Berman, 1956), but it is believed that the optimal temperature for growth 

is between 20-40 degrees Celsius (Fisher et al., 2007).  The counties in California and Arizona 

with the highest valley fever rates have temperature and precipitation ranges that exhibit these 

climate conditions along with an alternating wet and hot/dry seasonal behavior, though California 

has a single wet season in the winter and a very dry summer, while Arizona has a bimodal pattern 
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with precipitation in both the summer and winter (Gorris, Cat, Zender, Treseder, & Randerson, 

2017).   

While observed relationships between climate conditions and valley fever incidence have 

been documented in previous studies (i.e. Flynn et al., 1979; Pappagianis & Einstein, 1978; 

Smith, Beard, Rosenberger, & Whiting, 1946), only a few studies have attempted quantify this 

relationship.  Multiple studies in Arizona have found significant relationships between climatic 

conditions and the timing of reported cases (Comrie, 2005; Kolivras & Comrie, 2003; Komatsu et 

al., 2003; Park et al., 2005; Pianalto, 2013; Stacy, Comrie, & Yool, 2012; Tamerius & Comrie, 

2011), but these same relationships were much weaker, or not found at all, in two Kern County, 

California studies (Talamantes, Behseta, & Zender, 2007b; Zender & Talamantes, 2006). The 

earlier of these two Kern County studies investigated the relationship between incidence 

fluctuations and temperature, precipitation, surface pressure, and wind anomalies with data from 

1980 to 2002 (Zender & Talamantes, 2006).  These researchers found that, after correcting for 

annual cycles and autocorrelations, 8-month lagged precipitation was the only highly statistically 

significant (p<0.01) variable, explaining only 4% of monthly incidence variability.  The second 

study tested three different generalized auto regressive moving average (GARMA) models with 

various inputs including temperature, precipitation, wind, and prior incidence (Talamantes et al., 

2007b).  They found that dependence of incidence rate fluctuations on weather parameters was 

weak.  Overall, these researchers suspected that human activities or biological processes may play 

a more influential role than climate in explaining anomalies and that weather fluctuations in Kern 

County might be too small to explain fluctuations in incidence.  

The seasonal behavior of valley fever incidence in Kern County (see FIGURE 1) and its 

precise relationship with climatic variables remains uncertain.  This study investigates the 

incidence-climate relationship through regression techniques using multiple climatic variables, 

including several that have not previously been assessed in Kern County.  Clarifying and 
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quantifying the relationships between seasonal climatic changes and disease dynamics will 

enhance our understanding of what drives valley fever and allow for future forecasting of valley 

fever health risks.   

 

FIGURE 1. Study Area, Kern County, California, U.S.A. 

Climate Variables 

Climate variables used in this study include precipitation, drought, temperature, wind, 

wind gust, and air quality measurements (see TABLE 1).  Cumulative precipitation and the 

Palmer Drought Severity Index (PDSI) are used as measures of soil moisture. The role of 

moisture is hypothesized to be two-fold: a wet period is required for fungal growth, and a dry 
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period is required for autolyzation into spores and spore dispersal (Pappagianis, 1988).  Because 

precipitation influences spore growth in months and seasons prior to exposure, precipitation data 

is assessed concurrently with incidence, but also with lags up to one-year prior to account for this 

growth.  The PDSI uses temperature and precipitation data to determine the accumulated water 

excess or deficit, indicating the severity of a wet or dry spell (Palmer, 1965).  The index generally 

ranges from -6 to +6, with negative values denoting dry spells and positive values indicating wet 

spells (National Centers for Environmental Information, 2014).  The PDSI is intrinsically 

autocorrelated, with the index changing slowly and smoothly over time, and does not compare 

well between locations, therefore it is only used in the initial univariate analysis (Alley, 1984).  

Air temperature data are used as proxies for soil temperature.  Soil temperatures generally reflect 

ambient air temperature, with a lag that increases with soil depth (Fisher et al., 2007).  High 

summer temperatures can sterilize the soil and create an environment, relatively free of 

competitors, that supports Coccidioides species’ growth.   Wind and wind gust data are used as 

indicators of potential disturbance that lead to increased spore concentration in the air.  PM10 is a 

measure of airborne dust and is used as a more direct proxy for the windblown spore 

concentration in the air.  PM10 is a mixture of various substances in the form of solid particles or 

liquid drops measuring 10 micrometers or less in the atmosphere.  This range includes the size of 

a typical Coccidioides spp. spore.  A variety of emission sources and meteorological conditions 

contribute to ambient PM10 (California Air Resources Board, 2017).   
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TABLE 1. Climatic Variables. 

Climatic Variable Source 

Average temperature1 Western Regional Climate Center 
Average temperature of previous 3 months1 Western Regional Climate Center 
Average wind speed1 National Centers for Environmental Information 
Average 2-minute wind gust1 National Centers for Environmental Information 
Average 5-second wind gust1 National Centers for Environmental Information 
Average PM10

2 California Air Resources Board 
Average PDSI3 National Centers for Environmental Information 
Average Cumulative precipitation (concurrent)1 Western Regional Climate Center 
Cumulative precipitation from previous 12 months1 Western Regional Climate Center 
Cumulative precipitation lagged seasonally up to 12 months1 Western Regional Climate Center 

Spatial scale: 1Bakersfield Airport Weather Station; 2San Joaquin Valley air basin; 3San Joaquin Valley drainage 
basin 
 

 

Disease Data  

Monthly valley fever incidence data (case counts) for Kern County were obtained from 

the California Department of Public Health from January 2000 to December 2015.  The monthly 

case incidence rate per 100,000 of the general population was determined using linearly 

interpolated annual population estimates based on the 2000 and 2010 census counts and the 5-

year American Community Survey 2015 population estimate (U.S. Census Bureau, 2000, 2010, 

2015).  A one-month offset in incidence data was used to allow for incubation time and 

diagnosis/reporting lags (Comrie & Glueck, 2007).  Kern County accounted for over 40% of all 

cases in California during the study period with a total of 20,366 cases over the 16-year period.  

There is a slight upward trend to the data from 2000 to 2015, with incidence peaking in 2011 at 

2,565 cases after a low of 599 cases in 2009 (see FIGURE 2).   
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FIGURE 2. Monthly Valley Fever Incidence Rates for Kern County, CA from 2000-
2015. 

 

Monthly climatic data were obtained from the Western Regional Climate Center, the 

National Center for Environmental Information, and the California Air Resources Board.  

Precipitation, wind, and temperature data were obtained for the Bakersfield Airport weather 

observation station, which has continuous data back to 1938.   The Bakersfield Airport station is 

located centrally within the county, approximately three miles north of the Bakersfield city center 

(see FIGURE 1).  Since Bakersfield is the largest city in Kern County, with approximately 40% 

of the population within the city boundaries, the Bakersfield Airport station data reasonably 

represents climate conditions in the county and is applied to countywide valley fever data.  Daily 

PM10 readings from four different San Joaquin Valley (SJV) Air Basin sites near Bakersfield 

were averaged to obtain an average monthly PM10 concentration value.  

Methods   
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To better understand the temporal relationships between valley fever and climate in Kern 

County, univariate and multivariable linear regression was performed with incidence as the 

response variable and the climate data as the predictor variables (Hidalgo & Goodman, 2013). 

Multivariable regression models for each season were constructed using a forward stepwise 

selection approach with minimum AICc as the selection criteria.  The use of AICc is a standard 

way of evaluating a model that takes into account fit and complexity with a bias correction term 

for small sample sizes (Johnson & Omland, 2004) and has been used in previous studies on valley 

fever (Pianalto, 2013; Talamantes et al., 2007b).  Tests for normality, constant variance, 

collinearity, and autocorrelation were performed on each model.  A leave-one-out cross-

validation method was used to assess the robustness of correlations identified in the multivariable 

linear regression analyses.  

 The monthly variables were grouped into seasons prior to conducting the regression 

analysis.  The benefit of a seasonal analysis, summarized by Comrie (2005), includes: (1) a useful 

way of dividing the year into wet and dry periods, (2) a simplified analysis that avoids monthly 

variability, (3) a reduction in error due to inconsistencies in reported onset dates, (4) an easy way 

to identify recurring times of the year that are important, and (5) an analytically and conceptually 

simpler way to compute and understand seasonal lag relationships.  The monthly valley fever and 

climatic averages presented in FIGURE 3 enabled the definition of seasonal groupings based on 

periods of maximums and minimums.  Data were grouped into four seasons, with winter 

including data from the months Dec-Feb, spring including Mar-May, summer including Jun-Aug, 

and fall including Sep-Nov.  These time blocks were chosen because they captured the highest 

two and lowest two months of both average precipitation and valley fever in a single season.  

Each season was modeled separately as climate conditions can vary significantly between the 

different valley fever seasons (Comrie, 2005; Kolivras & Comrie, 2003; Stacy et al., 2012), with 

lower rates of valley fever from Feb-May and higher rates from Aug-Nov.   
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FIGURE 3. This plot shows disease and climate seasonality based on 2000-2015 monthly 
averages with the incidence having a single peak in the month of October, precipitation 
having a single peak in the month of February, and temperature having a single peak in 
July. 

 

Results 

Univariate Analysis 

In the univariate analysis, there were no consistent significant variables (p-value < 0.05) 

across all four seasonal models (see TABLE 2).  The winter model had no significant variables 

and the spring model only had one significant variable, precipitation lagged four seasons, i.e. 

precipitation from the previous spring.  This variable had a direct, positive relationship with 

incidence.   In the summer model, of the six variables with statistically significant relationships 

with valley fever, precipitation from the previous winter had the strongest relationship with an R-

squared value of 0.43 (p = 0.006).  The average 2-minute wind gust speed and PM10 had negative 

relationships with the incidence rate.  For the fall model, when incidence is generally highest, the 
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most significant variable was precipitation the previous winter with a positive relationship and an 

R-squared of 0.60 (p < 0.001), the highest value of any variable in the univariate analysis. PM10 

also had a negative relationship with incidence rate in this season as well. 

TABLE 2.  Univariate linear regression significant correlations (p < 0.05) for all seasonal 
models. 

Seasonal 
Model Significant Variables Coefficient t-Ratio P-Value R-Squared 

Winter N/A N/A N/A N/A N/A 
Spring Average Precipitation Previous Spring 0.30 2.26 0.04 0.26 
Summer Average Temp. Previous 3 Months -1.69 -2.15 0.05 0.25  

Average 2-Minute Wind Gust -10.72 -2.66 0.02 0.34 
 PDSI 1.04 2.40 0.03 0.29 
 PM10 -0.50 -2.34 0.03 0.28 
 Total Precipitation Previous 12 Months 0.08 3.19 0.006 0.42 
 Average Precipitation Previous Winter 0.32 3.25 0.006 0.43 
Fall PM10 -0.43 -2.18 0.04 0.35 
 Total Precipitation Previous 12 Months 0.12 3.83 0.002 0.51 
 Average Precipitation Previous Winter 0.52 4.58 <0.001 0.60 

 

Multivariable Analysis 

In the multivariable analysis, the winter model explains 58% of the variation in incidence 

(p = 0.007) and involves four significant variables, including positive relationships with average 

temperature over the past 3 months, average 5-sec wind gust, and precipitation from the previous 

winter and spring (see TABLE 3).  The spring model explains 43% of the variation in incidence 

(p = .01) and has two significant variables: precipitation from the previous fall and previous 

spring, both with positive relationships.   The summer model explains 59% of the variability in 

incidence (p = .001). This model has two significant variables including an inverse relationship 

with average 2-minute wind speed, and a positive relationship with precipitation from the 

previous winter.  The fall model is the most explanatory, with an adjusted R-squared of 0.76 (p = 

0.001).  This model has three significant variables including an inverse relationship with 

precipitation from the previous summer, and positive relationships with average temperature and 
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precipitation from the previous winter.  The time series of reported and modelled valley fever 

incidence for each season is shown in FIGURES 4a-4d.   

TABLE 3. Multivariable linear regression results. 

Model  Model Adj. R-Squared AICc RMSE P-Value 
Winter 0.58 101.37 3.56 0.007 
Spring 0.43 96.00 3.75 0.01 
Summer 0.59 102.04 4.53 0.001 
Fall 0.76 106.60 4.74 0.001 

Model Variables Standardized 
Coefficient t-Ratio P-Value 

Winter Average Temp Previous 3 Months 3.03 2.96 0.01 
 Average 5-Second Wind Gust 2.14 2.24 0.05 
 Precipitation Previous Spring 2.19 2.35 0.04 
 Precipitation Previous Winter 3.26 3.24 0.008 
Spring Precipitation Previous Fall 2.72 2.52 0.03 
 Precipitation Previous Spring 3.77 3.50 0.004 
Summer Average 2-Minute Wind Gust -3.30 -2.78 0.02 
 Precipitation Previous Winter 3.96 3.33 0.005 
Fall Average Temperature 3.47 2.72 0.02 
 Precipitation Previous Summer -3.64 -2.63 0.02 
 Precipitation Previous Winter 10.04 7.00 <0.001 
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FIGURE 4.  Reported valley fever incidence in Kern County, CA, and modelled valley 
fever incidence based on seasonal multivariable linear regression models: a) winter, b) 
spring, c) summer, d) fall. 

 

Model Diagnostics 

All models exhibited a near normal distribution of residuals, considering the low sample 

size, and had low autocorrelation based on Durbin-Watson statistics.  In the multivariable models, 

assessment of variance inflation factors found low correlation among variables (VIF < 2.0).   

Constant variance was visually assessed using scatterplots of residuals vs. predicted values.  A 

few of the univariate regression models showed homoscedasticity violations; PM10 in the summer 

and fall models, and PDSI in the fall model had fan shaped distributions with residuals growing 

larger as a function of the predicted value. While the estimates will still be unbiased, the presence 

of heteroscedasticity can cause the estimates for the variance of the slope to be inaccurate. 

Multivariable models were assessed using a leave-one-out cross validation method.  This 
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validation was done in JMP by selecting the k-fold cross-validation option and inputting the total 

number of observations (16) as the k value for each model (JMP, 2017).  The output is a R-

squared k-fold statistic, which is the average of the R-squared validation values for the k folds 

(see TABLE 4).  The R-squared k-fold statistic for the spring model was significantly lower than 

the direct fit R-squared for the spring model, indicating that this model may be overfit, or may be 

tailored to specific data points and not generalizable outside the sample.  The fall model had an 

R-squared k-fold statistic closest to the fitted R-squared values, 0.69, indicating predictions in 

closer agreement with observations.  

TABLE 4. Model Evaluation Statistics 

Season Model 
R-Squared 

Model Adj. 
R-Squared 

k-Fold 
R-Squared 

Winter 0.69 0.58 0.38 
Spring 0.51 0.43 0.19 
Summer 0.64 0.59 0.39 
Fall 0.81 0.76 0.69 

 

Discussion 

This study found significant relationships between valley fever incidence rates and 

climatic factors in Kern County, CA.  Specifically, we found highly significant correlations (p < 

0.01) between valley fever incidence and precipitation from the previous winter in five of the 

eight models.  This relationship implies that winter rains provide the moisture needed in the soil 

for the fungus to grow.  In winter, the semi-permanent high-pressure area in the north Pacific 

Ocean moves southward and permits storm centers to move across California, bringing 

widespread, moderate precipitation.  Occasionally, heavy rains and flooding occur when changes 

in the typical circulation pattern permit storm centers to approach from a southwesterly direction 

(Western Regional Climate Center, 2017).  The only multivariable seasonal model that did not 

include winter precipitation was the spring model, in which precipitation from the previous spring 
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(not winter) was significant, implying that the timing of the precipitation may be important, with 

a lag of at least two seasons needed to allow time for fungal growth, fragmentation, and 

disturbance.   

Lagged precipitation variables stood out in this analysis as the most commonly 

significant climatic factor related to valley fever incidence among the different seasonal models.  

The significant, positive relationship between lagged precipitation and valley fever is consistent 

with earlier research by Zender and Talamantes (2006) but explains a higher proportion of 

variance which may be due to significant differences in methodologies and in the time-scales 

assessed.  This finding supports recent research by Gorris et al. (2017) who assessed monthly, 

seasonal, and annual relationships between climate and valley fever in the San Joaquin Valley of 

California.  Their research similarly found positive correlations between valley fever and 

precipitation, soil moisture, and NDVI, with a lag of 7 to 9 months.  In the fall multivariable 

model, precipitation from the previous summer had a significant, negative relationship with 

incidence.  This finding is consistent with the Arizona studies of Kolivras and Comrie (2003), 

Comrie (2005), and Tamerius and Comrie (2011) with the explanation that rain in the typically 

dry season likely inhibits dust production, lowering chances for inhalation of Coccidioides’ 

spores.  Overall, these findings support the hypothesized double-role of precipitation, with a wet 

period required for fungal growth, and a dry period required for spore formation and dispersal.   It 

is likely that winter rains provide moisture that facilitate Coccidioides spp. growth, then 

subsequent dry conditions result in fragmentation of the hyphae after which the arthroconidia can 

easily become airborne, ultimately resulting in human exposures that occur in the seasons 

following.     

Significant relationships between valley fever incidence and temperature were found in 

only a few of the models.  Average temperature was significant in one model, the fall 

multivariable model, in which it was positively correlated with valley fever.  Average 
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temperature from the previous three months was negatively correlated with valley fever in the 

univariate summer model, but positively correlated with valley fever in the multivariable winter 

model. Gorris et al. (2017) calculated monthly climate and valley fever anomalies for the endemic 

region and found that in the San Joaquin Valley, temperature was negatively correlated with 

incidence six months later. The negative correlation finding contrasts with Park et al. (2005) who 

found a positive correlation between incidence and the average temperature from the preceding 

three months for Arizona.  Kolivras and Comrie (2003) also only found positive correlations in 

Pima County, Arizona, with summer temperature positively correlated with the subsequent 

season’s incidence rate rather than the preceding season.  It is possible that these discrepancies 

may be due to regional differences as these latter two studies took place in Arizona where there is 

a different climate pattern. It is also possible that phenotypic differences between the two 

Coccidioides species may play a role as they have different geographical distributions (Fisher, 

Koenig, White, & Taylor, 2002). C. immitis is mainly found in the Central Valley region of 

California while C. posadasii is mainly found in Arizona and other parts of the world (Fisher et 

al., 2002; Thompson III, 2011).  A field study that examined a known Coccidioides spp. soil site 

on the border between Inyo and Kern Counties in California found that during August, October, 

and November (September was not included), the fungus was not present in the top layer of soil 

(Plunkett & Swatek, 1957).  It is thought that the Coccidioides spp. survive in the hotter, drier 

months by moving deeper into the soil (Maddy, 1965).  Though the months don’t align perfectly 

with the field study, the movement of the Coccidioides spp. into deeper soil in the hotter months 

and back to the surface in cooler months may partially explain the negative relationship between 

temperature and valley fever in the summer and the positive relationship in the winter.  It is also 

possible that some of the correlations found are due to chance as the significance level for this 

study was set to five percent. 
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Unexpected findings from this study include the inverse relationship found between PM10 

and incidence in the summer and fall univariate models and the inverse relationship found 

between wind and incidence in the univariate and multivariable summer models.  These findings 

were unexpected as we hypothesized that increased disturbances would relate directly to 

increased spore exposure, and wind and PM10 are proxies for disturbance and spore concentration 

in the air.  The negative correlation between dust and incidence is contradictory to the Arizona 

studies by Park et al. (2005) and Comrie (2005), which found positive relationships between 

PM10 and valley fever incidence.  Conversely, this finding is supports Tong et al. (2017) who 

found that PM10 was negatively correlated with valley fever in the two Arizona counties with the 

largest number of cases. The inverse relationship in the current study may be due to high PM10 

contributions from anthropogenic emissions, road dust, or farming operations in Kern County, all 

of which do not contribute to fungal spore distribution (Talamantes, Behseta, & Zender, 2007a; 

Tong et al., 2017).  The relationship between PM10 and valley fever in California should be 

investigated further, as should other proxies for spore concentration in the atmosphere, such as 

the number and frequency of dust storms (Tong et al., 2017).  Other disturbance mechanisms, 

such as anthropogenic soil disturbance from construction, may play a more significant role than 

climatic factors in causing spores to become airborne.   

Model performance varied between the seasonal models.  Figures 4a through 4d show 

that the models all predicted a decrease in cases around 2009 prior to a significant rise around 

2011, but there were smaller variations that were missed, such as a spike in incidence in spring 

2004.  These incorrect predictions are likely a result of the complicated ecology surrounding this 

disease and indicate that there are other factors influencing incidence that were not considered in 

these models.  The fall models in the univariate and multivariable analyses were the best 

performing models possibly because fall has the highest incidence rates. The methods used in the 

present study are similar to those used by Comrie (2005) who also found that his best performing 
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seasonal model, the foresummer season that includes the months of May through July, was the 

season with the highest valley fever rates in Pima County, Arizona.  Kolivras and Comrie (2003) 

likewise found that their best monthly models, in terms of explained variance, were those months 

that had a high percent of the total annual incidence.  This finding is valuable given that future 

models using this information may be best able to predict valley fever in the season with the 

highest incidence rates.   

There are a few limitations and assumptions for this research associated with the use 

valley fever incidence data.  First, changes in provider awareness, diagnosis, and/or reporting 

have presumably improved over time as Kern County’s public health department has an active 

valley fever campaign.  While this may account for some of the long term increasing trend, we do 

not believe this significantly affects the seasonal variations observed and assessed in this study 

(Ampel, 2010).  Second, there are likely inconsistencies in lag times between disease exposure 

dates and the date of report to the local health department; this was addressed by incorporating a 

one-month lag in the incidence data and by conducting this study at sufficiently broad time-scale 

(i.e, seasonally) in attempt to reduce such error.   Next, this research assumes that a majority of 

the cases reported are from those who acquired the disease in the same county where they live 

and receive medical care; we believe it is unlikely that variations in incidence are heavily affected 

by those traveling in and out of the county due to the consistent and high volume of cases in the 

county.  Finally, in 2010 California transitioned to a laboratory-based reporting system which 

may have affected (increased) the number of reported cases.  Kern County had been using a lab-

based reporting system prior to 2010, so it is unlikely that administrative changes are 

predominantly responsible for the spike seen in 2011, but is still possible that some of the 

increase seen was artifactual (Tsang et al., 2013). This research did not consider changes in 

population characteristics, exposures, or comorbidities.   
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Conclusion 

This study builds on existing literature to better understand the impact of climate and 

seasonality on the disease ecology of the Coccidioides spp.  The main objective of this research 

was to examine and quantify relationships between valley fever and climatic factors in Kern 

County, California.  We confirm findings of previous studies that found higher precipitation 

amounts to be related to higher incidence rates in subsequent seasons, and we provide an 

indication of seasonal timing between precipitation and incidence. While other factors such as 

anthropogenic soil disturbance require further research, we conclude that seasonal cycles of 

valley fever can be partially explained by climatic variables.  These findings clarify some of the 

uncertainty regarding relationships between climate and valley fever in Kern County, California.   

An improved understanding of the climatic mechanisms that may contribute to the 

growth and dispersal of the Coccidioides spp. has practical health applications.  Specifically, the 

ability to define winter precipitation as a critical event related to fall incidence in Kern County 

may provide a useful public health tool for disease prevention.  It also opens possibilities for the 

future development of an advanced warning system for disease outbreaks.  By quantifying the 

climatic variables correlated to valley fever rates in Kern County, California, this research has 

created a basis for further research and predictive analysis as valley fever rates continue to trend 

upward.    
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Environmental factors affecting ecological niche of Coccidioides (spp.) and spatial 
dynamics of valley fever in the United States  
 
Abstract 

Coccidioidomycosis is an understudied infectious disease acquired by inhaling 

fungal spores of Coccidioides species.  While historically connected to the southwestern 

United States, the endemic region for this disease is not well defined.  This study’s 

objective was to estimate the impact of climate, soil, elevation and land cover on the 

Coccidioides’ species ecological niche. This research used maximum entropy ecological 

niche modeling based on disease case data from 2001 to 2016.  Results found mean 

temperature of the driest quarter, and barren, shrub, and cultivated land covers influential 

in characterizing the niche.  In addition to hotspots in central California and Arizona, the 

Columbia Plateau ecoregion of Washington and Oregon showed more favorable 

conditions for fungus presence than surrounding areas. The identification of influential 

spatial drivers will assist in future modeling efforts, and the potential distribution map 

generated may aid public health officials in watching for potential hotspots, assessing 

vulnerability, and refining endemicity. 

Key Words:  Coccidioides; Valley Fever; Maxent; Niche Modeling 

1. Introduction 

Coccidioidomycosis, commonly referred to as valley fever, is a fungal disease 

that affects humans and mammals in the western United States.  The fungal species that 

cause this disease, Coccidioides immitis and Coccidioides posadasii, live and grow in the 

soil, but environmental conditions and human disturbances can cause the fungal spores to 

become airborne.  If inhaled, the fungus can become parasitic and cause symptoms such 

as fever, cough, chest discomfort, and fatigue; in a small percentage of the population, 
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endospores disseminate throughout the body and cause more serious illness (Saubolle et 

al., 2007).  Valley fever cases have been steadily rising over the past 20 years with 

approximately 12,000 cases reported in the U.S. in 2016 (Centers for Disease Control and 

Prevention, 2018).  Approximately 200 people a year die from this disease (Huang, 

Bristow, Shafir, & Sorvillo, 2012).   

Much of what we know about the range of the U.S. endemic area for 

coccidioidomycosis (Figure 1) is based on coccidioidin skin testing that occurred over 50 

years ago (Edwards & Palmer, 1957). These skin tests along with valley fever case data 

are used to define the endemic range of this disease because it is very difficult to isolate 

Coccidioides species (spp.) from the soil (Barker et al., 2012; Greene et al., 2000).   

Based on the skin tests, Kern County in California and Pima, Pinal, and Maricopa 

Counties in Arizona were found to be the most infective areas in the U.S. along with 

counties in Texas from the southeast border of New Mexico to Laredo, TX (Maddy & 

Coccozza, 1964).  The known and suspected endemic areas remained focused on the 

southwestern U.S. until the early 2000s when the discovery of multiple Coccidioides spp. 

growth sites in Washington state put into question the actual and potential geographic 

range and distribution of the pathogen (Litvintseva et al., 2015; Marsden-Haug et al., 

2013).  It is uncertain whether the spores found growing in Washington have been 

present for an extended period, or whether they have been recently introduced 

(Litvintseva et al., 2015), but researchers believe that a new niche for Coccidioides spp. 

has established or is establishing in eastern Washington (Marsden-Haug et al., 2013).   

This expansion of the suspected endemic area leads to questions regarding what controls 

the distribution of this disease (Benedict, Thomspon, Deresinski, & Chiller, 2015).  



   
 

  56 

Species distributions are often limited by climate conditions and physical environment 

features (Raghavan, Goodin, Hanzlicek, et al., 2016).  Based on previous research and 

our understanding of the Coccidioides’ spp. lifecycle, we hypothesize that climate, soil, 

elevation, and land cover influence this spatial distribution.   

 
Figure 1. CDC map showing areas where Coccidioides spp. are known or suspected to 
live in the U.S. and Mexico. (source: 
https://www.cdc.gov/fungal/diseases/coccidioidomycosis/maps.html) 

 

Ecological niche modeling is a relatively unexplored approach that can be used to 

assess the ecological and geographic distribution of Coccidioides species. Ecological 

niche models use a mathematical representation of known species distribution points, as 

represented by environmental variables, to estimate the probability of occurrence at any 
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site.  Once links between geographic occurrences and environmental characteristics are 

established and characterized, the model can produce a map of the potential distribution 

of a species (Peterson, 2006). Ecological niche modeling of Coccidioides spp. has been 

limited, presumably, due to the relatively small number of positive soil samples. Ideally, 

the spatial distribution of the disease could be assessed at fine-scales based on positive 

soil isolations, but the organism is difficult to detect and has only been recovered from 

natural settings in a limited number of studies in small geographic regions (i.e. Barker et 

al., 2012; Elconin, Egeberg, & Egeberg, 1964; Greene et al., 2000; Swatek, Omieczynski, 

& Plunkett, 1967).  Baptista-Rosas et al. (2007) developed an ecological niche model for 

Coccidioides spp. using a Genetic Algorithm for Rule Set Production (GARP) approach 

based on reports of 18 point-sites of known positive isolations dating from 1960-2002 to 

generate a predictive model that identified hotpots in Mexico, California, Arizona, and 

Texas. They concluded that the most probable fundamental ecological niche is the arid 

North American deserts, providing a methodological basis for further characterization of 

realized niches.   

Building off this previous research, the present study used a maximum entropy 

(MaxEnt) ecological niche modeling approach to estimate the environmental impact of 

climate, soil, elevation, and land cover affecting the ecological niche of Coccidioides spp. 

and the spatial dynamics of valley fever in the United States. We addressed the limited 

number of soil samples that have tested positive for Coccidioides spp. by using recent 

human case data (2001-2016) and expanded the region of analysis to include seven states 

in the western U.S. - California, Nevada, Arizona, Utah, New Mexico, and Washington 

along with the neighboring state of Oregon. A statistical explanation of MaxEnt can be 
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found in Elith et al. (2011), but in summary, the algorithm works with presence-only data 

by comparing the environmental data found at species presence locations to data from 

background locations consisting of a random sample of points from across the entire 

study area.  While there are multiple options available for niche modeling, the MaxEnt 

algorithm was chosen because of its ability to handle presence-only data, explore 

complex/interacting relationships, and generate predictions that compare favorably with 

other models (Elith et al., 2006); as far as we are aware, this is the first time MaxEnt has 

been used to assess the ecological niche of Coccidioides spp. 

2. Materials and Methods 

2.1 Presence Data 

Annual valley fever case totals from 2001 to 2016 were obtained for all states in 

the study area from the respective state health departments with a few exceptions; 

Washington data included locally acquired cases from 2014 to 2016 and Oregon data 

included cases from 2015 to 2016 as valley fever reporting was not mandatory in those 

states prior to those years.  Data was available at the county-scale for California, Arizona, 

New Mexico, and Washington and at the health-district scale for Nevada and Utah.  

Yearly disease incidence rates per 100,000 population were calculated using linearly 

interpolated annual population estimates based on the 2000 and 2010 census counts and 

the 5-year American Community Survey 2015 population estimate (U.S. Census Bureau, 

2000, 2010, 2015).  Annual incidence rates were averaged over the study period to obtain 

average annual incidence per year for each county (see Figure 2).   

County/health-district valley fever case reports were used in place of known 

Coccidioides spp. presence points.  The use of this proxy was necessary for two reasons: 
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1) currently there is no consolidated, georeferenced database of the positive soil samples 

that have been retrieved and 2) required valley fever reporting spans the endemic region 

while the limited soil samples do not.  While case data are not a direct measure of 

pathogen presence in the soil of a county, we felt it was reasonable to assume that for 

most cases, the county where the report was made was the same county where the disease 

was acquired, but we acknowledge that this contributes to model uncertainty (Benedict et 

al., 2018).   
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Figure 2. Average valley fever incidence per 100,000 population per year, based on data 
from 2001-2016, with one set of randomly-generated representative presence points.   
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2.2 Environmental Data 

The environmental data used in the niche model represents ecological dimensions 

that are hypothesized to be relevant to the distribution of Coccidioides spp. (see Table 1).  

The climate data include 19 bioclimatic variables and downward solar radiation from the 

WorldClim Version 2 dataset at 30 arc-second resolution (Fick & Hijmans, 2017).  Soil 

data are from the Regridded Harmonized World Soil Database v1.2 and include 0.05-

degree resolution rasters for pH, percent clay, sand, silt, and topsoil carbon content 

(Wieder, Boehnert, Bonan, & Langseth, 2014).  While the coarse resolution of this 

dataset is not ideal, this data source has the relevant attributes in a gridded format that 

does not require significant preprocessing, allowing for easy replication if more precise 

occurrence data become available.  Elevation data, including elevation, slope, aspect, and 

Compound Topographic Index (also referred to as the Wetness Index) are from the USGS 

HYDRO1k data set derived from the USGS' 30 arc-second digital elevation model (U.S. 

Geological Survey, 2015).  Land cover data are from the 2011 National Land Cover 

Database at a spatial resolution of 30-meters (Homer et al., 2015).  The land cover 

categories were aggregated into seven broad habitat classes: water/wetlands, developed, 

barren, forest, shrubland, herbaceous, and cultivated. County/health district land cover 

percentages for each class were calculated in ArcMap using zonal statistics and rasters 

with these values were then created.  A raster of percent total land cover change from 

2001 to 2011 for each county/health district was also created.  While the original land 

cover data was available at a much higher resolution than the other environmental 

variables, it was converted to continuous data, aggregated at the county/health-district 

scale to match the health data, so that the land cover types could be directly compared 
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with the other continuous variables.  All environmental data were projected to USA 

Contiguous Albers Equal Area Conic (NAD 1983) and resampled using nearest-neighbor 

to a 30 arc-second resolution.    
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TABLE 1.  Environmental Data 
Variable Resolution Units 

Climatic Variables1   
 Annual Mean Temperature (BIO1)* 30 arc-second ⁰C*100 
 Mean Diurnal Range (BIO2) 30 arc-second ⁰C*100 
 Isothermality (BIO3)*  30 arc-second NA 
 Temperature Seasonality (BIO4) 30 arc-second ⁰C 
 Max Temp of Warmest Month (BIO5) 30 arc-second ⁰C*100 
 Min Temp of Coldest Month (BIO6) 30 arc-second ⁰C*100 
 Temp Annual Range (BIO7)* 30 arc-second ⁰C*100 
 Mean Temp of Wettest Quarter (BIO8)* 30 arc-second ⁰C*100 
 Mean Temp of Driest Quarter (BIO9)* 30 arc-second ⁰C*100 
 Mean Temp of Warmest Quarter (BIO10) 30 arc-second ⁰C*100 
 Mean Temp of Coldest Quarter (BIO11) 30 arc-second ⁰C*100 
 Annual Precipitation (BIO12) 30 arc-second Mm 
 Precip of Wettest Month (BIO13) 30 arc-second Mm 
 Precip of Driest Month (BIO14)* 30 arc-second Mm 
 Precip Seasonality (BIO15)*  30 arc-second Mm 
 Precip of Wettest Quarter (BIO16)* 30 arc-second Mm 
 Precip of Driest Quarter (BIO17) 30 arc-second Mm 
 Precip of Warmest Quarter (BIO18)* 30 arc-second Mm 
 Precip of Coldest Quarter (BIO19) 30 arc-second Mm 
 Downward Radiation 30 arc-second kJ m-2 day-1 
Soil Variables2   
 Topsoil clay fraction*  0.05 degree percent weight 
 Topsoil silt fraction* 0.05 degree percent weight 
 Topsoil sand fraction* 0.05 degree percent weight 
 Topsoil carbon content* 0.05 degree kg C m-2 
 Topsoil pH (in H2O)* 0.05 degree -log(H+) 
Elevation Variables3   
 DEM (elevation)* 1-kilometer Meters 
 Slope* 1-kilometer Degree 
 Aspect* 1-kilometer degree (0-360⁰) 
 Compound Topographic Index* 1-kilometer NA 
Land Cover Variables4   
 Proportion Shrub/Scrub* 30-meter percent area 
 Proportion Barren* 30-meter percent area 
 Proportion Herbaceous* 30-meter percent area 
 Proportion Forest* 30-meter percent area 
 Proportion Water & Wetland* 30-meter percent area 
 Proportion Developed* 30-meter percent area 
 Proportion Cultivated* 30-meter percent area 
  Proportion Changed from 2001 – 2011* 30-meter percent area 
1 http://worldclim.org/version2   
2 https://daac.ornl.gov/SOILS/   
3 https://lta.cr.usgs.gov/HYDRO1K   
4 https://www.mrlc.gov/nlcd11data.php    
* Included in final model   

 
 



   
 

  64 

2.3 Data Processing 

Previous ENM studies have handled county-level presence data by either 

assigning the geographic coordinates of county centroids or population density centers to 

each occurrence (Peterson, Pereira, & Neves, 2004; Zeimes et al., 2015), or by plotting 

random points within each county polygon to represent each occurrence (Nakazawa et al., 

2007, 2010; Peterson, Lash, Carroll, & Johnson, 2006).  This study used the latter method 

as it is better suited to represent the variability found in the large counties where the 

disease is endemic. Specifically, we used 25 random points generated for each case per 

100,000 population to develop 25 sets of covariates, to be used in 25 replicate niche 

models. This case per 100,000 value was based on the previously calculated average 

incidence per year, rounded up to the nearest whole number to capture all counties that 

had cases during the study period.  This approach represents counties with high incidence 

more precisely and counties with low incidence with more spatial variation in 

representative points. The random occurrence points were generated in R using the 

‘spsample’ command from the SP package and verified in ArcGIS version 10.5 (Bivand, 

Pebesma, & Gomez-Rubio, 2013; Environmental Systems Research Institute, 2017; 

Pebesma & Bivand, 2005; RStudio Team, 2016).  The MaxEnt default of 10,000 

background points were randomly selected from the study area.  Predictor variables 

considered for this analysis included the 37 environmental raster layers listed in Table 1.  

High correlations among predictors can lead to misleading results in the MaxEnt variable 

contribution reports (Merow, Smith, & Silander, 2013; Phillips, Anderson, & Schapire, 

2006), therefore variables were assessed for collinearity and reduced based on a Pearson 

correlation coefficient r > 0.80 (α = 0.05).  Of the highly correlated variables (all 
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climatic), those retained were selected based on findings from past research or ease in 

model interpretation.  This resulted in the inclusion of 26 predictor variables (denoted by 

* in Table 1).   

2.4 Ecological Niche Modeling  

The MaxEnt modeling in this study was performed in R using the DISMO package 

(Hijmans, Phillips, Leathwick, & Elith, 2017). The model was run through 25 iterations, 

once for each of the 25 sets of occurrence points. The MaxEnt default features were 

limited to linear, quadratic, and product to remove highly nonlinear variable response 

curves and improve our ability to interpret the species’ response to the predictor of 

interest (Merow et al., 2013).  We also increased the regularization coefficients by 10% 

to force the algorithm to focus on the most important features and reduce overfitting by 

relaxing the empirical constraints on the model (Merow et al., 2013).    Each model was 

evaluated using a 10-fold cross validation (0.01 convergence limit and 1000 maximum 

iterations) with over 1200 training samples and 135 testing samples.  Overall model 

quality was assessed through analysis of the mean area under the receiver operating 

characteristic curve (or AUC).  AUC is a measure of how well the model separates 

presence and background locations; a value of 0.5 indicates that the model performs no 

better than a random model and 1 indicates perfect accuracy.  AUC is commonly used in 

ecological niche model comparisons (Elith et al., 2006; Frans et al., 2018; Padalia, 

Srivastava, & Kushwaha, 2014; Phillips et al., 2006; Warren & Seifert, 2011), but has 

been critiqued with concerns that it lacks an indication of model fit and has biased values 

with larger background extents generally having higher AUC values (Jiménez-Valverde, 

Acevedo, Barbosa, Lobo, & Real, 2013; Lobo, Jiménez-Valverde, & Real, 2008).  All the 
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models in this study use the same background, therefore AUC should be suitable for 

comparisons.  Predictor variables were assessed by averaging reports generated by 

MaxEnt including 1) variable percent contributions and permutation importance, 2) 

jackknife tests of model gains for three scenarios (without variable, with only one 

variable, and with all variables), and 3) variable response curves.  Finally, the raw output 

data from the model predictions was combined by averaging each pixel to produce an 

estimate of potential distribution.   

3. Results 

3.1 Variable Assessment 

Three MaxEnt reports were used to estimate the effect of each variable on the 

spatial distribution of Coccidioides spp.  The results reported here focus on the top five 

variables in each assessment; complete results can be found in Appendix A.  The first 

assessment report showed what variables contributed most to the model; these include 

downward radiation, mean temperature of driest quarter, proportion barren land cover, 

and proportion shrub land cover (see Table 2).   The second variable assessment report 

included results of jackknife tests on the variables.  When the model was run with only 

one selected variable at a time, climate variables were the most influential, meaning these 

variables contain the most information by themselves (see Table 3).  The model was also 

run with all variables except the selected variable. Model performance decreases if the 

selected variable contains information not found in other variables.  Model performance 

decreased for proportion barren, downward radiation, proportion shrub, and proportion 

cultivated (see Table 4).  The final variable assessment report consisted of variable 

response curves that show how the predicted probability of presence changes as the 
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environmental variable changes.  Two sets of response curves were assessed- one with 

other variables held constant, and one using only the selected variable (not shown, see 

Appendix A).  All precipitation variables except seasonality had generally negative 

relationships, and all temperature variables had positive relationships, with the exception 

of temperature range which had no relationship with probability of presence.  Land cover 

relationships showed a negative curve between probability of presence and proportion 

barren, and a positive curve for proportion cultivated and proportion shrub. The only soil 

and elevation variables that contribute significant information were silt and elevation, 

both having a negative relationship with probability of presence when assessed 

individually.   
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Table 2.  Top variables contributing to model development. 
Rank Variable Contribution % Permutation Importance % 

1 Annual Mean Temp 28.2 Downward Radiation 38.5 

2 Mean Temperature of Driest 
Quarter 19.0 Mean Temperature of Driest 

Quarter 18.8 

3 Downward Radiation 11.3 Proportion Barren 15.5 
4 Proportion Shrub 7.4 Proportion Cultivated 15.5 
5 Proportion Barren 7.0 Proportion Shrub 4.6 

 
Table 3. Top variables from model jackknife tests using only the selected variable. 
Rank Training Gain Testing Gain AUC Value 

1 Annual Mean 
Temp 0.33 Annual Mean 

Temp 0.37 Annual Mean 
Temp 0.76 

2 Mean Temperature 
of Driest Quarter 0.32 Mean Temperature 

of Driest Quarter 0.36 Mean Temperature 
of Driest Quarter 0.75 

3 Precipitation of 
Driest Month 0.25 Precipitation of 

Driest Month 0.33 Mean Temperature 
of Driest Quarter 0.74 

4 Down. Radiation 0.19 Down. Radiation 0.23 Developed 0.74 
5 Silt Fraction 0.14 Elevation 0.16 Down. Radiation 0.74 

 
Table 4. Top variables from model jackknife tests without the selected variable. 

Rank Training 
Gain 
Lost Testing 

Gain 
Lost 

1 Barren 0.06 Barren 0.06 
2 Down. Radiation 0.05 Down. Radiation 0.04 
3 Shrub 0.05 Shrub 0.03 
4 Cultivated 0.03 Cultivated 0.03 

5 Mean Temperature 
of Driest Quarter 0.02 Herbaceous 0.01 

 

3.2 Potential Distribution 

The raw output from the MaxEnt prediction is equivalent to the relative 

occurrence rate; it shows the probability that a cell is contained in a collection of 

presence samples (Merow et al., 2013).  The map produced from averaging the raw 

output for the simplified model captures the areas around the counties with the highest 

incidence rates, particularly in south central Arizona and central California, as having the 

highest relative occurrence rates (see Figure 3).  Southcentral Washington and parts of 

northern Oregon stand out from the rest of the Pacific Northwest as having higher rates 
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than surrounding areas.  Low rates of relative occurrence can be seen in the Mojave 

Desert of southeastern California, the northern coastlines, and throughout most of 

Nevada, Utah, Oregon, and western Washington.  While the output from the prediction is 

continuous, some county borders are visible due to the summation and influence of land 

cover variables at the county/health district spatial scale.   

 
Figure 3. Map of potential distribution based on average raw output from model 
predictions.  Higher values indicate a higher relative occurrence rate. 
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3.3 Model Evaluation 

Model evaluation results show that model testing performance was only slightly 

below training performance (Tables 5).  Testing AUC values for the model ranged from 

0.823 to 0.829, which is considerably higher than the null model of 0.5 indicating model 

performance no better than random.  These results indicate that the environmental 

variables used in this study were able to partially explain the spatial distribution of valley 

fever.  Additionally, there was consistency between the 25 sets of models as indicated by 

the low standard deviations in both testing and training AUC values.   

Table 5. Model Evaluation Results 
 Model Average Standard Deviation 
Training AUC 0.828 0.002 
Testing AUC 0.826 0.002 

 

4. Discussion 

This research aimed to improve our understanding of factors affecting 

Coccidioides’ spp. ecological niche and the spatial distribution of valley fever through 

ecological niche modeling.  This modeling framework allowed us to conduct an informed 

assessment of environmental factors influencing Coccidioides spp. occurrence and to 

produce a potential distribution map based on environmental inputs. Significant findings 

include the identification of specific land cover types and climatic variables, including 

proportion barren and mean temperature of the driest quarter, as influential factors.  A 

significant finding from the potential distribution map is that southeastern Washington 

and northcentral Oregon, generally aligning with the Columbia Plateau ecoregion, have 

higher rates of relative occurrence than surrounding areas indicating environmental 

conditions more suitable for Coccidioides spp.  This is the first time Oregon and 
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Washington have been included in such an assessment.  Based on the results of this 

research, we can characterize the probable realized niche for Coccidioides spp., and 

therefore the probable U.S. endemic region for valley fever, as areas in the western U.S. 

that are semi-arid with a hot-dry season supporting shrub vegetation and/or cultivated 

land cover. 

The variable assessment results showed that of the four broad environmental 

categories hypothesized to affect Coccidioides’ spp. ecological niche, climate and land 

cover had the greatest effects, while soil and elevation variables were less influential.  

Specifically, temperature-related variables accounted for over 50% of the variable 

contribution to model development and permutation importance.  Researchers have 

hypothesized that Coccidioides spp. grow best in areas where a hot and dry season 

sterilizes the top layer of soil, making it inhospitable to many microorganisms (Egeberg 

& Ely, 1956; Egeberg, 1962; Maddy, 1965). It is believed Coccidioides spp. survive hot 

and dry seasons by moving deeper into the soil, then return to the relatively competitor-

free surface when rains return (Sorensen, 1967).  The presence of the mean temperature 

of the driest quarter and precipitation of the driest month variables as top contributors in 

many of the assessments, with a positive response curve for temperature and a negative 

response curve for precipitation, support this hypothesis.  This also aligns with a “grow 

and blow” hypothesis that theorizes alternating cool/wet and hot/dry seasons support 

pathogen growth and disturbance/dispersal, respectively (Comrie & Glueck, 2007).  Solar 

radiation was also a very prominent variable in many of the assessments.  Researchers 

have observed that when Coccidioides spp. is in the form of an arthroconidia, spherule, or 

endospore, it has a biological defense, an ability to deposit melanin within its cell walls, 
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that protects it from extreme temperatures and UV radiation (Nosanchuk, Yu, Hung, 

Casadevall, & Cole, 2007; Taborda, da Silva, Nonsanchuk, & Travassos, 2008).  This 

likely gives the fungus an additional survival advantage that other competitors may not 

have during the hot and dry season.  

Land cover variables were also prominent in the development of the model, 

accounting for approximately 20% of model development and 35% permutation 

importance. In a comprehensive review of attributes from nine sites that have tested 

positive for Coccidioides spp. presence in the soil, Fisher et al. (2007) found that there 

was no definitive vegetation types or densities common among sites.  But landcover 

classes, though many are defined by vegetation, represent broader ecologies with 

interactions among vegetation, soil, climate, and human activity, all of which may affect 

Coccidioides’ spp. lifecycle.  The variable response curves showed positive relationships 

between probability of presence and proportions shrub and cultivated land cover.  The 

relationship with cultivated land cover aligns with recent research (Colson et al., 2017; 

Gorris, Cat, Zender, Treseder, & Randerson, 2017), but is at odds with past findings that 

concluded Coccidioides spp. does not grow well in cultivated soils possibly due to 

microbial competitors or fungicides (Maddy, 1958; Pappagianis, 1988; Swatek, 1970).  It 

might be that fallow agricultural fields in these regions are supporting pathogen growth. 

Counties with a significant proportion of barren land cover, meaning little to no green 

vegetation, had reduced probability of presence.  It is possible that this land cover may 

not contain the types of nutrients that Coccidioides spp. need for survival and growth 

and/or that this land cover is associated with climates that are too hot and dry for the 

fungus. Of note, the greatest model gains were not from individual variables, but the 
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result of interactions, mainly between various climatic variables and between climate and 

land cover types; such interactions warrant further study.  Variables not significant to 

model development or not found to contain significant information by themselves include 

most of the soil and elevation variables; the resolution of the soil variables may have 

been too coarse, or they may just not be as influential on the distribution of Coccidioides 

spp. as climate and land cover at the scale of this analysis.  

The potential distribution map generated from the MaxEnt model provides an 

indication of Coccidioides’ spp. realized niche and allows generation of new hypothesis 

regarding other factors that might influence the disease distribution.  Although evaluation 

metrics show the model was able to satisfactorily differentiate between presence and 

background locations, this map should not be interpreted as the definitive range of 

Coccidioides spp., but rather as a guide for further evaluations and field studies.  A visual 

assessment of the map shows that it captured the most endemic regions of central 

California and southcentral Arizona as having the highest relative rates of occurrence.  

Based on the patterns shown, we can characterize the probable realized niche for 

Coccidioides spp. as North American shrublands, including those that have been altered 

for cultivation, with semi-arid climates that include a very hot, dry season. Overall, this 

characterization is fairly similar to the findings from 50 years ago made based on 

observations (Maddy & Coccozza, 1964), but provides more specific information on 

probable land cover associations. It should be noted that because land cover percentages 

were calculated at the county/health district scale, results in the probable distribution map 

highlight counties with similar land cover proportions rather than the actual geographic 

locations of associated land covers.  
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Of interest to this study were the rates of relative occurrence in Oregon and 

Washington, which have received little attention in valley fever studies.  The region in 

Oregon and Washington that shows higher relative occurrence rates generally aligns with 

the Columbia Plateau ecoregion, characterized by a semi-arid climate that supports native 

shrub-steppe and other drought-tolerant plant communities with over half of the native 

shrub-steppe currently converted to agriculture (https://waconnected.org/columbia-

plateau-ecoregion/).   Not surprisingly, these characteristics are similar to what we find in 

the highly endemic areas of central California and southcentral Arizona, making this 

region a great candidate for increased valley fever surveillance and awareness campaigns.  

The probable distribution map can also be used to make informed hypotheses regarding 

other factors that may be influential that were not included in this study.  For example, 

based on patterns observed, future studies might consider including variables such as 

predominant winds and proximity to stream networks. 

The findings of this study are subject to several limitations.  In using case data, 

we assume that reported cases are geographically connected to pathogen presence, but it 

is likely that some of the cases are travel-related and not acquired in the county in which 

they were reported.  As such distinctions are not maintained in most states, this adds 

uncertainty to our model.  For context, a recent study by Benedict et al. (2018), reported 

on enhanced surveillance of coccidioidomycosis in which they conducted in-depth 

interviews with patients; 64 patients were from Nevada, New Mexico, or Utah, and 26 of 

them (37.5%) reported traveling to known endemic areas in the 4 months before 

symptom onset.  The implications of this are possible overestimations of potential 

suitable areas, and inaccuracies in variable importance rankings.  Another complication 
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in using case data is that administrative changes can affect reporting requirements.  In 

2008 the Council of State and Territorial Epidemiologists changed the definition of 

coccidioidomycosis to allow a single detection of coccidioidal immunoglobulin G 

antibody to serve as laboratory confirmation of infection, and in 2010, California 

transitioned to a laboratory-based reporting system; these administrative changes may 

have increased or decreased the number of reported cases in those states compared to 

prior years (Tsang et al., 2013), but it is unlikely that these changes significantly impact 

this study with the broad spatial and temporal scales used.   

Another limitation to this study is the scale of analysis.  Ideally, research would 

be conducted at the scale at which the organism interacts with limiting environmental 

resources (Cushman & Huettmann, 2010).  Because we are working with case data 

collected at the county/health district level, we are restricted to working only at courser 

resolutions, though this study attempted to address this scale issue by using random 

points within the counties to represent disease occurrence at a finer scale.  The 

implications of using a coarser scale are that precise features of distribution can be lost 

and these resolutions also tend to overestimate potential suitable areas when compared to 

predictions at finer-scales (Wiens, Stralberg, Jongsomjit, Howell, & Snyder, 2009).  

Additionally, there is a slight discrepancy between temporal scale of disease data and the 

climatic data used in this research; the climate variables were averaged from 1970 to 

2000 and the disease data were averaged from 2001-2016.  While climate is typically 

averaged over 30 year periods and averages tend to change slowly, the magnitudes of 

climate-disease connections found in this study may not reflect current associations and 
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adaptations, but general (positive or negative) relationships are not expected to be 

affected. 

It was our intent to be cautious and conservative in interpreting the results of this 

research, as a significant assumption is being made in using valley fever case data to 

assess Coccidioides’ spp. niche.  Additionally, with ecological niche modeling, as with 

all modeling, results are dependent on assumptions made in model selection and 

parametrization; different inputs and assumptions will produce different results.  Our aim 

was to draw conclusions regarding the spatial and ecological distribution of valley fever 

and the identification of factors influencing the distribution that are generalizable, and not 

the result of the modeling process.   Results could be refined in the future if there are 

more precise locations of exposure recorded, widespread skin testing, or improved 

environmental detection of the fungus as technologies continue to advance (Benedict et 

al., 2015). 

5. Conclusion 

Valley fever has been considered endemic to the southwestern U.S. for over 50 

years, but over the past decade, Coccidioides spp. growth sites have been discovered in 

an unexpected region, south central Washington State (Marsden-Haug et al., 2013).  

These discoveries put into question what we thought we knew about the endemic area of 

valley fever and the drivers influencing the niche of Coccidioides spp. (Baptista-Rosas et 

al., 2007; Benedict et al., 2015).  This study used ecological niche modeling to further our 

understanding of Coccidioides’ spp. realized niche and to define its probable distribution.  

The model confirmed the importance of environmental drivers such as temperature and 

land cover on the spatial distribution of this disease. The MaxEnt algorithm used the 
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provided environmental variables to capture the spatial patterns observed in valley fever 

case reporting, and it identified the understudied Columbia Plateau region as a possible 

habitat for Coccidioides spp.  This information can be applied by stakeholders ranging 

from other coccidioidomycosis researchers to public health officials in assessing 

vulnerability, refining endemicity, and in watching for potential hotspots.  Furthermore, 

the uncovered relationships between the spatial distribution of Coccidioides spp. and the 

environmental variables used in this study will be informative to the development of 

predictive models in assessing how disease distribution may change with varying climate, 

land cover, and population.  
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Spatiotemporal modeling of relative risk of coccidioidomycosis in California 
 
Manuscript for ‘Applied Geography’ 

Abstract 

Valley fever, or coccidioidomycosis, cases are rapidly rising in California and the 

causes are unclear.  Spatio-temporal disease mapping can be used to better understand 

where valley fever risk is increasing and to identify environmental risk factors associated 

with the disease. This study applies a hierarchical Bayesian spatio-temporal model to 

analyze county-scale valley fever relative risk in California from 2001 to 2018.   

Additionally, we evaluated the contribution of annual temperature, annual precipitation, 

precipitation from the previous year, mean temperature of the driest quarter, and percent 

cultivated land cover in explaining the patterns observed in relative risk. Results show a 

steady increase in valley fever risk over the study period and increasing relative risk 

trends along the central coast and into the northern Central Valley of California.  Eight 

counties were classified as high risk and four counties were classified as medium risk. 

Statistically significant covariates include both precipitation variables and percent 

cultivated land cover.  The findings from this study can be applied to focusing resources 

on counties classified as high or medium risk with increasing temporal trends. The 

application of a Bayesian spatio-temporal model and identification of significant 

environmental covariates may additionally be used in future studies that forecast valley 

fever based on environmental conditions. 

 

1.  Introduction 

Valley fever or coccidioidomycosis is an understudied fungal disease affecting 

populations in the western U.S., as well as in parts of Central and South America.  Over 
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the last two decades case counts in the U.S. have been increasing, but over the last four 

years there has been a dramatic spike in the number of cases in California with an 

increase from approximately 2,300 in 2014 to a record high of 7,446 in 2017 (California 

Department of Public Health, 2018).  Common symptoms of valley fever include flu-like 

symptoms such as fever and cough, but the disease can also disseminate to other parts of 

the body and cause serious, lifelong illnesses such as chronic meningitis (Rosenstein et 

al., 2001).  

The reason for the sudden increase in valley fever cases in California is uncertain 

but it could in part be due to changes in environmental conditions.  Researchers have 

hypothesized that there is a relationship between valley fever and environmental 

conditions based on our knowledge of the fungus’ lifecycle.  Valley fever is caused by 

inhalation of fungal spores from Coccidioides immitis or Coccidioides posadasii. 

Coccidioides species typically live and get their nutrients from the soil where they take a 

hyphal form (Barker, 2017).  As part of their lifecycle, they also fragment into 

microscopic spores known as arthroconidia that can easily become airborne.  When these 

airborne arthroconidia are inhaled by a human or other mammalian host they change into 

a spherule form and become pathogenic (Barker, 2017).  The spherules break apart inside 

the host into tiny endospores, which then grow into spherules, allowing the cycle to 

repeat and causing illness.  Researchers have hypothesized that wet environmental 

conditions foster growth of the fungus in the soil, then subsequent dry periods promote 

fragmentation and allow spores to become airborne resulting in valley fever illnesses 

(Comrie & Glueck, 2007; Kolivras & Comrie, 2004; Tamerius & Comrie, 2011).  

Research over the past 15 years has found and quantified statistically significant valley 
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fever – environment relationships in regional and single-county studies focused mainly in 

Arizona and California (Comrie, 2005; Coopersmith et al., 2017; Gorris, Cat, Zender, 

Treseder, & Randerson, 2017; Park et al., 2005; Stacy, Comrie, & Yool, 2012; Tamerius 

& Comrie, 2011; Weaver & Kolivras, 2018).  Results from these studies have not been 

consistent; they vary with the spatial and temporal scales used and locations assessed.  

There are also a few studies that found only weak correlations or a lack of statistically 

significant relationships between climate and valley fever (Talamantes, Behseta, & 

Zender, 2007; Zender & Talamantes, 2006).   

Past valley fever studies include descriptive analyses (Maddy, 1965; Maddy & 

Coccozza, 1964; Petersen et al., 2004), time-series analyses (Comrie, 2005; Stacy et al., 

2012; Talamantes, Behseta, & Zender, 2007), and ecological or spatial analyses 

(Baptista-Rosas et al., 2007; Gorris et al., 2017; Grayzel, Martínez-López, & Sykes, 

2017), that are often aggregated over time or area and are focused on disease incidence 

rather than risk.   Epidemiological disease mapping techniques that assess both the spatial 

and temporal patterns of disease risk are useful in developing risk maps for surveillance 

and forecasting.  Such techniques have not yet been applied to valley fever; therefore, this 

research investigates county-level, spatio-temporal valley fever relative risk trends in 

California and evaluates potential drivers of those trends using data from 2001-2018.  A 

Bayesian spatio-temporal framework is well-suited for this type of research because it 

allows risk to be divided into spatial, temporal, and spatial-temporal interaction effects 

(Kim & Kim, 2018).  Bayesian spatio-temporal models can account for observation and 

process uncertainty, and spatial and temporal autocorrelation in the data (Dietze, 2017; 

Khana, Rossen, Hedegaard, & Warner, 2018).  Bayesian spatio-temporal modeling has 
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been used to assess disease risk and covariate relationships for diseases such as dengue 

(Lowe et al., 2014; Martınez-Bello, Lopez-Quilez, & Prieto, 2018), scrub typhus (Kim & 

Kim, 2018), Rocky Mountain spotted fever (Raghavan, Goodin, Neises, Anderson, & 

Ganta, 2016) and hand-foot-mouth disease (Tian et al., 2018) but this research is the first 

to apply these methods to valley fever.   

This study has three aims to address gaps in the literature: 1) to develop a model 

to investigate spatio-temporal trends of valley fever in California, 2) to identify high risk 

areas and temporal changes in those areas, and 3) to evaluate environmental risk factors 

hypothesized to be associated with valley fever. The understanding of relative risk 

patterns is important for targeting awareness and educational campaigns and promoting 

diagnostic testing in areas where a disease is emerging. Identification of environmental 

risk factors could help establish the utility of environmental monitoring as an aide for 

valley fever surveillance.  Furthermore, this study demonstrates how Bayesian spatio-

temporal disease mapping can be applied by those studying disease distributions to obtain 

valuable information regarding both where disease risk is greatest and how that risk has 

evolved through space and time.   

 

2.  Materials and Methods 

2.1 Disease data and environmental covariates 

 The study area for this research includes all counties in California (see FIGURE 

1).  California has the second highest case counts and incidence rates in the U.S. and 

accounted for approximately half of the 2017 cases. Valley fever reporting was required 

statewide during the study period, 2001-2018.  The annual county-scale data used in this 
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study was acquired from the California Department of Public Health (CDPH, 2019); the 

2018 data is provisional at the time of this writing.  County population data was from the 

U.S. Census Bureau and was linearly interpolated based on 2001, 2010, 2015 census data 

(U.S. Census Bureau, 2000, 2010, 2015).   

 

FIGURE 1.  Study area showing select U.S. Environmental Protection Agency Level III 
Ecoregions in California (EPA, 2018). 

 

The environmental covariates included in the model were selected based on 

associations found in previous research and have known or hypothesized ecological 
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relationships with valley fever (Baptista-Rosas et al., 2007; Comrie, 2005; Gorris et al., 

2017; Weaver & Kolivras, 2018).  Most of the previous studies used monthly or seasonal 

temporal scales in their analyses; this research evaluates whether these relationships hold 

when aggregated to the annual scale.  The covariates assessed that vary over time 

included annual precipitation (concurrent), annual precipitation (lagged one year), mean 

annual temperature, and mean temperature of the driest quarter.  The data for these 

covariates was from the Multivariate Adaptive Constructed Analogs (MACA) dataset 

(https://climate.northwestknowledge.net/MACA/).  The MACA dataset covers the study 

area, was available for the entire study period, and has climate projections needed for 

disease forecasting, a potential future use of this model.  The only temporally static 

covariate assessed was percentage of landcover that is cultivated. The landcover data is 

from the 2011 National Land Cover Database (https://www.mrlc.gov/data).  This set was 

chosen because it is closest to the mid-point of the temporal range of the study period. R 

was used to transform the covariate data to the same spatial resolution as the disease data 

and to calculate zonal statistics (R Core Team, 2003).  All covariates were standardized 

to have a mean of zero and a standard deviation of one for comparability.  

2.2 Bayesian Modeling 

Using a Bayesian framework, Poisson regression, commonly used for count data, 

was used to quantify spatio-temporal variation in valley fever and associations with 

selected environmental factors. The general equation is given in formula (1) below.  It 

can be thought of as having a component representing the background disease risk (𝑒𝑒𝑖𝑖𝑖𝑖) 

and a component representing the excess risk in a specific area-time unit (𝜃𝜃𝑖𝑖𝑖𝑖).  The 

excess (relative) risk is the focus of the modeling for this study (Lawson, 2018).  
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(1) 𝑦𝑦𝑖𝑖𝑖𝑖~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆𝑖𝑖𝑖𝑖);  𝜆𝜆𝑖𝑖𝑖𝑖 =  𝑒𝑒𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖  

• 𝑦𝑦𝑖𝑖𝑖𝑖  is the observed number cases 

• 𝜆𝜆𝑖𝑖𝑖𝑖 is the modeled average number of cases 

• 𝑒𝑒𝑖𝑖𝑖𝑖   is the expected number of cases 

• 𝜃𝜃𝑖𝑖𝑖𝑖   is the relative risk 

• i is the ith area (i = 1, …58) 

• t is the tth time unit (t = 1, …16) 

 

The expected number of cases is computed using equation (2). Local expected 

cases are calculated by multiplying the local population by standardized incidence rate.  

The standardized incidence rate is the overall disease count divided by total population 

(of the study area).   

(2)   𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖𝑖𝑖  ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
∑ ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 

• 𝑃𝑃𝑖𝑖𝑖𝑖 is the population in the i – tth area-time unit. 

 

This research will estimate the relative risk using two models.  The first model is 

termed the null model and does not contain any covariates.  The second model is termed 

the full model and contains the selected covariates.  The null model uses random effects 

to represent unobserved risk factors that vary over space or time or both space and time.  

It is a log link function which contains spatial, temporal, and spatio-temporal random 

effects terms to represent the disease occurrence patterns. The null model used is given 

by equation (3). 

(3)   log(𝜃𝜃𝑖𝑖𝑖𝑖) = 𝛼𝛼 + 𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖 + 𝜑𝜑𝑖𝑖 +  𝛿𝛿𝑖𝑖𝑖𝑖   
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• 𝛼𝛼 is the intercept term or the mean log risk for the overall study area and study 

period.  

• 𝑢𝑢𝑖𝑖 is a structured area random effect to account for spatial clustering or spatial 

dependency.  It uses an intrinsic conditional autoregressive (iCAR) prior.  The 

conditional expectation of 𝑢𝑢𝑖𝑖 is equal to the mean of the random effects in 

neighboring areas; the conditional variance is inversely proportional to the 

number of neighbors (Besag, York, & Mollie, 1991; Lawson, 2018). Prior: 

 𝑢𝑢𝑖𝑖|𝑢𝑢−𝑖𝑖 ,𝑊𝑊, 𝜏𝜏𝑢𝑢 ~ 𝑁𝑁( ∑ 𝑢𝑢ℎℎ~𝑖𝑖
𝑛𝑛𝑖𝑖

, 1
𝜏𝜏𝑢𝑢𝑛𝑛𝑖𝑖

)   

o 𝑢𝑢−𝑖𝑖  is the vector of spatial effects omitting county i 

o 𝑊𝑊 is a county spatial adjacency matrix. Weights are assigned to each 

county according to adjacency where neighboring counties (counties that 

share a border) receive a weight of one and non-neighboring counties a 

weight of zero (Source: US Census). 

o 𝜏𝜏𝑢𝑢 represents the precision (reciprocal of variance) that controls the 

amount of variation between the random effects. 𝜏𝜏𝑢𝑢 ~ Gamma(1,0.00005). 

o ℎ ~ 𝑃𝑃 represents neighboring counties  

o 𝑃𝑃𝑖𝑖 is the number of neighbors of county i 

• 𝑣𝑣𝑖𝑖 is an unstructured area random effect to account for unknown spatial factors.  It 

is given a normal prior: 𝑣𝑣𝑖𝑖 ~ N(0,𝜏𝜏𝑣𝑣). Precision 𝜏𝜏𝑣𝑣 ~ Gamma(1,0.00005). 

•  𝜑𝜑𝑖𝑖 is an unstructured temporal random effect to account for unknown factors or 

temporal noise.  It is given a normal prior: 𝜑𝜑𝑖𝑖 ~ N(0,𝜏𝜏𝜑𝜑).  𝜏𝜏𝜑𝜑 ~ 

Gamma(1,0.00005). 
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• 𝛿𝛿𝑖𝑖𝑖𝑖 is an interaction random effect between area and time. This research explores 

interactions between unstructured area and time effects (a Type I interaction). 

These can be thought of as unobserved covariates for each area-time unit that do 

not have any structure in space*time (Knorr-Held, 2000). It is given a normal 

prior: 𝛿𝛿𝑖𝑖𝑖𝑖 ~ N(0, 𝜏𝜏𝛿𝛿). Precision 𝜏𝜏𝛿𝛿 = Gamma(1,0.00005). 

 

The full model expands the null model to incorporate environmental covariates to 

assist in explaining the spatial and temporal patterns.  The full model is given by equation 

(4):  

 

(4) log(𝜃𝜃𝑖𝑖𝑖𝑖) = 𝛼𝛼 + 𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖 + 𝜑𝜑𝑖𝑖 +  𝛿𝛿𝑖𝑖𝑖𝑖 + ∑ 𝜷𝜷𝒌𝒌𝑿𝑿𝒊𝒊𝒊𝒊𝒌𝒌𝒌𝒌=𝟏𝟏  

• 𝑘𝑘 is the kth covariate (k = 1,…5)  

• 𝑋𝑋 are the covariates  

• 𝛽𝛽 is the corresponding vector of regression coefficients. They are given normal 

priors: 𝛽𝛽 ~ N(0,100000). 

 

The models were fit using Integrated Nested Laplace Approximation (INLA), 

rather than Markov Chain Monte Carlo (MCMC) methods, built and fitted in R (Bivand, 

Gomez-Rubio, & Rue, 2015).  R-INLA uses numerical integration for fixed effects and 

Laplace integral approximation for the random effects; it does not require sampler 

convergence (Rue, Martino, & Chopin, 2009).  A fundamental difference between these 

model fitting techniques is that MCMC proves exact inference while INLA provides an 

approximation to the relevant posterior distribution (Blangiardo, Cameletti, Baio, & Rue, 
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2013).  The benefits of using R-INLA are that it is computationally more efficient than 

MCMC and provides estimations of regression parameters comparable to other Bayesian 

software and/or methods (Martino & Rue, 2010; Rue et al., 2009; Schrödle & Held, 

2011).  R-INLA default values were used for priors; these priors are vague, intended to 

have little influence on posterior distributions allowing results to be primarily derived 

from the data (Rue & Martino, 2009). The models were assessed using cross validation 

and posterior predictive indices, specifically the probability integral transform and 

posterior predictive distribution (Blangiardo & Cameletti, 2015). 

County-level risk classifications were determined using information from the 

whole posterior distribution rather than just the posterior mean; cutoffs were based on a 

simulation study from Richardson et al. (2004) that assessed sensitivity and specificity of 

posterior relative risk estimates in disease mapping.  A county was classified as high-risk 

for valley fever if there was at least an 80% probability of the county-specific relative 

risk being greater than two, indicating twice the average risk. A moderate risk county was 

classified as having at least an 80 percent probability of relative risk being greater than 

one, or above the average risk, and all others were classified as low risk.  Temporal 

trends were graphed for all counties classified as high and medium risk.  

 

3. Results 

3.1 Relative Risk Trends. 

From 2001 to 2018 a total of 63,612 valley fever cases were reported in CA with 

2001 having the lowest count and 2017 having the highest count.  FIGURE 2 shows the 

clearly increasing temporal trend of valley fever risk.  Specifically, in 2018 the relative 
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risk in California was approximately 5 times higher than that in 2001, with a sharp rise 

evident from 2014 to 2017.  Valley fever risk had peaks in 2006, 2011, and 2017 while 

2008 and 2014 were below average.   

 
FIGURE 2. Overall time trend of the relative risk of valley fever in California with 95% 
credible interval.  

 

When viewed spatially, relative risk trends show regional distinctions.  FIGURE 3 

presents the overall relative risk during the study period as estimated from the posterior 

means of the null model.  The counties in California’s southern Central Valley show the 

highest relative risk (see FIGURE 1 for regions). Kern and King Counties (two darkest 

shades) stand out from the rest of the state with posterior means indicating 44 and 23 

times higher risk than average, respectively.  This map also indicates that there are 

counties along the central coast and in the center section of the Central Valley that also 
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have elevated risk.  Lower relative risk areas include many of the counties in northern 

California, along with the counties on the eastern side of the Sierra Nevada mountain 

range.  

 
FIGURE 3. The relative risk of valley fever in California (2001-2018). Individuals in 
the darkest two counties have over ten times higher chance of being infected by valley 
fever than average. 
 

A key output of this research is the spatio-temporal trend for valley fever.  

FIGURE 4 shows the spatio-temporal trends from the last five years which captures the 

sharp increase in valley fever risk seen in the purely temporal trend.  Maps for all years 

can be found in the supplemental material.  These maps let us explore how the relative 
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risk of valley fever is changing in both time and space, which is critical understanding 

disease evolution and trends, but is not often modeled.   These maps show whether 

temporal risk trends are increasing, decreasing, or average for each county.  Counties 

along the central coast of California have had increasing or above average risk for the 

past three years.  There is also a pattern of above average risk in the multiple counties in 

the center of the state.  The two counties in the southern Central Valley that showed the 

highest relative risk in the spatial assessment have had decreasing temporal trends for the 

past five years.  

 

 
FIGURE 4. Spatio-temporal trends of relative risk of valley fever in California (2014-
2018).  The darkest shade indicates higher than the average relative risk and the lightest 
shade indicates lower than the average risk based on an 80% credible interval. 
 
 
3.2 Risk Classification and County Temporal Trends 

 All counties in California were classified into risk categories based off the 

classification standards outlined in Section 2.2.  Of the 58 counties in California, 8 (14%) 

were recognized as high risk, 4 (7%) as medium risk, and 46 (79%) as low risk.  The risk 

classification map is shown in FIGURE 5.  The high risk counties include all counties in 

the southern Central Valley along with the neighboring coastal counties of San Luis 

Obispo and Monterey.  The medium risk counties are all adjacent to the high risk 

counties, either in the Central Valley or along the coast.  Temporal relative risk trends of 
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the high and medium risk counties are shown in FIGURES 6 and 7 respectively.   

Monterey County, along the coast, and Merced County, in the Central Valley, are both 

classified as high risk and show increasing temporal trends.  San Joaquin County, 

classified as medium risk, also shows increasing temporal trends.  Kern and Tulare 

Counties show decreasing temporal trends. 

 
FIGURE 5.  Risk Classification.  High risk is based on 80% of the posterior distribution 
indicating at least double the risk of being infected.  Medium risk is based on 80% of the 
posterior distribution indicating above average risk for being infected. 
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FIGURE 6. Temporal relative risk trends for high risk counties with dashed lines 
indicating 95% credible interval. 
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FIGURE 7. Temporal relative risk trends for medium risk counties with dashed lines 
indicating 95% credible interval. 
 
 
3.3. Evaluation of Environmental Risk Factors.   

 Five covariates were added to the null model to assist in explaining the 

geographic and temporal variations in valley fever risk.   TABLE 1 shows the regression 

coefficients and their exponentially transformed values.  The results indicate that annual 

precipitation, precipitation from the previous year, and percentage of cultivated landcover 
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display significant correlations with valley fever risk.  Annual and lagged precipitation 

were negatively correlated with valley fever risk and percentage of cultivated landcover 

was positively associated.    Landcover had the strongest significant association while 

lagged precipitation was comparatively weak. 

 

TABLE 1. The estimated beta coefficient from the regression model and exponential 
transformations for relative risk in California.  Statistically significant variables are in 
bold. 
Covariate Posterior estimate   
  Beta (95% CI) Relative Risk (95% CI) 
Annual Precipitation  -0.22 (-0.34, -0.11) 0.80 (0.71, 0.89) 
Annual Mean Temperature  -0.05 (-0.27, 0.17) 0.94 (0.76, 1.18) 
Lagged Precipitation (1-year 
lag)  -0.11 (-0.22, -0.003) 0.89 (0.79, 0.99) 
Percent Land Cover Cultivated   0.38 (0.19, 0.47) 1.45 (1.21, 1.60) 
Mean Temperature of Driest 
Quarter   -0.007 (-0.08, 0.06) 0.99 (0.92, 1.06) 

 

4.  Discussion 

This study applied a hierarchical Bayesian spatio-temporal approach to assess 

county-level valley fever risk in California based on annual data from 2001-2018.  We 

mapped the relative risk, classified counties based on model results, and presented 

temporal trends for the counties at elevated risk.  The relative risks presented in this study 

indicate that counties in central California, including central-coastal counties, are at 

increased risk for valley fever.  While Kern County has long been recognized as a valley 

fever hot spot, these results show that valley fever risks are present and increasing in 

counties to the north and west of Kern County.  Spatio-temporal results show that disease 

risk has been increasing faster than average in counties in the Central Valley centered 

around San Joaquin County for the past nine years. Over the past two years, coastal 
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counties from Monterey in the north to Orange County in the south have seen increased 

risk.  Some of these areas are classified as medium or low risk in this study, but with 

increasing trends, they deserve additional attention.  

The overall modeled temporal risk trend generally aligns with case count 

observations.  Two depressions apparent in the trend line coincide with drought periods 

in California – 2007-2009 and 2012-2016 (California Water Science Center, 2019).  Both 

of these low points were followed by significant increases in valley fever risk, seen in 

2011 and 2017.  In the early 1990s, a similar pattern occurred in Kern County, where a 

five-year drought was followed by above average seasonal rainfall that coincided with 

spike in valley fever from 1991 to 1995 (Jinadu, 1995).  Lauer et al. (2014) hypothesized 

that droughts may decimate the less heat-tolerant competitors of Coccidioides spp., and 

then an above average wet season could help Coccidioides’ spores bloom in a less 

competitive environment.  This echoes the “grow and blow” hypothesis proposed by 

Comrie and Glueck (2007) studying valley fever in Arizona.  The patterns observed here 

support this hypothesis, warranting further study. 

The counties classified as high risk are centered in the southern Central Valley of 

California and along the central coast.  The Central Valley is characterized by average 

annual precipitation between 5-15 inches per year and the central coast with up to 25 

inches per year (Western Regional Climate Center, 2019).  Average temperatures in the 

coastal counties are slightly cooler than in the Central Valley and the seasonal climatic 

pattern consists of a dry, hot summer and a wet winter/early spring in both areas (WRCC, 

2019). Climates of both regions align with a review done by Fisher et al. (2007) that 

assessed habitat attributes suitable for Coccidioides spp. growth based on locations where 
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the soil had tested positive for the pathogen.  The temporal risk trends in these counties 

indicate that valley fever may be establishing itself along the coastline, which the CDC 

considers to be suspected endemic rather than established endemic, and further north in 

the Central Valley than is currently thought to be established endemic (Centers for 

Disease Control and Prevention, 2019).  Additional surveillance and soil sampling efforts 

should be focused on these counties to determine if the established endemic range of this 

disease is expanding.  

This research also assessed five environmental covariates, finding three to be 

statistically significant: two precipitation variables and one land cover variable.  Both 

annual precipitation and precipitation from the previous year had inverse relationships 

with relative risk.  This relationship was expected for annual (current year) precipitation 

as Coccidioides spp. are not found in saturated soils (F. S. Fisher et al., 2007), and 

precipitation likely prevents the spores from become airborne; therefore, risk is expected 

to be decreased in years with heavy or consistent precipitation.  The negative relationship 

between relative risk and lagged precipitation runs counter to previous research from 

Arizona and California (Comrie, 2005; Coopersmith et al., 2017; Weaver & Kolivras, 

2018), though the only other study to assess this variable at an annual scale also found a 

positive relationship between 1-year lagged precipitation and valley fever incidence 

specifically in the southern Central Valley (Gorris et al., 2017).  Because rainfall in 

California is received seasonally, the ecological relationship between precipitation and 

valley fever risk may be obscured at annual scales or it may be that heavy precipitation 

hampers Coccidioides spp. growth and dispersal for periods longer than a year. Although 
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these variables were found to be significant, additional factors are needed to better 

account for the spatio-temporal patterns observed.   

The Bayesian spatio-temporal approach used this research allowed us to observe 

geographic patterns in the temporal trends that might not otherwise be noticed while 

avoiding the common problems associated with classical risk estimators such as 

standardized morbidity ratios.  Crude standardized morbidity ratios are imprecise for rare 

diseases and/or in areas with small populations and can have extreme values with low 

precision (Thompson, Carozza, & Zhu, 2007).  Bayesian smoothing assumes that the 

relative risks come from a common distribution and borrows from estimates in other 

areas of the map that are likely to be similar.  The resulting estimates of ‘true’ relative 

risk are a combination of the average of the observed risk and parameters reflecting the 

state-wide distribution, weighted on the population at risk (Lawson, 2018).  Bayesian 

spatio-temporal models are also commonly used for forecasting (Dietze, 2017).  Future 

research can improve upon this model to forecast how valley fever patterns will change 

as climate and other environmental variables change.   

There are a few limitations to this study that should be addressed.  First is a 

possible discrepancy between exposure location and where the disease was reported.  

Because valley fever is contracted through inhalation of spores, the exposure site can 

occur in counties other than where the reports are made, typically the home address of the 

case.  Ideally, the study would use cases where exposure sites were known or where soil 

testing has had positive results, which is not possible with currently available data.  Such 

analyses may be possible in the future as technology to detect Coccidioides spp. in the 

soil improves.  Next, the land use variable, percent cultivated land cover, did not have a 
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temporal component, impacting the ability to model disease variability due to changes in 

landcover.  Next, this research focused on assessing environmental risk factors, but the 

inclusion of additional variables, such as those that capture anthropogenic soil 

disturbance, may help explain more of the spatial and temporal patterns observed.  

Finally, the model might be improved in future studies with consideration of more 

explicit prior distributions, finer temporal scales to capture seasonality, and a weighted 

spatial adjacency matrix that takes into account factors such as length of county borders. 

 

5.  Conclusion 

This study makes broad contributions to the discipline of geography through 

spatio-temporal disease mapping, and more specifically to valley fever research through 

the application of spatio-temporal modeling of relative risk to valley fever. 

Through the application of  Bayesian spatio-temporal modeling, we have a better 

understanding of counties at risk for valley fever risk in California. The resulting risk 

maps and temporal graphs produced can be used by state and county public health 

officials in decision making and prioritization for public health awareness and 

educational campaigns.  This research also investigated potential risk factors present at an 

annual scale, finding three significant environmental relationships.  Quantifying the 

relationships between environmental variables and the distribution of valley fever is 

needed to not only better understand ecology of the disease, but to discern how future 

environmental changes may impact disease distribution.   

 
 



   
 

  114 

References 

Baptista-Rosas, R. C., Hinojosa, A., & Riquelme, M. (2007). Ecological Niche Modeling 

of Coccidioides spp. in Western North American Deserts. Annals of the New 

York Academy of Sciences, 1111, 35–46. https://doi.org/10.1196/annals.1406.003 

Barker, B. M. (2017). The Changing Epidemiology and Diagnosis of Valley Fever. 

Clinical Microbiology Newsletter, 39(20), 159–164. 

https://doi.org/10.1016/j.clinmicnews.2017.09.007 

Besag, J., York, J., & Mollie, A. (1991). Bayesian Image Restoration, with Two 

Applications in Spatial Statistics. Ann Inst Statist Math, 43(1), 1–59. 

Bivand, R. S., Gomez-Rubio, V., & Rue, H. (2015). Spatial Data Analysis with R-INLA 

with Some Extensions. Journal of Statistical Software, 63. 

Blangiardo, M., & Cameletti, M. (2015). Spatial and Spatio-temporal Bayesian Models 

with R-INLA. (Wiley, Ed.). West Sussex, UK. 

Blangiardo, M., Cameletti, M., Baio, G., & Rue, H. (2013). Spatial and Spatio-temporal 

Epidemiology Spatial and spatio-temporal models with R-INLA. Spatial and 

Spatio-Temporal Epidemiology, 7, 39–55. 

https://doi.org/10.1016/j.sste.2013.07.003 

California Department of Public Health. (2018). Epidemiologic Summary of 

Coccidioidomycosis in California, 2017. Retrieved from 

https://www.cdph.ca.gov/Programs/CID/DCDC/CDPH Document 

Library/CocciEpiSummary2017.pdf 



   
 

  115 

California Department of Public Health. (2019). Coccidioidomycosis (Valley Fever). 

Retrieved March 3, 2019, from 

https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Coccidioidomycosis.aspx 

California Water Science Center. (2019). 2012-2016 California Drought: Historical 

Perspective. Retrieved March 19, 1BC, from https://ca.water.usgs.gov/california-

drought/california-drought-comparisons.html 

Centers for Disease Control and Prevention. (2019). Valley Fever Maps. Retrieved March 

19, 1BC, from 

https://www.cdc.gov/fungal/diseases/coccidioidomycosis/maps.html 

Comrie, A. C. (2005). Climate Factors Influencing Coccidioidomycosis Seasonality and 

Outbreaks. Environmental Health Perspectives, 113(6), 688–692. 

https://doi.org/10.1289/ehp.7786 

Comrie, A. C., & Glueck, M. F. (2007). Assessment of Climate-Coccidioidomycosis 

Model: Model Sensitivity for Assessing Climatologic Effects on the Risk of 

Acquiring Coccidioidomycosis. Annals of the New York Academy of Sciences, 

1111, 83–95. https://doi.org/10.1196/annals.1406.024 

Coopersmith, E. J., Bell, J. E., Benedict, K., Shriber, J., McCotter, O., & Cosh, M. H. 

(2017). Relating coccidioidomycosis (valley fever) incidence to soil moisture 

conditions. GeoHealth, 1(1), 51–63. https://doi.org/10.1002/2016GH000033 

Czado, C., Gneiting, T., & Held, L. (2009). Predictive Model Assessment for Count Data. 

Biometrics, 65(4), 1254–1261. https://doi.org/10.1111/j.l541-0420.2009.01191.x 

Dietze, M. (2017). Ecological Forecasting. Princeton, NJ: Princeton University Press. 



   
 

  116 

EPA. (2018). Level III and IV Ecoregions of the Continental United States. Retrieved 

March 3, 2019, from https://www.epa.gov/eco-research/level-iii-and-iv-

ecoregions-continental-united-states 

Fisher, F. S., Bultman, M. W., Johnson, S. M., Pappagianis, D., & Zaborsky, E. (2007). 

Coccidioides niches and habitat parameters in the southwestern United States: A 

matter of scale. Annals of the New York Academy of Sciences, 1111, 47–72. 

https://doi.org/10.1196/annals.1406.031 

Gorris, M. E., Cat, L. A., Zender, C. S., Treseder, K. K., & Randerson, J. T. (2017). 

Coccidioidomycosis dynamics in relation to climate in the southwestern United 

States. GeoHealth, 1–19. https://doi.org/10.1002/2017GH000095 

Grayzel, S. E., Martínez-López, B., & Sykes, J. E. (2017). Risk Factors and Spatial 

Distribution of Canine Coccidioidomycosis in California, 2005–2013. 

Transboundary and Emerging Diseases, 64(4), 1110–1119. 

https://doi.org/10.1111/tbed.12475 

Jinadu, B. A. (1995). Valley Fever Task Force Report on the Control of Coccidioides 

immitis. Bakersfield, CA. 

Khana, D., Rossen, L. M., Hedegaard, H., & Warner, M. (2018). A BAYESIAN 

SPATIAL AND TEMPORAL MODELING APPROACH TO MAPPING 

GEOGRAPHIC VARIATION IN MORTALITY RATES FOR SUBNATIONAL 

AREAS WITH R-INLA. Journal of Data Science, 18, 147–182. 

Kim, S., & Kim, Y. (2018). Hierarchical Bayesian modeling of spatio-temporal patterns 

of scrub typhus incidence for 2009 – 2013 in South Korea. Applied Geography, 

100(August 2016), 1–11. https://doi.org/10.1016/j.apgeog.2018.08.008 



   
 

  117 

Knorr-Held, L. (2000). Bayesian modelling of inseparable space-time variation in disease 

risk. Statistics in Medicine, 19, 2555–2567. 

Kolivras, K. N., & Comrie, A. C. (2004). Climate and infectious disease in the 

southwestern United States. Progress in Physical Geography, 3, 387–398. 

Retrieved from 

http://ppg.sagepub.com/cgi/content/abstract/28/3/387%5Cnpapers3://publication/

uuid/B3F1F77C-A82F-4E39-8162-CD5B5FCA5E60 

Lawson, A. B. (2018). Bayesian Disease Mapping - Hierarchical Modeling in Spatial 

Epidemiology (Third Edit). Boca Raton, FL: Taylor & Francis. 

Lowe, R., Barcellos, C., Coelho, C. A. S., Bailey, T. C., Coelho, G. E., Graham, R., … 

Ramalho, W. M. (2014). Dengue outlook for the World Cup in Brazil: an early 

warning model framework driven by real-time seasonal climate forecasts. Lancet, 

14, 619–626. https://doi.org/10.1016/S1473-3099(14)70781-9 

Maddy, K. T. (1965). Observations on Coccidioides Immitis Found Growing Naturally in 

Soil. Arizona Medicine: Journal of Arizona State Medical Association, 22, 281–

288. https://doi.org/10.1017/S000748530002229X 

Maddy, K. T., & Coccozza, J. (1964). The Probable Geographic Distribution of 

Coccidioides Immitis in Mexico. Boletin de La Oficina Sanitaria Panamericana. 

Pan American Sanitary Bureau, 57, 44–54. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/14175564 

Martino, S., & Rue, H. (2010). Case Studies in Bayesian Computation using INLA. In P. 

Mantovan & P. Secchi (Eds.), Complex Data Modeling and Computationally 

Intensive Statistical Methods. Milano: Springer. 



   
 

  118 

Martınez-Bello, D., Lopez-Quilez, A., & Prieto, A. T. (2018). Spatiotemporal modeling 

of relative risk of dengue disease in Colombia. Stoc, 32, 1587–1601. 

https://doi.org/10.1007/s00477-017-1461-5 

Park, B. J., Sigel, K., Vaz, V., Komatsu, K., McRill, C., Phelan, M., … Hajjeh, R. a. 

(2005). An epidemic of coccidioidomycosis in Arizona associated with climatic 

changes, 1998-2001. The Journal of Infectious Diseases, 191(11), 1981–7. 

https://doi.org/10.1086/430092 

Petersen, L. R., Marshall, S. L., Barton-Dickson, C., Hajjeh, R. A., Lindsley, M. D., 

Warnock, D. W., … Morgan, J. (2004). Coccidioidomycosis among Workers at 

an Archeological Site, Northeastern Utah. Emerging Infectious Diseases, 10(4), 

637–642. https://doi.org/10.3201/eid1004.030446 

R Core Team (2003). R: A language and environment for statistical computing. Vienna, 

Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-

project.org/ 

Raghavan, R. K., Goodin, D. G., Neises, D., Anderson, G. A., & Ganta, R. R. (2016). 

Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-

Economic Determinants of Rocky Mountain Spotted Fever. PLoS ONE, 11(3). 

https://doi.org/10.1371/journal.pone.0150180 

Richardson, S., Thomson, A., Best, N., & Elliott, P. (2004). Interpreting Posterior 

Relative Risk Estimates in Disease-Mapping Studies. Environmental Health 

Perspectives, 112(9), 1016–1025. https://doi.org/10.1289/ehp.6740 

Rosenstein, N. E., Emery, K. W., Werner, S. Ben, Kao, A., Johnson, R., Rogers, D., … 

Hajjeh, R. A. (2001). Risk Factors for Severe Pulmonary and Disseminated 



   
 

  119 

Coccidioidomycosis : Kern County, California, 1995 – 1996. Clinical Infectious 

Diseases, 32(5), 708–714. 

Rue, H., & Martino, S. (2009). INLA: Functions which allow to perform a full Bayesian 

analysis of structured additive models using Integrated Nested Laplace 

Approximation. R Package. 

Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent 

Gaussian models by using integrated nested Laplace approximations. Journal of 

the Royal Statistical Society. Series B: Statistical Methodology, 71(2), 319–392. 

https://doi.org/10.1111/j.1467-9868.2008.00700.x 

Schrödle, B., & Held, L. (2011). A primer on disease mapping and ecological regression 

using INLA, 241–258. https://doi.org/10.1007/s00180-010-0208-2 

Stacy, P. K. R., Comrie, A. C., & Yool, S. R. (2012). Modeling Valley Fever Incidence in 

Arizona Using a Satellite-Derived Soil Moisture Proxy. GIScience & Remote 

Sensing, 49(2), 299–316. https://doi.org/10.2747/1548-1603.49.2.299 

Talamantes, J., Behseta, S., & Zender, C. S. (2007). Statistical modeling of valley fever 

data in Kern County, California. International Journal of Biometeorology, 51(4), 

307–313. https://doi.org/10.1007/s00484-006-0065-4 

Tamerius, J. D., & Comrie, A. C. (2011). Coccidioidomycosis incidence in Arizona 

predicted by seasonal precipitation. PLoS ONE, 6(6). 

https://doi.org/10.1371/journal.pone.0021009 

Thompson, J. A., Carozza, S. E., & Zhu, L. (2007). An evaluation of spatial and 

multivariate covariance among childhood cancer histotypes in Texas (United 



   
 

  120 

States). Cancer Causes Control, 18, 105–113. https://doi.org/10.1007/s10552-006-

0085-8 

Tian, L., Liang, F., Xu, M., Jia, L., Pan, X., & Clements, A. C. A. (2018). Spatio-

temporal analysis of the relationship between meteorological factors and hand-

foot-mouth disease in Beijing, China. BMC Infectious Diseases, 18(158). 

U.S. Census Bureau. (2000). Profile of General Demographic Characteristics: 2000 

Census, 2000 Summary File 1 (SF 1) 100% Data. Retrieved June 5, 2017, from 

https://factfinder.census.gov/ 

U.S. Census Bureau. (2010). Profile of General Population Characteristics: 2010, 2010 

Census Summary File 1 Data. Retrieved June 5, 2017, from 

https://factfinder.census.gov/ 

U.S. Census Bureau. (2015). ACS Demographic and Housing Estimates, 2011-2015 

American Community Survey 5-Year Estimates. Retrieved June 5, 2017, from 

https://factfinder.census.gov/ 

Watanabe, S. (2010). Asymptotic Equivalence of Bayes Cross Validation and Widely 

Applicable Information Criterion in Singular Learning Theory. Journal of 

Machine Learning Research, 11, 3571–3594. 

Weaver, E. A., & Kolivras, K. N. (2018). Investigating the Relationship Between Climate 

and Valley Fever (Coccidioidomycosis). EcoHealth, 15(4), 840–852. 

https://doi.org/10.1007/s10393-018-1375-9 

Zender, C. S., & Talamantes, J. (2006). Climate controls on valley fever incidence in 

Kern County, California. International Journal of Biometeorology, 50(3), 174–

182. https://doi.org/10.1007/s00484-005-0007-6   



   
 

  121 

SUPPLEMENTAL MATERIAL 

Spatiotemporal Maps 
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Hyperparameters (null model) 
 
 Mean SD 0.025 0.5 0.975 Mode 
𝝉𝝉𝒗𝒗 0.61 0.079 0.433 0.621 0.725 0.685 
𝝉𝝉𝒖𝒖 15.75 2.046 11.138 16.041 18.741 17.707 
𝝉𝝉𝝋𝝋 3.79 1.342 1.728 3.606 6.943 3.246 
𝝉𝝉𝜹𝜹 7.91 0.638 6.703 7.902 9.202 7.897 
 

The random effect variance (note: precision shown here) quantifies the variability across 
groups, such as year or county.   
 
 
Model Checking 
 

 
 
𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑝𝑝(𝑦𝑦𝑖𝑖∗ ≤  𝑦𝑦𝑖𝑖�𝑦𝑦𝑓𝑓)  * represents a future occurrence;  𝑦𝑦𝑓𝑓 is the group of samples used to 
fit the model.  Interpretation - the PIT histogram is adequate considering plot is not 
expected to be perfectly uniform for count data.  See Czado, Gneiting, & Held (2009). 
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The posterior predictive distribution represents the likelihood of a replicate observation 
𝑦𝑦𝑖𝑖∗ having observed the data y:    𝑝𝑝(𝑦𝑦𝑖𝑖∗|𝑦𝑦) =  ∫𝑝𝑝(𝑦𝑦𝑖𝑖∗|𝜃𝜃𝑖𝑖)𝑝𝑝(𝜃𝜃𝑖𝑖|𝑦𝑦)d𝜃𝜃𝑖𝑖 
Interpretation – the prediction is very close to the observed values as is desired. 
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Model Code 
# Null Model 
CA.formula.mod.1<- y ~ 1 +   
  f(CA.county.ID, model="bym", graph=CA.adj) +  
  f(CA.year.ID,model="iid") + 
  f(CA.county.year.ID,model="iid") 
 
CA.mod.1 <- inla(CA.formula.mod.1,family="poisson",data=CA.data,offset=log(E),  
                 control.predictor=list(compute=TRUE),    
                 control.inla=list(strategy="laplace",npoints=30), 
                 control.compute=list(dic=TRUE,cpo=TRUE,waic=TRUE))    
  
# Full Model 
CA.formula.mod.2<- y ~ 1 + 
  f(CA.county.ID, model="bym", graph=CA.adj) +  
  f(CA.year.ID, model="iid") +    
  f(CA.county.year.ID,model="iid") +   
  x1 + x2 + x3 + x4 + x5 
 
CA.mod.2 <- inla(CA.formula.mod.2,family="poisson",data=CA.data,offset=log(E),  
                 control.fixed=list(mean=0,prec=0.00001, 
                                    mean.intercept=0, 
                                    prec.intercept=0.00001), 
                 control.predictor=list(compute=TRUE),  
                 control.inla=list(strategy="laplace",npoints=30), 
                 control.compute=list(dic=TRUE,cpo=TRUE,waic=TRUE))   
 
 


