Development of 3 Modern OPAC:
From REVTOLC to MARIAN

Edward A, Fox, Robert K France,

Eskinder Sanle, Amjad Daoud, ang Ben E. Cline

TR 93-06

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

February 17, 1993

Development of a Modern OPAC: From REVTOLC to MARIAN *

Edward A, Fox #, Robert K. France#,
Eskinder Sahlet, Amjad Daoudi# and Ben E. Cline*#

Department of Computer Sciencetand Computing Center#
Virginia Polytechnic Instityte and State University
Blacksburg VA 24061-0106

Abstract

Since 1986 we have investigated the problems and
Possibilities of applying modem information retrieval
methods to large online public access library catalogs
(OPACs). In the Retrieval Experiment — Virginia Tech
OnLine Catalog (REVTOLC) study we carried out a
large pilot test in 1987 and a larger, controlled inves-
tigation in 1990, with 216 users and roughly 500,000
MARC records. Results indicated that a forms-baged
interface coupled with vector and relevance feedback
retrieval methods would be well received. Recent
efforis developing the Multiple Access and Retrieval
of Information with ANnotations (MARIAN) system
have involved wse of a Specially developed object-
oriented DBMS, construction of a client running under
NeXTSTEP, programming of a distributed server with
a thread assigned to each user session to increase con-
turrency on a small network of NeXTs, refinement of
algorithms to use objects and Stopping rules for greater
efficiency, usability testing and iterative interface re-

*This work was funded in bart by grants from the National
Science Foundation (Grants IRI-8703580 and IRI-9116991), CLR
(Grant4048-C), OCLC, PRC, and the Virginia Center for Innovative
Technology.

finement,

1 Introduction

In 1986, the Virginia Tech Library provided us with
tapes containing all MARC records from their online
public access catalog (OPAC) system, which uses sofi-
ware supported by VTLS Inc. Since that time a co-
ordinated research and development program focused
on OPACs has been underway, mvolving the Depart-
ment of Computer Science, the Computing Center, and
the Library. Thig paper summarizes our activities and
findings, and the resulting software and systems,
Important aspects of our work include:

* working with large (3-900,000 record) collections;

® controlled experimental studies with many test
subjects on the use of advanced retrieval methods
for large OPACs;

* research with parallel processors (Sequent), and
development of a distributed, client-server preduc-
tion system on a small network of low-cost work-
stations (NeXTs), with threaded processing under
MACH;

* use of a specialized object-oriented DBMS and
object-oriented programming languages:

¢ application of principles of dialo gue independence
and usability testing of the interface;

* providing an experimental OPAC search system as
an alternative to the University Library’s regular
OPAC system;

morphological analysis using an online lexicon;

* optimization of space through compression and a
Special inverted file organization;

* optimization of processing through stopping rules
for search; and

simulation of user workload and moritoring of sys-
tem performance to support further tuning.

The sections below provide details regarding our
(largely unpublished) efforts. Section 2 summarizes
the experimental studies (REVTOL.C), which prompted
our subsequent development work. Section 3 briefly ex-
plains the object-oriented DBMS (LEND) that we have

developed and which underlies the current production -

system (MARIAN). Section 4 gives details of the de-
sign, development, and user testing of MARIAN, See-
tion 5 discusses our plans for future work, and Section
6 acknowledges many of those who have assisted.

2 REVTOLC

In 1986 the Virginia Tech Library was considering
adding Boolean search capabilities to its VTLS system,
and so dumped all of the MARC records onto mag-
netic tapes in preparation for inversion on a mainframe
computer. We were given a copy of the tapes to use for
experimentation, and so carried out the Retrieval Exper-
iment — Virginia Tech OnLine Catalog (REVTOLC)
study.

2.1 Problem, Opportunity, and Approach

Many of the world’s libraries depend in part, or excly-
sively, on an online public access catalog (OPAC) so
that patrons can locate desired publications, thus elim-
inating use of conventional card catalogs [24]. Typi-
cally, expensive, centralized, mainframe compufers are
involved, These Systems allow the public to use com-
puters 1o search for information about various resources
like books, serials, and audio-visual publications [21],
However, OPACs are not always very efficient, effec-
tive, or usable. This is in part due to the distinctive
characteristics of the problem area. OPACs must ser-
vice a heterogeneous group of chronically infrequent
uscrs with complex relationships between goals and
behaviors and difficult information retrieval tasks [1].

Some typical deficiencies of curreni systems include:
difficulty in expanding on query results, excessive re-
trieval and null retrieval, inconvenient displays, and
under-utilization of system features [32]. These seri-
ous problems threaten our ability to support universal
access fo information,

Happily, advances in computer technology, informa-
tion retrieval, and human-computer interaction provide
an exciting opportunity to explore and solve these im-
portant problems. In particular,

* advances in tomputer technology allow us to de-
velop low-cost, highly efficient, modular Systems;

¢ advances in information retrieval facilitate im-
provements in system effectiveness (along with
query expansion and avoidance of excessive re-
trieval); and

* advances in human-computer interaction can em-
power diverse patrons by providing highly usable
Systems (with convenient displays and ready ac-
Cess to appropriate features),

Our approach has been to take advantage of these op-
portunities through a coordinated program of research
and development, We conducted two controlled exper-
iments, in 1987 and 1990, to determine which advanced
retrieval methods would be most useful for searching
OPACS. As discussed in Sections 2.2 and 2.3, we also
explored interface techniques that would work wel] with
those retrieval methods. Further, as we proceeded with
the experiments, we became aware of numerons aspects
of system development necessary for a large-scale im-
plementation of our findings; many of these are dis-
cussed in Sections 3 and 4.

22 1987 Study

The first REVTOLC study was carried out during the
Spring semester of 1987, The key feanires of our pilot
eXperiment are;

¢ comparison of vector, vector feedback, Boolean,
and extended Boolean (i.e., p-norm [12, 297) re-
trieval methods:

¢ volunteer assistance by 52 freshman English class
students;

* searching against approximately 300,000 records;
and

¢ usc of the 1985 version of the SMART system,
enhanced with our own code, including methods
for fast inverted file creation [19], running on a
VAX 11/785 under ULTRIX,

For more details see [14].

This hurried experiment was flawed in a number of
ways, prompting us to work on a more carefully de-
signed study. While it seemed clear that users liked the
vector methods, we lacked important data necessary 1o
analyze timing or effectiveness. Further, controls relat-
ing to the interface were weak, clearly creating a bias
against the Boolean-type methods, Finally, it became
clear that more users, more questions, and more records
would be needed 1o give adequate statistical power and
generalizability to our findings.

2.3 1990 Study

Supported in part by grants from CLR and OCLC Inc.,
we began work on a more careful experiment, assisted
by Linda Wilson of the Library. Numerous library staff
helped by:

» collecting questions from patrons, from which our
set of 18 was selected:

® carrying out repeated searches, and providing ex-
pert judgments on those and on the searches of
the experimental subjects, to allow us 1o measure
relative recall; and

*» advising on the development of the experimental
System and its testing,

A brief summary of some of our early efforts on this
project appears in [15].

We compared the same four retrieval methods con-
sidered in the 1987 study, but in most other aspects this
was a larger investigation, as can be seen in Tabie 1.

In all cases our interface operated on VT100 termi-
nals or terminals that emulated that type of behavior,
The display was oOrganized into areas so that users only
needed to fill in forms, A simple, specially designed
editor was available for entering or changing data in
any of the screen areas.

Table 1: Key Characteristics of 1990 Study

Characteristic Value

Number of users 216

Number of documents 500,000

Number of questions 18

Retrieval methods 4

Retrieval methods/user | 2

Searches/user 4

Search system SMART (extended)
Computer system Sequent (10 processors)
Operating system Dynix (UNIX)

We hypothesized that advanced retrieval methods
would be preferred and more effective than the con-
ventional Boolean approach, that p-norm would be pre-
ferred to Boolean, and that the vector methods would
be particularly €asy 1o use.

2.3.1 Experimental Design

The user interface was carefully controlled so that the
user experienced minimal differenceg while using the
several retrieval methods, Written instructions, an on-
line tutorial, and practice exercises all served to facili-
tate a fair comparison of the tetrieval methods. Furiher,
we tried to balance system performance so that retrieval
time was approximately the same for each method,

By giving each user up to 90 minutes for the experi-
ment, and only paying them their $5 fee after they had
completed all tasks, we tried to ensure that everyone
was properly motivated and not hurried. Most users
finished soon after 60 minutes, though some liked the
system so much that they stayed an extra hour to use it
with their own questions.

Each user was randomly assigned to one of 12 test
groups, and worked with two methods, searching us-
ing each method for two of the 18 test questions. These
groups allowed us 1o eliminate the effects of the order of
the two methods, Further, by having each user search
for records for each of four questions, using two dif-
ferent methods, we were able to measure intra-subject
differences as well as between-subject effects, adding
1o the power of the study.

To ensure generality of our results we balanced the
subjects with respect to gender, academic leve] (fresh-
man to senior to graduate student), and college. We

Table 2: Demographic Data Collected

No. of computer courses taken

Frequency of use of computers

Frequency of use of Virginia Tech OPAC
Frequency of use of other retrieval systems
Typing skills

Gender

User patience

Overall grade point average

Academic level

Academic area

also collected the demographic data shown in Table 2
by online questionnaire.

We gathered a great deal of other data for subse-
quent analysis. In particular, we logged each session
(with timestamps), recorded retrieved documents and
those marked by the users as relevant, and collected
user comments in online questionnaires.

2.3.2 Results

Our analysis to-date has only considered the online
questionnaires, and so primarily reflects user percep-
tions. We grouped all users together, since none of the
demographic factors listed in Table 2 was found signif-
icant at the p = 0.05 level,

The most important (significant) findings are:

¢ Users generally felt that the documentation was
satisfactory and that the online tutorials provided
sufficient introduction to the retrieval methods.

* Users found it easy to formulate queries from the
given questions, for all retrieval methods.

e Users felt that methods that ranked the results gave
higher precision,

 Users felt that p-norm searching was best in terms
of finding more of the relevant documents in a sin-
gle search iteration while producing less “noise.”
In this regard, users also preferred the two vecior
methods to Boolean,

e Users felt that vector searching with relevance
feedback was best in terms of finding a larger to-
tal number of useful documents over all iterations.
Users also preferred b-norm to Boolean,

» Users felt that the easiest method to use was vector
with feedback, with Boolean the most difficult. P-
norm was easier than Boolean,

* Users felt that vector with feedback took the least
time to arrive at a satisfactory set of results, with
Boolean taking the most. The same was found
regarding being an effective aid for casual search.

¢ Users preferred the vector methods to the Boolean
and p-norm methods regarding: effectiveness for
comprehensive searching, ease of learning, and
ease of use.

* Users found the REVTOLC System easier to use
than Virginia Tech’s current OPAC system,

Further details regarding this experiment can be found
in [11]. Additional analysis of the data collected is
pending availability of adequate funding.

Our results seem to indicate that the type of inter-
face provided, and the vector with feedback retrieval
method, would be well received by OPAC users. Sub-
sequent sections describe the consequent development
of a production system including these features,

3 LEND

While working with REVTOLC, we learned a great deal
regarding requirements for a production system:

e With large numbers of records, there are numer-
ous situations in which efficient hashing methods
would be helpful (e.g., to find a String in the “dic-
tionary,” to locate a record given its identifier, to
find an eniry in an authority file, or to look up a
call number). ,

* Many types of “objects™ are involved, and can be
efficiently described using inheritance,

e Caching and other methods that reduce disk access
Iead to faster performance.

» Efficient management of data in memory and on
secondary storage devices is important, and re-
quires a significant amount of code.

These and other needs helped motivate work on
the Large External object-oriented Network Database

(LEND) system [7], which satisfies all of the above re-
quirements. First, LEND supports building of minimal
perfect hash functions that are used intemnally to opti-
mize performance, and that can be built with user data
10 guarantee minimum disk accesses and near minimal
space overhead. Second, LEND is an object-oriented
DBMS, that supports a class hierarchy with inheritance,
so that all of the classes of objects needed can be quickly
defined, without unneeded repetition of code. Third,
LEND’s lowest or storage layer supports objects in main
memory, in page sets, or in UNIX files. An LRU class
allows reasonable cache performance, a buffer class
speeds access to small objects, and page and UNIX file
classes simplify efficient accessing of disks. Fourth,
LEND’s object layer, operating atop and hiding the de-
tails of the storage layer, suppotts efficient hash index-
ing, caching, and buffering. Primitive classes include
integer, real, and string, Composite classes include
set, tuple, and list. Data access classes include several
based on hashing, plus AVL trees for in-memory data.
Finally, LEND implements much of the information
graph model we have proposed [71. Thus, it allows us
1o support traditional DBMS, IR, and knowledge-base
processing through operations on a graph of objects.
LEND has classes for both nodes and arcs, includes
several types of interfaces to support various views and
sets of operations, and has a query language allowing
retrieval in terms of nodes, arcs, paths, and graphs.

The second version of LEND was completed in
Spring 1992, using g++, and is being ported to “vanilla”
C++, removing dependence on the GNU class system.
LEND has been licensed by several organizations, and
has been thoroughly tested and used in the MARIAN
OPAC system, discussed in the next section.

4 MARIAN

The Multiple Access and Retrieval of Information with
ANnotations (MARIAN) system has been under devel-
opment at Virginia Tech since 1991, Our aim was in
part to rectify mechanical and conceptual problems 4]
of OPACs with techniques like [26]): morphology-based
matching, query expansion, authority files, linking and
terminological aids and direct interfaces. We hoped
to avoid command-line style interaction and to have a
system that could be easily used with minimal training
[25]. Our approach was not only to enhance the in-

s

T

VYM/CMS
Clients

X/Motif | %7
Clients) /%,

Curses
Clients

MARIAN
Server

Figure 1: Client/Server with Mutltiple Interfaces,

terface but also to redesign the underlying system, go-
ing beyond Boolean queries [22]. The long term goal
is to progress toward a truly “intelligent” system with
broad usability and “smart” functionalities [23], build-
ing upon our prior work with the COmposite Document
Expert/extended/effective Retrieval (CODER) testbed
[13].

From the perspective of users, MARIAN is a cen-
tral server, holding library catalog data, as shown in
Figure 1. For those working on a NeXT or on a work-
station running X/Motif, a local client will handle their
interaction with the server. For those connected via
terminals to VM/CMS or a UNIX system supporting
CURSES terminal control, specialized clients intercon-
nect the terminals with the server, Finally, for any
Systent supporting mail, interaction with MARTAN will
be possible using that mode of communication.

To understand MARIAN in more detail, it is best
to follow an example of its use, as given in the next

OB 00D L e
mmmmwwowzym%mmﬁ

Figure 3: Pop-up for Field Selection.

subsection,

4.1 Example

Figures 2-6 illustrate current operations of MARIAN, ,

using screen dumps from a NeXT System with the
present version of our client software, Interaction be-
gins with a meny and optional Iogin screen, designed to
provide password security as necessary. Afiera user se-
lects New Query from the menu, a query can be entered
using a form-style window, as shown in Figure 2,
Because vsers often wan to search for the same terms
inseveral parts of the MARCrecords, a pop-up selection
Ppanel is provided for query entry, as shown in Figure 3,
Once the server locates, ranks, decompresses, and

From current decume t

Figure 6: Initiating a Feedback Search.

sends back the desired number of records, these results
are shown in a new window, as in Figure 4. In the
lop pane a user can mark an item as relevant, or select
it, which causes it to be highlighted in that pane and
displayed in the bottom pane.

Users can work with any mumber of queries, submit-
ting new ones before resulis have appeared, in a flexible
mixed-initiative style of interaction [17]. Therefore, it
is important that a history of queries is maintained, like
that shown in F gure 5. This feature supports users ask-
ing to edit and/or resubmit previously prepared queries,

The interface also SUppoIts various types of feedback
searching, that will be handied by server code to be com-
pleted early in 1993, The menu options shown in Figure
6 illustrate that a user can ask for other documents Iike
the one that is currently selected, can request standard
relevance feedback from all documents selected as rel-
¢vant, or can look for more items (with lower ranks)
retrieved by the current query.

Now that the basic operation of MARIAN has been
illustrated, further subsections provide details of the
design and implementation,

4.2 Objects

To understand the operation of the object-oriented
MARIAN system, it is best to consider the types of ob-

AUTHOR :
TITLE;

IMDRINT:
IDESCRIPTION;
NOTE:
SUBJECT:
ADDED ENTRY:

Houghton, g,

-

Houghton, =B, (Bernard), 1935-
On-line information retrieval systems : / an introductory
bles and practice / / Bernard Houghton and Jomn

London @ oC, Bingley ; Hamden, Conn. : Linmnet Books, 1977
160 p. ; 23 om.

Inc¢ludes bibliographical references and index.

On-line bibliographic gearching,

Convey, John, joint author.

Figure 5: Query History.

jects involved. This fits in well with our use of LEND,
and of the C++ and Objective-C languages.

Many of the objects managed by MARIAN are per-
sistent. These are handied by LEND over the long-term,
but are processed by the rest of the System as needed.

4.2.1 Persistent Objects

There are five main types of persistent objects; (1)
annotation, (2) text component, (3) authority, (4) doc-
ument, (5) link, and (6) inverted file entry. The first,
not yet in use, will support annotation of the catalog
records. Short text blocks, ie., collections of strings,
will be attached by library staff, faculty, and students
(with suitable editorial controls). We expect useful mes-
sages, critiques, recommendations, and comments that
will help future searchers.

The second includes standard strings and variants, as
well as various classes of numbers and numeric codes.
Standard strings include words found as lemmata in the
Collins English Dictionary; variants include regular in-
flections and derivations computed on the fly, as well
as irregular forms derived from the same source, These
are particularly helpful for the morphological process-
ing carried out during document and query indexing,
Other strings not reducible 1o words in the dictionary
are added as they appear in new documents.

The third type of information involves authoritative
or canonical representations.

Subject fields in library records are drawn from the
conirolled vocabulary of the the Library of Congress
Subject Headings (LCSH). These headings are arranged
in a complex network including both hierarchical and
non-hierarchical relations as well as modifications in-
volving place, time, and content descriptors. Personal
and corporate names are likewise controlled. Nor-
malization of names is particularly important so that
matches can be identified, and partial matching must
reliably handle problems with abbreviations, initials,
titles, multi-part surnames, hyphenation, and organiza-
tion types. In both these cases, identification of the ob-
Jects satisfying a user query involves more than match-
ing text fields.

Fourth are the documents themselves, which we pre-
serve in their entirety with a lossless compression based
on Huffman coding. For the catalog records we de-
compress into the standard MARC tape format using
ASCII/ANSEL characters, then reformat into the user’s

choice of human-readable display formats. Where the
user’s workstation or terminal permits, clients map
ANSEL characters to and from the local expanded char-
acter set,

Fifth, in keeping with the philosophy of information
graph modeling, there are databases of links between
documents and either names or subject headings (the
hasAuthor and hasSubject relations). This represemnta-
tion allows the system to map in either direction between
MARC records and authors or LCSH subjects.

Finally, for efficient retrieval, we have inverted files
for each text field in the subject, name, and MARC
record objects. Each has inverted index entries that in-
clude weights, and hashing functions that support fast
access 1o each entry. ' We optimize both space and pro-
cessing time by having three subclasses: ONE for en-
tries that occur in a single document, FEW for entries
that appear as a standard list of postings, and MANY
for terms so common that it is only effective to search
them in combination, Posting lists for FEW terms are
stored in non-increasing order by weight. MANY terms
are organized into a lattice of posting lists where each
node corresponds to a combination of MANY terms.

4.2.2 Internal Ob jects

Since the MARIAN server has been coded largely in
C++, and the NeXTSTEP client is in C and Objective
C, there are many internal objects. Among the most im-
portant objects are: (1) choice, (2) query, (3) retrieved
list, and (4) document list.

Throughout an interaction with MARIAN, user deci-
sions are represented by choice objects that include both
the string and object identifier forms. Also from users,
query objects are obtained, structured in conjunctive
normal form so that complex Boolean as well as vector
expressions can be considered. The basic constituents
of these objects are any of the various types of terms
(e.g., English words, author names, LCSH subjects) and
their weights,

As the result of searching, a retrieved listis prepared,
that has three parts for each entry. Firstis the identifier
of the document to be retrieved. Second is an estimate
of its relevance; the list is ordered in descending order
of these values. Third is another object that gives the
evidence for this presumed match — typically it indi-
cates locations of query terms in the document. Note
that after a search, the retrieved list is reduced to a sim-

ple list of document identifiers, in the same order, for
display. These document list objects are also useful in
other contexis,

4.3 Architecture and Protocols

While a great deal of the design of MARIAN is illys-
trated in the above discussion, key aspects relate to the
System architecture and decisions regarding communi-
- cation protocols. Qur objective of having a low-cost,
high efficiency system that could be easily enhanced
and incrementally BrOwn 10 support increases in data
and transactions argued against the approach taken in
the REVTOLC study. Inparticular, having clients com-
municate with a server running the SMART System [18]
Was not appropriate.

Rather, we sought an architecture with multiple
threads (at least one in each functional module for each
user transaction) to provide increased parallelism, and
that allowed processes to be distributed as efficiency
dictates across a network of workstations. NeXT com-
puters seemed a good choice for initial implementation,
since the underlying MACH Operating system supports
efficient message-based interprocess communication on
one or a collection of workstations, as well as threads
within a given module. The MACH Interface Genera-
tor (MIG), supported on NeXT and OSF/1 systems, is a
program that generates remote procedure calls (RPCs)
for efficient communication between processes and (rel-
atively) easy interchange of high level data structures
[3]. MIG calls are used for all communication inside
the MARIAN server irrespective of the nodes on which
the linked modules are running.

Communication between clients and the MARIAN
server follows the User Interaction Protocol (UIP) de-
veloped at Virginia Tech, supported by a locally de-
veloped subroutine package [8]. UIP consists of two
layers. The upper layer corresponds to the user inter-
face objects described in Section4.2.2. The lower layer
is a symmetrical, remote procedure call protocol for the
transport of user interface objects between the MAR-
IAN server and its clients, Data encoding is provided
by a combination of Sun’s eXternal Data Representa-
tion (XDR) [9], the Facts/Frames/Functiong Language
(F3 L) developed for the CODER system [16], and UIP
specific data encoding procedures. The proiocol runs
as an application layer protocol over TCP/IP. The im-
plementation of UIP is thread-safe for support of con-

currency in the MARIAN server, A version of UIP that
does not require threads is available for clients rurming
on platforms that do not Support threads. We decided
Not 0 use Z39.50 until it achieves a hi gher level of func-
tionality and the many proposed changes and extensions
to it are completed.

Our initial plan was to use two NeXT computers ag
the main server, and to run CURSES-based clients on a
third NeXT. Since the CURSES package is not thread-

- safe, each VT100-type terminal connecting would re-

quire a separate Process, encouraging separation of that
load from the scarching and other activities,

5 Server Design

The MARIAN server has been carefully designed [17]
1o be extensible and to ultimately become a third-
generation OPAC search system [23]. Figure 7 illus-
trates the server’s threc layers: Interface Management,
Access Method, and Database Management. Dotied
boxes indicate parts whose implementation has not yet
been completed, Arrows indicate the direction of MIG
calls between modules.

Details on some of the most important modules are
given below:

e The UIP Handler is the interface between the vari-
Ous user interface managers and the rest of the sys-
tem. Thus ithelps enforce the principle of dialogue
independence [20], allowing the MARIAN server
0 function without regard to the different Lypes of
clients. It does this by implementing the hierarchy
of interaction objects defined in the UIP protocol
(see Section 4.3). The UIP Handler keeps track
of the network location of al] active clients, and
maps calis for user interaction originating within
the server to UIP messages to objects owned by the
correct client. By the same token, it translates UIP
messages originated by a user action on an inter-
action object into MIG calls on the server module
that created the obhject.

o The Session Manager handles user login, identifi-
cation, access control, and accounting, It oversees
the progress of all Currently active user sessions,
and of the major activities within each session, It
is respounsible for much of the error handling, and

Interface

Management

Layer
TOURSES T resoooa--
! nterface : CURdS'ES :
! Manager ! 1, Handler
| Manager | ——

NaXTStep
Interface
Manager

X-Windows

uip

Session
Manager

I T~ —

Handlgr f

Formatter

h

Combiner
Text \,' TCat 3
Component t Number :
Searcher y Searcher :
3
MARG Record

Interiace
Manager fmmtees J Query
o) Annctator ! Handler
1 VM [
1 interface
1 Manager
[
e, Parsers
T Mal
' Handler
Lo
Access
Method _
Layer ! X
1
1
Authority
Chijsct
Searchers
Database
Management
Layer
- En—nStat%r; - Text Authority
File , Component Obfect Files
1 Files
________]
e X 3
! Reverse Inverted ! Inverted Fils Link File —
; Files - 1 Text Component Authority Otject
I Doc/Objects , / Authority Object { Docurmnent
bmma s JERSP.

fnverted Fils -
Text Component
/ Doocument

Figure 7: Detailed Design for MARIAN,

10

Fila

for graceful termination of internal processing as-
sociated with a stopped session. Session status
is maintained and can be queried, so that “smart”
clients can detect problems or unforeseen delays.
Other MARIAN modules report their progress at
key points of processing. Thus, the Session Man-
ager brokers all help requests, filling most from
its understanding of the current session context. It
is the site for any future user modeling enhance-
ments. The Session Manager also maintains pref-
erence data for each user across sessions, and may
at some point allow sessions to be saved and re-
stored.

The Annotator, when completed, will act as a note
manager for the MARC records, with entries linked
as for hypertext. It will allow users with proper
authorization to add, edit, or examine annotations.

The Query Handler is responsible for initiating all
search and browse events. In the latter case it heips
the user choose the point at which browsing should
begin, manages the browsing process, and in the
event that something is identified to be used ina
query, passes it to the appropriate parser. In the
former, the Query Handler creates a query interac-
tion object of the appropriate class, labels it, and
sends it to the user via the UIP Handler. (Figure 2
shows a biblioFormQuery object as realized by the
NeXTSTEP client.) For each query submitted by
the user, messages are sent simultaneously to the
appropriate parser(s) for each field, as well as to
the Combiner so it may coordinate the search. For
feedback queries, the Feedback Query Synthesizer
is invoked. Finally, the Query Handler keeps track
of the query history of each session, and allows
users to select, edit, and resubmit old queries.

The various Parsers translate user’s representa-
tions, usually sequences of characters, to system
representations, usually objects that are part of the
query object (see Section 4.2.2), They are special-
ized to the field and type of data involved:;

~ Text, the default, assumes English words, and
is composed as shown in Figure 8. It reduces
running text to a linear combination (or term
vector of text component IDs,

— Daite identifies single dates or date ranges.

11

From Query
Handler
L el T 1
; Text Parser :
I i
[1
: Tokenizer [Vectorizer :
[1
i)
1 i
| 1
! Morpholegical :
: Analyzer I
1 |
) i
b e e el __ I
To
Combiner To DB’s

Figure 8: Text Parser.

— Subject produces both a term vector and g
list indicating order of term occurrence, for
(partial) matching against the LCSH author-
ity entries.

— Author separates each author, and prepares a
sequence of representations like those used
by the Subject Parser.

o The various Searchers reply to the Combiner, re-

lurning either a retrieved set (see Section4.2.2), a
portion thereof, or an estimate of its size. Similar
processing takes place for searchers involving both
Text Components and Authority Objects. Usually
the % best items are needed, and are found using a
specially developed heuristic scheme for frontier
exploration aimed at stopping the search ag catly
as possible, under the assumptions that weights are
used and that similarity can be expressed as a sum
of partial similarities:

L. Terms with inverted file entries of class ONE
have their single documents added directly to
the candidate Jist.

2. Each term with class FEW entries has its
posting list scheduled for exploration,

3. Terms with class MANY entries are merged
into a single posting list for joint exploration,

4. A frontier is established across the collection
of posting lists, such that all postings above
the frontier are at least a certain weight, and
all below have less.

5. Anassociative accumulator stores those doc-
uments found in the explored region above
the current frontier, keeping track of the %
documents with highest partial similarity.

6. If the top k& documents in the accumulator
have stabilized, they are retumed and the ex-
ploration terminates. Otherwise, the frontier
is extended and step 5 is repeated,

® The Combiner is at the center of query process-
ing. It coordinates the search process, and can
schedule Searcher(s) to perform various types of
search. When partiaily specified authority or high

frequency text objects have too many matches, it -

can request help from the user through the UIP
handler. Results go to the Formatter.

» The Formatter receives from the Combinera single
document ideniifier, a document list (see Section
4.2.2), or an addition to a previous list. These go
to the user via the UIP Handler, for subsequent
selection and display.

The Database Management Layer of MARIAN deals
with the various persistent objects discussed in Section
4.2.1. It relies upon the services of LEND, as discussed
in Section 3. Further details, especially regarding per-
formance, can be provided in the final version of this

paper.

5.1 Interface Design

Because of ease of development and testing, the
first MARIAN client has been developed using the
NeXTSTEP environment [27]. While most coding in
MARIAN has been in C-++, interface-related routines
followed the NeXTSTEP standard of using Objective C
[10]. The object-oriented approach for NeXTSTEP in-
terface development fits in well with the MARIAN phi-
losophy. In particular, MARIAN’S client/server com-
munication using the UIP protocol involves interaction
objects, some of which are shown in Figure 9,

The NeXTSTEP client/server pair can be viewed in
terms of the ISO/OSI model of communication (Figure

Workstation

Server

|
1
o e o

L= 3m Network et - -

S - -

Figure 10: Protocol Stack.

10). On the client side, the User Interface and UTIP
layers are the most important part of the Application
Layer, while on the server side the UIP layer is at the
“bottom” of the Application Layer.

The overall client/server processing on NeXT can
be seen more clearly in Figure 11. Here the roles of
TCP/IP, UIP, and MIG calls for communication should
be clear. For further details on the MARIAN interface
the reader is referred 1o [28].

5.2 User Testing

Development of the NeXTSTEP client proceeded in
parallel with the MARTAN server, N ormal testing pro-
cedures have been followed, to ensure correct behavior
in terms of specifications. Also, we are committed to
iterative refinement and careful usability testing.

Consequently, in October 1992 3 carefully selected
group of five individuals served for initial usability test-
ing, carried out in concert with another related research
effort (Project Envision [5]). The most important short-
comings and additional requirements were:

* Provide more feedback, especially notifying the
user regarding: successful invocation of MAR-
IAN, search status after query submission, and
server failure,

¢ Reorganize menu options: renaming to better ex-
press actions accomplished, and having hierarchy
reflect task organization.

* Provide better information on how the system op-
eraies, e.g., explaining the ranking principle.

Information Object

String ———— Represented By

nteger m— Represented By

Interaction Object

Atom E——— Represented By

Document s Represented By

Short Text

Long Text

Sequence of

Cholce List Short Texts

wm Represented By; >

Sequence of
Long Texts

Long Text with Shont
Description (LTSD)

Titled Document e Represented By

Book R ——— [o0 Se Mo By

HYPEMOde wmmmmmm Represented By

Sequence of
LTSDs

Long Text with
Sequence of Short Texts

Retrieval Set (Ordered

Set of Titled Documents) - Represented By

Figure 9: Representation of Internal Information Objects by User-Manipulable Interaction Objects.

* Provide more control 10 users, €.2., maintain user
settings and selections regarding window sizes,
and format/order of results.

e Simplify the manner users accomplish tasks; elim-
inate case sensitivity in query fields, add buttons
for frequent and rudimentary_ tasks in spite of
NeXTSTEP guidelines to use menus instead, and
allow users to select how results are sorted (c.g.,
by alphabetical order or date as opposed to rank).

The modular construction of MARIAN makes it rel-
atively easy to effect the necessary changes; most have
already been made. Further testing with larger and more
diverse groups will lead to iterative refinement of the
interface and server.

5.3 Current Status and Plans

The present version of MARIAN matches the design
given in Figure 7. Feedback searches, the X/Motif
interface, the CURSES interface, and Annotation are
the top priorities for development efforts. Regarding
data, the testing to-date has involved a subset of the
MARC records, numbering roughly 40K, Loading of
the full collection of roughly 900K documents should

13

be completed in T anuary 1993, at which time alpha
testing will be opened to campus NeXT systems.

As part of completing MARIAN we will extend
the current skeletal help facility with context setsitive,
point-of-need help and online tutorials [30].

A running version of the MARTIAN system will be
shown at SIGIR '93, as part of the demonstration seg-
ment of the program proposed by Professor Philip
Smith. By that time, the system should be in beta
testing on campus, open to those with NeXTSTEP or
X/Motif capable systems. Production deployment, tak-
ing advantage of several other interfaces that are under
development, is scheduled for Falt 1993, to be open for
both Virginia Tech and other Internet users.

6 Future Plans

There are many prospects for MARIAN, including log-
ging of data regarding user interaction for tuning and
research, adding other retrieval methods, developing a
Z39.50 interface, Supporting other databases, and mak-
ing the system more “intelligent.”

One promising line of future investigation builds
upon work at Miami University of Ohio. We have

MARIAN Server

Other Retrieva)
Server Processes

up
Handler

Client
ulp

interface
Application

NeXT Client workstation

Figure 11: Client/Server Interprocess Communication,

14

Figure 12: Journal Query Object.

provided data from the current 40K record database for
experiments in clustering {31]. Results look promising,
and we expect to run the fast clustering algorithm in-
volved [6] on the full collection. If successful, this may
lead to an additional type of browsing and/or searching.
Regarding adding databases, at Virginia Tech a sub-
scription payment is scheduled 1o the Institute for Sci-
entific Information (IST) for its full Current Contents
database, including abstracts. It is likely that this will
be the second database to be used with MARIAN, so
that users will have the choice of the OPAC or Cur-
rent Contents data. As part of our work with UIP and
CODER, we have already implemented the NeXTSTEP
routines for two additional information objects that will
be needed. The first, shown in Figure 12, is a slight re-
vision of the query entry window given in Figure 2. The
second, illustrated in Figure 13, should be suitable for
Table of Contents display. The top part of this Hyper-
text Node object display would provide information on
ajournal issue, and the bottom part, providing hypertext
linking to individyal articles, would list the contents,

_Collins English Diction

animals of the germs Tupus, i
|inclnding the aray wolf and the .
| European timher wolf, o

Figure 13: Text-Valued Hypernode Display.

In paraliel with work on MARIAN, LEND is be-
ing enhanced further in connection with a Masters the-
sis that should be completed by Summer 1993, and
which will involve experimentation with the MAR-
IAN database [2]. A powerful query language and
efficient Optimizing interpreter will he available, sup-
porting operations of hypertext, information retrieval
and multimedia applications. These benefits should
lead to greater efficiency as well as reduce development
costs connected with MARIAN’s Database Manage-
ment Layer,

Finally, MARIAN may be extended to support full-
text and hypertext publications including online com-
puter manuals and publications distributed by ACM (in
comection with Project Envision, oureffort to developa
user-centered hypermedia database from the Computer
Science literature [51). Figure 13 shows an interac-
tion object developed for such an extension, display-
ing a node from a hypertext dictionary developed for
CODER.

7 Acknowledgments

Many have helped with the work discussed. At the Vir-
ginia Tech Library, Linda Wilson was the main contact
helping with REVTOLC, and Charles Litchfield has
been our main contact regarding MARIAN, William
Dougherty has provided data from the VTLS system
for our experimentation.

Tim Rhodes at the Virginia Tech Computing Cen-
ter did the initial design and implementation of- the
NeXTSTEP client for MARIAN. Programming and re-
lated work on MARIAN has also involved Steve Teske,
as well as a number of other staff members at the Com-
puting Center.

Numerous students have assisted in connection with
their Masters projects and theses. Ajay Wadhawan and
Whay Lee helped with the first REVTOLC studies, Ra-
JjeshRamachander developed aperformance monitoring
tool for NeXTs that was designed for MARIAN.

Recent usability testing was undertaken by Lucy
Nowell, with guidance and assistance from Deborah
Hix. Thanks also £0 to all the individuals who have
been subjects in the REVTOLC studies and in our test-
ing of MARIAN.

References

[11 N.T. Belkin et al. Taking account of users tasks,
goal, and behavior for the design of online public
access catalogs, In Proceedings of the 53rd ASIS
Annual Meeting, ASIS "90, pages 69-79, Toronto,
Nov. 4-8, 1990,

[2] Sangita C. Betrabet. A query language for in-
formation graphs. Master’s thesis, Virginia Tech,
Dept. of Computer Science, to appear in 1993,

[3] Andrew D. Birrell and B. 1. Nelson, Implementing
Temote procedure calls. ACM Trans. on Computer
Systems, 2(1):39-59, 1984.

[4] Christine L. Borgman, Why are online catalogs
hard to use? Lessong learned from information
retrieval studies. Journgl of the American Society
Jor fnformation Science, 37(6):387-400, Novem.
ber 1986.

[5] Dennis Brueni, Edward A. Fox, Lenwood Heath,
Deborah Hix, Lucy Nowell, William Wake, and

(6]

[71

[8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Bailey Cross. What if there was desktop access
to the computer science literature? In Proc. ACM
1993 Computer Science Conference, CSC 93, In-
dianapolis, IN, February 1993,

Fazli Can. Incremental clustering for dynamic
information processing. ACM Transactions on In-
Jormation Systems, H1(1):t0 appear, J amary 1993,

Qi Fan Chen. An object-oriented datgbase Sys-
tem for efficient information retrieval applica-
tions. PhD thesis, Virginia Tech Dept. of Com-
puter Science, March 1992,

Ben E. Cline, Robert K. France, and Edward A.
Fox. OPAC design document: MARIAN, June
1991. Unpublished Internal Communiue.

C.R. Corbin. The Arr of Distributed Applications,
Springer-Verlag, New York, 1991,

Brad I. Cox. Object Oriented Programming: An
Evolutionary Approach. Addison-Wesley, Read-
ing, MA, 1981,

Amjad M. Daoud. Efficient Data Structyres for
Information Storage and Retrieval, PhD thesis,
Virginia Tech Dept. of Computer Science, 1993,
To appear.

E. A. Fox, Extending the Boolean and Vector
Space Models of Information Retrieval with P-
Norm Queries and Multiple Concept Types. PhD
thesis, Cornell University Dept. of Computer Sci-
ence, August 1983. Available from University
Microfilms Int,

Edward A. Fox. Development of the CODER 8ys-
tem: A testbed for artificial intelligence methods
in information retrieval. Information Processing
& Managemen;, 23(4):341-366, 1987,

Edward A, Fox. Testing the applicability of inte]-
ligent methods for information retrieval, Informa-
tion Services and Use, 7(4-5):119—1 38, 1988,

Edward A. Fox. Advanced retrieval methods
for online catalogs. In Annual Review of OCLC
Research, July 1989 to June 1990, pages 32—
34. OCLC Online Computer Library Center, Inc.,
Dublin, OH, 1989-1990.

16

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Robert K. France, Reference guide to the F3F,
representation language, September 1991, Un-
published Internal Communique.

Robert K. France. User interface objects for
CODER, INCARD, and MARIAN, August 1992,
Unpublished Internal Communique.

Nasser K. Ghazi, Development of a user inter-
face for the MARTAN System and a-server for the
SMART system. Master’s thesis, Virginia Tech,
Dept. of Computer Science, September 1997

D. Harman, E. A. Fox, R. Baeza-Yates, and Ww.C
Lee. Inverted files. In W. Frakes and R. Baeza-
Yates, editors, 7, wformation Retrieval: Data Strue-
tures & Algorithms, pages 28-43. Prentice-Hall,
Engelwood Cliffs, NJ, 1992,

H. Rex Hartson and Deborah Hix. Human-
Computer interface development: Concepts and
sSystems. ACHM Computing Surveys, 21(1):5-92,
March 1989,

Charles R. Hildreth. Online public access cata-
logs. Annual Review of Information Science and
Technology, 20:233-286, 198s.

Charles R. Hildreth, Beyond Boolean: Designing
the next generation of online catalogs. Library
Trends, 35:647-667, Spring 1987.

Charles R. Hildreth, Intelligent Interfaces and
Retrieval Methods. Library of Congress, Wash-
ington, D.C,, 1989,

Ray Larson. Classification clustering, probabilis-
tic information retieval, and the online catalog,
The Library Quarterly, 61:133-173, April 1991.

William H. Mishco and Jounghyoun Lee. Eng-
user searching of bibliographic databases, In
Martha E. Williams, editor, Annua; Review of In-
Jormation Science and Technology, volume 22,
pages 227-264. Elsevier Science Publishers, New
York, NY, 1987. ISBN 0-444-70320-0.

N. N. Mitev. Human computer interaction and
online catalogucs, In OPACs and Beyond, Pro-
ceedings of a Joint Meeting of the British Library,
DBMIST, and OCLC, 1988,

[27]

(28]

[29]

[30]

[31]

[32]

NeXT Computers, Inc. NeXTstep Concepts. NeXT
Computers, Inc., 1990.

Eskinder Sahle, Development of a user interface
for MARTAN and CODER systems. Master’s the-
sis, Virginia Tech, Dept. of Computer Science,
January 1993,

G. Salton, E.A. Fox, and H. Wu. Extended
Boolean information retrieval. Communications
of the Association Jor Computing Machinery,
26(11):1022-1036, November 1983.

B. Shneiderman. Designing the User Interface:
Strategies for Effective Human-Computer Inter-
action, 2nd ed. Addison—Wesley, Reading, MA,
1992,

Cory Snavely. Implementation of a cover
coefficient-based incremental clustering algorithm
for very large document databases. Technical re-
port, SAN Departmental Honors Program, Miami
Univ. of Ohio, Dec. 16, 1992.

M. Yee. System design and cataloging meet the
user: User interfaces to online public acess cata-
logs. Journal of the American Society for Infor-
mation Science, 42(2):78-98, 1991.

17

