

Automated Assessment of Student-written Tests

Based on Defect-detection Capability

Zalia Shams

Dissertation submitted to the faculty of the

 Virginia Polytechnic Institute and State University

 in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Computer Science and Applications

Stephen H. Edwards, Chair

Manuel A. Pérez-Quiñones

Dennis Kafura

 Eli Tilevich

Jeff Offutt

03/27/2015

Blacksburg, VA

Keywords: Software Testing, Automated Assessment, All-pairs

Execution, Mutation Testing, Coverage Criteria, Defect-detection Capability

Copyright 2015, Zalia Shams

Automated Assessment of Student-written Tests

Based on Defect-detection Capability
Zalia Shams

(ABSTRACT)
Software testing is important, but judging whether a set of software tests is effective is

difficult. This problem also appears in the classroom as educators more frequently include

software testing activities in programming assignments. The most common measures used

to assess student-written software tests are coverage criteria—tracking how much of the

student’s code (in terms of statements, or branches) is exercised by the corresponding tests.

However, coverage criteria have limitations and sometimes overestimate the true quality

of the tests. This dissertation investigates alternative measures of test quality based on how

many defects the tests can detect either from code written by other students—all-pairs

execution—or from artificially injected changes—mutation analysis. We also investigate

a new potential measure called checked code coverage that calculates coverage from the

dynamic backward slices of test oracles, i.e. all statements that contribute to the checked

result of any test. Adoption of these alternative approaches in automated classroom grading

systems require overcoming a number of technical challenges. This research addresses

these challenges and experimentally compares different methods in terms of how well they

predict defect-detection capabilities of student-written tests when run against over 36,500

known, authentic, human-written errors. For data collection, we use CS2 assignments and

evaluate students’ tests with 10 different measures—all-pairs execution, mutation testing

with four different sets of mutation operators, checked code coverage, and four coverage

criteria. Experimental results encompassing 1,971,073 test runs show that all-pairs

execution is the most accurate predictor of the underlying defect-detection capability of a

test suite. The second best predictor is mutation analysis with the statement deletion

operator. Further, no strong correlation was found between defect-detection capability and

coverage measures.

iii

Dedicated to my beloved mom,

Mst. Masuma Khatun

iv

Acknowledgements

All praise and thanks to God for helping me successfully complete all the stages of

my Ph.D. My deepest gratitude to my advisor Dr. Stephen H. Edwards. His in-depth

knowledge in software engineering and regular feedback on the modification of open

source tools that I needed in my research was invaluable. He always encouraged me to

participate in various research competitions and doctoral symposiums. He gave me

flexibility in investigating research problems and exploring my ideas. Afterwards, he

guided me towards practical solutions. This process helped me to grow as a researcher. His

immense patience and continuous support made it possible to conduct experiments with

more than 5 million test runs. He is a leader in computer science education and I am very

fortunate to have him as my advisor.

I would like to thank Dr. Jeff Offutt for his suggestions and thorough comments.

His feedback led us to one of the major outcomes of my research. My special thanks to Dr.

Manuel A. Pérez-Quiñones and Dr. Dennis Kafura for their intriguing questions,

constructive discussions, and comments that helped me polish my research findings. I

thank Dr. Eli Tilevich for his inspiration, kind words, and support.

I am particularly in debt to Professor Madhav V. Marathe for funding me as a GRA

for about four years. I learned to collaborate with researchers of different subjects while

working with this team. As a great researcher, he is an inspiration to me.

My deepest thanks to Dr. James D. Arthur for his mentorship and guidance. My

interest in programming languages and compilers grew while taking his courses. He helped

me find my Ph.D. research area. I thank Dr. Barbara Ryder for introducing me to program

analysis research.

I would like to thank my lab mates—Kevin Buffardi, Tony Allevato, Jason Snyder

and Ellen Boyd—for being good friends and for all the help.

My thanks to David Schuler for helping me get the right version of Javalanche and

for answering my questions. This helped me understand the design of this tool and how to

modify it.

v

My sincere thanks to Muhammad Mafidul Islam, Mahfuza Yeasmin, Kabir Uddin,

Sanjida Jahan Kabir, Julekha Chowdhury and Shamim Javed for being my family in

Blacksburg. They were always beside me, in good and bad times, especially during the

time of sickness. I also thank Shahriar Kabir, Tozammel Hossain, Sifat Siddique, and

Nazmul Hasan Nahid for their support whenever I asked for it.

I extend a special thanks to my mentors M. Shahriar Hossain, Monika Akbar and

Shaimma Lazem. They were my trusted friends who I could seek advice in any matter,

from academic to personal. My deep thanks to my friend Farhana Dewan who encouraged

and empathized me throughout my Ph.D. life.

Finally, I thank my family, far from here, for always supporting me without

question. My younger sister, Alia Shams, used to make me laugh when I was sad. My

beloved parents instilled in me the inspiration to set high goals and the confidence to

achieve them. My mom managed to call me every day to check on me despite a ten hour

time difference, a full-time job, and taking care of my ailing dad. She patiently heard my

everyday life events, research findings, conference experiences, and what not. Her out-of-

the-box thinking always gave me a new perspective. I could not have finished my Ph.D.

without her limitless care and continuous support.

vi

Chapter 1 ... 1

Introduction ... 1

1.1 Research Problem ... 3

1.2 Contribution .. 4

1.3 Outline ... 5

Chapter 2 ... 7

Background ... 7

2.1 Automated Grading Systems and Their Evaluation Measures 7

2.2 Coverage Metrics .. 11

2.3 All-pairs Execution ... 15

2.4 Mutation Analysis ... 16

2.5 Checked Code Coverage ... 21

Chapter 3 ... 25

Feasibility of Alternative Measures .. 25

3.1 All-pairs Execution ... 26

3.2 Mutation Testing ... 34

3.3 Checked Code Coverage ... 40

Chapter 4 ... 43

Comparison of Test Quality Measures ... 43

4.1 Experimental Setup ... 43

4.2 Evaluation Approach .. 46

4.3 Experimental Results from Two Assignments.. 48

Table of Contents

vii

Chapter 5 ... 75

Conclusion .. 75

5.1 Research Results ... 75

5.2 Contributions ... 78

5.3 Broader Impacts .. 78

5.4 Future Work .. 79

References ... 81

viii

List of Figures

Figure 1: Screen shot of a result summary given to a student by Web-CAT. 8

Figure 2: Screen shot of a testing score report from Web-CAT. .. 8

Figure 3: Screen shot of a problem coverage report from Web-CAT. 9

Figure 4: Screen shot of a visual statement coverage report from Web-CAT. 9

Figure 5: An exmaple for coverage criteria. ... 12

Figure 6: All-pairs execution. ... 15

Figure 7: Mutant example. .. 17

Figure 8: Data and control dependencies in a method call. .. 23

Figure 9: Common JUnit style to check exceptions. .. 24

Figure 10: A sample LinkedQueue class. ... 27

Figure 11: JUnit test class for LinkedQueue... 28

Figure 12: Master suite formation... 45

Figure 13: Distribution of defect-detection capability for Project 1. 50

Figure 14: Distribution of defect-detection capability for Project 4. 51

Figure 15: Distribution of Scores from different measures for Project 1. 52

Figure 16: Distribution of different measures for Project 4. ... 53

Figure 17: Distribution of statement coverage scores for Project 1. 54

Figure 18: Distribution of branch coverage scores achieved by student-written test suites

for Project 1... 54

Figure 19: Distribution of OIC scores achieved by student-written test suites for Project

1... 55

Figure 20: Distribution of statement coverage scores achieved by student-written test

suites for Project 4. ... 56

ix

Figure 21: Distribution of branch coverage scores achieved by student-written test suites

for Project 4... 56

Figure 22: Distribution of OIC coverage scores for Project 4. ... 57

Figure 23: Distribution of OBC scores achieved by students-written tests for Project 1. 57

Figure 24: Distribution of OBC scores for Project 4. ... 58

Figure 25: Distribution of all-pairs scores for Project 1. .. 59

Figure 26: Distribution of all-pairs scores achieved by student-written test suites for

Project 4. ... 59

Figure 27: Distribution of Javalanche mutation scores achieved by student-written test

suites for Project 1. ... 61

Figure 28: Distribution of Javalanche’s mutation scores achieved by student-written test

suites for Project 4. ... 62

Figure 29: Distribution of µJava mutation scores achieved by student-written test suites

for Project 1... 62

Figure 30: Distribution of µJava mutation scores achieved by student-written test suites

in Project 4. ... 63

Figure 31: Distribution of checked coverage scores for Project 1. 64

Figure 32: Distribution of checked coverage scores achieved by student-written test suites

for Project 4... 64

Figure 33: Relationship between defect-detection capability score vs. all-pairs score for

Project 1. ... 66

Figure 34: Relation between defect-detection capability estimates and µJava scores for

Project 1. ... 67

Figure 35: Relationship between defect-detection capability score vs. mutation score

(Javalanche) in Project 1. .. 68

Figure 36: Relationship between defect-revealing capability estimates and all-pairs score

for Project 4... 70

Figure 37: Relation between defect-detection capability estimates and µJava mutation

scores for Project 4.. 71

x

Figure 38: Relation between defect-detection scores vs. Javalanche mutation scores for

Project 4. ... 72

xi

List of Tables
Table 1: Sufficient mutation operators listed by Offutt [46]. ... 18

Table 2: µJava method level operators [58]. ... 19

Table 3: Javalanche mutation operators [49]. ... 20

Table 4: Master suite summary. .. 49

Table 5: Correlation (Spearman’s ρ) between measures for Project 1. 65

Table 6: Correlation (Spearman’s ρ) between measures for Project 4. 69

file:///C:/Users/Zalia/Automated%20Testing%20of%20Students%20Code/Research%20Defense/Thesis/latest/Thesis5.docx%23_Toc416968498
file:///C:/Users/Zalia/Automated%20Testing%20of%20Students%20Code/Research%20Defense/Thesis/latest/Thesis5.docx%23_Toc416968499
file:///C:/Users/Zalia/Automated%20Testing%20of%20Students%20Code/Research%20Defense/Thesis/latest/Thesis5.docx%23_Toc416968500
file:///C:/Users/Zalia/Automated%20Testing%20of%20Students%20Code/Research%20Defense/Thesis/latest/Thesis5.docx%23_Toc416968501
file:///C:/Users/Zalia/Automated%20Testing%20of%20Students%20Code/Research%20Defense/Thesis/latest/Thesis5.docx%23_Toc416968502
file:///C:/Users/Zalia/Automated%20Testing%20of%20Students%20Code/Research%20Defense/Thesis/latest/Thesis5.docx%23_Toc416968503

1

Introduction

Testing is an important part of software development. The main concern of software

testing is to detect as many defects as possible. Failures are caused by defects in programs,

which are accidentally introduced by developers because of the inherent complexity of the

code. A study by the National Institute of Standards and Technology [55] from 2002

estimated that software failures cause costs of $59.5 billion annually in the U.S., and that

over one third of these costs could be avoided by better software testing strategies. Further,

most software industries apply testing in different stages of software development and it

accounts for 50% of the cost of development. However, unfortunately, less than 15% of

practitioners ever receive any formal training on the subject [24].

Considering the necessity of testing, more educators are including software tests

[22, 23] in programming and software engineering courses [27, 37]. The goal of including

software testing as a part of programming assignments is to enable students to better test

their software, and thus hopefully produce code with fewer defects. An earlier study [24]

showed that students who tests their own programs produce 28% fewer defects per

thousand lines of code. Further, when students write software tests, they have to articulate

their own understanding of what their code is supposed to do, which helps them solidify

their conceptual understanding about their own program. Regardless of the benefits of

testing, students are not accustomed to formally test their code. They usually focus on

output correctness on the instructor’s sample data [37] and do less testing on their own

[27]. To change this practice, educators are including software testing as a part of

programming assignments, where a student is required to submit his program along with

test cases. In this approach, the student’s total grade depends on the correctness of his

program and the quality of his test cases.

To support software testing as a part of regular programming assignments, current

classroom assessment systems (e.g., Web-CAT, ASSYST, Marmoset) allow students to

turn in their programs along with tests. These automated grading tools evaluate student-

Chapter 1

2

written tests as part of grading. To support software testing as a part of regular

programming assignments, current classroom assessment systems (e.g., Web-CAT,

ASSYST, Marmoset) allow students to turn in their programs along with tests. These

automated grading tools evaluate student-written tests as part of grading. The most

common strategy currently used is to employ a structural code coverage metric, such as

statement coverage or branch coverage, in order to measure how much of the code under

test is executed by a test suite. Statement coverage calculates what percentage of the

software’s statements are executed by the tests in a test suite and branch coverage measures

what proportion of the control flow transfers are executed. Software test adequacy criteria

such as these are traditionally viewed as criteria for judging when a test suite is “thorough

enough”—as a kind of stopping rule that says when a test suite is sufficiently complete.

However, such criteria can also be used in another way: to measure the adequacy or degree

of thoroughness of a test suite [60]. When used in this way, they become an indicator of

the quality of a test suite. Automated assessment systems use coverage criteria in the same

way to evaluate the quality of students’ tests.

Coverage criteria focus on executing more code with the rationale that the chances

of detecting defects in code is zero if it never gets executed. However, executing defects

does not guarantee they will be detected. A software test may cause a fault to be executed,

but contain insufficient checks of expected behavior to detect that the code did not behave

as intended. Moreover, the test may have used data for behavioral checks that fail to detect

failures. Thus, it is not sufficient to cover the error; we also need a means to detect it.

Two main goals of software testing are:

1) Executing the defects in code in a way that causes failure, and

2) Recognizing or detecting those failures.

Coverage criteria give information about only part of the first goal of testing: what

percentage of the code features is being executed. To examine if tests are executing code

in a way to cause failures and to detect those failures, we need to assess oracle quality. Test

oracles are checks that determine whether a test case passes or fails. Assessing tests based

on oracles provides information on the sufficiency of checks as well as the detection of

3

observable failures. Currently, oracle quality assessment approaches are not used in any

classroom grading tools.

Classroom grading tools have different requirements and challenges than

traditional industry tools. Student-written programs are generally small in size, so unit

testing is used for assessment. No systemic defect-tracking system is available as

professionals use in industry. Common pair-review process may not be used or applicable

in introductory classes. Thus, beginners depend on the feedback from teachers, TAs and

automated grading tools if available. For large classes or MOOCs (Massive online open

course)s, providing the human efforts to execute and assesses student-written tests becomes

unrealistic. Thus, incorporating effective test quality measures in classroom assessment

tools is a growing need. In this research, we investigate different oracle quality assessment

approaches for automated grading of students’ tests.

1.1 Research Problem

To overcome the problems of assessing students’ tests using statement or branch

coverage, we investigate alternative approaches based on the defect-detection ability of the

tests. Recently, several measures have been proposed as more sensitive measures [6, 50]

of test quality than statement or branch coverage. Among them all-pairs execution,

mutation analysis and checked code coverage have shown promising results on evaluating

test quality. In all-pairs execution, each student’s test cases are run against all other

students’ programs. Mutation testing, on the other hand, involves modifying the programs,

with the intent to seed artificial errors into code and to check whether a test suite can find

them. These two measures evaluate test quality based on how many defects a test suite can

detect, whereas checked code coverage measures the percentage of executed code that

influences on the checked results. Technical obstacles of automating these approaches for

an educational environment raise the question of whether it is feasible to use them in

classroom assessment systems. We also need to find out which one of these alternative

measures is more accurate, in terms of predicting the defect-detection capability of a given

test suite. This thesis focuses on discovering the best test quality measure based on defect

detection capability for automatic assessment of student written tests. The specific

4

research problem is subdivided into the following three questions for the alternative

measures: all-pairs execution, mutation testing with four different sets mutation operator

and checked-coverage:

1. Are these measures feasible to use for automated classroom grading

systems?

2. Are they better indicators of defect detection capability?

3. Which of these test quality measures is the best?

 Here, we can define best as: the most accurate predictor of how likely a test suite

is to reveal actual defects. We identified technical challenges of using all-pairs execution,

mutation analysis with four different sets of mutant operators, and checked coverage for

automated classroom grading tools. We also devised novel technical solutions to overcome

those challenges. We designed and conducted an experiment with two CS2 assignments

from two different semesters, to compare all-pairs execution, mutation analysis with four

different sets of mutants, and checked code coverage using a massive dataset collected

from actual student-written tests. The same comparison was extended for four coverage

criteria: statement coverage, branch coverage, object instruction coverage, and object

branch coverage. The goal of this experiment was to find out how these measures correlate

with defect-detection capability.

1.2 Contribution

The contributions of this research include:

 We designed a study to compare 10 different assessment approaches in terms of

their defect-detection capabilities: all-pairs execution, mutation analysis with four

different sets of mutation operators, checked code coverage, statement coverage,

branch coverage, object instruction coverage, and object branch coverage.

Completion of the study determines the best test quality measure to automatically

assess students’ tests.

 We analyzed technical obstacles of all-pairs execution and provided automated

solutions for them.

5

 We introduced a set of techniques, including detection of mutants incrementally, to

apply mutation analysis in educational settings.

 We investigated four different sets of mutation operators to determine which

mutation operator produces mutants that are most correlated with defect-detection

capability. The four sets of operators are sufficient mutation operators listed by

Offutt [46], Javalanche mutation operators [49], statement deletion operator [21],

and the combination of variable, constant and operator deletion operators [21]. We

choose these sets because they are effective and practical for grading tools.

 We provided a novel way to remove compile time dependencies between JUnit tests

and their solutions using late binding to support test evaluation against correct and

erroneous solutions that are likely to be from different authors or automatically

generated.

 We developed a semi-automated system to calculate a more sensitive form of code

coverage using the dynamic slices of a program executed from checked assertions.

1.3 Outline

In Chapter 2, we describe potential test quality measures: coverage criteria, all-pairs

execution, mutation testing, and checked code coverage. We also discuss strengths,

weaknesses, and popular automated tools available to apply the measures. Our discussion

also includes automated assessment systems and their evaluation metrics for assessing

students’ tests. In Chapter 3, we analyze in detail the obstacles to applying all-pairs

execution, mutation testing and checked code coverage, present our solution to the

problems, and evaluate the feasibility of our solution. Chapter 4 includes an experiment to

compare defect-detection capability with all-pairs execution, mutation testing with four

sets of mutation operators, checked coverage, and four coverage criteria. Finally, we

conclude in Chapter 5 with plans for future work.

6

7

Background

During the development process software is tested at different stages to confirm it

produces expected results under specified conditions. Different levels of testing

corresponds to different level of development activity. Unit testing exercises the software

at the lowest level. It is designed to assess the produced code during implementation phase.

It checks the implementation modules or parts of a program in isolation. A number of test

cases are executed by the system under test with specified conditions and inputs to check

results by test oracles. A test oracles determines whether the test cases pass or fail.

In this thesis, we focus on evaluating student-written unit tests by automated

grading systems. Many educators include software testing activities in programming

assignments, so there is a growing demand for appropriate methods of assessing the quality

of student-written software tests. If students are taught how to test their code well, they

will improve the quality of their code in terms of correctness. In fact, Edwards [24] showed

that students who tested their own programs reduced defects by 28% per thousand lines of

code.

While tests can be hand-graded, some educators also use objective performance

metrics to assess software tests. Several metrics are used to evaluate test quality. Statement

and branch coverage, all-pairs execution and mutation testing have been either used or

proposed for assessment of student-written tests. Recently, a variation of code coverage—

called checked code coverage—has been introduced as a more sensitive measure of test

quality than mutation testing and statement coverage. We discuss all four types of measures

in the following subsections.

2.1 Automated Grading Systems and Their Evaluation
Measures

Students often consider software testing to be boring. They usually focus on output

correctness on the instructor’s sample data [27] and do less testing on their own [26].

Goldwasser [32] first proposed the idea of executing student-written tests against other

Chapter 2

8

students programs. Widely used automated assessment tools (e.g.,Web-CAT [25],

ASSYST [36] and Marmoset [54]) evaluate students’ codes along with their software

tests.

Web-CAT and ASSYST are the most popular assessment tools. Web-CAT can

measure statement and branch coverage of student-written tests submitted as a part of an

assignment. Web-CAT can also execute instructor-provided reference tests, and for some

languages (such as Java) it provides static analysis tools that can assess code style,

Figure 1: Screen shot of a result summary given to a student by Web-CAT.

 Figure 2: Screen shot of a testing score report from Web-CAT.

9

adherence to coding standards, and some structural aspects of commenting conventions.

Depending on the instructor’s preferences, a student’s grade can depend on 1) design, 2)

coding style, and 3) correctness or testing score. The top right corner of Figure 1 gives a

summary of the score. Figure 2 illustrates how a testing score is calculated from the

statement coverage score calculated from his test suite, percentage of his own test cases

 Figure 3: Screen shot of a problem coverage report from Web-CAT.

Figure 4: Screen shot of a visual statement coverage report from Web-CAT.

10

passed, and problem coverage—percentage of required features completed by the student.

An additional report is also available to a student explaining problem coverage of his code

as shown in Figure 3. This report gives hints on where or in which methods reference tests

have found defects. Moreover, a visual report on the statement coverage (Figure 4) from

the student’s tests is given to the student. As a result, a student knows exactly which lines

are uncovered in his code and can try to increase coverage by adding or modifying his test

cases.

ASSYST also provides support for executing instructor-written reference tests

against student submissions, as well as support for measuring code coverage (i.e., statement

coverage) of student solutions when the instructor-written tests are executed. This system

can also evaluate the run-time efficiency of a program by the amount of CPU time

consumed, its code complexity, and its style. Moreover, weightings can be assigned to

particular aspects of tests using ASSYST.

Marmoset is another automated grading system that focuses on Java assignments.

It evaluates student programs against two test sets: 1) public test sets, where students see

all results, and 2) “release” test sets provided by the instructor—that is, private instructor-

written reference tests. The public test sets are available publicly to students and feedback

from running public test sets are provided to students immediately. However, release test

sets can be run only if a submission passes all the public tests. The results from release test

sets are delayed and limited. Marmoset uses statement coverage from the release test sets

and from the students’ own test sets. This system also provides students with information

about their programs using the static program analysis tool FindBugs [17].

All three of these tools run instructor-provided reference tests against student

submissions. However, reference tests written in compiled languages, such as Java, do not

compile against solutions that fail to provide all the required features in an assignment or

that have incorrect method signatures. As a result, these systems cannot evaluate partial or

incomplete submissions and gives no credit in those situations. Edwards et al. presented a

solution for assessing partial or incomplete Java programs by applying late binding to test

cases [30].

11

Web-CAT, ASSYST, and Marmoset all provide some form of statement or branch

coverage but cannot measure how many observable failures that test cases have detected.

As an alternative, Aaltonen et al. [6] proposed using mutation analysis to assess the quality

of student-written tests in Java assignments. He compared scores that students get for their

tests from mutation testing and statement coverage provided by Web-CAT. The

comparison showed that students were able to fool coverage tools, and achieving a high

score was harder with mutation testing than statement coverage. However, some limitations

may make it impractical to use for real-time feedback generation, although it appears

feasible for use in batch-style analysis of student submissions.

Some web based tutorial systems, such as BugHunt [31] are designed for students

to learn how to write unit tests. It provides existing code containing known defects for

students to “find” using testing. Though this work does not assess student-written tests, it

does aim directly at including software testing in courses, and helps students learn from

their mistakes through an interactive feedback system. Another tool, JavaFest [34],

promotes collaborative learning of Java programming and learning to write good unit tests.

This tool is inspired by a team-based version of Goldwasser’s idea. It groups students into

teams and creates competitions where each team’s tests are run against other teams’

implementations. The team uncovering the largest number of defects in other teams’ code

wins the completion. However, this is not an automated assessment tool. TAs and tutors

provide feedback and help students to use the right interfaces or code structures so that

their tests can be executed against each other.

2.2 Coverage Metrics

Coverage criteria [43] were one of the first methods used for software testing and

are still the most widely [50] used metrics to assess test quality. They measure the

percentage of code features executed during testing. Code features can be statements,

branches or path coverage. The idea behind coverage criteria is that a test suite cannot find

any defects in code if it never gets executed. On the other hand, the chances of detecting

defects in code are more if the code is executed. Statement coverage is the most basic form

of code coverage. If a specific statement is executed from at least one test case, then it is

12

considered covered. Executing all the statements is necessary to achieve 100% statement

coverage.

Object coverage analysis computes metrics focused on machine-level object code.

Object instruction coverage (OIC) requires all object instructions to be executed at least

once. Sometimes, object coverage measures are safer as compiler-generated object code

impacts the execution control flow in a way that is not directly visible from source code.

Branch coverage requires that every conditional statement is evaluated to true and

false. For example, given an if statement, both the true and false branches need to execute

to achieve 100% branch coverage. If a specific branch is exercised by at least one test, then

it is calculated as covered. Branch coverage subsumes statement coverage as it requires all

the statements to be covered, including the branches that contain no statements such as an

empty else-block of an if-statement. Thus, test suites that achieve full branch coverage also

achieve full statement coverage.

Figure 5 shows a simple method, abs(int), that calculates the absolute value of

an integer. Invoking abs(-3) will achieve 100% statement coverage. However, to satisfy

branch coverage, it is necessary to execute the method at least twice, one with a>=0 and

another with a<0, such as abs(3)and abs(-3).

Condition coverage requires each simple condition in every decision to be

evaluated both true and false at least once, but this does not necessarily guarantee each

1 static int abs(int a) {

2 int absVal;

3 absCalled++;

4 absVal = a;

5 if (a < 0) {

6 absVal = -absVal;

7 }

8 return absVal;

9 }

Figure 5: An exmaple for coverage criteria.

13

branch will be executed. A more stringent form is modified condition/decision coverage

(MC/DC). MC/DC is defined this way [18]:

“Every point of entry and exit in the program has been invoked at least once,

every condition in a decision has taken all possible outcomes at least once, every

decision in the program has taken all possible outcomes at least once, and each

condition in a decision has been shown to independently affect that decision's

outcome.”

Unfortunately, MC/DC is sometimes infeasible when conditions are dependent (for

example, checking whether a pointer is non-null before using the pointer in a later condition

in the same decision). Masking MC/DC [16] allows for each condition to be shown to

independently affect a decision’s outcome by varying just that condition while holding

fixed all other possible conditions that could affect the outcome. It is weaker than MC/DC.

However, an empirical study shows that masking MC/DC requires an equivalent number

of tests as MC/DC and is a preferred form of MC/DC [16].

 A similar form of branch coverage named object branch coverage (OBC) is as

strong as masking MC/DC for the majority of code [11]. OBC is calculated by

instrumenting a program’s object code instead of its source code. However, for languages

that use short-circuit evaluation of logical operators, object code instrumentation will result

in much more stringent coverage requirements. As an example, consider this if statement:

 if (C1 || C2 && C3)

 {

 ...

 }

This if statement contains three simple conditions combined with logical

operators to form one compound decision. With traditional branch coverage, a test suite

must ensure that the if statement is executed when the entire decision evaluates to true,

and also when the entire decision evaluates to false (a total of two branches). However,

when compiled, this compound decision results in a series of object code instructions that

contain a separate conditional jump instruction for each simple condition. OBC requires

that each conditional jump in the object code be executed when the corresponding

condition is true, and also when it is false. In effect, this forces the tester to exercise both

sides of each simple condition in every decision. For most decisions containing N simple

14

conditions, there are N + 1 separate object code branches that must be exercised to achieve

full object branch coverage.

As a result, OBC requires that each simple condition be evaluated to both true and

false, and also that each decision as a whole be evaluated to both true and false, making it

equivalent to condition/decision coverage. However, in languages where Boolean

operators use short-circuit evaluation, achieving full OBC implies achieving full masking

MC/DC for compound decisions with certain properties [11], even though OBC is strictly

speaking a weaker criterion. An analysis of two industrial applications by Bordin et al.

[40] revealed that more than 99% of decisions obey the necessary properties, meaning that

in practice, OBC is frequently as strong as masking MC/DC, a criterion considered

sufficient for safety-critical systems [11].

Coverage criteria have limitations. They measure how much code has been

exercised from the tests. Executing code is important because if a code never gets executed,

chances of detecting defects in it is zero. However, covering a defect is not sufficient to

detect it. To evaluate the quality of tests we also need to know if tests are checking the

result of executed code and are recognizing observable failures. Moreover, a student’s

solution may be incomplete because it omits some required behaviors, but coverage criteria

does not provide information about these omissions. In fact, coverage criteria is not a true

indicator of test quality as developers [42] and students [6] can misuse coverage-based test

adequacy metrics to create a false sense of a well-tested program.

There are mature and efficient automated tools for coverage metrics. JaCoCo [3],

Clover [1] and Emma [2] are three well known Java code coverage tools. Among them,

JaCoCo and Emma are open source whereas Clover is a commercial tool. These tools

instrument the application to collect coverage data. Afterwards, the tools execute test cases

on the application and record coverage data. Finally, the coverage tools populate different

statistics from the data collected during execution. Automated assessment systems

typically use statement coverage to evaluate students’ written tests.

15

2.3 All-pairs Execution

To incorporate software testing as an integral part of programming assignments,

Goldwasser [32] proposed the idea of requiring students to turn in tests along with their

solutions, and then running every student’s tests against every other’s program. This all-

pairs strategy provides a more robust mechanism for evaluating the quality of tests. Figure

6 illustrates this strategy.

 A unique feature of this mechanism is assessing by actual defects present in other

students’ solutions. When students only see the results of their own tests (and possibly their

instructor’s), they often have an overly inflated sense of the quality of their own programs.

This tournament style approach motivates students for software testing in an engaging way.

Students take away a greater realization of the density of defects in code they write, as well

as their own ability to write tests that find defects in other solutions. Such a metric is

beneficial because students see how the class performs overall and how they performed

individually—both in terms of how well their own solution passes tests written by others,

and in terms of how well their own test suite detects failures in other programs. As a result,

students gain a whole new perspective on the value of testing and on the presence of hidden

defects in their own code. Moreover, a large collection of student-written tests provides a

Test Suite2

Solution…

Test Suite1

Solution1

Test Suite…

Solution2

Executing

every students’

test suite

against

everyone

else’s

programs

Test Suite

Solution

A student’s

submission

Figure 6: All-pairs execution.

16

diverge environment of software testing. The submitted tests from students may uncover

defects in some solutions that are not detected by instructor provided tests [32].

A major disadvantage of all-pairs execution is that the number of tests execution

grows quadratically with the number of students. Therefore, this approach is feasible only

for fully automated grading systems. However, a key technical problem arose as a barrier

to implementing it with modern unit testing frameworks used in the classroom, such as

JUnit. The problem is that in such a framework, tests are written in the form of code,

alongside the original solutions. A student can test any visible feature (public class, field,

method etc.) of his or her solution in any test case. For compiled programming languages

such as Java, if any test case within a test class refers to any student-specific feature that is

not present in everyone else’s solution, then that entire test class will not compile against

other students’ solutions. This effectively prevents the all-pairs strategy from being used,

unless students are constrained to only writing tests using the same common, instructor-

specified set of public methods. Edwards et al. [30] described a technique to remove

compile-time dependencies from the test cases so that they can be compiled once and then

run against everyone else’s solution, separating out student-specific test cases from those

that are more generally applicable at run-time.

2.4 Mutation Analysis

Mutation testing [20] creates a set of modified or mutated versions of the original

program with the intent to seed artificial defects and to check if the test cases can detect

these injected defects. The modified versions are called mutants. If the mutated program

produces different results than the original code then it is called a non-equivalent mutant.

The defective versions, or non-equivalent mutants, are intended to be representative of the

faults that programmers are likely to make in practice. The key principle of mutation

analysis is complex faults are coupled to simple faults in such a way that a test data set that

detects all the simple faults is thorough enough to detect most complex faults [20, 45]. Test

suites are run against all the mutants. The effectiveness of a test is measured by its mutation

score, which is the percentage of mutants detected or killed by the test.

17

Mutated programs are not always faulty. A mutated program can become a different

version of the original solution with no difference in produced results. This type of mutant

is called an equivalent mutant. Figure 7 (a) shows a simple program fragment that

calculates the absolute value of an integer. Figure 7 (b) shows a defective version of the

same code where an error has been artificially introduced by changing the comparison

operator in the if test. This mutant is typical of mutation analysis, where seeded errors

represent substitutions or other minor changes to a localized portion of the program. Here,

almost any test case that confirmed the code computed the correct absolute value would be

likely to discover the mistake. However, in some cases, the change intended to introduce

an error might accidentally produce an alternative program that is behaviorally identical to

the original, failing to introduce a true defect. Figure 7 (c) shows such a change, where the

if test has changed from < 0 to <= 0. The effect of this modification will make no

difference in outcome since -0 is actually 0 and Figure 7 (c) is behaviorally identical to

Figure 7 (a).

 When calculating the mutation score for a test suite, equivalent mutants should not

be included, since they are behaviorally indistinguishable from the original. However, even

1

2

3

4

5

6

7

8

9

10

int abs(int a)

{

 int absVal;

 absVal = a;

 if(a < 0){

 absVal=

-absVal;

 }

 return absVal;

}

int abs(int a)

{

 int absVal;

 absVal = a;

 if(a > 0){

 absVal=

-absVal;

 }

 return absVal;

}

int abs(int a)

{

 int absVal;

 absVal = a;

 if(a <= 0){

absVal=

-absVal;

 }

 return absVal;

}

(a): Original Code (b): Non-equivalent Mutant (c): Equivalent Mutant

Figure 7: Mutant example.

18

with recent advancement, weeding out equivalent mutants is still a manual process and is

labor intensive. Determining equivalent mutants is such a tedious and error-prone activity,

that even ignoring equivalent mutants has been considered [47] since the lower mutation

score still provides meaningful defect detection information.

 Mutants are generated by modifying code at the source or bytecode level. How the

code will be modified from the original program is determined based on transformation

rules that are called mutation operators. Generally, mutation operators are designed to

modify expressions or variables by replacement, insertion, or deletion. Many mutation

operators have been proposed. Agrawal et al. [33] provided a list of 76 operators. However,

more mutation operators means generating more mutants. To reduce the cost of mutation

testing, researchers investigated what set of mutation operators would produce less mutants

but would obtain a sufficiently accurate measure of overall mutation adequacy. Such a set

is known as a sufficient set [46].

Table 1: Sufficient mutation operators listed by Offutt [46].

Abbreviation Name What it does?

ABS Absolute value insertion Replaces each arithmetic

expression to take on the

value 0, a positive value

and a negative value

AOR Arithmetic operator

replacement

Replace each arithmetic

operator with other

syntactically legal

operator such as change +

to -, *, / etc.

LCR Logical connector

replacement

Replaces each logical

connector (AND and OR)

with several other kinds

of logical connectors

ROR Relational operator

replacement

Replaces relational

operators with other

relational operators

UOI Unary operator insertion Inserts unary operators in

front of expressions

19

 Offutt et al. [46] experimentally determined five mutation operators listed in Table

1 as forming a sufficient set of operators. Several other researchers [9, 44, 57] also

investigated to determine a sufficient set of operators for different programming languages.

A recent study found deletion operators [19] generate fewer mutants but yield tests that

are almost as effective as the full set of mutants generated from the sufficient operators.

Deletion operators include statement deletion (SDL), operator deletion (ODL), variable

deletion (VDL), and constant deletion (CDL). SDL achieves 92% effectiveness [21] for

Java. However, combining other deletion operators with SDL achieves 97% of the

effectiveness of the sufficient set of mutation operators [19].

Many automated tools are available to generate mutants. Mutants for Java programs

can be generated at the source level or at the byte-code level. Both procedures have their

pros and cons. Source level mutants are easy to examine but slow in execution as they need

to be compiled. Moreover, generated mutants can be from a portion of code that the

Table 2: µJava method level operators [58].

Operator Description Example

AOR Arithmetic Operator Replacement Replace + with -,*,%,/.

AOI Arithmetic Operator Insertion Insert ++, --.

AOD Arithmetic Operator Deletion Delete ++, --

ROR Relational Operator Replacement Replace > with >=, <, <= .

COR Conditional Operator Replacement Replace && with ||, &, |.

COI Conditional Operator Insertion Insert !

COD Conditional Operator Deletion Delete !

SOR Shift Operator Replacement Replace << with >>

LOR Logical Operator Replacement Replace & with |

LOI Logical Operator Insertion Insert ^

LOD Logical Operator Deletion Delete ^

ASR Assignment Operator Replacement Replace += with -=

20

compiler eliminates as a dead code. Byte-code mutants are faster in execution and more in

number, but hard to examine.

There are efficient automated tools to generate both source and byte level mutants.

µJava [41] is the most popular source-level mutant generator. It generates mutants from

Java programs with two types of operators: class-level mutation operators and method-

level mutation operators. Class-level operators [12, 13, 39] are related to encapsulation,

inheritance, and polymorphism. In class-level mutants, these operators are changed (e.g.,

add or remove key word this, static etc.). Method-level operations include

arithmetic, relation, conditional, shift, bitwise and assignment operations. Table 2 gives a

brief list of method level operators that are available [58] in µJava. This set includes

sufficient operators [46] and deletion operators.

 µJava is efficient in generating mutants and easy to use but has some limitations.

For example, it uses an old version of Openjava that is not compatible with some features

of JDK 1.5 and later. Moreover, it assumes external library (e.g., android jar) classes will

be available in source form and provides no way to define a classpath with external jars. It

cannot generate mutants for classes that do not have source code. In such cases, µJava does

not report the reason for not being able to generate mutants.

Bytecode-level mutation testing is more efficient and scalable than source-level

testing. Javalanche [48] is the most widely used byte-code level mutation analysis tool. It

generates mutants for operators [49] that are slight modification of operators listed by

Table 3: Javalanche mutation operators [49].

Operator Description

Numerical Constant Replacement Replace a numerical constant X by X-1, X+1 or 0

Jump Condition Negation Negate a conditional jump. This operator is

equivalent to negating a conditional statement or

subexpression in the source code. This operator

negates individual sub conditions also.

Arithmetic Operator Replacement Replace an arithmetic operator by another one,

such as + by -.

Method Call Omission Suppress a call to a method. If the method has a

return value, a default value is used instead, e.g.

x = Math:random() is replaced by x = 0:0.

21

Andrews et al. [8] and was inspired by sufficient mutant operators listed by Offutt et al.

[46]. Javalanche replaces numerical constants, negates jump conditions, omits method calls

and replaces arithmetic operators as listed in Table 3. Javalanche handles JUnit test cases.

It executes a series of actions, such as mutation generation, running user supplied test cases,

and analyzing coverage from the pass-fail rate of the test cases. However, generating and

processing mutants are time consuming and computationally expensive. A comprehensive

discussion on mutation testing and uses of mutation testing can be found in the survey

papers of Offutt and Untch [47] and Jia and Herman [59].

Aaltonen et al. [6] performed a proof-of-concept evaluation of mutation analysis

for assessing the quality of student-written tests in Java assignments. They generated

mutants from each student’s solution and then ran the mutants against that student’s test

cases to see how many mutants were detected. Equivalent mutants were weeded out by

hand, although that would not be feasible in a classroom situation. This approach appears

to provide a deep perspective on how effective the student-written tests are in executing

defects that cause failures and detecting these failures. However, some limitations make it

impractical to use in the classroom. For example, they could not provide instant feedback

to students because the mutation analysis required significant processing time. Moreover,

the generated mutants were student-specific. Thus, complex solutions had many mutants,

which could lead to an artificially lowered mutation score. Similarly, testing unspecified

behaviors that were not part of the assignment could reward a student with a higher

mutation score. Furthermore, their approach required manual inspection of the generated

mutants to weed out those that were not true defects. In total, their procedure was inefficient

and non-uniform, so cannot be used for automated classroom assessment tools.

2.5 Checked Code Coverage

Adequacy of test oracles is important to ensure correct evaluation of programs.

Assertions are parts of test oracles that are commonly used for checking program behaviors

or outcomes. Test suites are prone to having inadequate assertions [38] that originate from

testers’ mistakes. Coverage criteria do not reveal that results produced by the executed

22

code have not been checked by assertions. This may create a false sense of security of good

coverage though the program has insufficient checks.

Checked code coverage [50] is an alternative approach for addressing the

insufficient oracle issue. It uses dynamic slicing to determine which statements actually

contribute to the results checked by test cases. The purpose of this approach is to focus on

the code features that actually contribute to the results checked by test cases rather than

only considering the code features that are executed in a program. A dynamic backward

slice of the program is computed from test cases to determine which statements contribute

to the checked result.

A program slice [56] is the set of statements that may influence the variables used

in a given location. This approach is used in debugging to locate the source of errors. The

slices can be computed statically or dynamically. A static program slice includes the

statements that potentially influence the variables at a given point while the dynamic

program slice only consists of the variables that actually influence the variables during a

concrete program run. Checked coverage uses dynamic slices to calculate the statements

that influence the checked results from a concrete execution of a test suite. The influence

can be from a data dependency or a control dependency.

A statement s has a data dependency on statement t when there is a variable, v that

is defined (written) in t and used (read) in s without any redefinition of v in between. On

the other hand, a statement s is control dependent on a statement t if and only if t is a

conditional statement and the execution of t depends on the execution of s. The checked

code coverage uses dynamic backwards slices calculated from assertions.

Figure 8 shows a test (line 8 to 11) that exercises the dequeue() method. To

compute the checked coverage for this example, the dynamic backward slice from the call

to assertEquals() (line 10) is built, and only the statements that are on this slice are

considered to be covered. The dynamic backwards data and control dependent statements

from the assertEquals() method call are shown by solid and dashed arrows. Thus,

the dynamic slice consists of all the statements except line 4 and 5. However, statement

coverage considers line 4 and 5 as covered. To cover line 4 and 5 using checked coverage,

a tester needs to check size and front element from assertions.

23

Checked coverage is computationally cheaper than mutation analysis or all-pairs

execution. Insufficient checks from tests (assert calls) results in low coverage as opposed

to statement coverage that counts all code executed from tests. As the executed code that

does not affect outcome from behavioral checks are considered uncovered, testers focus on

checking as many results as possible. Thus, the possibility of detecting errors increases

with higher coverage. Moreover, checked coverage requires running test suites once,

whereas mutation analysis requires repeatedly running the tests for all the mutants.

Checked coverage is not a mature test quality measure, however Schuler and Zeller

[50] provided a proof-of-concept evaluation of this metric. They used JavaSlicer [4], a

home grown tool in their lab, to calculate dynamic slices from seven open-source projects

for checked coverage. The limitations of their approach mainly resulted from the

limitations of JavaSlicer. The current implementation of JavaSlicer cannot access native

method calls, so—many dependencies get lost. Therefore, if the project under test includes

native code, it will get lower coverage than actual. Moreover, JavaSlicer currently cannot

trace methods from java.lang.System, java.lang.Object and java.lang.String Class. The

consequence is that the dependencies through method calls in these classes cannot be

reconstructed, leading to incomplete slices. Besides the limitations of JavaSlicer, checked

1 public Item dequeue(){

2 assert size > 0;

3 Item temp = contents[front];

4 front = (front + 1) % capacity;

5 size--;

6 return temp;

7 }

8 public void testDequeue(){

9 //queue set up with "one" as the front item

10 assertEquals(testQueue.dequeue(), "one");

11 }

Data Dependency

Control Dependency

Figure 8: Data and control dependencies in a method call.

24

coverage has its own weakness too. For example, a common practice to check for

exceptions is to call a method under test in a try-catch block where try-block includes a

fail() method call as shown in Figure 9. However, checked coverage will not be able

to detect this style of checking and cover statements that contribute to the exception.

1 try {

2 methodShouldThrowException();

3 fail("No exception catched");

4 }catch(Exception e){

5 //Exception occurred

6 }

Figure 9: Common JUnit style to check exceptions.

25

Feasibility of Alternative Measures

Current automated assessment systems evaluate student-written tests using

statement or branch coverage, which is imperfect. They measure the percentage of

executed code but do not check if the executed code has been tested against expected

behavior. Moreover, they do not provide information on how many observable failures

have been detected. We will investigate all-pairs execution, mutation analysis, and checked

code coverage as alternative measures to assess tests based on defect detection ability of

the tests.

Among the three alternative measures, all-pairs execution has never been applied

to test cases written in object oriented languages due to technical problems. Checked

coverage has been recently proposed but has not been used in industry or academic

projects. Well-developed tools are available to apply mutation testing in industrial systems

but they may not be feasible for evaluating students’ tests. In fact, an educational

environment is different from industrial systems in two main ways:

1) Automated assessment systems require instructors to submit a reference

solution and tests covering all aspects of the assignments. Industry settings do

not have a correct and complete implementation of the project to compare

against. The benefit of having a reference solution is that it can be used for

checking the accuracy and completeness of students’ solutions. Assessment

tools can take advantage of a complete solution to screen students’ tests.

2) Students must get immediate feedback for their work. Their tests can fail to

detect defects in other students’ solutions (in all-pairs execution) or mutants

generated from a reference solution. Directly revealing the corresponding code

section in other students’ solutions or in a reference solution is not desirable.

However, in industrial projects referring to the source code of the software

under test is not an issue at all. Effective feedback generation on students’ tests

in such a situation is a non-trivial problem.

Chapter 3

26

We investigated technical obstacles of applying the alternative measures in

automated assessment systems. We also devised solutions for technical problems of all-

pairs execution, mutation analysis and checked coverage.

3.1 All-pairs Execution

All-pairs execution evaluates every student’s tests against everyone else’s solution.

The unique feature of this mechanism is to assess tests in terms of actual defects that

students make in their code. However, automation of all-pairs execution is challenging,

especially for object oriented languages. In the following subsections, we explain the

problems, our solution approach and evaluation process.

3.1.1 Obstacles

All-pairs execution was proposed more than a decade ago when XUnit style testing

frameworks were not in practice. The primary technical obstacle preventing all-pairs test

execution in many of today’s classrooms stems from the aspects of XUnit-style testing

frameworks. In this framework, tests are written as additional classes in the same

programming language as the software under test, and they may refer to any visible feature

of the code itself. This means that students may write tests that refer any public features

(class, method or field), whether or not those features are required by the assignment or

arise from their personal design decisions (e.g., helper methods). Thus, a student’s test may

refer a feature that is not present in all solutions. Many such differences may be specific to

a particular class or module within the program rather than to the program as a whole.

However, software tests that include dependencies on features of the software being tested

that are not present in all solutions typically will not even compile against other student

solutions where those features are missing (or are designed differently). This is true in

JUnit tests written for Java.

For example, say a student submits an assignment where he writes a LinkedQueue

class (Figure 10) and a JUnit test class for LinkedQueue named LinkedQueueTest (Figure

11). This LinkedQueue class defines common methods such as enqueue(), dequeue(),

size(), etc. that are present in every student’s program. However, this student also added

an isEmpty() method as his own design choice. His JUnit test class LinkedQueueTest tests

27

each method individually. This student tests his isEmpty() method with a test case call

testIsEmpty() in the LinkedQueueTest class. Now, his LinkedQueueTest class cannot be

compiled (and so will not run) against other students’ programs because they do not

provide an isEmpty() method in their LinkedQueue classes. As a result, his tests cannot be

evaluated by all-pairs execution. This problem is common for JUnit tests because tests are

written in program form in the same language as the software under test and may refer to

fields or calls methods of the class under test.

1 public class LinkedQueue<Item>

2 {

3 /* method body and variable declarations are

4 * omitted for brevity

5 */

6

7 // ~ Constructor

8 public LinkedQueue() {//method body}

9

10 // ~ Public methods

11

12 // add item in the queue

13 public void enqueue(Item value) {//method body}

14

15 // remove item in the queue

16 public Item dequeue() {//method body}

17

18 // check if the queue is empty

19 public boolean isEmpty() {//method body}

20

21 // Get the number of items in this dequeue

22 public int size() {//method body}

23

24 /* Get the item at the front (the head) of

25 * the queue. Does not alter the

26 * queue.

27 */

28 public Item peek() {//method body}

29

30 // Other methods

31 }

Figure 10: A sample LinkedQueue class.

28

 The JUnit testing framework for Java is the most well-known Unit testing

approach, and it has seen growing use in the classroom in the past decade. Normally,

writing such tests requires no significant expertise beyond that required for writing the

1 public class LinkedQueueTest

2 extends TestCase

3 {

4 // variable for queue used for testing.

5 private Queue<String> linkedQueue;

6

7 // method bodies are omitted for brevity

8

9 // ~ Constructor

10 public LinkedQueueTest() {//method body}

11

12 // ~ Public methods

13 public void setUp()

14 {

15 linkedQueue = new LinkedQueue<String>();

16 }

17

18 //Test the enqueue() method

19 public void testEnqueue() {//method body}

20

21 // Test the dequeue() method

22 public void testDequeue() {//method body}

23

24 // Tests the isEmpty() method

25 public void testIsEmpty()

26 {

27 assertEquals(linkedQueue.isEmpty(), true);

28 }

29

30 // Tests the size() method

31 public void testSize() {//method body}

32

33 //Tests the peek() method

34 public void testPeek() {//method body}

35

36 // Other methods

37 }

Figure 11: JUnit test class for LinkedQueue.

29

software being tested, and tests can be written and managed with the same tools used to

produce the source code to be tested. This has caused a significant change in the way

software tests are written in many classrooms. Unfortunately, the nature of such software

tests violates one of Goldwasser’s principal observations [2]:

Because students will be submitting test sets that are to be run

(automatically) on other students’ submissions, a standardized format for

describing the tests must be established in the assignment description. The

overwhelming conclusion is to rely on a textual interface for program input.

In other words, student tests must be written to a consistent interface or API in order

to be “interchangeable” across submissions. They must be expressed in a “black box” form

that is devoid of any dependencies on how a particular solution is constructed. Goldwasser

notes the potential for tragic failure if a student makes mistakes in understanding or

implementing the test input format, or the part of their solution that handles reading/parsing

such input. He even suggests that where possible the instructor provide all students with an

appropriate front-end, implementing the standardized testing interface to preempt such

issues.

Requiring student submissions to take the form of a complete program with “a

textual interface for program input” provides a uniform mechanism for executing tests,

regardless of the internal design choices made by any particular student. Furthermore, it

allows tests to be run against any solution, even if that solution happens to be missing

significant required features entirely, or only a partial implementation of others. JUnit (or,

more generally, XUnit) tests do not work that way because of their nature. Thus, to execute

each student’s tests against every other student’s solution when students are writing JUnit-

style test cases for their own Java solutions, we must devise a way to ensure a uniform

interface against which tests can be executed regardless any differences between solutions

or divergence from the assignment requirements.

30

3.1.2 Solution Approach and Implementation

3.1.2.1 Strategy

A trivial way to resolving this issue can be providing students a common interface

that everyone implements as proposed by Helmick [35]. However, this approach limits the

opportunity for students to learn how to translate problem solutions into program modules

or methods. A novel way to resolve the issue of compile time dependency between a

student’s tests and his solution in Java is transforming the student-written tests so that they

use reflection to defer binding to specific features of a solution until run-time. JUnit tests

that perform all manipulation of student classes and objects using reflection have no direct

compile-time dependencies on any particular solution. We transform the bytecode of the

test cases to students’ submissions. Note that test sets that depend on the internal details of

one particular solution can still be compiled—if compiled against the particular solution

they were written for. For example, one student’s tests will compile against his or her own

code if they compile at all, and so we need not worry about syntactically invalid test sets.

Similarly, instructors typically provide their own implementation to double-check

reference test sets, so the reference tests will compile against this. Thus, the strategy

involves the following three steps:

1. Compile JUnit tests against the solution provided alongside them (i.e., written by

the same author) when they are first received (an action that existing automated

grading systems already perform).

2. Transform the bytecode in the .class files from the compiled version of a test set

so that it performs all manipulation of the solution’s class(es) using reflection. In

other words, use a tool to automatically convert the “plain” JUnit tests into purely

reflective tests.

3. Run transformed versions of test sets against other solutions as needed, now that

the test sets have no compile-time dependencies of the software to be tested.

When transformed test cases are run against all students’ code, a single test case

may result in three possible outcomes (rather than just pass/fail):

1. The test case may pass successfully.

31

2. The test case may fail inside the reflection infrastructure, indicating that some

dependency in the test case was not met correctly by the code being tested, a situation we

can call a reflection mismatch.

3. The test case may fail in some other way, indicating incorrect behavior of the

software under test.

We need to handle reflection mismatches differently depending on the nature of the

test set. Distinguishing reflection mismatches from incorrect behaviors is important.

Fortunately, in automated assessment systems, instructors provide a reference

implementation and reference test cases that are presumably correct and include all the

required features of the assignment. A simple way to differentiate reflection mismatches

from incorrect behaviors is running the student’s tests on the reference implementation.

Student tests that pass against the reference solution can be presumed valid—that is, they

do not possess student-specific dependencies and check for results that are consistent with

the assignment. Student tests that produce reflection mismatches against the reference

solution can be presumed student-specific—since they depend on some features of their

original author’s code that was missing in the reference solution. Finally, student tests that

fail against the reference implementation can be presumed invalid, since they encode

different behavioral expectations than those embodied in the reference solution. Only the

valid tests are used in all-pairs execution. In Section 3.1.2.2, we discuss how we

implemented this approach and then in Section 3.1.3 we present an analysis of all-pairs

execution on two separate class assignments.

3.1.2.2 Implementation

The key mechanism in the implementation of this strategy is the bytecode

transformer. Bytecode rewriting has been employed in a number of aspect-oriented

programming tools, and a number of robust libraries exist for this task. For the

implementation of our solution, we chose to use Javassist [14, 15], which provides an API

that is well suited for the transformation task. Javassist provides a mechanism for

expressing bytecode translations in the form of Java source-level code snippets laced with

substitution variables. Javassist uses its own compiler internally to produce the new

bytecode that corresponds to such a pattern.

32

Using these features, we implemented a Javassist-based bytecode transformer that

can load each of the class files that comprise a test set, replacing each constructor call,

method call, and field access on any object of the class(es) under test, with a corresponding

action from our streamlined reflection interface, ReflectionSupport [51]. Java supports

programmers with facilities to dynamically create objects, invoke methods, access fields,

and perform code introspection at runtime. These capabilities come at the cost of reduced

readability and writeability, since code written using Java’s reflection classes is clunky,

bulky and unintuitive. Common tasks such as object creation, method invocation, and field

manipulation need to be decomposed into multiple steps that require try-catch blocks to

guard against checked exceptions. Type casts and explicit use of class types as parameters

make development and maintenance of code difficult, time consuming and error prone.

We developed an open-source library called ReflectionSupport that addresses these

problems and makes reflection in Java easier to use. ReflectionSupport provides static

helper methods that offer the same reflective capabilities while encapsulating the overhead

of coding with reflection. Thus, by using ReflectionSupport we completely encapsulate the

details of using reflection. As a result, test cases written using this library remain the same

length as their non-reflective equivalent, but they have no compile-time dependencies on

the software under test.

The modified form of each class file is then written out to disk for use whenever

that test set needs to be executed. Translation can occur at different times. For our purposes

it is most convenient to translate the class files for a test set when the code is first submitted

and save them, since they will potentially be used multiple times. Alternatively, translation

could be performed later. By writing a custom class loader, it is even possible to perform

translation dynamically on demand, but such flexibility is not necessary in this context.

3.1.3 Evaluation

To evaluate the practicality of this solution, we initially applied it to two separate

assignments in two different courses. One of them was from a CS1 course offered in fall

2007 and another from a CS2 course in spring 2011.

33

3.1.3.1 A CS1-level Assignment

First, we examined a CS1 assignment from fall 2007 where students implemented

their own “virtual pet”. The assignment provided an abstract base class and a state machine

description of the required behavior. Students wrote their own implementation of the state

machine along with their own software tests. They had two weeks for writing code and

tests. Students were instructed about basic test design principles such as to check corner

cases, loops, and methods individually. However, they were graded based on branch

coverage of their tests and they were also given feedback on their work that specifically

identified uncovered code. Therefore, naturally they tried to increase branch coverage.

In the semester under consideration, 46 students completed the assignment. We

used our bytecode translator to convert all of the corresponding test sets to reflective

versions. The 46 test sets consisted of 463 individual test cases. Test sets ranged in size

from five test cases to 15, with a mean of 10.1 and median of 9.

The reflective versions of all test sets were run against an instructor-provided

reference solution. Of the 463 test cases, 405 (87.5%) passed and were thus valid. 27 test

cases (5.8%) were invalid, and 31 (6.7%) were student-specific. In this assignment, 50%

of the test cases failed to find any defects, and 63% of the programs passed all the test

cases. Most importantly, no compile time failure occurred while executing transformed test

cases. Detailed results of this experiment is available in [30].

3.1.3.2 A CS2-level Assignment

To analyze how our solution works on a more complex assignment, we also

examined a CS2 assignment from spring 2011. This assignment required students to write

two different implementations of a generic queue interface in Java—one using a linked

representation and one using an array-based implementation. In addition to basic queue

operations, students were also required to implement equals(), hashCode(), clone(),

toString(), and iterator(). Students wrote their own software tests as well. They had two

weeks to submit their programs and test cases. They were taught test driven development

and instructed to write JUnit tests.

34

In the semester under consideration, 101 students completed the assignment. We

used our bytecode translator to convert all of the corresponding test sets to reflective

versions. The 101 test sets consisted of 2156 individual test cases. Test sets ranged in size

from eight test cases to 33, with a mean of 21.3 and median of 22. The reflective versions

of all test sets were run against an instructor-provided reference solution. We first applied

all-pairs execution on this assignment in 2012, and published our results in [30] . At that

time, of the 2155 test cases, 2002 (92.9%) were valid, 126 test cases (5.8%) were invalid,

and 28 (1.3%) were student-specific. Recently we applied all-pairs execution on the same

assignment with updated ReflectionSupport, which was more precise in searching methods

and fields. As a result, a large number of students’ test cases were detected as student-

specific. We investigated students’ code and found that many students had implemented

base classes of their own. Thus “no class found” errors occurred frequently when we ran

their tests (having reference to their base classes) against the reference solution. To handle

students’ own choice of base classes, we manually changed student-specific base class

names to the interface name that instructor provided them. This allowed many more many

more students’ tests to be considered valid, so they could be included in all-pairs execution.

The average all-pairs score was 55%. A more detailed discussion is presented in Section

4.3.

In our most recent experiment, we also used another CS2 assignment,

“Minesweeper”, given in fall 2011. Students were required to implement a

MineSweeperBoard class. Students could load a board state, check if they won or lost the

game, uncover or flag cells, find out number of rows and columns etc. through method

calls. A total of 147 students submitted the assignment including 1540 test cases. Out of

1540 tests, 1148 test cases were valid and the rest were either invalid or student-specific.

The average all-pairs score was 61.5%. Further details about the experimental data are

presented in Section 4.3.

3.2 Mutation Testing

Mutation analysis is a robust mechanism for test quality assessment. It modifies or

mutates programs with the intent to seed artificial errors in programs. Mutated versions

35

having a different outcome than the original program are defective. Tests are evaluated

based on whether they can detect defective versions. This approach has been proposed as

an alternative to code coverage. However, a number of practical problems emerged as

barriers against applying mutation testing in classroom grading tools. As we mentioned at

the beginning of Chapter 3, automated grading is different than a traditional industry

environment. Before evaluating how many defects student-written tests can detect, we need

to check of if their tests are correct by executing them against the reference solution. Also

automated grading systems are evaluating tests submitted by all students for the same

assignment and these tests are comparable. An industry environment does not have

multiple copies of tests written by different testers for the same problem to compare

against. Moreover, mutation testing is used for designing sufficient tests rather than

assessing alternative test sets. In the following subsections we discuss the technical issues,

our solution approach and experimental results for evaluation of our methods.

3.2.1 Obstacles

Mutation analysis is a stronger indicator of test adequacy and effectiveness than

coverage criteria. However, three main obstacles make it impractical to use in a classroom

environment where feedback is provided in real-time.

First, to check that a student’s tests are effective for the assigned problem, one must

generate mutants from a complete, and correct solution of the entire problem. The

student’s own solution may not meet these requirements, which gives rise to one of the

limitations of coverage criteria. In effect, lack of completeness or correctness brings the

same limitations to bear on mutation analysis. If the student’s solution is incomplete, the

set of mutants generated from the student’s solution will not cover the space of all defects

possible in the assignment. If the student’s solution contains additional extra features that

are not required, the number of mutants generated may be larger than necessary. But most

importantly, if the student’s solution contains defects already, then some generated mutants

that differ from the student’s original solution may in fact be correct, and there is no way

to reliably distinguish when a non-passing test indicates that a non-equivalent mutant has

been discovered, versus when the test itself has behavioral expectations that differ from the

36

assignment so that it will pass on the student’s (buggy) solution. As a result, mutants must

be generated from a reliable solution that is known to be complete and correct.

Second, students’ tests may have dependencies on their own solutions and may fail

to compile against the reference solution.

Third, mutation testing is computationally expensive because not all generated

mutants necessarily represent faults and even with the advancement in mutation analysis,

determining which mutants are actual defects (non-equivalent mutants) and which mutants

are innocuous version of original code (equivalent mutants) is still a manual process. It is

infeasible to manually weed out equivalent mutants from hundreds of mutants for each

programming assignment. Section 3.2.3 makes this point more clear with evidence of

actual number of mutants generated for four assignments. To use mutation analysis in the

classroom for automated feedback, it is necessary to devise a practical approach for

detecting and weeding out such equivalent mutants.

3.2.2 Solution Approach and Implementation

To move toward a practical mutation analysis approach that can be used in the

classroom, the three problems outlined in Section 3.2.1 must be resolved.

3.2.2.1 Using a Reference Implementation

 Effective mutation analysis requires that we assess the student’s tests against a

solution to the problem that is known to be complete and defect-free—such as a reference

solution provided by the instructor. Student-written solutions may be incomplete or

erroneous. Therefore, an instructor-provided reference solution is a more reliable candidate

to be used as the mutation source.

Mutant generation also takes time. Altanon et al. generated mutants from each

student’s own solution and thus total time for mutant generation become significant. If

mutants are generated from a reference solution available when an assignment is created,

it is possible to pre-generate the full set of mutants from the reference solution ahead of

time, so that mutant generation will not slow down analysis of student-written tests.

We generated mutants from µJava and Javalanche. However, we had to modify

both of the tools- µJava and Javalanche. Original version of µJava expects source files all

37

external library classes such as Android jars to be available for mutant generation. It does

not allow a user to only class files or jar files to add in the class path. Students had to use

external jars or instructor provided class files as required by assignments and it is a

common practice of Java programming. We modified µJava to give users options of

external jar or class files. We also modified Javalanche [48] for our experiment. The

original version of Javalanche internally generates mutants, runs a list of given test suites,

and analyzes coverage of the test suites, all as one action. It does not store mutants; instead,

it regenerates them every time a new test suite is analyzed. We modified Javalanche to

separate out the mutant generation step and to store the generated mutants so that when a

student submits a new test suite, the generated mutants can be reused. This minimizes the

overhead of mutation generation, with the aim of supporting real-time feedback to students.

3.2.2.2 Removing Compile-time Dependencies from Test
Suites

While the intent is to run student-written tests against the pre-generated mutants

from a reference implementation, those tests may not even compile against the mutants. If

student-written tests are provided in source code form, they may have implicit or explicit

dependencies on specific, individual design decisions present only in that student’s

solution. A novel way to resolve this issue in Java, as discussed in Section 3.1.2, is to

transform the student-written tests so that they use reflection to defer binding to specific

features of a solution until run-time. We rewrite the bytecode of a student-written test suite

into a pure reflective form using our bytecode translator in the same way we did for all-

pairs execution.

The purely reflective test cases will run against any mutant. Individual test cases

that depend on features that are missing from the reference implementation fail at run-time,

while other test cases run normally. This makes it possible to separate out “student-

specific” tests from those that are generally applicable to any solution, and then mutation

analysis can be restricted to just those that tests that are generally applicable.

38

3.2.2.3 Incrementally Identifying Non-equivalent Mutants

While it is not possible to automatically determine if a mutant is equivalent to the

original program, we can instead use a conservative approach to classify mutants as

provably different from the original, or not provably different. Initially, all mutants are

placed in the not provably different category, since we have no evidence they are true

defects. When the instructor’s reference tests are run against these mutants, any mutants

detected can be moved into the provable different category immediately.

Then as each student submits tests, we can screen the tests using the original (non-

mutated) reference solution. This allows invalid tests, those that do not correctly capture

expectations of the problem, to be weeded out. If the valid tests are run against all mutants,

any mutant failing a valid test is then provably different from the original. Any mutants

remaining in the not provably different set can be ignored for the purposes of mutation

analysis, since they are potentially equivalent mutants.

As more and more students submit tests, the provably different set can increase in

size, including every mutant to date that some valid test has definitively shown is

observably different from the reference solution. This allows the strength of the mutation

analysis to increase over time. This automatic mutant detection process is conservative

because there may be cases where no test suites find behavioral differences for a given

mutant that is actually a defect. However, initial results from the evaluation presented in

Section 3.2.3 indicate that this is not a significant issue.

3.2.2.4 Fixing Some µJava Issues

The above mentioned approach has been used to generate mutants from µJava using

an instructor-provided solution and to categorize non-equivalent mutants. However, we

faced some practical challenges while generating mutants using µJava. The three main

problems and our solution for them are discussed below:

1. µJava does not allow the use of external jar files. It expects source files to

contain all the required code. We modified µJava so that external library or jar

file paths can be provided in the configuration file.

39

2. µJava internally uses an old version of Openjava which is not fully compatible

with JDK 1.5. As a result, it cannot handle “assert” statements. We modified

the reference solution by commenting out all assert statements. Most of these

assertions are part of test oracles. So, we added those assertions as a patch in

generated mutants.

3. µJava does not create mutants for abstract classes. We used one CS2 assignment

where the reference solution had an abstract class. So, we had to modify the

reference solution to change the abstract class into a concrete class so that all

the code can be mutated.

3.2.3 Evaluation

To evaluate the practicality of this approach, we applied our solution with

Javalanche to seven assignments originally given in CS1 and CS2 courses, where students

were required to write their own software tests for each of their programs. Out of the 7

projects, 4 were from CS1 where the number of generated mutants were 47, 45, 43, and 27.

The number of students completing the CS1 assignments varied from 42-47. Average

mutation scores were much lower than the average statement or branch coverage scores for

all of the projects.

In the same experiment, we used 3 CS2 assignments where the number of students

submitting the assignments were approximately 99. The total number of Javalanche

mutants varied from 109 to 315. Average mutation scores were 68.5%, 75.9% and 42.2%

whereas average statement coverage scores were 94.9%, 96.9% and 95%, respectively.

This shows achieving a high coverage score was easier than achieving a high mutation

score. Detailed experimental results are available in [52].

Recently we used one new CS2 assignment (Project 1: Minesweeper) from fall

2011 and reused one CS2 assignment (Project 4: Two Queues) from spring 2011 for

mutation testing. The same assignments were used in all-pairs execution as well. We used

both Javalanche and µJava to create mutants. We generated µJava mutants for sufficient

mutant operators, SDL, and a combination of VDL, CDL and ODL. For the Project 1

assignment, the number of Javalanche generated mutants was 319. For the same project,

the number of µJava mutants varied based on mutation operators. The total number of

40

sufficient mutants were 124, SDL mutants were 85, and combined VDL, CDL and ODL

mutants were 110. The average mutation score for Javalanche mutants was 77.6%, for

µJava sufficient mutants was 33.4%, for SDL mutants was 70%, and for the combination

of VDL,CDL and ODL was 32.5%. The distribution and analysis of these scores are

presented in Section 4.3.

For the Project 4 assignment, the total number of mutants generated from

Javalanche was 316 whereas the total number of mutants generated from µJava was 627.

Out of 627 mutants, 388 were from sufficient operators, 131 were from SDL and 108 were

from the combination of VDL, CDL and ODL. Average mutation scores were: Javalanche

mutants 55.7%, µJava sufficient mutants 46.5%, µJava SDL mutants 46.6%, and µJava

VDL+CDL+ODL mutants 31.7%. A detailed data analysis is presented in Section 4.3.

3.3 Checked Code Coverage

Checked coverage is a more sensitive measure [50] than statement coverage. For

checked coverage, we are interested in the proportion of statements that contribute to the

computation of values, that are checked by the test suite. It subsumes statement coverage

because in order to reach full checked coverage, every statement has to be on a dynamic

slice, and thereby, it also has to be executed at least once. Thus, every test suite that reaches

full checked coverage also reaches full statement coverage.

3.3.1 Obstacles

Schuler and Zeller [50] provided a proof-of-concept evaluation of checked

coverage using JavaSlicer [4]. However, JavaSlicer has some limitations and it cannot be

used readily to calculate checked coverage. The obstacles behind checked coverage

calculation are described below:

1) No automated tool is available for measuring checked coverage. Some open source

tools can be used for tracing programs and for creating dynamic slices from the traces.

However, these open source tools will need tailoring as they are designed mainly for

program slicing rather than computing checked coverage in automated assessment

tools.

41

2) The first step of computing checked coverage is to identify all the explicit behavioral

checks inside the test suites (e.g., assert()-style method calls in executable tests). For a

small program, manually identifying all such statements may be feasible, but an

automatic system must be developed to handle large-scale use of this approach.

3) Test runs need to be traced to provide the raw data necessary to compute dynamic

slices. Tracing all test runs is time consuming. Therefore, an automated system should

be developed for batch style execution of the programs and storing traces for future

dynamic slice creation.

4) JavaSlicer collects a trace of a program execution and creates a dynamic slice from one

or more lines of the program given as inputs. However, these slices also include code

from Java library classes, not just the code under test. As a result, the slices must be

filtered in order to measure only the code under test.

5) While JavaSlicer calculates the executed slices, this information by itself is insufficient

for measuring checked coverage. One must also measure the portion of the code under

test that is not part of any checked slice, so that the checked coverage can be calculated

as a percentage of the total (checked and unchecked) code.

6) Finally, JavaSlicer traces each thread separately, and cannot reconstruct data

dependencies between different threads. Some JUnit 4 features, such as specifying test

case execution timeouts, use Java threads and prevent data dependencies from being

tracked. As a result, JavaSlicer will fail to create dynamic slices for JUnit 4-style test

cases that use such features.

3.3.2 Solution Approach and Implementation

In order to evaluate checked coverage, we developed a semi-automated system. We

use a combination of JaCoCo and JavaSlicer in this process. The whole procedure is

executed for each student’s tests in the following steps:

1) We run the student’s tests against his or her own program using JaCoCo to collect

coverage data. This report includes information about how many bytecode instructions

are present in each class and each method under test, which is used later in calculating

the percentage of code included in checked slices.

42

2) Our system identifies all executable checks in the test cases. At this stage, all calls to

JUnit assert-style methods from a test suite are considered to be checks.

3) The system uses JavaSlicer to trace programs and store traces. Afterwards, a combined

dynamic slice for all of the identified executable checks is created from JavaSlicer.

4) Finally, the system uses the report from JaCoCo to filter out Java library instructions.

It determines how many instructions from the students’ program have been checked by

the tests and reports the checked coverage score.

Our system uses a JUnit 3-style test runner so that all test methods run under the main

thread and JavaSlicer can create slices without losing data and control dependencies.

3.3.3 Evaluation

We evaluate the feasibility of our solution by applying it to two CS2 assignments:

1) Project 1 of fall 2011 and 2) Project 4 of spring 2011. As mentioned before, Project 1

was Minesweeper where 147 students submitted their work including 1148 valid tests. The

Project 4 required students to implement a queue using an array and also using a linked

list. 101 students submitted this assignment, including 1476 valid tests. The same

assignments were used for all-pairs execution and mutation testing.

Valid student-written tests were executed against their own programs. We collected

data using JaCoCo to measure how many bytecode instructions were present in each class

and each method under test. Our system also recorded all assert-style method calls from

each student’s tests. Afterwards, we used JavaSlicer to collect program traces executed

from the tests and to create dynamic slices from recorded assert calls. Finally, we filtered

out Java library calls and calculated checked coverage using information from the JaCoCo

report.

Experimental results show that the average checked coverage score for Project 1

was 48.9% which is lower than Project 4 average score 56.9%. For both the projects,

average checked coverage scores were much lower than the average statement coverage,

branch coverage, OIC and OBC scores. This indicates achieving high checked coverage

was more difficult than achieving high statement or branch coverage, as expected. Further

discussion on experimental data is presented in Section 4.3. An earlier version of this result

was published in [53].

43

Comparison of Test Quality Measures

Evaluating the quality of students’ test suites is important so that students can learn

how and where to improve. Even though statement coverage, branch coverage, OIC, OBC,

all-pairs execution, mutation analysis with different sets of mutants, and checked coverage

all have their own benefits and computational overheads, determining which one is a better

indicator of actual defects detected in students’ code is a non-trivial problem. Moreover,

student-written tests are developed by individual students to exercise their own program

solutions, even though those solutions might be incorrect or incomplete. Quantifying the

defect-detection capability of a test suite written for an incomplete solution is even more

difficult.

To compare the different test quality measures discussed in this proposal, we

designed an experiment using tests and solutions produced by students. We conducted this

experiment for two CS2 assignments. One of them is Project 1 from fall 2011 and the other

one is Project 4 from spring 2011. We evaluated both of the assignments with statement

coverage, branch coverage, OIC, OBC, all-pairs execution, mutation testing, and checked

code coverage. We analyzed four different sets of mutants that appear practical for

classroom grading. The four sets are generated by sufficient mutation operators [46], the

statement deletion operator, a combination of variable, constant and operator deletion

operators, and Javalanche’s set of mutation operators [49]. An earlier version of this work

was published [28] at ICSE.

4.1 Experimental Setup

To evaluate the different measures for student-written tests, we aim to compare

them to the “true” notion of test quality: the likelihood that a test suite will discover any

given defect, which we call the suite’s defect-detection capability. Measuring the actual

defect-detection capability of a test suite is both challenging and expensive, however—

otherwise, practitioners could simply use this measure itself as the (ideal) indicator of test

suite quality. In the experiment, Project 1 had 147 student submissions. The other

Chapter 4

44

assignment, Project 4, had 101 student submissions. Each of these programs contained at

least one error and worked as a representative of authentic common human-produced

errors. However, a way of identifying the errors present in this collection is still necessary.

Because of the size of the collection of programs, manual defect counting was

impractical. Therefore, we used a technique first described by Edwards [24]. This process

was divided into two main steps: 1) creating a master test suite that uniquely cover all

observed defects from students programs, and 2) determining how many of the tests from

the master suite are covered by student written tests to calculate their defect-detection

capabilities.

4.1.1 Creating a Master Test Suite

We compiled a comprehensive test suite containing all tests written by all authors,

including all the reference tests produced by the instructor. Then this “super-sized” test

suite was reduced by removing “redundant” test cases—that is, test cases that produce

exactly the same pass/fail outcome on every single program in the collection. After this

reduction, for any pair of test cases in the reduced set, there was at least one “witness”

among the student programs that passes one but fails the other. Note that this does not

ensure that the suite is “orthogonal,” that is, ensuring there will be no significant overlap

between test cases. Instead, while separate test cases may overlap in the features they

check, they still will differ in the specific defect(s) they detect. Thus, while each individual

test case in the reduced test suite does not necessarily represent one individual defect, each

can be considered to represent a (hopefully small) “equivalence class” of defects, where all

defects in the equivalence class cause the corresponding test case to fail in any program

where they occur. In an earlier experiment [24], Edwards showed a statistically significant

correlation of 0.755 between the number of test case failures in a test suite constructed this

way and the true number of defects present in the student code, so considering the test cases

in this master test suite to represent (small) distinct and identifiable equivalence classes of

defects is justifiable.

45

Figure 12 demonstrates the concept of the master suite creation. This process is

similar to creating a two dimensional matrix where each row represents a valid test case—

either from students or from reference tests—and each column represents a student

program. If a program passes a specific test case, then the cell gets a “1”, otherwise “0”.

Thus, we create a defect signature consisting of pass-fail values of all the programs for

each test case. If two test cases have the same defect signature for all the programs such as

T1 and TN-1, then both of them are detecting the same equivalence class of defects. Only

one test case detecting an equivalence class is included in the master suite. As a result, all

distinct and identifiable defects that students made in their code are detected by the master

suite.

4.1.2 Calculating Defect-detection Capabilities for
Students’ Tests

Manually calculating the exact number of defects that exist in each student

program, and then the number of defects that are detected by each test suite, is prohibitively

expensive. However, by creating the master test suite, we had a suitable proxy—each test

cast in the master suite would represent one equivalence class of defects that is uniquely

identifiable. Further, every defect detectable by any student-written test suite in the

 Student Programs

V
a
li

d
 S

tu
d

en
t

te
st

s
a
n

d

R
ef

er
en

ce
 T

es
ts

 P
1
 P

2
 P

3
 P

4
 P

5
 … … P

M-1
 P

M

T
1
 1 0 1 0 0 … … 1 1

T
2
 0 0 1 1 0 … … 0 0

T
3
 1 0 0 1 1 … … 1 0

T
4
 0 1 1 0 0 … … 0 1

T
5
 … … … … … … … … …

… … … … … … … … … …

…. … … … … … … … … …

T
N-1

 1 0 1 0 0 … … 1 1

TN 1 0 0 0 1 … … 0 1

Pass 1

Fail 0

E
q

u
iv

a
le

n
ce

 C
la

ss

Figure 12: Master suite formation.

46

experiment will already be accounted for in the master suite, by virtue of the master suite

construction process. Every individual test case in each student test suite must completely

overlap one test case in the master suite, in the sense that the two test cases result in exactly

the same pass/fail outcome on every student program in the experiment. This made it

possible to count the number of unique test cases in the master suite that correspond to test

cases in a given student’s test suite. Further, we knew how many of the student programs

fail each master suite test case—that is, how many student programs contain a

corresponding defect from that equivalence class. Therefore, we were able to determine

how many test cases of the master suite a student’s test cases overlapped. We calculated

the number of program failures detected by the overlapped master suite tests. If a master

suite test case was overlapped more than once then we counted its’ detected failures once.

Thus, we computed an approximation of the suite’s defect-detection capability—the

probability that for any given defect that occurs in any of the student solutions, this suite

would detect that defect.

The simple formula to calculate defect-detection capability is:

For example, let’s assume a student submits 17 test cases that overlap with 5 test cases of

the master suite. The number of program failures or defects detected by the overlapping

testcase1 is 5, testcase2 is 19, testcase3 is 28, testcase4 is 8 and testcase5 is 4. Thus, the

total number of defects detected by the student is (5+19+28+8+4 =) 64. If the master suite

detects 2400 defects by all the test cases, then the student’s defect-detection capability

score is (64/2400 *100 =) 2.6%.

4.2 Evaluation Approach

The purpose of our experiment is to find which test quality measure most accurately

determines defect-detection capability of student written tests. We calculated the defect-

detection capabilities for assignments as described in Section 4.1.2. Afterwards, we

Defect-detection

Capability

=

∑(No. of program failure in master suite that

that are overlapped by a student’s tests)

Total no. of program failure

detected by all the tests of master

suite

47

performed statistical comparisons of potential test quality measures. In total, 10 test quality

measures were evaluated against defect-detection capability. The 10 measures can be

categorized into four types:

 All-pairs execution,

 Mutation analysis,

 Checked code coverage, and

 Coverage criteria (4 measures).

In mutation analysis, we used mutants generated by four sets of mutation operators

that appear practical to use in classroom tools. These sets are: Javalanche’s mutation

operators, the sufficient mutant operators identified by Offutt [46], SDL, a combination of

VDL,CDL and ODL. For evaluating coverage criteria, we used statement coverage, branch

coverage, OIC and OBC. Each of these measures were compared against each student-

written test suite’s defect-revealing capability. Two different projects or assignments are

used for experiment. Comparing the correlation between scores for both projects provide

us information about which of the measures are significantly correlated. We analyze the

relationship (correlation) between test quality measures with defect-revealing capability

using Spearman’s ρ.

4.2.1 Quasi-Independent Variables

This study was a quasi-experiment. We did not exercise randomization rather chose

projects that were realistic enough to represent practical CS2 classroom assignments. Our

independent variables were assignments, authors of the test cases (i.e., students), and

defect-detection capability.

We considered two CS2 assignments that were designed to teach students

programming concepts (e.g., object-oriented features), data structures, algorithms, etc. The

assignments were given in two different semesters. Participation of different student groups

in different assignments from different semesters addressed or nullified the effects of

personal interest, changes in the knowledge of testing, and expertise for specific types of

assignments, such as GUI assignments. Thus, the results of our experiment were likely not

to have bias. The defect-detection capability was used as a benchmark. We measured

48

performance of the dependent variables based on how accurate they were in predicting

defect-detection capability scores of the test cases.

4.2.2 Dependent Variables

Dependent variables in our study were the scores calculated using 10 different test

quality measures. In this experiment, our dependent variables were continuous. The scores

from potential test measures were analyzed against the defect-detection capability of the

tests.

4.2.3 Statistical Analysis

In this experiment, our quasi-independent variables were categorical and dependent

variables were continuous. We observed that the distribution of the scores from some

measures were not normal. However, we did not perform any statistical tests for normalcy.

Spearman’s ρ is an appropriate method for distributions that may not be normal. So, we

compared all the pairs in one step and calculate correlation using the Spearman’s ρ method.

We applied a Bonferroni correction [10] to reduce the potential risk of the type I error .

We adjusted significance level at 0.0045 to apply the Bonferroni correction for the

calculation of correlations. An analysis of the results is presented in Section 4.3.4.

4.3 Experimental Results from Two Assignments

Evaluating all 10 test measures for both of the assignments in this study, required a

significant effort—it involved compiling and analyzing the results of approximate

1,971,073 test case executions. The same assignments were used to evaluate all-pairs

execution and mutation analysis in Section 3.1.3 and Section 3.2.3 respectively.

4.3.1 Master Test Suite Data

Project 1 had 147 submissions containing 1148 valid student written tests. For this

assignment, the reference solution had 27 tests. Thus, the total number of test cases from

students and from the instructor was 1175. Removing redundant tests reduced this to 540

test cases. Out of 540 test cases, 8 tests were solely from the reference tests and 496 were

from students (these may have overlapped with some reference tests as well). The total

49

number of test case failures detected by students were 19,303. The average number of

program failures detected by a student-written test case was 38.9. The 8 reference tests in

the master suite were not overlapped by any student-written tests. They detected 409

defects. The average number of program failures observed these tests was 51.2.

In Project 4, the total number of student submissions was 101 with 1,475 valid tests.

The instructor provided 82 reference test cases. After removing redundant tests we found

747 tests: 681 from students (with overlapping reference tests) and 66 solely from reference

tests. By applying the bytecode transformation strategy to the master test suite, it was

possible to apply all of its tests to every student program. Every student program contained

at least one defect. The total number of defects detected by students’ tests, and the reference

tests (having no overlap with students’ test cases) of the master suite were 15,451 and 1,332

respectively. The average number of defects detected by student-written tests was 22.6 and

by the un-overlapped reference tests was by 20.1, as summarized in Table 4.

It may appear that student-written tests may miss some possible defects. However,

valid student test cases detected all the mutants generated from four all different sets of

Table 4: Master suite summary.

 Project 1 Project 4

Submissions 147 101

Student-written Test cases 1540 2176

Valid tests 1148 (74.54%) 1476 (67.83%)

Reference Tests 27 82

Redundant Tests 670 (57%) 811 (52%)

Master Suite 505 747

Total test case runs 74235 75447

Total failures observed 19712 (26.55%) 16783 (22.24%)

Failures observed by

student-written tests
19303(97.92%) 15451(92.06%)

50

mutation operators. This implies that student-written tests were strong enough to cover all

the defects from mutation analysis as well as all-pairs execution. However, some

equivalence class of defects were not detected by students’ tests. The master suite covered

those defects (with the reference tests) also.

4.3.2 Approximating the Number of Detected Defects

To calculate defect-detection capability we computed a weighted average over all

master suite test cases that are duplicated within one student-written test suite. Figure 13

shows the distribution of defect-detection capability scores for Project 1. Note no student

suites had scores above 3%, which is surprisingly low. Also, about half of the students

scored 0.75% to 1.25%. Only 12 students out of 137 achieved above 2%.

Upon careful examination, such low scores makes sense. The total number of

failures observed by the master suite was 19,712 whereas on average a student’s suite

observed 195.8 failures. Thus, the average defect-detection capability score was 0.99%.

However, the set combining all the student-written test cases observed 97.9% of all the

failures observed by the master suite. This result implies that students wrote diverse test

cases but their individual tests were not strong enough to detect all the failures they made.

Figure 13: Distribution of defect-detection capability for Project 1.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

N
o
 o

f
S

u
it

es

Defect-detection Score for Project 1

51

Project 4 defect-detection capability scores have a similar distribution, though more

skewed towards lower scores (Figure 14). The highest score achieved by students is 4%.

About one third of the students scored 0.5% to 1.5%. The average defect-detection

capability score was 1.2%. No student-written test case observed more than 692 failures

(4.1%). We observed somewhat similar results in our earlier study. Students do “happy

path” testing [29] by writing tests to show that their code worked rather than designing

tests to execute code in a way to cause failures and to detect these failures. This is not

surprising because our students are generally beginning testers described as “level 1”

testers [7] by Ammann and Offutt. Their purpose of testing is to show correctness.

4.3.3 Analysis of Scores from Different Measures

We collected statement and branch coverage data from Web-CAT for Project 1

from fall 2011 and for Project 4 given during Spring 2011 using Clover [1]. Object

Instruction coverage (OIC) and object branch coverage (OBC) data for both the projects

have been calculated from xml data obtained from JaCoCo [3]. We generated mutants

using four different sets of operators: Javalanche’s mutation operators, the sufficient

mutation operators, SDL, and a combination of VDL+CDL+ODL operators as described

in Section 3.2.3. We generated sufficient, SDL, VDL+CDL+ODL mutants from µJava.

Checked coverage scores for both the projects have been collected from our semi-

 Figure 14: Distribution of defect-detection capability for Project 4.

52

automated system using JavaSlicer. We calculated all-pairs scores as demonstrated in

Section 3.1.3.

Figure 15 shows the distribution of scores from different measures for Project 1.

Displayed values are max, min, median, mean, 75th and 25th percentile. As we can see, the

lowest and the highest all-pairs scores are 2% and 98% respectively. However, two-thirds

of the students scored 40% to 70%. Sufficient mutation scores have similar max and min

values although two thirds of the population is distributed in a very small range (from 25%

to 35%). SDL scores are higher than sufficient and VDL+CDL+ODL mutation scores.

Javalanche’s mutation scores are higher than all other mutation operators. This result

implies that student-written tests are good in detecting mutants generated from the

modification of statements but not effective against mutants generated by the modification

of operators or variables.

Coverage scores are much higher than mutation scores. Statement and branch

coverage scores have almost no distribution as they have the same value, 100% as mean,

median, 75th, and 25th percentile value. This is expected as students were graded on

Figure 15: Distribution of Scores from different measures for Project 1.

53

statement coverage. OIC and OBC scores are lower than statement and branch coverage

scores. Checked coverage score distribution is different from any other measures. Two

thirds of the population scored 35% to 60% and no one achieved 100%. The scores for

other coverage measures and checked coverage imply that students executed almost all of

their code from their tests but have checked only half of their executed code against the

expected results. We discuss each distribution individually later.

The distributions of scores for Project 4 calculated by different measures are

depicted in Figure 16. All-pairs distribution has lower scores for mean and median values

than Project 1. It implies that students detected fewer failures in Project 4 than in Project

1. This makes sense as Project 4 is more complex than Project 1 and students are likely

produce more defects in complex projects. The four coverage scores and checked code

coverage scores have very similar distributions to Project 1. However, the distributions of

all four sets of mutation scores are much different from Project 1. No one scored 100% in

any one of the mutation scores. SDL and Javalanche scores have similar spans. The

distribution of each measure is described later with an individual chart.

Figure 16: Distribution of different measures for Project 4.

54

Figure 17 shows the distribution of statement coverage for Project 1. This

distribution is heavily skewed towards 100% coverage. Only 8 students out of 137 scored

below 90%. The average score is 98.9%. Branch coverage and object instruction coverage

distributions are presented in Figure 18 and Figure 19. As we can see these distributions

are almost the same as the distribution of statement coverage. The average branch coverage

Figure 17: Distribution of statement coverage scores for Project 1.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

<=

90%

91% 92% 93% 94% 95% 96% 97% 98% 99% 100%

N
o
 o

f
S

u
it

es
Statment Coverage for Project 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

<=

90%

91% 92% 93% 94% 95% 96% 97% 98% 99% 100%

N
o
 o

f
S

u
it

es

Branch Coverage for Project 1

Figure 18: Distribution of branch coverage scores achieved by student-written

test suites for Project 1.

55

score is 97.4% and the average OIC score is 97.2%. This is not unexpected as object

instruction coverage requires each bytecode instruction to be executed to be counted as

covered and branch coverage requires execution of each branch with both true and false

values. Thus, when most of the branches are covered (high coverage) it is likely that

corresponding bytecode instructions will also be covered. For both branch and OIC

coverage only 7 students scored below 90%. About one fifth of the students scored 91% to

98% in branch coverage and the remaining students scored 100%. In OIC about one fifth

of the students scored 99% and exactly 96 students scored 100%.

Figure 20 summarizes the distribution of statement coverage scores for Project 4.

Note the extremely skewed bucketing in the histogram, where the first column represents

all suites with coverage score less than or equal to 90%. More than half of the students

achieved 100% statement coverage. This should not be surprising, since students got

feedback on statement coverage, and it was used directly in scoring their work—students

needed to maximize their statement coverage to get the maximum grade on the assignment.

However, about 5% students achieved less than 10% coverage regardless of the feedback.

Figure 19: Distribution of OIC scores achieved by student-written test

suites for Project 1.

56

This distribution is very similar to the statement coverage distribution for Project 1.

Branch coverage score distribution (Figure 21) for Project 4 is almost similar to the

distribution of statement coverage. More than 60% of the students scored 100% and about

one fifth of the students scored 91% to 98%. Only 7 students scored below 90%.

Figure 21: Distribution of branch coverage scores achieved by student-

written test suites for Project 4.

Figure 20: Distribution of statement coverage scores achieved by student-

written test suites for Project 4.

57

The distribution of OIC for Project 4 is presented in Figure 22. About 60% students

achieved 91% or higher. However, no one was able to score 100%. One third of the

students scored below 90%. We used the same scale to present distribution as we did for

statement and branch coverage. So, it is not visible in the scale but no student scored below

40%. The average score was 90.8% which is expected, as students received feedback on

0%

5%

10%

15%

20%

25%

30%

35%

N
o
 o

f
S

u
it

es
Distribution of OIC scores for Project 4

Figure 23: Distribution of OBC scores achieved by students-written tests for

Project 1.

Figure 22: Distribution of OIC coverage scores for Project 4.

58

their statement coverage and made efforts to achieve high statement coverage. Generally,

high coverage on statement results in high coverage in bytecode instruction coverage also.

The distribution of OBC scores for Project 1 is shown in Figure 23. Out of 137

students, 7 students achieved 100%. The average score was 87.47%. One third of the

students scored 90% to 95%. Though the average score was high, one student scored 0 and

16 students got less than 75%. However, keeping in mind that this was the first

programming assignment and achieving a good OBC score is harder than achieving good

statement coverage, students on average performed well.

Figure 24 shows OBC score distribution calculated from JaCoCo for Project 4.

Although only one test suite in this group achieved 100% coverage, three quarters of the

test suites achieved 88% or better (mean of 81%). Achieving high OBC score is more

difficult than getting high statement coverage. However, as mentioned before students got

feedback on statement coverage and tried to increase coverage. So, it is likely that they will

increase OBC scores also. Interestingly, no student achieved lower score than 42% unlike

Project 1.

 Figure 25 summarizes the distribution of all-pairs scores achieved by student-

written test suites for Project 1. The average score was 61.5%. Two-thirds of the students

achieved above 50%, but no one scored 100%. This distribution is much different than the

Figure 24: Distribution of OBC scores for Project 4.

59

 distribution for Project 4 as shown in Figure 26. In Project 4, one third of the students

achieved above 50%. The average score was 55% which is less than Project 1. We find the

appearance of a normal distribution around this mean. This seems reasonable as Project 4

was more complex than Project 1. Thus students are likely to make more mistakes.

Figure 26: Distribution of all-pairs scores achieved by student-written test suites

for Project 4.

Figure 25: Distribution of all-pairs scores for Project 1.

60

From Figure 25 and Figure 26, it seems that the all-pairs measure is more sensitive

than OBC or statement coverage, since the scores are somewhat lower. Further, the all-

pairs measure is somewhat more selective, since no students achieved the maximum value.

Most importantly, it seems that this measure most closely matches the goal of determining

how well a suite can detect real-world defects, since it is a direct measure of how many

defective programs each suite was able to detect (in this case, at least, since all programs

contained observable defects).

It is also worthwhile to examine why, even though the defect-detection capability

score is based on the same programs as the all-pairs analysis, the results for Project 1 in

Figure 13 and Figure 25 and for Project 4 Figure 14 and Figure 26 are so different. To

understand these differences, remember that Figure 13 and Figure 14 show the

approximated probability of a test suite detecting any specific defects (or failures within a

small equivalence class) in a program. Figure 25 and Figure 26, on the other hand,

corresponds to whether the test suite detected any failure for the same program. The defect-

detection capability corresponds to a test suite’s ability to detect each of these failures in

isolation, rather than any one of them when considered all together. So, while any given

test suite might have a low probability of finding a specific failure, the suite still will

certainly reveal failures covered by the equivalence classes it does include.

We used the mutation testing results for both Project 1 and Project 4. Mutants are

generated from two different tools-Javalanche and µJava. As we mentioned in Section

3.2.2 we had to modify both of the tools to generate mutants from the reference solution.

In Project 1, total number of Javalanche generated mutants were 160. All the mutants were

detected as non-equivalents by at least one valid student-written test. µJava generated 319

mutants: sufficient mutants 124, SDL mutants 85 and combination of VDL+CDL+ODL

mutants 110. Students’ tests were able detect all the µJava mutants as non-equivalent

mutants.

The total number of mutants generated for Project 4 from Javalanche was 316

mutants. During the analysis, every single mutant was empirically determined to be non-

61

equivalent to the original program (i.e., every mutant failed at least one test case). Out of

316 non-equivalent mutants, 59 mutants were generated from modification of “assert”

statements in the reference program. Assert statements are part of test oracles. So, we

removed these 59 mutants from the total set. For the same assignment, µJava generated

627 mutants in total which is about double the number of Javalanche mutants. Out of 627

mutants, sufficient operator mutants were 388, SDL mutants were 131, and the remaining

108 mutants were generated from VDL, CDL and ODL. All the mutants were categorized

as non-equivalents by the valid test cases. As we mentioned in Section 3.2.2 that µJava

cannot handle assert statements, and so we commented out asserts from the program during

mutants creation. Later we add assert statements as a patch in the mutants. Thus, we

ensured that test oracles in asserts were not mutated.

 Figure 27 summarizes the results achieved, showing the distribution of Javalanche

mutant kill ratios achieved by students’ tests written for Project 1. Again, as with the all-

pairs strategy, it appears that mutation analysis is more sensitive than coverage criteria.

The scores appear to be skewed towards 60% or above. In fact, the average score is 77.2%

which is promising for beginners. More than two thirds of the students achieved over 70%.

On the other hand, in Project 4 Javalanche mutation kill score (shown in Figure 28) is

roughly normally distributed, with an average of 55%. Also like the all-pairs scores, the

Figure 27: Distribution of Javalanche mutation scores achieved by student-

written test suites for Project 1.

62

mutation kill ratios appear to be more selective, since no student achieved the maximum

value. Also for both Project 1 and Project 4, we found Javalanche mutation kill scores are

strongly correlated with all-pairs score. This is reasonable as all-pairs presumably presents

mutants created by students and Javalanche provides system generated mutants.

Figure 28: Distribution of Javalanche’s mutation scores achieved by

student-written test suites for Project 4.

 Figure 29: Distribution of µJava mutation scores achieved by student-

written test suites for Project 1.

63

Figure 29 shows the distribution of µJava mutants kill scores for Project 1 achieved

by students. The average score for sufficient, SDL, and combination of VDL+CDL+ODL

are 33.4%, 70% and 32.5% percent respectively. No one scored 100% in any one of the

three sets of mutants. Only 2 students scored above 90% in all three sets. We find some

similarities between the distribution of sufficient and VDL+CDL+ODL mutants kill

scores. About half of the students scored 20% to 30% in both sufficient and

VDL+CDL+ODL mutation. SDL scores looks different than these two sets. Half of the

students scored 70% to 80% in SDL.

For Project 4, the average score for sufficient, SDL, the combination of

VDL+CDL+ODL operators were 46.5%, 46.6% and 31.6% respectively. The distribution

of all the types of mutation kill scores are similar as shown in Figure 30. Both for µJava

and Javalanche mutants, no students achieved above 80% in this project which suggested

achieving higher score in mutation become harder for complex programs.

Checked coverage scores were then calculated as described in Section 3.3. Figure

31 and Figure 32 show the distribution of checked coverage scores for Project 1 and Project

4 assignments respectively. As expected, checked coverage scores were lower than other

coverage scores, including OIC, and OBC. Moreover, the distribution of scores for the two

Figure 30: Distribution of µJava mutation scores achieved by student-written

test suites in Project 4.

64

projects are not similar. In Project 1, over half of the students’ scores fall in range 30% to

55% where as in Project 4, one half of the suites scored between 50%-68%. The average

score for Project 1 was 48.7%, whereas for Project 4 average was 57.1%. This observation

is important because for both OIC and OBC we found the average Project 1 scores were

higher than the average Project 4 scores. This result suggests that beginners’ tests include

less assertions than students who are more accustomed to testing.

0%

2%

4%

6%

8%

10%

12%

14%

16%

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

8
5
%

9
0
%

9
5
%

1
0
0
%

N
o

 o
f

S
u

it
es

Checked Coverage Scores for Project 1

Figure 32: Distribution of checked coverage scores achieved by student-written

test suites for Project 4.

Figure 31: Distribution of checked coverage scores for Project 1.

65

4.3.4 Evaluation

Based on the data summarized in Section 4.3.2 and 4.3.3, we performed a statistical

comparison of the 10 test quality measures against each student-written test suite’s defect-

detection capability. Table 5 presents results from Project 1. We calculate correlations with

a Bonferroni correction with α < 0.0045 to reduce inflation of the potential for type I errors.

Of all the measures, all-pairs scores are the most accurate predictor of defect-detection

capability with a correlation 0.92. The next best predictor is µJava SDL mutation scores.

We also found VDL+CDL+ODL mutation scores correlated with defect-detection score

reasonably well compared to other measures. Interestingly, Javalanche mutation scores for

Table 5: Correlation (Spearman’s ρ) between measures for Project 1.
(bold * entries are statistically significant at α < 0.0045).

 St.

Cov.

Bra.

Cov.

OBC OIC Mutation Checked

Cov.

All-

pairs

Defect-

detection

Score
Javala

nche

µJava

(suff.)

µJava

(SDL)

µJava

(VDL

/CDL/

ODL)

St. Cov. - 0.78* 0.012 0.08 0.20 0.21 0.23* 0.16 0.009 0.35* 0.28

Bra. Cov. - 0.05 0.15 0.25 0.17 0.23* 0.12 0.03 0.26* 0.26*

OBC - 0.80* 0.13 0.14 0.17 0.13 0.59* 0.59* 0.16

OIC - 0.07 0.12 0.08 0.04 0.63* 0.22 0.18

Java-

lanche

 - 0.54* 0.73* 0.53* 0.09 0.32* 0.42*

µJava

(suff.)

 - 0.71* 0.84* 0.14 0.14 0.42*

µJava

(SDL)

 - 0.64* 0.12 0.12 0.54*

µJava

(VDL/C

DL/ODL)

 - 0.12 0.12 0.46*

Checked

Cov.

 - 0.29 0.22

All-pairs - 0.92*

Defect-

detection

Score

 -

66

this project seems as good as µJava sufficient mutation scores. Both of them have a

correlation value of 0.42 with defect-detection capability. OIC, OBC and statement

coverage scores are not statistically significant. Branch coverage scores are significant but

not strongly correlated with defect-detection score. Checked coverage is more costly than

branch coverage but is not a better predictor of defect-detection score. Though it seems

statistically significant with α < 0.05, after applying the Bonferroni correction no longer

meets the criterion for significance.

We observe OBC has a strong correlation with all-pairs score though it is not

statistically significant with defect-detection capability. µJava sufficient mutation scores

are strongly correlated with µJava SDL scores and VDL+CDL+ODL scores as expected.

Interestingly, Javalanche mutation scores have the strongest correlation with µJava SDL

mutation scores. Checked coverage scores are strongly correlated with both OIC and OBC

but not with statement or branch coverage.

 Figure 33 depicts the correlation between defect-detection capability score vs. all-

pairs score. A majority of the suites lie close to the trend line identified in the plot.

Figure 33: Relationship between defect-detection capability score vs. all-

pairs score for Project 1.

67 ..

J

(a) Sufficient

 (b) SDL

(c) VDL+CDL+ODL

Figure 34: Relation between defect-detection capability estimates and µJava

scores for Project 1.

68

However, a small minority of students achieved very high scores on both all-pairs and

defect-detection capability score (of its scale). This group is visually identifiable on the

defect-detection capability score (of its scale). This group is visually identifiable on the

top right corner. Most importantly we can see the strong correlation between two scores in

the figure.

The correlation between defect-detection capability score and sufficient mutation

score is depicted in Figure 34(a). Most students’ suites achieved mutation scores below

40% and defect-detection capability sores below 2%. The correlation is similar to the

correlation of defect-detection capability vs. SDL mutation scores described in Figure 34

(b). However, the population is less clustered in SDL score distribution than sufficient

score distribution. Many students’ suites scores fall above and below the trend line but a

strong correlation between SDL mutation scores and defect-detection capability scores is

visible. Figure 34(c) shows the relationship between defect-detection capability and

VDL+CDL+ODL mutation scores. Here also a large number of students achieve below

40% in mutation score and below 1.5% in defect-detection score. Out of the three mutation

scores, SDL mutation score is the most strongly correlated with defect-detection capability.

Figure 35 shows the correlation between defect-detection capability score and

Javalanche mutation score. This plot is much different than the relation plots of µJava

Figure 35: Relationship between defect-detection capability score vs. mutation

score (Javalanche) in Project 1.

69

sufficient, SDL, and combined deletion mutation scores. A large number of students’ test

suites achieved a high score in Javalanche mutation scores, though their defect-detection

capability scores vary from 0.05% (low) to 3% (high). However, a linear relationship

between the scores of defect-detection capability and Javalanche mutation score is visible

in the figure.

Table 6 presents results for Project 4. We applied the same Bonferroni correction

for this project data also to reduce the risk of type I errors, and calculated correlations at α

< 0.0045. For this project, all-pairs scores are most strongly correlated with defect-

detection capability. The next best predictor is µJava SDL mutation scores with a

correlation 0.76. So, for both the projects all-pairs performed the best and µJava SDL

Table 6: Correlation (Spearman’s ρ) between measures for Project 4.

 (bold * entries are statistically significant at α < 0.0045).

 St.

Cov.

Bra.

Cov.

OBC OIC

Mutation Checked

Cov.

All-

pairs

Score

Defect-

detection

Score
Javala

nche

µJava

(suff.)

µJava

(SDL)

µJava

(VDL

/CDL/

ODL)

St. Cov. - 0.80* 0.01 0.08 0.19 0.14 0.22 0.16 0.008 0.31* 0.30*

Bra. Cov. - 0.05 0.15 0.19 0.14 0.23 0.15 0.03 0.33* 0.32*

OBC - 0.82* 0.13 0.14 0.17 0.13 0.59* 0.19 0.16

OIC - 0.07 0.11 0.08 0.04 0.63* 0.22 0.18

Java-

lanche

 - 0.88* 0.96* 0.88* 0.09 0.75* 0.72*

µJava

(suff.)

 - 0.82* 0.93* 0.14 0.67* 0.61*

µJava

(SDL)

 - 0.84* 0.12 0.78* 0.76*

µJava

(VDL/

CDL/

ODL)

 - 0.12 0.72* 0.64*

Checked

Cov.

 - 0.29* 0.23

All-pairs

Score

 - 0.89*

Defect-

detection

Score

 -

70

mutants performed the second best. However, Javalanche mutation scores become the third

best predictor unlike Project 1. We also found VDL+CDL+ODL mutation scores are

statistically significant with strong creation of 0.64. Interestingly, µJava sufficient mutation

scores did not perform as well as SDL or a combination of VDL+CDL+ODL. It is plausible

that the type of the project or the problem students submitted had some impacts on the

scores. For example, both Project 1 and Project 4 are data structure projects and students

were required to perform more logical computations than arithmetic calculations. Thus,

SDL mutants are showing stronger correlation with defect-detection capability than

sufficient mutation sets.

Interestingly, both statement coverage scores and branch coverage scores for

Project 4 showed statistical significance with defect-detection capability though the

correlations are not strong. Checked coverage seemed statistically significant with α < 0.05.

However, after applying the Bonferroni correction the correlation does not meet the

criterion for significance. OIC and OBC scores showed strong correlations with checked

code coverage scores.

Figure 36 shows the relationship between defect-detection capability scores and all-

pairs scores. As we can see the relationship is linear and strong as most of the scores lie on

or close to the trend line. Only a few students scored high in defect-detection capability but

Figure 36: Relationship between defect-revealing capability estimates and all-

pairs score for Project 4.

71 …………….****************************…………………………………………

Figure 36: Relationship between defect-revealing capability

(a) Sufficient

(b) SDL

(c) VDL+CDL+ODL

Figure 37: Relation between defect-detection capability estimates and µJava

mutation scores for Project 4.

72

………

moderately in all-pairs score. These scores are visible on the top right corner of the picture.

Note the all-pairs and defect-detection capability relationship plot for Project 4 is similar

to the plot for Project 1 (Figure 33). Figure 37 (a), (b) and (c) present the relationship

between defect-detection capability with sufficient mutation score, SDL mutation score

and VDL+CDL+ODL mutation score. All three of them have very similar correaltions,

though SDL performed better than the other three. Students who achieve high mutation

scores on SDL mutation also scored high in defect-detection capability. Only 10 students

scored high in defect-detection capability but moderately on SDL mutation score. They are

visible on the top right corner. The same students are found on top right of the trend lines

in sufficent mutation and VDL+CDL+ODL mutation score plots as well.

 The relation between Javalanche’s mutation scores and defect-detection capability

scores is depicted in Figure 38. The scores are clustered beween 30% to 80%. The sharp

trend line suggests a strong linear relationship. However, the students’ scores in Figure 38

are not as close to the trend line as they are in SDL mutation score plot shown in Figure 37

Figure 38: Relation between defect-detection scores vs. Javalanche mutation

scores for Project 4.

73

(b). We do not include the relationship plots of other measures, as they are not strongly

correlated with defect-detection capability scores.

4.3.4 Threats to Validity

There are some limitations in our research. First, we used the same students’

programs to calculate all-pairs execution and defect-detection capability. For master suite

creation we used valid student-written tests and reference tests. This procedure may create

a bias towards the failures that students’ programs have. Creating a master suite covering

different types of defects, such as SDL mutants, may be a good alternative to overcome

this bias.

Second, our research ourcome showed coverage measures were not strongly

correlated with defect-detection capability. For both of the assignments, students were

graded on their branch coverage. They also got feedback on coverage of their code. It is

natural that they put effort into achieving high coverage. In fact, more than one third of the

students achieved very high (> 90%) coverage scores. For example, 106 out of 147 students

achieved 100% in Project 1. Thus, little (or no) variance between their coverage scores was

observed. This affected the correlation between coverage metrics and defect-detection

capability. Further investigation is required to find out how student-written tests perform

if they are given no feedback or feedback on a different measure such as SDL.

Third, we calculated failures based on the final submissions. It is plausible that

students corrected easy defects between their first and final submissions. This raises the

question of which defects were present when solutions were in their original, untested,

undebugged state? Of course, few (if any) of the students ever had a complete solution in

an untested state. Students in this course were taught beforehand to practice TDD and to

incrementally develop their tests alongside their code. As a result, it is, impossible in many

cases to construct a picture of an individual’s code “before testing” to attempt to capture

all the defects.

Finally, student-specific tests were not evaluated for all-pairs and mutation

analysis. We tried to handle some student-specific designs in Project 4 by manually

changing their base class names to the instructor-given interface name. However, about

30% of all the tests in that project were still either invalid or student-specific. Future

74

research on evaluating student-specific tests in all-pairs execution and mutation analysis

(where mutants are generated from the reference solution) is important.

75

Conclusion

As educators add software testing to more and more courses, the question of how

to best evaluate student-written tests arises. While code (statement and branch) coverage

tools are readily available and are already being used by some educators, coverage metrics

have known limitations as test quality indicators. Other researchers and educators have

proposed alternative measures aimed at addressing these limitations, but until recently,

technical obstacles have prevented the use of these approaches. We investigated alternative

measures to find the best test quality measure in terms of defect-detection capability of

tests for automated assessment tools. We divide this chapter into four sections. Section 5.1

summarizes our research findings. Contributions of this research are described in Section

5.2. Section 5.3 focuses on more general implications of the research outcomes. Finally,

future work and related research problems are presented in Section 5.4.

5.1 Research Results

In this thesis, we have analyzed three alternative test quality measures: all-pairs

execution, mutation analysis and checked code coverage. We investigated four different

sets of mutation operators that appeared most practical. Our research answered the

following questions:

1. Are these measures feasible to use for automated classroom grading

systems?

Yes all of the measures investigated proved feasible. Each of these measures have

their own benefits and computational barriers to use them in automated grading systems.

We provided novel solutions for the technical problems. We also examined their feasibility

with CS2 assignments.

The main technical obstacle behind all-pairs execution is student-written tests may

refer to their own personal design features that are not present in other students’ code. In

such cases, their JUnit tests do not compile against others’ code. We modified the bytecode

Chapter 5

76

of students’ tests and applied late binding so that dependencies on student-specific design

features are resolved at run-time rather than compile-time. As a result, tests referring to

student-specific features will compile. Test cases that refer to student-specific features will

throw run-time exceptions making those tests fail. However, tests checking common

features will execute normally.

Mutation testing required a correct and complete version of the program to as the

source for mutants. Students’ programs are not good candidates for this purpose as they

frequently submit incorrect and incomplete programs. We used an instructor-provided

reference solution to resolve this issue. Mutation generation to evaluate each students’ tests

takes time. Instead, we pre-generated mutants from the reference solution ahead of time

and stored them for reuse. Finally, we determined non-equivalent mutants incrementally

when at least one valid student-written test fails. This procedure is conservative but

guarantees that non-equivalent mutants are observed to produce a different outcome from

the original program by valid tests.

Checked code coverage seemed to be promising but no automatic tool was available

to calculate it. We developed a semi-automated system that works in five phases. First, it

identifies explicit checks (i.e. asserts) inside the test suites. Second, it creates traces from

all tests using JavaSlicer. Third, we filter out library code from traces. Fourth, we use

JaCoCo to collect information about how many bytecode instructions are present in each

class and each method under test. Finally, the system calculates checked coverage from the

instructions present in the dynamic slices vs. total instructions in the programs. JavaSlicer

traces each thread separately and cannot reconstruct data-dependencies between different

threads. We modified JUnit 4 tests into JUnit 3 tests so that all tests run from the main

thread. Though our system currently is only semi-automated, with some software

engineering effort it can be made automatic.

2. Are they better indicators of defect-detection capability?

We designed a study to compare 10 different assessment approaches in terms of

their prediction of defect-detection capability: all-pairs execution, mutation analysis with

four different sets of mutation operators, statement coverage, branch coverage, OIC, OBC

and checked coverage. To calculate defect-detection capability we created a master suite

77

representative of defects that students actually make in their code. Then we determined

how many student-written tests overlap with the master suite tests and calculate the number

of defects detected by those overlapped tests. If a test case of the master suite is overlapped

by a student’s tests multiple times, then failures detected by the test are counted once. This

score shows the likelihood that a test-suite will detect any specific defect that may exist in

a program.

Our experimental results show that all-pairs execution and mutation testing with

any one of the four sets of mutation operators are better indicators of detect-detection

capability than coverage measures. Although checked code coverage was expected to

overcome the limitations of conventional coverage criteria, we did not find it to be a better

predictor of defect-detection capability than other coverage measures.

3. Which of these test quality measure is the best?

Our research outcome shows all-pairs execution is the best predictor of defect-

detection capability. All of the four mutation operator sets we investigated showed strong

correlation with defect-detection capability as well, though the SDL operator performed

second best. However, all-pairs execution is computationally more expensive than SDL

mutation analysis. In all-pairs execution, the number of tests executed grows quadratically

with the number of students. The number of test runs are linear in mutation analysis. As an

example, compare test executions for both measures in Project 4. In all-pairs execution,

1,476 valid student-written tests were executed against 101 programs for Project 4,

resulting in 149,076 test runs. For SDL mutation analysis, valid tests were run against 80

mutants, resulting in 118,080 test executions (30,999 fewer test runs than all-pairs

execution). Moreover, SDL generates fewer mutants than sufficient or other deletion

operators. Another problem of all-pairs execution is feedback cannot be generated until

after the deadline when all the students have submitted their final code and final tests. This

may be impractical for classroom grading tools. Thus, though all-pairs execution is the best

predictor of defect-detection capability, considering computational cost and feedback

delay, SDL mutation analysis is the best alternative for practical use in automated grading.

78

5.2 Contributions

This research investigates alternative approaches of test quality measures. We

designed a study to compare 10 different measures in terms of their ability to predict defect-

detection capabilities. This study determined that all-pairs execution is the best predictor

of defect-detection capability of tests. We provided a novel way to remove compile time

dependencies between JUnit tests and corresponding programs using late binding through

reflection. This enables evaluation of complete or incomplete tests against correct and

erroneous solutions or programs. The same technique can be used to evaluate incomplete

programs which was not possible before.

We analyzed obstacles of all-pairs execution and provided novel solutions to

overcome them. We also introduced a set of techniques including incrementally

determining non-equivalent mutants and pre-generating mutants from a reference solution

to apply mutation analysis in classroom grading tools. To calculate checked coverage, we

developed a semi-automated system that calculates dynamic backward slices from checks

and determines the percentage of code that influences checked results.

5.3 Broader Impacts

We found that students achieved high coverage scores but scores lower in all-pairs

execution. This implies that they executed a large percentage of their code from their tests

but did not detect many common failures or defects in other students’ programs. We also

found that students write diverse test cases. When we combine valid tests from all the

students, the collection produced a strong test suite. For example, this collection detected

all the mutants (over thousand in total) generated by the four different mutation operators.

The same collection detected about 92% of all the errors that students produced naturally

in coding. However, individually their test cases were not strong.

This research outcome provides educators and students an insight into the quality

of students’ testing skills. Implementation of our solution to remove compile-time

dependencies from the test cases will enable automated graders to evaluate partial

solutions. Application of all-pairs execution, mutation analysis, and checked code coverage

will encourage students to practice testing skills in many classes and will give them

79

concrete feedback on their testing performance. Educators will be able to automatically

evaluate students’ tests using the test quality measure that predicts defect-detection

capability most accurately. As a result, students will have more opportunities to find what

defects they make, by getting a better evaluation on their test cases, and may improve the

accuracy of their solution.

5.4 Future Work

In our experiments, we used final submissions of students work. It is very likely

that students’ fixed defects between their first and final submissions. Thus, only the defects

that students failed to detect remained in their code. This is a plausible reason behind their

low scores in defect-detection capability. We plan to extend our experiments with all the

defects—from all of their submissions so that the defect-detection capability score would

reflect all types of defects. Exploration of types and frequencies of the defects that students

make also would be helpful for instructors to give them better feedback. We used

assignments as independent variables in our statistical analysis. Types of assignments, such

as GUI assignments, may affect the correlation of different measures with defect-detection

scores. We want to include more assignments from different semesters to generalize our

research results.

This research showed all-pairs execution is the best predictor, and SDL mutation

was the second best predictor for detect-detection capability. We used the same defective

programs from students to calculate all-pairs scores and to create master suites (that

represent equivalence class of defects). We plan to create a master suite covering SDL

mutants and investigate if that changes the correlation between different measures and

defect-detection scores. Moreover, we want to categorize Javalanche-generated mutants in

a similar way that we used for µJava generated mutants. This will help us to determine

which mutation operators of Javalanche are creating more effective mutants. In addition,

we will investigate a new tool, PITEST [5], for mutation analysis.

We plan to investigate test cases that constitute the master suite. Not all the tests in

the master suite detected the same number of defects. It is possible that some test cases

detect more defects than others. We consider test case A is a superset of test case B if 1)

80

test case A detects more failures than test case B, and 2) test case A detects all the failures

that test case B detects. A master suite consisting of the super set tests may be as effective

as the complete set but may reduce cost of calculating defect-detection capability.

A major concern of all-pairs execution and mutation analysis is giving students

feedback on their tests. We are researching effective ways of generating feedback from the

approaches without revealing reference solutions or other students’ solutions. In all-pairs

execution, tests are evaluated on how many defects they can find in others’ code. It is not

possible to give direct feedback on what defects a test case failed to detect. Similarly in

mutation analysis, mutants are created from the reference solution. Students will not have

access to the reference solution. Thus, some indirect but effective form of feedback is

needed so that students can understand problems of their tests.

Lastly, implementing practical alternative approaches, such as mutation analysis,

in Web-CAT and other classroom assessment tools, and investigating students’

performance change with this addition will enable us to bring into reality the benefits of

this research.

81

[1] "Clover: Java and Groovy Code Coverage," Available:

https://www.atlassian.com/software/clover/overview, accessed 10/19/2013

[2] "EMMA: a free Java code coverage tool," Available:

http://emma.sourceforge.net/, accessed 10/19/2013

[3] "JaCoCo Java Code Coverage Library," Available:

http://www.eclemma.org/jacoco/, accessed 10/19/2013 2013

[4] "JavaSlicer," Available: http://www.st.cs.uni-saarland.de/javaslicer/, accessed

11/10/2013 2013

[5] "PIT: Real world mutation testing," Available: http://pitest.org/, accessed

3/9/2015

[6] K. Aaltonen, P. Ihantola, and O. Seppälä, "Mutation analysis vs. code coverage in

automated assessment of students' testing skills," in Proceedings of the ACM

International Conference Companion on Object-oriented Programming Systems

Languages and Applications Companion, Reno/Tahoe, Nevada, USA, pp. 153-

160, 2010.

[7] P. Ammann and J. Offutt, Introduction to Software Testing, 1 ed.: Cambridge

University Press, 2008.

[8] J. H. Andrews, L. C. Briand, and Y. Labiche, "Is mutation an appropriate tool for

testing experiments?," in Proceedings of the 27th International Conference on

Software Engineering, St. Louis, MO, USA, pp. 402-411, 2005.

[9] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi, "Toward the

determination of sufficient mutant operators for C†," Software Testing,

Verification and Reliability, vol. 11, pp. 113-136, 2001.

[10] C. E. Bonferroni, Teoria statistica delle classi e calcolo delle probabilità: Libreria

internazionale Seeber, 1936.

[11] J. G. C. Comar, O. Hainque, T. Quinot, "Formalization and Comparison of

MCDC and Object Branch Coverage Criteria," in In ERTS (Embedded Real Time

Software and Systems Conference), 2012.

References

http://www.atlassian.com/software/clover/overview
http://emma.sourceforge.net/
http://www.eclemma.org/jacoco/
http://www.st.cs.uni-saarland.de/javaslicer/
http://pitest.org/

82

[12] P. Chevalley, "Applying mutation analysis for object-oriented programs using a

reflective approach," in Software Engineering Conference, 2001. APSEC 2001.

Eighth Asia-Pacific, pp. 267-270, 2001.

[13] P. Chevalley and P. Thévenod-Fosse, "A mutation analysis tool for Java

programs," International journal on software tools for technology transfer, vol. 5,

pp. 90-103, 2003.

[14] S. Chiba, "Javassist," Available: http://www.csg.ci.i.u-

tokyo.ac.jp/~chiba/javassist/, accessed 3/7/2015 2015

[15] S. Chiba and M. Nishizawa, "An easy-to-use toolkit for efficient Java bytecode

translators," in Proceedings of the 2nd International Conference on Generative

Programming and Component Engineering, Erfurt, Germany, pp. 364-376, 2003.

[16] J. J. Chilenski, "An Investigation of Three Forms of the Modified Condition

Decision Coverage (MCDC) Criterion " U.S. Department of Transportation 2001.

[17] B. Cole, D. Hakim, D. Hovemeyer, R. Lazarus, W. Pugh, and K. Stephens,

"Improving your software using static analysis to find bugs," in Companion to the

21st ACM SIGPLAN Symposium on Object-oriented Programming Systems,

Languages, and Applications, Portland, Oregon, USA, pp. 673-674, 2006.

[18] S. Cornett, "Code Coverage Analysis," Bullseye Testing Technology, 1996-2014.

[19] M. E. Delamaro, J. Offutt, and P. Ammann, "Designing Deletion Mutation

Operators," in Proceedings of the 2014 IEEE International Conference on

Software Testing, Verification, and Validation, pp. 11-20, 2014.

[20] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, "Hints on Test Data Selection:

Help for the Practicing Programmer," Computer, vol. 11, pp. 34-41, 1978.

[21] L. Deng, J. Offutt, and N. Li, "Empirical Evaluation of the Statement Deletion

Mutation Operator," in Proceedings of the 2013 IEEE Sixth International

Conference on Software Testing, Verification and Validation, pp. 84-93, 2013.

[22] C. Desai, D. S. Janzen, and J. Clements, "Implications of integrating test-driven

development into CS1/CS2 curricula," in Proceedings of the 40th ACM Technical

Symposium on Computer Science Education, pp. 148-152, 2009.

http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/
http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/

83

[23] T. Dvornik, D. S. Janzen, J. Clements, and O. Dekhtyar, "Supporting introductory

test-driven labs with WebIDE," in Proceedings of the 2011 24th IEEE-CS

Conference on Software Engineering Education and Training, pp. 51-60, 2011.

[24] S. H. Edwards, "Improving student performance by evaluating how well students

test their own programs," J. Educ. Resour. Comput., vol. 3, p. 1, 2003.

[25] S. H. Edwards, "Rethinking computer science education from a test-first

perspective," in Companion of the 18th Annual ACM SIGPLAN Conference on

Object-oriented Programming, Systems, Languages, and Applications, Anaheim,

CA, USA, pp. 148-155, 2003.

[26] S. H. Edwards, "Using test-driven development in the classroom: Providing

students with concrete feedback " in International Conference on Education and

Information Systems: Technologies and Applications, pp. 421–426, 2003.

[27] S. H. Edwards, "Using software testing to move students from trial-and-error to

reflection-in-action," in Proceedings of the 35th SIGCSE Technical Symposium

on Computer Science Education, ACM, pp. 26-30, 2004.

[28] S. H. Edwards and Z. Shams, "Comparing test quality measures for assessing

student-written tests," in Companion Proceedings of the 36th International

Conference on Software Engineering, Hyderabad, India, pp. 354-363, 2014.

[29] S. H. Edwards and Z. Shams, "Do student programmers all tend to write the same

software tests?," in Proceedings of the 2014 Conference on Innovation &

Technology in Computer Science Education, Uppsala, Sweden, pp. 171-176,

2014.

[30] S. H. Edwards, Z. Shams, M. Cogswell, and R. C. Senkbeil, "Running students'

software tests against each others' code: new life for an old "gimmick"," in

Proceedings of the 43rd ACM Technical Symposium on Computer Science

Education, Raleigh, North Carolina, USA, pp. 221-226, 2012.

[31] S. Elbaum, S. Person, J. Dokulil, and M. Jorde, "Bug Hunt: Making Early

Software Testing Lessons Engaging and Affordable," in Proceedings of the 29th

International Conference on Software Engineering, pp. 688-697, 2007.

84

[32] M. H. Goldwasser, "A gimmick to integrate software testing throughout the

curriculum," in Proceedings of the 33rd SIGCSE Technical Symposium on

Computer Science Education, pp. 271-275, 2002.

[33] R. A. D. H. Agrawal, B. Hathaway, W. Hsu, W. Hsu, and R. J. M. E. W. Krauser,

A. P. Mathur, and E. Spafford., "Design of mutant operators for the C

programming language.," SERC-TR-41-P, 2006.

[34] M. Hauswirth, D. Zaparanuks, A. Malekpour, and M. Keikha, "The JavaFest: a

collaborative learning technique for Java programming courses," in Proceedings

of the 6th International Symposium on Principles and Practice of Programming

in Java, Modena, Italy, pp. 3-12, 2008.

[35] M. T. Helmick, "Interface-based programming assignments and automatic

grading of java programs," in Proceedings of the 12th Annual SIGCSE

Conference on Innovation and Technology in Computer Science Education,

Dundee, Scotland, pp. 63-67, 2007.

[36] D. Jackson and M. Usher, "Grading student programs using ASSYST," in

Proceedings of the 28th SIGCSE Technical Symposium on Computer Science

Education, pp. 335-339, 1997.

[37] D. S. Janzen and H. Saiedian, "Test-driven learning: intrinsic integration of

testing into the cs/se curriculum," in Proceedings of the 37th SIGCSE Technical

Symposium on Computer Science Education, pp. 254–258,, 2006.

[38] Z. Junji and V. Garousi, "On Adequacy of Assertions in Automated Test Suites:

An Empirical Investigation," in IEEE Sixth International Conference on Software

Testing Verification and Validation Workshop, pp. 382-391, 2013.

[39] S. Kim, J. A. Clark, and J. A. McDermid, "Class mutation: Mutation testing for

object-oriented programs," in Proc. Net. ObjectDays, pp. 9-12, 2000.

[40] C. C. M. Bordin, T. Gingold, J. Guitton, O. Hainque, and T. Quinot, "Object and

Source Coverage for Critical Applications with the COUVERTURE Open

Analysis Framework," in ERTS (Embedded Real Time Sofware and Systems

Conference), 2010.

85

[41] Y.-S. Ma, J. Offutt, and Y. R. Kwon, "MuJava: an automated class mutation

system: Research Articles," Softw. Test. Verif. Reliab., vol. 15, pp. 97-133, 2005.

[42] B. Marick, "How to misuse code coverage," in Proceedings of the 16th

Interational Conference on Testing Computer Software, pp. 16-18, 1999.

[43] J. C. Miller and C. J. Maloney, "Systematic mistake analysis of digital computer

programs," Commun. ACM, vol. 6, pp. 58-63, 1963.

[44] A. S. Namin, J. H. Andrews, and D. Murdoch, "Sufficient mutation operators for

measuring test effectiveness," in Proceedings of the 30th international conference

on Software engineering, pp. 351-360, 2008.

[45] A. J. Offutt, "Investigations of the software testing coupling effect," ACM Trans.

Softw. Eng. Methodol., vol. 1, pp. 5-20, 1992.

[46] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, "An experimental

determination of sufficient mutant operators," ACM Trans. Softw. Eng. Methodol.,

vol. 5, pp. 99-118, 1996.

[47] A. J. Offutt and R. Untch, "Mutation 2000: Uniting the Orthogonal," in Mutation

Testing for the New Century. vol. 24, W. E. Wong, Ed., ed: Springer US, pp. 34-

44, 2001.

[48] D. Schuler, "Javalanche," Available: https://github.com/david-

schuler/javalanche/, accessed 04/15/2013 2013

[49] D. Schuler and A. Zeller, "Javalanche: efficient mutation testing for Java," in

Proceedings of the the 7th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering, Amsterdam, The Netherlands, pp. 297-298, 2009.

[50] D. Schuler and A. Zeller, "Assessing Oracle Quality with Checked Coverage," in

Proceedings of the 4th IEEE International Conference on Software Testing,

Verification and Validation, pp. 90-99, 2011.

[51] Z. Shams and S. H. Edwards, "RefectionSupport: Java Reflection Made Easy,"

The Open Software Engineering Journal, TOSEJ, vol. 7, pp. 38-52, 2013.

[52] Z. Shams and S. H. Edwards, "Toward practical mutation analysis for evaluating

the quality of student-written software tests," in Proceedings of the Ninth Annual

86

International ACM Conference on International Computing Education Research,

San Diego, San California, USA, pp. 53-58, 2013.

[53] Z. Shams and S. H. Edwards, "Checked Coverage and Object Branch Coverage:

New Alternatives for Assessing Student-Written Tests," in Proceedings of the

46th ACM Technical Symposium on Computer Science Education, Kansas City,

Missouri, USA, pp. 534-539, 2015.

[54] J. Spacco and W. Pugh, "Helping students appreciate test-driven development

(TDD)," in Companion to the 21st ACM SIGPLAN Symposium on Object-oriented

Programming Systems, Languages, and Applications, Portland, Oregon, USA, pp.

907-913, 2006.

[55] G. Tassey, "The economic impacts of inadequate infrastructure for software

testing," National Institute of Standards and Technology, RTI Project Number

7007.011, 2002.

[56] M. D. Weiser, "Program slices: formal, psychological, and practical investigations

of an automatic program abstraction method," University of Michigan, 1979.

[57] W. E. Wong, "On Mutation and Data Flow," Purdue University, 1993.

[58] a. J. O. Yu-Seung Ma, "Description of Method-level Mutation Operators for

Java," Available: http://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf, accessed

12/11/2014 2014

[59] J. Yue and M. Harman, "An Analysis and Survey of the Development of Mutation

Testing," IEEE Transactions on Software Engineering, vol. 37, pp. 649-678,

2011.

[60] H. Zhu, P. A. V. Hall, and J. H. R. May, "Software unit test coverage and

adequacy," ACM Comput. Surv., vol. 29, pp. 366-427, 1997.

http://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf

