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(ABSTRACT) 
Software testing is important, but judging whether a set of software tests is effective is 

difficult.  This problem also appears in the classroom as educators more frequently include 

software testing activities in programming assignments. The most common measures used 

to assess student-written software tests are coverage criteria—tracking how much of the 

student’s code (in terms of statements, or branches) is exercised by the corresponding tests. 

However, coverage criteria have limitations and sometimes overestimate the true quality 

of the tests. This dissertation investigates alternative measures of test quality based on how 

many defects the tests can detect either from code written by other students—all-pairs 

execution—or from artificially injected changes—mutation analysis. We also investigate 

a new potential measure called checked code coverage that calculates coverage from the 

dynamic backward slices of test oracles, i.e. all statements that contribute to the checked 

result of any test. Adoption of these alternative approaches in automated classroom grading 

systems require overcoming a number of technical challenges. This research addresses 

these challenges and experimentally compares different methods in terms of how well they 

predict defect-detection capabilities of student-written tests when run against over 36,500 

known, authentic, human-written errors. For data collection, we use CS2 assignments and 

evaluate students’ tests with 10 different measures—all-pairs execution, mutation testing 

with four different sets of mutation operators, checked code coverage, and four coverage 

criteria. Experimental results encompassing 1,971,073 test runs show that all-pairs 

execution is the most accurate predictor of the underlying defect-detection capability of a 

test suite. The second best predictor is mutation analysis with the statement deletion 

operator. Further, no strong correlation was found between defect-detection capability and 

coverage measures. 
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Introduction   

Testing is an important part of software development. The main concern of software 

testing is to detect as many defects as possible. Failures are caused by defects in programs, 

which are accidentally introduced by developers because of the inherent complexity of the 

code. A study by the National Institute of Standards and Technology [55] from 2002 

estimated that software failures cause costs of $59.5 billion annually in the U.S., and that 

over one third of these costs could be avoided by better software testing strategies.  Further, 

most software industries apply testing in different stages of software development and it 

accounts for 50% of the cost of development. However, unfortunately, less than 15% of 

practitioners ever receive any formal training on the subject [24].  

Considering the necessity of testing, more educators are including software tests 

[22, 23] in programming and software engineering courses [27, 37]. The goal of including 

software testing as a part of programming assignments is to enable students to better test 

their software, and thus hopefully produce code with fewer defects. An earlier study [24] 

showed that students who tests their own programs produce 28% fewer defects per 

thousand lines of code. Further, when students write software tests, they have to articulate 

their own understanding of what their code is supposed to do, which helps them solidify 

their conceptual understanding about their own program. Regardless of the benefits of 

testing, students are not accustomed to formally test their code. They usually focus on 

output correctness on the instructor’s sample data [37] and do less testing on their own 

[27]. To change this practice, educators are including software testing as a part of 

programming assignments, where a student is required to submit his program along with 

test cases. In this approach, the student’s total grade depends on the correctness of his 

program and the quality of his test cases.  

To support software testing as a part of regular programming assignments, current 

classroom assessment systems (e.g., Web-CAT, ASSYST, Marmoset) allow students to 

turn in their programs along with tests. These automated grading tools evaluate student-
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written tests as part of grading.  To support software testing as a part of regular 

programming assignments, current classroom assessment systems (e.g., Web-CAT, 

ASSYST, Marmoset) allow students to turn in their programs along with tests. These 

automated grading tools evaluate student-written tests as part of grading. The most 

common strategy currently used is to employ a structural code coverage metric, such as 

statement coverage or branch coverage, in order to measure how much of the code under 

test is executed by a test suite. Statement coverage calculates what percentage of the 

software’s statements are executed by the tests in a test suite and branch coverage measures 

what proportion of the control flow transfers are executed. Software test adequacy criteria 

such as these are traditionally viewed as criteria for judging when a test suite is “thorough 

enough”—as a kind of stopping rule that says when a test suite is sufficiently complete.  

However, such criteria can also be used in another way: to measure the adequacy or degree 

of thoroughness of a test suite [60].  When used in this way, they become an indicator of 

the quality of a test suite.  Automated assessment systems use coverage criteria in the same 

way to evaluate the quality of students’ tests.  

Coverage criteria focus on executing more code with the rationale that the chances 

of detecting defects in code is zero if it never gets executed. However, executing defects 

does not guarantee they will be detected. A software test may cause a fault to be executed, 

but contain insufficient checks of expected behavior to detect that the code did not behave 

as intended. Moreover, the test may have used data for behavioral checks that fail to detect 

failures. Thus, it is not sufficient to cover the error; we also need a means to detect it. 

Two main goals of software testing are: 

1) Executing  the defects in code in a way that causes failure, and 

2) Recognizing or detecting those failures. 

Coverage criteria give information about only part of the first goal of testing: what 

percentage of the code features is being executed. To examine if tests are executing code 

in a way to cause failures and to detect those failures, we need to assess oracle quality. Test 

oracles are checks that determine whether a test case passes or fails.  Assessing tests based 

on oracles provides information on the sufficiency of checks as well as the detection of 



 

3 

observable failures.  Currently, oracle quality assessment approaches are not used in any 

classroom grading tools.  

Classroom grading tools have different requirements and challenges than 

traditional industry tools. Student-written programs are generally small in size, so unit 

testing is used for assessment. No systemic defect-tracking system is available as 

professionals use in industry. Common pair-review process may not be used or applicable 

in introductory classes. Thus, beginners depend on the feedback from teachers, TAs and 

automated grading tools if available. For large classes or MOOCs (Massive online open 

course)s, providing the human efforts to execute and assesses student-written tests becomes 

unrealistic. Thus, incorporating effective test quality measures in classroom assessment 

tools is a growing need.  In this research, we investigate different oracle quality assessment 

approaches for automated grading of students’ tests.  

1.1 Research Problem 

To overcome the problems of assessing students’ tests using statement or branch 

coverage, we investigate alternative approaches based on the defect-detection ability of the 

tests. Recently, several measures have been proposed as more sensitive measures [6, 50] 

of test quality than statement or branch coverage. Among them all-pairs execution, 

mutation analysis and checked code coverage have shown promising results on evaluating 

test quality. In all-pairs execution, each student’s test cases are run against all other 

students’ programs. Mutation testing, on the other hand, involves modifying the programs, 

with the intent to seed artificial errors into code and to check whether a test suite can find 

them. These two measures evaluate test quality based on how many defects a test suite can 

detect, whereas checked code coverage measures the percentage of executed code that 

influences on the checked results. Technical obstacles of automating these approaches for 

an educational environment raise the question of whether it is feasible to use them in 

classroom assessment systems. We also need to find out which one of these alternative 

measures is more accurate, in terms of predicting the defect-detection capability of a given 

test suite. This thesis focuses on discovering the best test quality measure based on defect 

detection capability for automatic assessment of student written tests. The specific 
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research problem is subdivided into the following three questions for the alternative 

measures: all-pairs execution, mutation testing with four different sets mutation operator 

and checked-coverage: 

1. Are these measures feasible to use for automated classroom grading 

systems? 

2. Are they better indicators of defect detection capability?  

3. Which of these test quality measures is the best?  

 Here, we can define best as: the most accurate predictor of how likely a test suite 

is to reveal actual defects. We identified technical challenges of using all-pairs execution, 

mutation analysis with four different sets of mutant operators, and checked coverage for 

automated classroom grading tools. We also devised novel technical solutions to overcome 

those challenges. We designed and conducted an experiment with two CS2 assignments 

from two different semesters, to compare all-pairs execution, mutation analysis with four 

different sets of mutants, and checked code coverage using a massive dataset collected 

from actual student-written tests. The same comparison was extended for four coverage 

criteria: statement coverage, branch coverage, object instruction coverage, and object 

branch coverage. The goal of this experiment was to find out how these measures correlate 

with defect-detection capability.  

1.2 Contribution  

The contributions of this research include: 

 We designed a study to compare 10 different assessment approaches in terms of 

their defect-detection capabilities: all-pairs execution, mutation analysis with four 

different sets of mutation operators, checked code coverage, statement coverage, 

branch coverage, object instruction coverage, and object branch coverage. 

Completion of the study determines the best test quality measure to automatically 

assess students’ tests. 

 We analyzed technical obstacles of all-pairs execution and provided automated 

solutions for them.  
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 We introduced a set of techniques, including detection of mutants incrementally, to 

apply mutation analysis in educational settings. 

 We investigated four different sets of mutation operators to determine which 

mutation operator produces mutants that are most correlated with defect-detection 

capability. The four sets of operators are sufficient mutation operators listed by 

Offutt [46], Javalanche mutation operators [49], statement deletion operator [21], 

and the combination of variable, constant and operator deletion operators [21]. We 

choose these sets because they are effective and practical for grading tools. 

 We provided a novel way to remove compile time dependencies between JUnit tests 

and their solutions using late binding to support test evaluation against correct and 

erroneous solutions that are likely to be from different authors or automatically 

generated. 

 We developed a semi-automated system to calculate a more sensitive form of code 

coverage using the dynamic slices of a program executed from checked assertions. 

 

1.3 Outline  

In Chapter 2, we describe potential test quality measures: coverage criteria, all-pairs 

execution, mutation testing, and checked code coverage. We also discuss strengths, 

weaknesses, and popular automated tools available to apply the measures. Our discussion 

also includes automated assessment systems and their evaluation metrics for assessing 

students’ tests. In Chapter 3, we analyze in detail the obstacles to applying all-pairs 

execution, mutation testing and checked code coverage, present our solution to the 

problems, and evaluate the feasibility of our solution. Chapter 4 includes an experiment to 

compare defect-detection capability with all-pairs execution, mutation testing with four 

sets of mutation operators, checked coverage, and four coverage criteria. Finally, we 

conclude in Chapter 5 with plans for future work. 
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Background  

During the development process software is tested at different stages to confirm it 

produces expected results under specified conditions. Different levels of testing 

corresponds to different level of development activity. Unit testing exercises the software 

at the lowest level.  It is designed to assess the produced code during implementation phase. 

It checks the implementation modules or parts of a program in isolation. A number of test 

cases are executed by the system under test with specified conditions and inputs to check 

results by test oracles. A test oracles determines whether the test cases pass or fail.  

In this thesis, we focus on evaluating student-written unit tests by automated 

grading systems. Many educators include software testing activities in programming 

assignments, so there is a growing demand for appropriate methods of assessing the quality 

of student-written software tests.  If students are taught how to test their code well, they 

will improve the quality of their code in terms of correctness. In fact, Edwards [24] showed 

that students who tested their own programs reduced defects by 28% per thousand lines of 

code.  

While tests can be hand-graded, some educators also use objective performance 

metrics to assess software tests. Several metrics are used to evaluate test quality. Statement 

and branch coverage, all-pairs execution and mutation testing have been either used or 

proposed for assessment of student-written tests. Recently, a variation of code coverage— 

called checked code coverage—has been introduced as a more sensitive measure of test 

quality than mutation testing and statement coverage. We discuss all four types of measures 

in the following subsections. 

2.1 Automated Grading Systems and Their Evaluation 
Measures  

Students often consider software testing to be boring. They usually focus on output 

correctness on the instructor’s sample data [27] and do less testing on their own [26]. 

Goldwasser [32] first proposed the idea of executing student-written tests against other 
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students programs. Widely used automated assessment tools (e.g.,Web-CAT [25], 

ASSYST [36]  and Marmoset [54])  evaluate students’ codes along with their software 

tests.  

Web-CAT and ASSYST are the most popular assessment tools. Web-CAT can 

measure statement and branch coverage of student-written tests submitted as a part of an 

assignment. Web-CAT can also execute instructor-provided reference tests, and for some 

languages (such as Java) it provides static analysis tools that can assess code style, 

 

 

Figure 1: Screen shot of a result summary given to a student by Web-CAT. 

  

 Figure 2: Screen shot of a testing score report from Web-CAT. 



 

9 

adherence to coding standards, and some structural aspects of commenting conventions. 

Depending on the instructor’s preferences, a student’s grade can depend on 1) design, 2) 

coding style, and 3) correctness or testing score. The top right corner of Figure 1 gives a 

summary of the score. Figure 2 illustrates  how a testing score is calculated from the 

statement coverage score calculated from his test suite, percentage of his own test cases 

 
 Figure 3: Screen shot of a problem coverage report from Web-CAT. 

 

Figure 4: Screen shot of a visual statement coverage report from Web-CAT. 
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passed, and problem coverage—percentage of required features completed by the student. 

An additional report is also available to a student explaining problem coverage of his code 

as shown in Figure 3.  This report gives hints on where or in which methods reference tests 

have found defects. Moreover, a visual report on the statement coverage (Figure 4) from 

the student’s tests is given to the student. As a result, a student knows exactly which lines 

are uncovered in his code and can try to increase coverage by adding or modifying his test 

cases. 

ASSYST also provides support for executing instructor-written reference tests 

against student submissions, as well as support for measuring code coverage (i.e., statement 

coverage) of student solutions when the instructor-written tests are executed. This system 

can also evaluate the run-time efficiency of a program by the amount of CPU time 

consumed, its code complexity, and its style. Moreover, weightings can be assigned to 

particular aspects of tests using ASSYST. 

Marmoset is another automated grading system that focuses on Java assignments. 

It evaluates student programs against two test sets: 1) public test sets, where students see 

all results, and 2) “release” test sets provided by the instructor—that is, private instructor-

written reference tests. The public test sets are available publicly to students and feedback 

from running public test sets are provided to students immediately. However, release test 

sets can be run only if a submission passes all the public tests. The results from release test 

sets are delayed and limited. Marmoset uses statement coverage from the release test sets 

and from the students’ own test sets. This system also provides students with information 

about their programs using the static program analysis tool FindBugs [17]. 

All three of these tools run instructor-provided reference tests against student 

submissions. However, reference tests written in compiled languages, such as Java, do not 

compile against solutions that fail to provide all the required features in an assignment or 

that have incorrect method signatures. As a result, these systems cannot evaluate partial or 

incomplete submissions and gives no credit in those situations. Edwards et al. presented a 

solution for assessing partial or incomplete Java programs by applying late binding to test 

cases [30]. 
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Web-CAT, ASSYST, and Marmoset all provide some form of statement or branch 

coverage but cannot measure how many observable failures that test cases have detected. 

As an alternative, Aaltonen et al. [6] proposed using mutation analysis to assess the quality 

of student-written tests in Java assignments. He compared scores that students get for their 

tests from mutation testing and statement coverage provided by Web-CAT. The 

comparison showed that students were able to fool coverage tools, and achieving a high 

score was harder with mutation testing than statement coverage. However, some limitations 

may make it impractical to use for real-time feedback generation, although it appears 

feasible for use in batch-style analysis of student submissions.  

Some web based tutorial systems, such as BugHunt [31] are designed for students 

to learn how to write unit tests. It provides existing code containing known defects for 

students to “find” using testing. Though this work does not assess student-written tests, it 

does aim directly at including software testing in courses, and helps students learn from 

their mistakes through an interactive feedback system. Another tool, JavaFest [34], 

promotes collaborative learning of Java programming and learning to write good unit tests. 

This tool is inspired by a team-based version of Goldwasser’s idea. It groups students into 

teams and creates competitions where each team’s tests are run against other teams’ 

implementations. The team uncovering the largest number of defects in other teams’ code 

wins the completion. However, this is not an automated assessment tool. TAs and tutors 

provide feedback and help students to use the right interfaces or code structures so that 

their tests can be executed against each other.  

2.2 Coverage Metrics 

Coverage criteria [43] were one of the first methods used for software testing and 

are still the most widely [50] used metrics to assess test quality. They measure the 

percentage of code features executed during testing. Code features can be statements, 

branches or path coverage. The idea behind coverage criteria is that a test suite cannot find 

any defects in code if it never gets executed. On the other hand, the chances of detecting 

defects in code are more if the code is executed. Statement coverage is the most basic form 

of code coverage. If a specific statement is executed from at least one test case, then it is 
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considered covered. Executing all the statements is necessary to achieve 100% statement 

coverage.   

Object coverage analysis computes metrics focused on machine-level object code.  

Object instruction coverage (OIC) requires all object instructions to be executed at least 

once. Sometimes, object coverage measures are safer as compiler-generated object code 

impacts the execution control flow in a way that is not directly visible from source code. 

Branch coverage requires that every conditional statement is evaluated to true and 

false. For example, given an if statement, both the true and false branches need to execute 

to achieve 100% branch coverage. If a specific branch is exercised by at least one test, then 

it is calculated as covered. Branch coverage subsumes statement coverage as it requires all 

the statements to be covered, including the branches that contain no statements such as an 

empty else-block of an if-statement. Thus, test suites that achieve full branch coverage also 

achieve full statement coverage. 

Figure 5 shows a simple method, abs(int), that calculates the absolute value of 

an integer. Invoking abs(-3) will achieve 100% statement coverage. However, to satisfy 

branch coverage, it is necessary to execute the method at least twice, one with a>=0 and 

another with a<0, such as abs(3)and abs(-3). 

Condition coverage requires each simple condition in every decision to be 

evaluated both true and false at least once, but this does not necessarily guarantee each 

1  static int abs(int a) { 

2 int absVal; 

3 absCalled++; 

4    absVal = a;  

5 if (a < 0) { 

6     absVal = -absVal; 

7 } 

8 return absVal; 

9  } 

Figure 5: An exmaple for coverage criteria.  
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branch will be executed. A more stringent form is modified condition/decision coverage 

(MC/DC). MC/DC is defined this way [18]: 

“Every point of entry and exit in the program has been invoked at least once, 

every condition in a decision has taken all possible outcomes at least once, every 

decision in the program has taken all possible outcomes at least once, and each 

condition in a decision has been shown to independently affect that decision's 

outcome.” 

Unfortunately, MC/DC is sometimes infeasible when conditions are dependent (for 

example, checking whether a pointer is non-null before using the pointer in a later condition 

in the same decision). Masking MC/DC [16] allows for each condition to be shown to 

independently affect a decision’s outcome by varying just that condition while holding 

fixed all other possible conditions that could affect the outcome. It is weaker than MC/DC. 

However, an empirical study shows that masking MC/DC requires an equivalent number 

of tests as MC/DC and is a preferred form of MC/DC [16]. 

   A similar form of branch coverage named object branch coverage (OBC) is as 

strong as masking MC/DC for the majority of code [11]. OBC is calculated by 

instrumenting a program’s object code instead of its source code.  However, for languages 

that use short-circuit evaluation of logical operators, object code instrumentation will result 

in much more stringent coverage requirements.  As an example, consider this if statement: 

    if (C1 || C2 && C3) 

    { 

        ... 

    } 

This if statement contains three simple conditions combined with logical 

operators to form one compound decision.  With traditional branch coverage, a test suite 

must ensure that the if statement is executed when the entire decision evaluates to true, 

and also when the entire decision evaluates to false (a total of two branches).  However, 

when compiled, this compound decision results in a series of object code instructions that 

contain a separate conditional jump instruction for each simple condition.  OBC requires 

that each conditional jump in the object code be executed when the corresponding 

condition is true, and also when it is false.  In effect, this forces the tester to exercise both 

sides of each simple condition in every decision.  For most decisions containing N simple 
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conditions, there are N + 1 separate object code branches that must be exercised to achieve 

full object branch coverage.  

As a result, OBC requires that each simple condition be evaluated to both true and 

false, and also that each decision as a whole be evaluated to both true and false, making it 

equivalent to condition/decision coverage. However, in languages where Boolean 

operators use short-circuit evaluation, achieving full OBC implies achieving full masking 

MC/DC  for compound decisions with certain properties [11], even though OBC is strictly 

speaking a weaker criterion.  An analysis of two industrial applications by Bordin et al. 

[40] revealed that more than 99% of decisions obey the necessary properties, meaning that 

in practice, OBC is frequently as strong as masking MC/DC, a criterion considered 

sufficient for safety-critical systems [11]. 

Coverage criteria have limitations. They measure how much code has been 

exercised from the tests. Executing code is important because if a code never gets executed, 

chances of detecting defects in it is zero. However, covering a defect is not sufficient to 

detect it. To evaluate the quality of tests we also need to know if tests are checking the 

result of executed code and are recognizing observable failures. Moreover, a student’s 

solution may be incomplete because it omits some required behaviors, but coverage criteria 

does not provide information about these omissions. In fact,  coverage criteria is not a true 

indicator of test quality as developers [42] and students [6] can misuse coverage-based test 

adequacy metrics to create a false sense of a well-tested program.   

There are mature and efficient automated tools for coverage metrics. JaCoCo [3], 

Clover [1] and Emma [2] are three well known Java code coverage tools. Among them, 

JaCoCo and Emma are open source whereas Clover is a commercial tool. These tools 

instrument the application to collect coverage data. Afterwards, the tools execute test cases 

on the application and record coverage data. Finally, the coverage tools populate different 

statistics from the data collected during execution. Automated assessment systems 

typically use statement coverage to evaluate students’ written tests. 
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2.3 All-pairs Execution 

To incorporate software testing as an integral part of programming assignments, 

Goldwasser [32] proposed the idea of requiring students to turn in tests along with their 

solutions, and then running every student’s tests against every other’s program.  This all-

pairs strategy provides a more robust mechanism for evaluating the quality of tests. Figure 

6 illustrates this strategy. 

 A unique feature of this mechanism is assessing by actual defects present in other 

students’ solutions. When students only see the results of their own tests (and possibly their 

instructor’s), they often have an overly inflated sense of the quality of their own programs. 

This tournament style approach motivates students for software testing in an engaging way. 

Students take away a greater realization of the density of defects in code they write, as well 

as their own ability to write tests that find defects in other solutions. Such a metric is 

beneficial because students see how the class performs overall and how they performed 

individually—both in terms of how well their own solution passes tests written by others, 

and in terms of how well their own test suite detects failures in other programs. As a result, 

students gain a whole new perspective on the value of testing and on the presence of hidden 

defects in their own code.  Moreover, a large collection of student-written tests provides a 
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Figure 6: All-pairs execution. 
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diverge environment of software testing. The submitted tests from students may uncover 

defects in some solutions that are not detected by instructor provided tests [32]. 

A major disadvantage of all-pairs execution is that the number of tests execution 

grows quadratically with the number of students. Therefore, this approach is feasible only 

for fully automated grading systems. However, a key technical problem arose as a barrier 

to implementing it with modern unit testing frameworks used in the classroom, such as 

JUnit. The problem is that in such a framework, tests are written in the form of code, 

alongside the original solutions. A student can test any visible feature (public class, field, 

method etc.) of his or her solution in any test case. For compiled programming languages 

such as Java, if any test case within a test class refers to any student-specific feature that is 

not present in everyone else’s solution, then that entire test class will not compile against 

other students’ solutions.  This effectively prevents the all-pairs strategy from being used, 

unless students are constrained to only writing tests using the same common, instructor-

specified set of public methods. Edwards et al. [30] described a technique to remove 

compile-time dependencies from the  test cases so that they can be compiled once and then 

run against everyone else’s solution, separating out student-specific test cases from those 

that are more generally applicable at run-time. 

2.4 Mutation Analysis  

Mutation testing [20] creates a set of modified or mutated versions of the original 

program with the intent to seed artificial defects and to check if the test cases can detect 

these injected defects. The modified versions are called mutants. If the mutated program 

produces different results than the original code then it is called a non-equivalent mutant. 

The defective versions, or non-equivalent mutants, are intended to be representative of the 

faults that programmers are likely to make in practice. The key principle of mutation 

analysis is complex faults are coupled to simple faults in such a way that a test data set that 

detects all the simple faults is thorough enough to detect most complex faults [20, 45]. Test 

suites are run against all the mutants. The effectiveness of a test is measured by its mutation 

score, which is the percentage of mutants detected or killed by the test.  
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Mutated programs are not always faulty. A mutated program can become a different 

version of the original solution with no difference in produced results. This type of mutant 

is called an equivalent mutant. Figure 7 (a) shows a simple program fragment that 

calculates the absolute value of an integer.  Figure 7 (b) shows a defective version of the 

same code where an error has been artificially introduced by changing the comparison 

operator in the if test. This mutant is typical of mutation analysis, where seeded errors 

represent substitutions or other minor changes to a localized portion of the program. Here, 

almost any test case that confirmed the code computed the correct absolute value would be 

likely to discover the mistake. However, in some cases, the change intended to introduce 

an error might accidentally produce an alternative program that is behaviorally identical to 

the original, failing to introduce a true defect. Figure 7 (c) shows such a change, where the 

if test has changed from < 0 to <= 0.  The effect of this modification will make no 

difference in outcome since -0 is actually 0 and Figure 7 (c) is behaviorally identical to 

Figure 7 (a).  

 When calculating the mutation score for a test suite, equivalent mutants should not 

be included, since they are behaviorally indistinguishable from the original. However, even 

1 

2 

3 

4 

5 

6 

7 

8 
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int abs(int a) 

{ 

   int absVal; 

   absVal = a;  

   if(a < 0){ 

    absVal= 

-absVal; 

   } 

   return absVal; 

} 

int abs(int a) 

{ 

   int absVal; 

   absVal = a;  

   if(a > 0){ 

     absVal=       

-absVal; 

   } 

   return absVal; 

} 

 

int abs(int a) 

{ 

   int absVal; 

   absVal = a;  

   if(a <= 0){ 

absVal= 

-absVal; 

   } 

   return absVal; 

} 

 

(a): Original Code (b): Non-equivalent Mutant (c): Equivalent Mutant 

Figure 7: Mutant example. 
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with recent advancement, weeding out equivalent mutants is still a manual process and is 

labor intensive. Determining equivalent mutants is such a tedious and error-prone activity,  

that even ignoring equivalent mutants has been considered [47] since the lower mutation 

score still provides meaningful defect detection information. 

 Mutants are generated by modifying code at the source or bytecode level. How the 

code will be modified from the original program is determined based on transformation 

rules that are called mutation operators. Generally, mutation operators are designed to 

modify expressions or variables by replacement, insertion, or deletion. Many mutation 

operators have been proposed. Agrawal et al. [33] provided a list of 76 operators. However, 

more mutation operators means generating more mutants. To reduce the cost of mutation 

testing, researchers investigated what set of mutation operators would produce less mutants 

but would obtain a sufficiently accurate measure of overall mutation adequacy. Such a set 

is known as a sufficient set [46]. 

Table 1: Sufficient mutation operators listed by Offutt [46]. 

Abbreviation Name What it does? 

ABS Absolute value insertion Replaces each arithmetic 

expression to take on the 

value 0, a positive value 

and a negative value 

AOR Arithmetic operator 

replacement 

Replace each arithmetic 

operator with other 

syntactically legal 

operator such as change + 

to -, *, / etc. 

LCR Logical connector 

replacement 

Replaces each logical 

connector (AND and OR) 

with several other kinds 

of logical connectors 

ROR Relational operator 

replacement 

Replaces relational 

operators with other 

relational operators 

UOI Unary operator insertion Inserts unary operators in 

front of expressions 
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 Offutt et al. [46] experimentally determined five mutation operators listed in Table 

1 as forming a sufficient set of operators. Several other researchers [9, 44, 57] also 

investigated to determine a sufficient set of operators for different programming languages. 

A recent study found deletion operators [19]  generate fewer mutants but yield tests that 

are almost as effective as the full set of mutants generated from the sufficient operators. 

Deletion operators include statement deletion (SDL), operator deletion (ODL), variable 

deletion (VDL), and constant deletion (CDL).  SDL achieves 92% effectiveness [21] for 

Java. However, combining other deletion operators with SDL achieves 97% of the 

effectiveness of the sufficient set of mutation operators [19]. 

Many automated tools are available to generate mutants. Mutants for Java programs 

can be generated at the source level or at the byte-code level. Both procedures have their 

pros and cons. Source level mutants are easy to examine but slow in execution as they need 

to be compiled. Moreover, generated mutants can be from a portion of code that the 

Table 2: µJava method level operators [58]. 

Operator Description Example 

AOR  Arithmetic Operator Replacement Replace + with -,*,%,/. 

AOI Arithmetic Operator Insertion Insert ++, --.  

AOD  Arithmetic Operator Deletion Delete ++, -- 

ROR  Relational Operator Replacement Replace > with >=, <, <= . 

COR  Conditional Operator Replacement Replace && with ||, &, |. 

COI  Conditional Operator Insertion Insert ! 

COD  Conditional Operator Deletion Delete ! 

SOR  Shift Operator Replacement Replace << with >> 

LOR  Logical Operator Replacement Replace & with | 

LOI  Logical Operator Insertion Insert ^ 

LOD  Logical Operator Deletion Delete ^ 

ASR  Assignment Operator Replacement Replace += with -= 
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compiler eliminates as a dead code. Byte-code mutants are faster in execution and more in 

number, but hard to examine.  

There are efficient automated tools to generate both source and byte level mutants. 

µJava [41] is the most popular source-level mutant generator. It generates mutants from 

Java programs with two types of operators: class-level mutation operators and method-

level mutation operators. Class-level operators [12, 13, 39] are related to encapsulation, 

inheritance, and polymorphism. In class-level mutants, these operators are changed (e.g., 

add or remove key word this, static etc.). Method-level operations include 

arithmetic, relation, conditional, shift, bitwise and assignment operations. Table 2 gives a 

brief list of method level operators that are available [58] in µJava. This set includes 

sufficient operators [46]  and deletion operators. 

  µJava is efficient in generating mutants and easy to use but has some limitations. 

For example, it uses an old version of Openjava that is not compatible with some features 

of JDK 1.5 and later. Moreover, it assumes external library (e.g., android jar) classes will 

be available in source form and provides no way to define a classpath with external jars.  It 

cannot generate mutants for classes that do not have source code. In such cases, µJava does 

not report the reason for not being able to generate mutants.  

Bytecode-level mutation testing is more efficient and scalable than source-level 

testing. Javalanche [48] is the most widely used byte-code level mutation analysis tool. It 

generates mutants for operators [49] that are slight modification of operators listed by 

Table 3: Javalanche mutation operators [49]. 

Operator Description 

Numerical Constant Replacement Replace a numerical constant X by X-1, X+1 or 0 

Jump Condition Negation Negate a conditional jump. This operator is 

equivalent to negating a conditional statement or 

subexpression in the source code. This operator 

negates individual sub conditions also. 

Arithmetic Operator Replacement Replace an arithmetic operator by another one, 

such as + by -. 

Method Call Omission Suppress a call to a method. If the method has a 

return value, a default value is used instead, e.g. 

x = Math:random() is replaced by x = 0:0. 
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Andrews et al.  [8] and was inspired by sufficient mutant operators listed by Offutt et al. 

[46]. Javalanche replaces numerical constants, negates jump conditions, omits method calls 

and replaces arithmetic operators as listed in Table 3. Javalanche handles JUnit test cases. 

It executes a series of actions, such as mutation generation, running user supplied test cases, 

and analyzing coverage from the pass-fail rate of the test cases. However, generating and 

processing mutants are time consuming and computationally expensive. A comprehensive 

discussion on mutation testing and uses of mutation testing can be found in the survey 

papers of Offutt and Untch [47] and Jia and Herman [59]. 

Aaltonen et al. [6] performed a proof-of-concept evaluation of mutation analysis  

for assessing the quality of student-written tests in Java assignments. They generated 

mutants from each student’s solution and then ran the mutants against that student’s test 

cases to see how many mutants were detected.  Equivalent mutants were weeded out by 

hand, although that would not be feasible in a classroom situation. This approach appears 

to provide a deep perspective on how effective the student-written tests are in executing 

defects that cause failures and detecting these failures. However, some limitations make it 

impractical to use in the classroom. For example, they could not provide instant feedback 

to students because the mutation analysis required significant processing time. Moreover, 

the generated mutants were student-specific. Thus, complex solutions had many mutants, 

which could lead to an artificially lowered mutation score. Similarly, testing unspecified 

behaviors that were not part of the assignment could reward a student with a higher 

mutation score. Furthermore, their approach required manual inspection of the generated 

mutants to weed out those that were not true defects. In total, their procedure was inefficient 

and non-uniform, so cannot be used for automated classroom assessment tools. 

2.5 Checked Code Coverage  

Adequacy of test oracles is important to ensure correct evaluation of programs. 

Assertions are parts of test oracles that are commonly used for checking program behaviors 

or outcomes. Test suites are prone to having inadequate assertions [38] that originate from 

testers’ mistakes. Coverage criteria do not reveal that results produced by the executed 
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code have not been checked by assertions. This may create a false sense of security of good 

coverage though the program has insufficient checks.  

Checked code coverage [50] is an alternative approach for addressing the 

insufficient oracle issue. It uses dynamic slicing to determine which statements actually 

contribute to the results checked by test cases. The purpose of this approach is to focus on 

the code features that actually contribute to the results checked by test cases rather than 

only considering the code features that are executed in a program. A dynamic backward 

slice of the program is computed from test cases to determine which statements contribute 

to the checked result. 

A program slice [56] is the set of statements that may influence the variables used 

in a given location. This approach is used in debugging to locate the source of errors. The 

slices can be computed statically or dynamically. A static program slice includes the 

statements that potentially influence the variables at a given point while the dynamic 

program slice only consists of the variables that actually influence the variables during a 

concrete program run. Checked coverage uses dynamic slices to calculate the statements 

that influence the checked results from a concrete execution of a test suite. The influence 

can be from a data dependency or a control dependency. 

A statement s has a data dependency on statement t when there is a variable, v that 

is defined (written) in t and used (read) in s without any redefinition of v in between. On 

the other hand, a statement s is control dependent on a statement t if and only if t is a 

conditional statement and the execution of t depends on the execution of s. The checked 

code coverage uses dynamic backwards slices calculated from assertions. 

Figure 8 shows a test (line 8 to 11) that exercises the dequeue() method. To 

compute the checked coverage for this example, the dynamic backward slice from the call 

to assertEquals() (line 10) is built, and only the statements that are on this slice are 

considered to be covered. The dynamic backwards data and control dependent statements 

from the assertEquals() method call are shown by solid and dashed arrows. Thus, 

the dynamic slice consists of all the statements except line 4 and 5. However, statement 

coverage considers line 4 and 5 as covered. To cover line 4 and 5 using checked coverage, 

a tester needs to check size and front element from assertions. 
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Checked coverage is computationally cheaper than mutation analysis or all-pairs 

execution. Insufficient checks from tests (assert calls) results in low coverage as opposed 

to statement coverage that counts all code executed from tests. As the executed code that 

does not affect outcome from behavioral checks are considered uncovered, testers focus on 

checking as many results as possible. Thus, the possibility of detecting errors increases 

with higher coverage. Moreover, checked coverage requires running test suites once, 

whereas mutation analysis requires repeatedly running the tests for all the mutants.  

Checked coverage is not a mature test quality measure, however Schuler and Zeller 

[50] provided a proof-of-concept evaluation of this metric. They used JavaSlicer [4], a 

home grown tool in their lab, to calculate dynamic slices from seven open-source projects 

for  checked coverage. The limitations of their approach mainly resulted from the 

limitations of JavaSlicer. The current implementation of JavaSlicer cannot access native 

method calls, so—many dependencies get lost. Therefore, if the project under test includes 

native code, it will get lower coverage than actual. Moreover, JavaSlicer currently cannot 

trace methods from java.lang.System, java.lang.Object and java.lang.String Class. The 

consequence is that the dependencies through method calls in these classes cannot be 

reconstructed, leading to incomplete slices. Besides the limitations of JavaSlicer, checked 

1  public Item dequeue(){ 

2        assert size > 0;  

3        Item temp = contents[front]; 

4        front = (front + 1) % capacity; 

5        size--; 

6        return temp; 

7    } 

8  public void testDequeue(){ 

9     //queue set up with "one" as the front item 

10     assertEquals(testQueue.dequeue(), "one"); 

11  } 

Data Dependency  

Control Dependency 

Figure 8: Data and control dependencies in a method call. 
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coverage has its own weakness too. For example, a common practice to check for 

exceptions is to call a method under test in a try-catch block where try-block includes a 

fail() method call as shown in Figure 9. However, checked coverage will not be able 

to detect this style of checking and cover statements that contribute to the exception.

1  try { 

2   methodShouldThrowException(); 

3   fail("No exception catched"); 

4  }catch(Exception e){ 

5   //Exception occurred  

6  } 

Figure 9: Common JUnit style to check exceptions. 
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Feasibility of Alternative Measures  

Current automated assessment systems evaluate student-written tests using 

statement or branch coverage, which is imperfect. They measure the percentage of 

executed code but do not check if the executed code has been tested against expected 

behavior. Moreover, they do not provide information on how many observable failures 

have been detected. We will investigate all-pairs execution, mutation analysis, and checked 

code coverage as alternative measures to assess tests based on defect detection ability of 

the tests.  

Among the three alternative measures, all-pairs execution has never been applied 

to test cases written in object oriented languages due to technical problems. Checked 

coverage has been recently proposed but has not been used in industry or academic 

projects. Well-developed tools are available to apply mutation testing in industrial systems 

but they may not be feasible for evaluating students’ tests. In fact, an educational 

environment is different from industrial systems in two main ways:  

1) Automated assessment systems require instructors to submit a reference 

solution and tests covering all aspects of the assignments. Industry settings do 

not have a correct and complete implementation of the project to compare 

against. The benefit of having a reference solution is that it can be used for 

checking the accuracy and completeness of students’ solutions. Assessment 

tools can take advantage of a complete solution to screen students’ tests.  

2) Students must get immediate feedback for their work. Their tests can fail to 

detect defects in other students’ solutions (in all-pairs execution) or mutants 

generated from a reference solution. Directly revealing the corresponding code 

section in other students’ solutions or in a reference solution is not desirable. 

However, in industrial projects referring to the source code of the software 

under test is not an issue at all. Effective feedback generation on students’ tests 

in such a situation is a non-trivial problem. 

Chapter 3 
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We investigated technical obstacles of applying the alternative measures in 

automated assessment systems. We also devised solutions for technical problems of all-

pairs execution, mutation analysis and checked coverage.  

3.1 All-pairs Execution 

All-pairs execution evaluates every student’s tests against everyone else’s solution. 

The unique feature of this mechanism is to assess tests in terms of actual defects that 

students make in their code. However, automation of all-pairs execution is challenging, 

especially for object oriented languages. In the following subsections, we explain the 

problems, our solution approach and evaluation process. 

3.1.1 Obstacles 

All-pairs execution was proposed more than a decade ago when XUnit style testing 

frameworks were not in practice. The primary technical obstacle preventing all-pairs test 

execution in many of today’s classrooms stems from the aspects of XUnit-style testing 

frameworks. In this framework, tests are written as additional classes in the same 

programming language as the software under test, and they may refer to any visible feature 

of the code itself. This means that students may write tests that refer any public features 

(class, method or field), whether or not those features are required by the assignment or 

arise from their personal design decisions (e.g., helper methods). Thus, a student’s test may 

refer a feature that is not present in all solutions. Many such differences may be specific to 

a particular class or module within the program rather than to the program as a whole. 

However, software tests that include dependencies on features of the software being tested 

that are not present in all solutions typically will not even compile against other student 

solutions where those features are missing (or are designed differently). This is true in 

JUnit tests written for Java.   

For example, say a student submits an assignment where he writes a LinkedQueue 

class (Figure 10) and a JUnit test class for LinkedQueue named LinkedQueueTest (Figure 

11).  This LinkedQueue class defines common methods such as enqueue(), dequeue(), 

size(), etc. that are  present in every student’s program.  However, this student also added 

an isEmpty() method as his own design choice. His JUnit test class LinkedQueueTest tests 
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each method individually. This student tests his isEmpty() method with a test case call 

testIsEmpty() in the LinkedQueueTest class. Now, his LinkedQueueTest class cannot be 

compiled (and so will not run) against other students’ programs because they do not 

provide an isEmpty() method in their LinkedQueue classes. As a result, his tests cannot be 

evaluated by all-pairs execution. This problem is common for JUnit tests because tests are 

written in program form in the same language as the software under test and may refer to 

fields or calls methods of the class under test. 

 

1 public class LinkedQueue<Item>   

2 { 

3    /* method body and variable declarations are    

4     *  omitted for brevity    

5     */ 

6 

7     // ~ Constructor  

8     public LinkedQueue() {//method body} 

9 

10     // ~ Public methods  

11 

12     // add item in the queue 

13       public void enqueue(Item value) {//method body} 

14     

15     // remove item in the queue 

16     public Item dequeue() {//method body} 

17 

18     // check if the queue is empty 

19     public boolean isEmpty() {//method body} 

20 

21       // Get the number of items in this dequeue 

22     public int size() {//method body} 

23 

24       /* Get the item at the front (the head) of  

25       * the queue. Does not alter the 

26     * queue.  

27     */ 

28     public Item peek() {//method body} 

29 

30     // Other methods 

31 } 

 
Figure 10: A sample LinkedQueue class. 
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 The JUnit testing framework for Java is the most well-known Unit testing 

approach, and it has seen growing use in the classroom in the past decade. Normally, 

writing such tests requires no significant expertise beyond that required for writing the 

 

1 public class LinkedQueueTest 

2           extends TestCase   

3 { 

4     // variable for queue used for testing. 

5     private Queue<String> linkedQueue;  

6 

7     // method bodies are omitted for brevity    

8 

9     // ~ Constructor  

10     public LinkedQueueTest() {//method body} 

11 

12     // ~ Public methods  

13     public void setUp() 

14     { 

15         linkedQueue = new LinkedQueue<String>(); 

16       } 

17 

18       //Test the enqueue() method  

19       public void testEnqueue() {//method body} 

20 

21       // Test the dequeue() method 

22       public void testDequeue() {//method body} 

23 

24       // Tests the isEmpty() method  

25       public void testIsEmpty()  

26     { 

27         assertEquals( linkedQueue.isEmpty(), true); 

28     } 

29 

30       // Tests the size() method  

31       public void testSize() {//method body} 

32 

33       //Tests the peek() method  

34       public void testPeek() {//method body} 

35 

36       // Other methods 

37 } 

 

Figure 11: JUnit test class for LinkedQueue. 
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software being tested, and tests can be written and managed with the same tools used to 

produce the source code to be tested. This has caused a significant change in the way 

software tests are written in many classrooms. Unfortunately, the nature of such software 

tests violates one of Goldwasser’s principal observations [2]:  

Because students will be submitting test sets that are to be run 

(automatically) on other students’ submissions, a standardized format for 

describing the tests must be established in the assignment description. The 

overwhelming conclusion is to rely on a textual interface for program input. 

In other words, student tests must be written to a consistent interface or API in order 

to be “interchangeable” across submissions. They must be expressed in a “black box” form 

that is devoid of any dependencies on how a particular solution is constructed. Goldwasser 

notes the potential for tragic failure if a student makes mistakes in understanding or 

implementing the test input format, or the part of their solution that handles reading/parsing 

such input. He even suggests that where possible the instructor provide all students with an 

appropriate front-end, implementing the standardized testing interface to preempt such 

issues.  

Requiring student submissions to take the form of a complete program with “a 

textual interface for program input” provides a uniform mechanism for executing tests, 

regardless of the internal design choices made by any particular student. Furthermore, it 

allows tests to be run against any solution, even if that solution happens to be missing 

significant required features entirely, or only a partial implementation of others. JUnit (or, 

more generally, XUnit) tests do not work that way because of their nature. Thus, to execute 

each student’s tests against every other student’s solution when students are writing JUnit-

style test cases for their own Java solutions, we must devise a way to ensure a uniform 

interface against which tests can be executed regardless any differences between solutions 

or divergence from the assignment requirements. 
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3.1.2 Solution Approach and Implementation 

3.1.2.1 Strategy 

A trivial way to resolving this issue can be providing students a common interface 

that everyone implements as proposed by Helmick [35]. However, this approach limits the 

opportunity for students to learn how to translate problem solutions into program modules 

or methods. A novel way to resolve the issue of compile time dependency between a 

student’s tests and his solution in Java is transforming the student-written tests so that they 

use reflection to defer binding to specific features of a solution until run-time. JUnit tests 

that perform all manipulation of student classes and objects using reflection have no direct 

compile-time dependencies on any particular solution. We transform the bytecode of the 

test cases to students’ submissions. Note that test sets that depend on the internal details of 

one particular solution can still be compiled—if compiled against the particular solution 

they were written for. For example, one student’s tests will compile against his or her own 

code if they compile at all, and so we need not worry about syntactically invalid test sets. 

Similarly, instructors typically provide their own implementation to double-check 

reference test sets, so the reference tests will compile against this. Thus, the strategy 

involves the following three steps: 

1. Compile JUnit tests against the solution provided alongside them (i.e., written by 

the same author) when they are first received (an action that existing automated 

grading systems already perform). 

2.  Transform the bytecode in the .class files from the compiled version of a test set 

so that it performs all manipulation of the solution’s class(es) using reflection. In 

other words, use a tool to automatically convert the “plain” JUnit tests into purely 

reflective tests. 

3. Run transformed versions of test sets against other solutions as needed, now that 

the test sets have no compile-time dependencies of the software to be tested.  

When transformed test cases are run against all students’ code, a single test case 

may result in three possible outcomes (rather than just pass/fail): 

1. The test case may pass successfully. 
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2. The test case may fail inside the reflection infrastructure, indicating that some 

dependency in the test case was not met correctly by the code being tested, a situation we 

can call a reflection mismatch. 

3. The test case may fail in some other way, indicating incorrect behavior of the 

software under test.  

We need to handle reflection mismatches differently depending on the nature of the 

test set. Distinguishing reflection mismatches from incorrect behaviors is important. 

Fortunately, in automated assessment systems, instructors provide a reference 

implementation and reference test cases that are presumably correct and include all the 

required features of the assignment. A simple way to differentiate reflection mismatches 

from incorrect behaviors is running the student’s tests on the reference implementation. 

Student tests that pass against the reference solution can be presumed valid—that is, they 

do not possess student-specific dependencies and check for results that are consistent with 

the assignment. Student tests that produce reflection mismatches against the reference 

solution can be presumed student-specific—since they depend on some features of their 

original author’s code that was missing in the reference solution. Finally, student tests that 

fail against the reference implementation can be presumed invalid, since they encode 

different behavioral expectations than those embodied in the reference solution. Only the 

valid tests are used in all-pairs execution. In Section 3.1.2.2, we discuss how we 

implemented this approach and then in Section 3.1.3 we present an analysis of all-pairs 

execution on two separate class assignments. 

3.1.2.2 Implementation 

The key mechanism in the implementation of this strategy is the bytecode 

transformer. Bytecode rewriting has been employed in a number of aspect-oriented 

programming tools, and a number of robust libraries exist for this task. For the 

implementation of our solution, we chose to use Javassist [14, 15], which provides an API 

that is well suited for the transformation task. Javassist provides a mechanism for 

expressing bytecode translations in the form of Java source-level code snippets laced with 

substitution variables. Javassist uses its own compiler internally to produce the new 

bytecode that corresponds to such a pattern.  
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Using these features, we implemented a Javassist-based bytecode transformer that 

can load each of the class files that comprise a test set, replacing each constructor call, 

method call, and field access on any object of the class(es) under test, with a corresponding 

action from our streamlined reflection interface, ReflectionSupport [51]. Java supports 

programmers with facilities to dynamically create objects, invoke methods, access fields, 

and perform code introspection at runtime. These capabilities come at the cost of reduced 

readability and writeability, since code written using Java’s reflection classes is clunky, 

bulky and unintuitive. Common tasks such as object creation, method invocation, and field 

manipulation need to be decomposed into multiple steps that require try-catch blocks to 

guard against checked exceptions. Type casts and explicit use of class types as parameters 

make development and maintenance of code difficult, time consuming and error prone.  

We developed an open-source library called ReflectionSupport that addresses these 

problems and makes reflection in Java easier to use. ReflectionSupport provides static 

helper methods that offer the same reflective capabilities while encapsulating the overhead 

of coding with reflection. Thus, by using ReflectionSupport we completely encapsulate the 

details of using reflection. As a result, test cases written using this library remain the same 

length as their non-reflective equivalent, but they have no compile-time dependencies on 

the software under test.  

The modified form of each class file is then written out to disk for use whenever 

that test set needs to be executed. Translation can occur at different times. For our purposes 

it is most convenient to translate the class files for a test set when the code is first submitted 

and save them, since they will potentially be used multiple times. Alternatively, translation 

could be performed later. By writing a custom class loader, it is even possible to perform 

translation dynamically on demand, but such flexibility is not necessary in this context.  

3.1.3 Evaluation  

To evaluate the practicality of this solution, we initially applied it to two separate 

assignments in two different courses. One of them was from a CS1 course offered in fall 

2007 and another from a CS2 course in spring 2011.  
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3.1.3.1 A CS1-level Assignment 

First, we examined a CS1 assignment from fall 2007 where students implemented 

their own “virtual pet”. The assignment provided an abstract base class and a state machine 

description of the required behavior. Students wrote their own implementation of the state 

machine along with their own software tests. They had two weeks for writing code and 

tests.  Students were instructed about basic test design principles such as to check corner 

cases, loops, and methods individually. However, they were graded based on branch 

coverage of their tests and they were also given feedback on their work that specifically 

identified uncovered code. Therefore, naturally they tried to increase branch coverage.  

In the semester under consideration, 46 students completed the assignment. We 

used our bytecode translator to convert all of the corresponding test sets to reflective 

versions. The 46 test sets consisted of 463 individual test cases. Test sets ranged in size 

from five test cases to 15, with a mean of 10.1 and median of 9. 

The reflective versions of all test sets were run against an instructor-provided 

reference solution. Of the 463 test cases, 405 (87.5%) passed and were thus valid. 27 test 

cases (5.8%) were invalid, and  31 (6.7%) were student-specific. In this assignment, 50% 

of the test cases failed to find any defects, and 63% of the programs passed all the test 

cases. Most importantly, no compile time failure occurred while executing transformed test 

cases. Detailed results of this experiment is available in [30].  

3.1.3.2 A CS2-level Assignment 

To analyze how our solution works on a more complex assignment, we also 

examined a CS2 assignment from spring 2011. This assignment required students to write 

two different implementations of a generic queue interface in Java—one using a linked 

representation and one using an array-based implementation. In addition to basic queue 

operations, students were also required to implement equals(), hashCode(), clone(), 

toString(), and iterator(). Students wrote their own software tests as well. They had two 

weeks to submit their programs and test cases. They were taught test driven development 

and instructed to write JUnit tests. 
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In the semester under consideration, 101 students completed the assignment. We 

used our bytecode translator to convert all of the corresponding test sets to reflective 

versions. The 101 test sets consisted of 2156 individual test cases. Test sets ranged in size 

from eight test cases to 33, with a mean of 21.3 and median of 22. The reflective versions 

of all test sets were run against an instructor-provided reference solution.  We first applied 

all-pairs execution on this assignment in 2012, and published our results in [30] . At that 

time, of the 2155 test cases, 2002 (92.9%) were valid, 126 test cases (5.8%) were invalid, 

and 28 (1.3%) were student-specific. Recently we applied all-pairs execution on the same 

assignment with updated ReflectionSupport, which was more precise in searching methods 

and fields. As a result, a large number of students’ test cases were detected as student-

specific. We investigated students’ code and found that many students had implemented 

base classes of their own.  Thus “no class found” errors occurred frequently when we ran 

their tests (having reference to their base classes) against the reference solution. To handle 

students’ own choice of base classes, we manually changed student-specific base class 

names to the interface name that instructor provided them. This allowed many more many 

more students’ tests to be considered valid, so they could be included in all-pairs execution. 

The average all-pairs score was 55%. A more detailed discussion is presented in Section 

4.3. 

In our most recent experiment, we also used another CS2 assignment, 

“Minesweeper”, given in fall 2011. Students were required to implement a 

MineSweeperBoard class. Students could load a board state, check if they won or lost the 

game, uncover or flag cells, find out number of rows and columns etc. through method 

calls. A total of 147 students submitted the assignment including 1540 test cases. Out of 

1540 tests, 1148 test cases were valid and the rest were either invalid or student-specific. 

The average all-pairs score was 61.5%. Further details about the experimental data are 

presented in Section 4.3. 

3.2 Mutation Testing 

Mutation analysis is a robust mechanism for test quality assessment. It modifies or 

mutates programs with the intent to seed artificial errors in programs. Mutated versions 
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having a different outcome than the original program are defective. Tests are evaluated 

based on whether they can detect defective versions. This approach has been proposed as 

an alternative to code coverage. However, a number of practical problems emerged as 

barriers against applying mutation testing in classroom grading tools. As we mentioned at 

the beginning of Chapter 3, automated grading is different than a traditional industry 

environment. Before evaluating how many defects student-written tests can detect, we need 

to check of if their tests are correct by executing them against the reference solution. Also 

automated grading systems are evaluating tests submitted by all students for the same 

assignment and these tests are comparable. An industry environment does not have 

multiple copies of tests written by different testers for the same problem to compare 

against. Moreover, mutation testing is used for designing sufficient tests rather than 

assessing alternative test sets. In the following subsections we discuss the technical issues, 

our solution approach and experimental results for evaluation of our methods. 

3.2.1 Obstacles  

Mutation analysis is a stronger indicator of test adequacy and effectiveness than 

coverage criteria. However, three main obstacles make it impractical to use in a classroom 

environment where feedback is provided in real-time. 

First, to check that a student’s tests are effective for the assigned problem, one must 

generate mutants from a complete, and correct solution of the entire problem.  The 

student’s own solution may not meet these requirements, which gives rise to one of the 

limitations of coverage criteria.  In effect, lack of completeness or correctness brings the 

same limitations to bear on mutation analysis.  If the student’s solution is incomplete, the 

set of mutants generated from the student’s solution will not cover the space of all defects 

possible in the assignment.  If the student’s solution contains additional extra features that 

are not required, the number of mutants generated may be larger than necessary.  But most 

importantly, if the student’s solution contains defects already, then some generated mutants 

that differ from the student’s original solution may in fact be correct, and there is no way 

to reliably distinguish when a non-passing test indicates that a non-equivalent mutant has 

been discovered, versus when the test itself has behavioral expectations that differ from the 
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assignment so that it will pass on the student’s (buggy) solution.  As a result, mutants must 

be generated from a reliable solution that is known to be complete and correct. 

Second, students’ tests may have dependencies on their own solutions and may fail 

to compile against the reference solution. 

Third, mutation testing is computationally expensive because not all generated 

mutants necessarily represent faults and even with the advancement in mutation analysis, 

determining which mutants are actual defects (non-equivalent mutants) and which mutants 

are innocuous version of original code (equivalent mutants) is still a manual process. It is 

infeasible to manually weed out equivalent mutants from hundreds of mutants for each 

programming assignment. Section 3.2.3 makes this point more clear with evidence of 

actual number of mutants generated for four assignments. To use mutation analysis in the 

classroom for automated feedback, it is necessary to devise a practical approach for 

detecting and weeding out such equivalent mutants.  

3.2.2 Solution Approach and Implementation  

To move toward a practical mutation analysis approach that can be used in the 

classroom, the three problems outlined in Section 3.2.1 must be resolved. 

3.2.2.1 Using a Reference Implementation  

 Effective mutation analysis requires that we assess the student’s tests against a 

solution to the problem that is known to be complete and defect-free—such as a reference 

solution provided by the instructor. Student-written solutions may be incomplete or 

erroneous. Therefore, an instructor-provided reference solution is a more reliable candidate 

to be used as the mutation source. 

Mutant generation also takes time. Altanon et al. generated mutants from each 

student’s own solution and thus total time for mutant generation become significant. If 

mutants are generated from a reference solution available when an assignment is created, 

it is possible to pre-generate the full set of mutants from the reference solution ahead of 

time, so that mutant generation will not slow down analysis of student-written tests.   

We generated mutants from µJava and Javalanche. However, we had to modify 

both of the tools- µJava and Javalanche. Original version of µJava expects source files all 
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external library classes such as Android jars to be available for mutant generation. It does 

not allow a user to only class files or jar files to add in the class path. Students had to use 

external jars or instructor provided class files as required by assignments and it is a 

common practice of Java programming. We modified µJava to give users options of 

external jar or class files. We also modified Javalanche [48] for our experiment. The 

original version of Javalanche internally generates mutants, runs a list of given test suites, 

and analyzes coverage of the test suites, all as one action. It does not store mutants; instead, 

it regenerates them every time a new test suite is analyzed. We modified Javalanche to 

separate out the mutant generation step and to store the generated mutants so that when a 

student submits a new test suite, the generated mutants can be reused. This minimizes the 

overhead of mutation generation, with the aim of supporting real-time feedback to students.  

3.2.2.2 Removing Compile-time Dependencies from Test 
Suites  

While the intent is to run student-written tests against the pre-generated mutants 

from a reference implementation, those tests may not even compile against the mutants. If 

student-written tests are provided in source code form, they may have implicit or explicit 

dependencies on specific, individual design decisions present only in that student’s 

solution. A novel way to resolve this issue in Java, as discussed in Section 3.1.2, is to 

transform the student-written tests so that they use reflection to defer binding to specific 

features of a solution until run-time. We rewrite the bytecode of a student-written test suite 

into a pure reflective form using our bytecode translator in the same way we did for all-

pairs execution.  

The purely reflective test cases will run against any mutant. Individual test cases 

that depend on features that are missing from the reference implementation fail at run-time, 

while other test cases run normally. This makes it possible to separate out “student-

specific” tests from those that are generally applicable to any solution, and then mutation 

analysis can be restricted to just those that tests that are generally applicable. 
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3.2.2.3 Incrementally Identifying Non-equivalent Mutants  

While it is not possible to automatically determine if a mutant is equivalent to the 

original program, we can instead use a conservative approach to classify mutants as 

provably different from the original, or not provably different. Initially, all mutants are 

placed in the not provably different category, since we have no evidence they are true 

defects.  When the instructor’s reference tests are run against these mutants, any mutants 

detected can be moved into the provable different category immediately. 

Then as each student submits tests, we can screen the tests using the original (non-

mutated) reference solution. This allows invalid tests, those that do not correctly capture 

expectations of the problem, to be weeded out.  If the valid tests are run against all mutants, 

any mutant failing a valid test is then provably different from the original. Any mutants 

remaining in the not provably different set can be ignored for the purposes of mutation 

analysis, since they are potentially equivalent mutants. 

As more and more students submit tests, the provably different set can increase in 

size, including every mutant to date that some valid test has definitively shown is 

observably different from the reference solution.  This allows the strength of the mutation 

analysis to increase over time.  This automatic mutant detection process is conservative 

because there may be cases where no test suites find behavioral differences for a given 

mutant that is actually a defect. However, initial results from the evaluation presented in 

Section 3.2.3 indicate that this is not a significant issue. 

3.2.2.4 Fixing Some µJava Issues  

The above mentioned approach has been used to generate mutants from µJava using 

an instructor-provided solution and to categorize non-equivalent mutants. However, we 

faced some practical challenges while generating mutants using µJava. The three main 

problems and our solution for them are discussed below: 

1. µJava does not allow the use of external jar files. It expects source files to 

contain all the required code. We modified µJava so that external library or jar 

file paths can be provided in the configuration file. 
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2. µJava internally uses an old version of Openjava which is not fully compatible 

with JDK 1.5. As a result, it cannot handle “assert” statements. We modified 

the reference solution by commenting out all assert statements. Most of these 

assertions are part of test oracles. So, we added those assertions as a patch in 

generated mutants. 

3. µJava does not create mutants for abstract classes. We used one CS2 assignment 

where the reference solution had an abstract class. So, we had to modify the 

reference solution to change the abstract class into a concrete class so that all 

the code can be mutated.  

3.2.3 Evaluation  

To evaluate the practicality of this approach, we applied our solution with 

Javalanche to seven assignments originally given in CS1 and CS2 courses, where students 

were required to write their own software tests for each of their programs. Out of the 7 

projects, 4 were from CS1 where the number of generated mutants were 47, 45, 43, and 27. 

The number of students completing the CS1 assignments varied from 42-47. Average 

mutation scores were much lower than the average statement or branch coverage scores for 

all of the projects.   

In the same experiment, we used 3 CS2 assignments where the number of students 

submitting the assignments were approximately 99. The total number of Javalanche 

mutants varied from 109 to 315. Average mutation scores were 68.5%, 75.9% and 42.2% 

whereas average statement coverage scores were 94.9%, 96.9% and 95%, respectively. 

This shows achieving a high coverage score was easier than achieving a high mutation 

score. Detailed experimental results are available in [52]. 

Recently we used one new CS2 assignment (Project 1: Minesweeper) from fall 

2011 and reused one CS2 assignment (Project 4: Two Queues) from spring 2011 for 

mutation testing. The same assignments were used in all-pairs execution as well. We used 

both Javalanche and µJava to create mutants. We generated µJava mutants for sufficient 

mutant operators, SDL, and a combination of VDL, CDL and ODL.  For the Project 1 

assignment, the number of Javalanche generated mutants was 319. For the same project, 

the number of µJava mutants varied based on mutation operators. The total number of 
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sufficient mutants were 124, SDL mutants were 85, and combined VDL, CDL and ODL 

mutants were 110. The average mutation score for Javalanche mutants was 77.6%, for 

µJava sufficient mutants was 33.4%, for SDL mutants was 70%, and for the combination 

of VDL,CDL and ODL was 32.5%. The distribution and analysis of these scores are 

presented in Section 4.3. 

For the Project 4 assignment, the total number of mutants generated from 

Javalanche was 316 whereas the total number of mutants generated from µJava was 627.  

Out of 627 mutants, 388 were from sufficient operators, 131 were from SDL and 108 were 

from the combination of VDL, CDL and ODL. Average mutation scores were: Javalanche 

mutants 55.7%, µJava sufficient mutants 46.5%, µJava SDL mutants 46.6%, and µJava 

VDL+CDL+ODL mutants 31.7%. A detailed data analysis is presented in Section 4.3. 

3.3 Checked Code Coverage 

Checked coverage is a more sensitive measure [50] than statement coverage. For 

checked coverage, we are interested in the proportion of statements that contribute to the 

computation of values, that are checked by the test suite. It subsumes statement coverage 

because in order to reach full checked coverage, every statement has to be on a dynamic 

slice, and thereby, it also has to be executed at least once. Thus, every test suite that reaches 

full checked coverage also reaches full statement coverage.  

3.3.1 Obstacles 

Schuler and Zeller [50] provided a proof-of-concept evaluation of checked 

coverage using JavaSlicer [4].  However, JavaSlicer has some limitations and it cannot be 

used readily to calculate checked coverage.  The obstacles behind checked coverage 

calculation are described below: 

1) No automated tool is available for measuring checked coverage. Some open source 

tools can be used for tracing programs and for creating dynamic slices from the traces. 

However, these open source tools will need tailoring as they are designed mainly for 

program slicing rather than computing checked coverage in automated assessment 

tools. 
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2) The first step of computing checked coverage is to identify all the explicit behavioral 

checks inside the test suites (e.g., assert()-style method calls in executable tests). For a 

small program, manually identifying all such statements may be feasible, but an 

automatic system must be developed to handle large-scale use of this approach. 

3) Test runs need to be traced to provide the raw data necessary to compute dynamic 

slices. Tracing all test runs is time consuming. Therefore, an automated system should 

be developed for batch style execution of the programs and storing traces for future 

dynamic slice creation. 

4) JavaSlicer collects a trace of a program execution and creates a dynamic slice from one 

or more lines of the program given as inputs. However, these slices also include code 

from Java library classes, not just the code under test. As a result, the slices must be 

filtered in order to measure only the code under test. 

5) While JavaSlicer calculates the executed slices, this information by itself is insufficient 

for measuring checked coverage.  One must also measure the portion of the code under 

test that is not part of any checked slice, so that the checked coverage can be calculated 

as a percentage of the total (checked and unchecked) code. 

6) Finally, JavaSlicer traces each thread separately, and cannot reconstruct data 

dependencies between different threads. Some JUnit 4 features, such as specifying test 

case execution timeouts, use Java threads and prevent data dependencies from being 

tracked. As a result, JavaSlicer will fail to create dynamic slices for JUnit 4-style test 

cases that use such features. 

3.3.2 Solution Approach and Implementation 

In order to evaluate checked coverage, we developed a semi-automated system. We 

use a combination of JaCoCo and JavaSlicer in this process. The whole procedure is 

executed for each student’s tests in the following steps: 

1) We run the student’s tests against his or her own program using JaCoCo to collect 

coverage data. This report includes information about how many bytecode instructions 

are present in each class and each method under test, which is used later in calculating 

the percentage of code included in checked slices. 
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2) Our system identifies all executable checks in the test cases.  At this stage, all calls to 

JUnit assert-style methods from a test suite are considered to be checks. 

3) The system uses JavaSlicer to trace programs and store traces. Afterwards, a combined 

dynamic slice for all of the identified executable checks is created from JavaSlicer.  

4) Finally, the system uses the report from JaCoCo to filter out Java library instructions. 

It determines how many instructions from the students’ program have been checked by 

the tests and reports the checked coverage score. 

Our system uses a JUnit 3-style test runner so that all test methods run under the main 

thread and JavaSlicer can create slices without losing data and control dependencies. 

3.3.3 Evaluation 

We evaluate the feasibility of our solution by applying it to two CS2 assignments: 

1) Project 1 of fall 2011 and 2) Project 4 of spring 2011. As mentioned before, Project 1 

was Minesweeper where 147 students submitted their work including 1148 valid tests. The 

Project 4 required students to implement a queue using an array and also using a linked 

list. 101 students submitted this assignment, including 1476 valid tests. The same 

assignments were used for all-pairs execution and mutation testing. 

Valid student-written tests were executed against their own programs. We collected 

data using JaCoCo to measure how many bytecode instructions were present in each class 

and each method under test. Our system also recorded all assert-style method calls from 

each student’s tests. Afterwards, we used JavaSlicer to collect program traces executed 

from the tests and to create dynamic slices from recorded assert calls. Finally, we filtered 

out Java library calls and calculated checked coverage using information from the JaCoCo 

report.  

Experimental results show that the average checked coverage score for Project 1 

was 48.9% which is lower than Project 4 average score 56.9%. For both the projects, 

average checked coverage scores were much lower than the average statement coverage, 

branch coverage, OIC and OBC scores. This indicates achieving high checked coverage 

was more difficult than achieving high statement or branch coverage, as expected. Further 

discussion on experimental data is presented in Section 4.3. An earlier version of this result 

was published in [53].  
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Comparison of Test Quality Measures  

Evaluating the quality of students’ test suites is important so that students can learn 

how and where to improve. Even though statement coverage, branch coverage, OIC, OBC, 

all-pairs execution, mutation analysis with different sets of mutants, and checked coverage 

all have their own benefits and computational overheads, determining which one is a better 

indicator of actual defects detected in students’ code is a non-trivial problem. Moreover, 

student-written tests are developed by individual students to exercise their own program 

solutions, even though those solutions might be incorrect or incomplete. Quantifying the 

defect-detection capability of a test suite written for an incomplete solution is even more 

difficult. 

To compare the different test quality measures discussed in this proposal, we 

designed an experiment using tests and solutions produced by students. We conducted this 

experiment for two CS2 assignments. One of them is Project 1 from fall 2011 and the other 

one is Project 4 from spring 2011. We evaluated both of the assignments with statement 

coverage, branch coverage, OIC, OBC, all-pairs execution, mutation testing, and checked 

code coverage. We analyzed four different sets of mutants that appear practical for 

classroom grading. The four sets are generated by sufficient mutation operators [46], the 

statement deletion operator, a combination of variable, constant and operator deletion 

operators, and Javalanche’s set of mutation operators [49]. An earlier version of this work 

was published [28] at ICSE. 

4.1 Experimental Setup  

To evaluate the different measures for student-written tests, we aim to compare 

them to the “true” notion of test quality: the likelihood that a test suite will discover any 

given defect, which we call the suite’s defect-detection capability.  Measuring the actual 

defect-detection capability of a test suite is both challenging and expensive, however—

otherwise, practitioners could simply use this measure itself as the (ideal) indicator of test 

suite quality.  In the experiment, Project 1 had 147 student submissions. The other 

Chapter 4 
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assignment, Project 4, had 101 student submissions. Each of these programs contained at 

least one error and worked as a representative of authentic common human-produced 

errors.  However, a way of identifying the errors present in this collection is still necessary. 

Because of the size of the collection of programs, manual defect counting was 

impractical.  Therefore, we used a technique first described by Edwards  [24].  This process 

was divided into two main steps: 1) creating a master test suite that uniquely cover all 

observed defects from students programs, and 2) determining how many of the tests from 

the master suite are covered by student written tests to calculate their defect-detection 

capabilities. 

4.1.1 Creating a Master Test Suite 

We compiled a comprehensive test suite containing all tests written by all authors, 

including all the reference tests produced by the instructor. Then this “super-sized” test 

suite was reduced by removing “redundant” test cases—that is, test cases that produce 

exactly the same pass/fail outcome on every single program in the collection.  After this 

reduction, for any pair of test cases in the reduced set, there was at least one “witness” 

among the student programs that passes one but fails the other. Note that this does not 

ensure that the suite is “orthogonal,” that is, ensuring there will be no significant overlap 

between test cases.  Instead, while separate test cases may overlap in the features they 

check, they still will differ in the specific defect(s) they detect.  Thus, while each individual 

test case in the reduced test suite does not necessarily represent one individual defect, each 

can be considered to represent a (hopefully small) “equivalence class” of defects, where all 

defects in the equivalence class cause the corresponding test case to fail in any program 

where they occur.  In an earlier experiment [24], Edwards showed a statistically significant 

correlation of 0.755 between the number of test case failures in a test suite constructed this 

way and the true number of defects present in the student code, so considering the test cases 

in this master test suite to represent (small) distinct and identifiable equivalence classes of 

defects is justifiable. 
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Figure 12 demonstrates the concept of the master suite creation. This process is 

similar to creating a two dimensional matrix where each row represents a valid test case— 

either from students or from reference tests—and each column represents a student 

program. If a program passes a specific test case, then the cell gets a “1”, otherwise “0”. 

Thus, we create a defect signature consisting of pass-fail values of all the programs for 

each test case. If two test cases have the same defect signature for all the programs such as 

T1 and TN-1, then both of them are detecting the same equivalence class of defects. Only 

one test case detecting an equivalence class is included in the master suite. As a result, all 

distinct and identifiable defects that students made in their code are detected by the master 

suite. 

4.1.2 Calculating Defect-detection Capabilities for 
Students’ Tests 

Manually calculating the exact number of defects that exist in each student 

program, and then the number of defects that are detected by each test suite, is prohibitively 

expensive.  However, by creating the master test suite, we had a suitable proxy—each test 

cast in the master suite would represent one equivalence class of defects that is uniquely 

identifiable.  Further, every defect detectable by any student-written test suite in the 

 Student Programs 

V
a
li

d
 S

tu
d

en
t 

te
st

s 
a
n

d
 

R
ef

er
en

ce
 T

es
ts

 

 P
1
 P

2
 P

3
 P

4
 P

5
 … … P

M-1
 P

M
 

T
1
 1 0 1 0 0 … … 1 1 

T
2
 0 0 1 1 0 … … 0 0 

T
3
 1 0 0 1 1 … … 1 0 

T
4
 0 1 1 0 0 … … 0 1 

T
5
 … … … … … … … … … 

… … … … … … … … … … 

…. … … … … … … … … … 

T
N-1

 1 0 1 0 0 … … 1 1 

TN 1 0 0 0 1 … … 0 1 

     

Pass 1 

Fail  0 

E
q

u
iv

a
le

n
ce

 C
la

ss
 

Figure 12: Master suite formation. 
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experiment will already be accounted for in the master suite, by virtue of the master suite 

construction process.  Every individual test case in each student test suite must completely 

overlap one test case in the master suite, in the sense that the two test cases result in exactly 

the same pass/fail outcome on every student program in the experiment. This made it 

possible to count the number of unique test cases in the master suite that correspond to test 

cases in a given student’s test suite.  Further, we knew how many of the student programs 

fail each master suite test case—that is, how many student programs contain a 

corresponding defect from that equivalence class.  Therefore, we were able to determine 

how many test cases of the master suite a student’s test cases overlapped. We calculated 

the number of program failures detected by the overlapped master suite tests. If a master 

suite test case was overlapped more than once then we counted its’ detected failures once. 

Thus, we computed an approximation of the suite’s defect-detection capability—the 

probability that for any given defect that occurs in any of the student solutions, this suite 

would detect that defect. 

The simple formula to calculate defect-detection capability is: 

For example, let’s assume a student submits 17 test cases that overlap with 5 test cases of 

the master suite. The number of program failures or defects detected by the overlapping 

testcase1 is 5, testcase2 is 19, testcase3 is 28, testcase4 is 8 and testcase5 is 4. Thus, the 

total number of defects detected by the student is (5+19+28+8+4 =) 64. If the master suite 

detects 2400 defects by all the test cases, then the student’s defect-detection capability 

score is (64/2400 *100 =) 2.6%. 

4.2 Evaluation Approach  

The purpose of our experiment is to find which test quality measure most accurately 

determines defect-detection capability of student written tests. We calculated the defect-

detection capabilities for assignments as described in Section 4.1.2. Afterwards, we 

 

Defect-detection  

Capability 

 

= 

∑(No. of program failure in master suite that 

that are overlapped by a student’s tests) 

Total no. of program failure 

detected by all the tests of master 

suite 



 

47 

performed statistical comparisons of potential test quality measures. In total, 10 test quality 

measures were evaluated against defect-detection capability. The 10 measures can be 

categorized into four types:  

 All-pairs execution,  

 Mutation analysis, 

 Checked code coverage, and  

 Coverage criteria (4 measures). 

In mutation analysis, we used mutants generated by four sets of mutation operators 

that appear practical to use in classroom tools. These sets are: Javalanche’s mutation 

operators, the sufficient mutant operators identified by Offutt [46], SDL, a combination of 

VDL,CDL and ODL. For evaluating coverage criteria, we used statement coverage, branch 

coverage, OIC and OBC. Each of these measures were compared against each student-

written test suite’s defect-revealing capability. Two different projects or assignments are 

used for experiment. Comparing the correlation between scores for both projects provide 

us information about which of the measures are significantly correlated. We analyze the 

relationship (correlation) between test quality measures with defect-revealing capability 

using Spearman’s ρ. 

4.2.1 Quasi-Independent Variables 

This study was a quasi-experiment. We did not exercise randomization rather chose 

projects that were realistic enough to represent practical CS2 classroom assignments. Our 

independent variables were assignments, authors of the test cases (i.e., students), and 

defect-detection capability.  

We considered two CS2 assignments that were designed to teach students 

programming concepts (e.g., object-oriented features), data structures, algorithms, etc. The 

assignments were given in two different semesters. Participation of different student groups 

in different assignments from different semesters addressed or nullified the effects of 

personal interest, changes in the knowledge of testing, and expertise for specific types of 

assignments, such as GUI assignments. Thus, the results of our experiment were likely not 

to have bias. The defect-detection capability was used as a benchmark. We measured 
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performance of the dependent variables based on how accurate they were in predicting 

defect-detection capability scores of the test cases. 

4.2.2 Dependent Variables 

Dependent variables in our study were the scores calculated using 10 different test 

quality measures. In this experiment, our dependent variables were continuous. The scores 

from potential test measures were analyzed against the defect-detection capability of the 

tests.  

4.2.3 Statistical Analysis  

In this experiment, our quasi-independent variables were categorical and dependent 

variables were continuous. We observed that the distribution of the scores from some 

measures were not normal. However, we did not perform any statistical tests for normalcy. 

Spearman’s ρ is an appropriate method for distributions that may not be normal. So, we 

compared all the pairs in one step and calculate correlation using the Spearman’s ρ method.  

We applied a Bonferroni correction [10]  to reduce the potential risk of the type I error . 

We adjusted significance level at 0.0045 to apply the Bonferroni correction for the 

calculation of correlations. An analysis of the results is presented in Section 4.3.4. 

4.3 Experimental Results from Two Assignments 

Evaluating all 10 test measures for both of the assignments in this study, required a 

significant effort—it involved compiling and analyzing the results of approximate 

1,971,073 test case executions. The same assignments were used to evaluate all-pairs 

execution and mutation analysis in Section 3.1.3 and Section 3.2.3 respectively.   

4.3.1 Master Test Suite Data 

Project 1 had 147 submissions containing 1148 valid student written tests. For this 

assignment, the reference solution had 27 tests. Thus, the total number of test cases from 

students and from the instructor was 1175. Removing redundant tests reduced this to 540 

test cases. Out of 540 test cases, 8 tests were solely from the reference tests and 496 were 

from students (these may have overlapped with some reference tests as well). The total 
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number of test case failures detected by students were 19,303. The average number of 

program failures detected by a student-written test case was 38.9. The 8 reference tests in 

the master suite were not overlapped by any student-written tests. They detected 409 

defects. The average number of program failures observed these tests was 51.2. 

In Project 4, the total number of student submissions was 101 with 1,475 valid tests. 

The instructor provided 82 reference test cases. After removing redundant tests we found 

747 tests: 681 from students (with overlapping reference tests) and 66 solely from reference 

tests. By applying the bytecode transformation strategy to the master test suite, it was 

possible to apply all of its tests to every student program.  Every student program contained 

at least one defect. The total number of defects detected by students’ tests, and the reference 

tests (having no overlap with students’ test cases) of the master suite were 15,451 and 1,332 

respectively. The average number of defects detected by student-written tests was 22.6 and 

by the un-overlapped reference tests was by 20.1, as summarized in Table 4. 

It may appear that student-written tests may miss some possible defects. However, 

valid student test cases detected all the mutants generated from four all different sets of 

Table 4: Master suite summary. 

 Project 1 Project 4 

Submissions 147 101 

Student-written Test cases 1540 2176 

Valid tests 1148 (74.54%) 1476 (67.83%) 

Reference Tests 27 82 

Redundant Tests 670 (57%) 811 (52%) 

Master Suite 505 747 

Total test case runs 74235 75447 

Total failures observed 19712 (26.55%) 16783 (22.24%) 

Failures observed by 

student-written tests 
19303(97.92%) 15451(92.06%) 
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mutation operators. This implies that student-written tests were strong enough to cover all 

the defects from mutation analysis as well as all-pairs execution. However, some 

equivalence class of defects were not detected by students’ tests. The master suite covered 

those defects (with the reference tests) also.  

4.3.2 Approximating the Number of Detected Defects  

To calculate defect-detection capability we computed a weighted average over all 

master suite test cases that are duplicated within one student-written test suite. Figure 13 

shows the distribution of defect-detection capability scores for Project 1.  Note no student 

suites had scores above 3%, which is surprisingly low.  Also, about half of the students 

scored 0.75% to 1.25%.  Only 12 students out of 137 achieved above 2%. 

Upon careful examination, such low scores makes sense. The total number of 

failures observed by the master suite was 19,712 whereas on average a student’s suite 

observed 195.8 failures. Thus, the average defect-detection capability score was 0.99%. 

However, the set combining all the student-written test cases observed 97.9% of all the 

failures observed by the master suite. This result implies that students wrote diverse test 

cases but their individual tests were not strong enough to detect all the failures they made. 

 
Figure 13: Distribution of defect-detection capability for Project 1. 
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Project 4 defect-detection capability scores have a similar distribution, though more 

skewed towards lower scores (Figure 14). The highest score achieved by students is 4%. 

About one third of the students scored 0.5% to 1.5%. The average defect-detection 

capability score was 1.2%. No student-written test case observed more than 692 failures 

(4.1%).  We observed somewhat similar results in our earlier study.  Students do “happy 

path” testing [29] by writing tests to show that their code worked rather than designing 

tests to execute code in a way to cause failures and to detect these failures.  This is not 

surprising because our students are generally beginning testers described as “level 1” 

testers [7] by Ammann and Offutt. Their purpose of testing is to show correctness. 

4.3.3 Analysis of Scores from Different Measures  

We collected statement and branch coverage data from Web-CAT  for Project 1 

from fall 2011 and  for Project 4 given during Spring 2011 using Clover [1]. Object 

Instruction coverage (OIC) and object branch coverage (OBC) data for both the projects 

have been calculated from xml data obtained from JaCoCo [3]. We generated mutants 

using four different sets of operators: Javalanche’s mutation operators, the sufficient 

mutation operators, SDL, and a combination of VDL+CDL+ODL operators as described 

in Section 3.2.3. We generated sufficient, SDL, VDL+CDL+ODL mutants from µJava. 

Checked coverage scores for both the projects have been collected from our semi-

 
 Figure 14: Distribution of defect-detection capability for Project 4. 
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automated system using JavaSlicer. We calculated all-pairs scores as demonstrated in 

Section 3.1.3.  

Figure 15 shows the distribution of scores from different measures for Project 1. 

Displayed values are max, min, median, mean, 75th and 25th percentile. As we can see, the 

lowest and the highest all-pairs scores are 2% and 98% respectively. However, two-thirds 

of the students scored 40% to 70%. Sufficient mutation scores have similar max and min 

values although two thirds of the population is distributed in a very small range (from 25% 

to 35%). SDL scores are higher than sufficient and VDL+CDL+ODL mutation scores. 

Javalanche’s mutation scores are higher than all other mutation operators. This result 

implies that student-written tests are good in detecting mutants generated from the 

modification of statements but not effective against mutants generated by the modification 

of operators or variables.   

Coverage scores are much higher than mutation scores. Statement and branch 

coverage scores have almost no distribution as they have the same value, 100% as mean, 

median, 75th, and 25th percentile value. This is expected as students were graded on 

 
Figure 15: Distribution of Scores from different measures for Project 1. 
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statement coverage. OIC and OBC scores are lower than statement and branch coverage 

scores. Checked coverage score distribution is different from any other measures. Two 

thirds of the population scored 35% to 60% and no one achieved 100%. The scores for 

other coverage measures and checked coverage imply that students executed almost all of 

their code from their tests but have checked only half of their executed code against the 

expected results.  We discuss each distribution individually later. 

The distributions of scores for Project 4 calculated by different measures are 

depicted in Figure 16. All-pairs distribution has lower scores for mean and median values 

than Project 1. It implies that students detected fewer failures in Project 4 than in Project 

1. This makes sense as Project 4 is more complex than Project 1 and students are likely 

produce more defects in complex projects. The four coverage scores and checked code 

coverage scores have very similar distributions to Project 1. However, the distributions of 

all four sets of mutation scores are much different from Project 1. No one scored 100% in 

any one of the mutation scores. SDL and Javalanche scores have similar spans. The 

distribution of each measure is described later with an individual chart. 

 
Figure 16: Distribution of different measures for Project 4. 
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Figure 17 shows the distribution of statement coverage for Project 1. This 

distribution is heavily skewed towards 100% coverage. Only 8 students out of 137 scored 

below 90%. The average score is 98.9%. Branch coverage and object instruction coverage 

distributions are presented in Figure 18 and Figure 19. As we can see these distributions 

are almost the same as the distribution of statement coverage. The average branch coverage 

 
Figure 17: Distribution of statement coverage scores for Project 1. 
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score is 97.4% and the average OIC score is 97.2%. This is not unexpected as object 

instruction coverage requires each bytecode instruction to be executed to be counted as 

covered and branch coverage requires execution of each branch with both true and false 

values. Thus, when most of the branches are covered (high coverage) it is likely that 

corresponding bytecode instructions will also be covered. For both branch and OIC 

coverage only 7 students scored below 90%. About one fifth of the students scored 91% to 

98% in branch coverage and the remaining students scored 100%. In OIC about one fifth 

of the students scored 99% and exactly 96 students scored 100%. 

Figure 20 summarizes the distribution of statement coverage scores for Project 4. 

Note the extremely skewed bucketing in the histogram, where the first column represents 

all suites with coverage score less than or equal to 90%. More than half of the students 

achieved 100% statement coverage.  This should not be surprising, since students got 

feedback on statement coverage, and it was used directly in scoring their work—students 

needed to maximize their statement coverage to get the maximum grade on the assignment.  

However, about 5% students achieved less than 10% coverage regardless of the feedback. 

 
 

Figure 19: Distribution of OIC scores achieved by student-written test 

suites for Project 1. 
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This distribution is very similar to the statement coverage distribution for Project 1. 

Branch coverage score distribution (Figure 21) for Project 4 is almost similar to the 

distribution of statement coverage. More than 60% of the students scored 100% and about 

one fifth of the students scored 91% to 98%. Only 7 students scored below 90%. 

 
Figure 21: Distribution of branch coverage scores achieved by student-

written test suites for Project 4. 

 
Figure 20: Distribution of statement coverage scores achieved by student-

written test suites for Project 4. 



 

57 

The distribution of OIC for Project 4 is presented in Figure 22. About 60% students 

achieved 91% or higher. However, no one was able to score 100%.  One third of the 

students scored below 90%. We used the same scale to present distribution as we did for 

statement and branch coverage. So, it is not visible in the scale but no student scored below 

40%. The average score was 90.8% which is expected, as students received feedback on 
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Figure 23: Distribution of OBC scores achieved by students-written tests for 

Project 1. 

Figure 22: Distribution of OIC coverage scores for Project 4. 
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their statement coverage and made efforts to achieve high statement coverage. Generally, 

high coverage on statement results in high coverage in bytecode instruction coverage also. 

The distribution of OBC scores for Project 1 is shown in Figure 23. Out of 137 

students, 7 students achieved 100%. The average score was 87.47%. One third of the 

students scored 90% to 95%. Though the average score was high, one student scored 0 and 

16 students got less than 75%. However, keeping in mind that this was the first 

programming assignment and achieving a good OBC score is harder than achieving good 

statement coverage, students on average performed well. 

Figure 24 shows OBC score distribution calculated from JaCoCo for Project 4. 

Although only one test suite in this group achieved 100% coverage, three quarters of the 

test suites achieved 88% or better (mean of 81%). Achieving high OBC score is more 

difficult than getting high statement coverage. However, as mentioned before students got 

feedback on statement coverage and tried to increase coverage. So, it is likely that they will 

increase OBC scores also. Interestingly, no student achieved lower score than 42% unlike 

Project 1.  

 Figure 25 summarizes the distribution of all-pairs scores achieved by student-

written test suites for Project 1. The average score was 61.5%. Two-thirds of the students 

achieved above 50%, but no one scored 100%. This distribution is much different than the 

 
Figure 24: Distribution of OBC scores for Project 4. 
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 distribution for Project 4 as shown in Figure 26. In Project 4, one third of the students 

achieved above 50%. The average score was 55% which is less than Project 1. We find the 

appearance of a normal distribution around this mean. This seems reasonable as Project 4 

was more complex than Project 1. Thus students are likely to make more mistakes.  

 

Figure 26: Distribution of all-pairs scores achieved by student-written test suites 

for Project 4. 

 
Figure 25: Distribution of all-pairs scores for Project 1. 
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From Figure 25 and Figure 26, it seems that the all-pairs measure is more sensitive 

than OBC or statement coverage, since the scores are somewhat lower.  Further, the all-

pairs measure is somewhat more selective, since no students achieved the maximum value.  

Most importantly, it seems that this measure most closely matches the goal of determining 

how well a suite can detect real-world defects, since it is a direct measure of how many 

defective programs each suite was able to detect (in this case, at least, since all programs 

contained observable defects). 

It is also worthwhile to examine why, even though the defect-detection capability 

score is based on the same programs as the all-pairs analysis, the results for Project 1 in 

Figure 13 and Figure 25 and for Project 4 Figure 14 and Figure 26 are so different. To 

understand these differences, remember that Figure 13 and Figure 14 show the 

approximated probability of a test suite detecting any specific defects (or failures within a 

small equivalence class) in a program. Figure 25 and Figure 26, on the other hand, 

corresponds to whether the test suite detected any failure for the same program.  The defect-

detection capability corresponds to a test suite’s ability to detect each of these failures in 

isolation, rather than any one of them when considered all together.  So, while any given 

test suite might have a low probability of finding a specific failure, the suite still will 

certainly reveal failures covered by the equivalence classes it does include. 

We used the mutation testing results for both Project 1 and Project 4.  Mutants are 

generated from two different tools-Javalanche and µJava. As we mentioned in Section 

3.2.2 we had to modify both of the tools to generate mutants from the reference solution. 

In Project 1, total number of Javalanche generated mutants were 160. All the mutants were 

detected as non-equivalents by at least one valid student-written test. µJava generated 319 

mutants: sufficient mutants 124, SDL mutants 85 and combination of VDL+CDL+ODL 

mutants 110. Students’ tests were able detect all the µJava mutants as non-equivalent 

mutants. 

The total number of mutants generated for Project 4 from Javalanche was 316 

mutants.  During the analysis, every single mutant was empirically determined to be non-
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equivalent to the original program (i.e., every mutant failed at least one test case). Out of 

316 non-equivalent mutants, 59 mutants were generated from modification of “assert” 

statements in the reference program. Assert statements are part of test oracles. So, we 

removed these 59 mutants from the total set.  For the same assignment, µJava generated 

627 mutants in total which is about double the number of Javalanche mutants. Out of 627 

mutants, sufficient operator mutants were 388, SDL mutants were 131, and the remaining 

108 mutants were generated from VDL, CDL and ODL. All the mutants were categorized 

as non-equivalents by the valid test cases. As we mentioned in Section 3.2.2 that µJava 

cannot handle assert statements, and so we commented out asserts from the program during 

mutants creation. Later we add assert statements as a patch in the mutants. Thus, we 

ensured that test oracles in asserts were not mutated. 

 Figure 27 summarizes the results achieved, showing the distribution of Javalanche 

mutant kill ratios achieved by students’ tests written for Project 1.  Again, as with the all-

pairs strategy, it appears that mutation analysis is more sensitive than coverage criteria.  

The scores appear to be skewed towards 60% or above. In fact, the average score is 77.2% 

which is promising for beginners. More than two thirds of the students achieved over 70%.  

On the other hand, in Project 4 Javalanche mutation kill score (shown in Figure 28) is 

roughly normally distributed, with an average of 55%.  Also like the all-pairs scores, the 

 

Figure 27: Distribution of Javalanche mutation scores achieved by student-

written test suites for Project 1. 
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mutation kill ratios appear to be more selective, since no student achieved the maximum 

value. Also for both Project 1 and Project 4, we found Javalanche mutation kill scores are 

strongly correlated with all-pairs score. This is reasonable as all-pairs presumably presents 

mutants created by students and Javalanche provides system generated mutants.  

 

Figure 28: Distribution of Javalanche’s mutation scores achieved by 

student-written test suites for Project 4. 

 Figure 29: Distribution of µJava mutation scores achieved by student-

written test suites for Project 1. 
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Figure 29 shows the distribution of µJava mutants kill scores for Project 1 achieved 

by students. The average score for sufficient, SDL, and combination of VDL+CDL+ODL 

are 33.4%, 70% and 32.5% percent respectively.  No one scored 100% in any one of the 

three sets of mutants. Only 2 students scored above 90% in all three sets. We find some 

similarities between the distribution of sufficient and VDL+CDL+ODL mutants kill 

scores. About half of the students scored 20% to 30% in both sufficient and 

VDL+CDL+ODL mutation. SDL scores looks different than these two sets.  Half of the 

students scored 70% to 80% in SDL. 

For Project 4, the average score for sufficient, SDL, the combination of 

VDL+CDL+ODL operators were 46.5%, 46.6% and 31.6% respectively.  The distribution 

of all the types of mutation kill scores are similar as shown in Figure 30. Both for µJava 

and Javalanche mutants, no students achieved above 80% in this project which suggested 

achieving higher score in mutation become harder for complex programs.  

Checked coverage scores were then calculated as described in Section 3.3. Figure 

31 and Figure 32 show the distribution of checked coverage scores for Project 1 and Project 

4 assignments respectively. As expected, checked coverage scores were lower than other 

coverage scores, including OIC, and OBC.  Moreover, the distribution of scores for the two 

Figure 30: Distribution of µJava mutation scores achieved by student-written 

test suites in Project 4. 
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projects are not similar. In Project 1, over half of the students’ scores fall in range 30% to 

55% where as in Project 4, one half of the suites scored between 50%-68%. The average 

score for Project 1 was 48.7%, whereas for Project 4 average was 57.1%. This observation 

is important because for both OIC and OBC we found the average Project 1 scores were 

higher than the average Project 4 scores. This result suggests that beginners’ tests include 

less assertions than students who are more accustomed to testing.   
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Figure 32: Distribution of checked coverage scores achieved by student-written 

test suites for Project 4. 

Figure 31: Distribution of checked coverage scores for Project 1. 
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4.3.4 Evaluation  

Based on the data summarized in Section 4.3.2 and 4.3.3, we performed a statistical 

comparison of the 10 test quality measures against each student-written test suite’s defect-

detection capability. Table 5 presents results from Project 1. We calculate correlations with 

a Bonferroni correction with α < 0.0045 to reduce inflation of the potential for type I errors. 

Of all the measures, all-pairs scores are the most accurate predictor of defect-detection 

capability with a correlation 0.92. The next best predictor is µJava SDL mutation scores. 

We also found VDL+CDL+ODL mutation scores correlated with defect-detection score 

reasonably well compared to other measures. Interestingly, Javalanche mutation scores for 

 

Table 5: Correlation (Spearman’s ρ) between measures for Project 1.          
(bold * entries are statistically significant at α < 0.0045). 

 St. 

Cov. 

Bra. 

Cov. 

OBC OIC Mutation Checked 

Cov. 

All-

pairs 

Defect-

detection 

Score 
Javala

nche 

 

µJava 

(suff.) 

µJava 

(SDL) 

µJava 

(VDL 

/CDL/ 

ODL) 

St. Cov. - 0.78* 0.012 0.08 0.20 0.21 0.23* 0.16 0.009 0.35* 0.28 

Bra. Cov.  - 0.05 0.15 0.25 0.17 0.23* 0.12 0.03 0.26* 0.26* 

OBC   - 0.80* 0.13 0.14 0.17 0.13 0.59* 0.59* 0.16 

OIC    - 0.07 0.12 0.08 0.04 0.63* 0.22 0.18 

Java-

lanche 

    - 0.54* 0.73* 0.53* 0.09 0.32* 0.42* 

µJava 

(suff.) 

     - 0.71* 0.84* 0.14 0.14 0.42* 

µJava 

(SDL) 

      - 0.64* 0.12 0.12 0.54* 

µJava 

(VDL/C

DL/ODL) 

       - 0.12 0.12 0.46* 

Checked 

Cov. 

        - 0.29 0.22 

All-pairs          - 0.92* 

Defect-

detection 

Score 

          - 
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this project seems as good as µJava sufficient mutation scores. Both of them have a 

correlation value of 0.42 with defect-detection capability. OIC, OBC and statement 

coverage scores are not statistically significant. Branch coverage scores are significant but 

not strongly correlated with defect-detection score. Checked coverage is more costly than 

branch coverage but is not a better predictor of defect-detection score. Though it seems 

statistically significant with α < 0.05, after applying the Bonferroni correction no longer 

meets the criterion for significance.  

We observe OBC has a strong correlation with all-pairs score though it is not 

statistically significant with defect-detection capability. µJava sufficient mutation scores 

are strongly correlated with µJava SDL scores and VDL+CDL+ODL scores as expected. 

Interestingly, Javalanche mutation scores have the strongest correlation with µJava SDL 

mutation scores. Checked coverage scores are strongly correlated with both OIC and OBC 

but not with statement or branch coverage.  

 Figure 33 depicts the correlation between defect-detection capability score vs. all-

pairs score. A majority of the suites lie close to the trend line identified in the plot. 

Figure 33: Relationship between defect-detection capability score vs. all-

pairs score for Project 1. 
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Figure 34: Relation between defect-detection capability estimates and µJava 

scores for Project 1. 
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However, a small minority of students achieved very high scores on both all-pairs and 

defect-detection capability score (of its scale).  This group is visually identifiable on the 

defect-detection capability score (of its scale).  This group is visually identifiable on the 

top right corner. Most importantly we can see the strong correlation between two scores in 

the figure. 

The correlation between defect-detection capability score and sufficient mutation 

score is depicted in Figure 34(a). Most students’ suites achieved mutation scores below 

40% and defect-detection capability sores below 2%. The correlation is similar to the 

correlation of defect-detection capability vs. SDL mutation scores described in Figure 34 

(b). However, the population is less clustered in SDL score distribution than sufficient 

score distribution. Many students’ suites scores fall above and below the trend line but a 

strong correlation between SDL mutation scores and defect-detection capability scores is 

visible. Figure 34(c) shows the relationship between defect-detection capability and 

VDL+CDL+ODL mutation scores. Here also a large number of students achieve below 

40% in mutation score and below 1.5% in defect-detection score. Out of the three mutation 

scores, SDL mutation score is the most strongly correlated with defect-detection capability. 

Figure 35 shows the correlation between defect-detection capability score and 

Javalanche mutation score. This plot is much different than the relation plots of µJava 

 

Figure 35: Relationship between defect-detection capability score vs. mutation 

score (Javalanche) in Project 1. 
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sufficient, SDL, and combined deletion mutation scores. A large number of students’ test 

suites achieved a high score in Javalanche mutation scores, though their defect-detection 

capability scores vary from 0.05% (low) to 3% (high). However, a linear relationship 

between the scores of defect-detection capability and Javalanche mutation score is visible 

in the figure.  

Table 6 presents results for Project 4. We applied the same Bonferroni correction 

for this project data also to reduce the risk of type I errors, and calculated correlations at α 

< 0.0045.  For this project, all-pairs scores are most strongly correlated with defect-

detection capability. The next best predictor is µJava SDL mutation scores with a 

correlation 0.76. So, for both the projects all-pairs performed the best and µJava SDL 

Table 6: Correlation (Spearman’s ρ) between measures for Project 4. 

      (bold * entries are statistically significant at α < 0.0045). 

 St. 

Cov. 

Bra. 

Cov. 

OBC OIC 

 

Mutation Checked 

Cov. 

All-

pairs 

Score 

Defect-

detection 

Score 
Javala

nche 

 

µJava 

(suff.) 

µJava 

(SDL) 

µJava 

(VDL 

/CDL/ 

ODL) 

St. Cov. - 0.80* 0.01 0.08 0.19 0.14 0.22 0.16 0.008 0.31* 0.30* 

Bra. Cov.  - 0.05 0.15 0.19 0.14 0.23 0.15 0.03 0.33* 0.32* 

OBC   - 0.82* 0.13 0.14 0.17 0.13 0.59* 0.19 0.16 

OIC    - 0.07 0.11 0.08 0.04 0.63* 0.22 0.18 

Java-

lanche 

    - 0.88* 0.96* 0.88* 0.09 0.75* 0.72* 

µJava 

(suff.) 

     - 0.82* 0.93* 0.14 0.67* 0.61* 

µJava 

(SDL) 

      - 0.84* 0.12 0.78* 0.76* 

µJava 

(VDL/ 

CDL/ 

ODL) 

       - 0.12 0.72* 0.64* 

Checked 

Cov. 

        - 0.29* 0.23 

All-pairs 

Score 

         - 0.89* 

Defect-

detection 

Score 

          - 
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mutants performed the second best. However, Javalanche mutation scores become the third 

best predictor unlike Project 1. We also found VDL+CDL+ODL mutation scores are 

statistically significant with strong creation of 0.64. Interestingly, µJava sufficient mutation 

scores did not perform as well as SDL or a combination of VDL+CDL+ODL. It is plausible 

that the type of the project or the problem students submitted had some impacts on the 

scores. For example, both Project 1 and Project 4 are data structure projects and students 

were required to perform more logical computations than arithmetic calculations. Thus, 

SDL mutants are showing stronger correlation with defect-detection capability than 

sufficient mutation sets.  

Interestingly, both statement coverage scores and branch coverage scores for 

Project 4 showed statistical significance with defect-detection capability though the 

correlations are not strong. Checked coverage seemed statistically significant with α < 0.05. 

However, after applying the Bonferroni correction the correlation does not meet the 

criterion for significance. OIC and OBC scores showed strong correlations with checked 

code coverage scores. 

Figure 36 shows the relationship between defect-detection capability scores and all-

pairs scores. As we can see the relationship is linear and strong as most of the scores lie on 

or close to the trend line. Only a few students scored high in defect-detection capability but 

 

Figure 36: Relationship between defect-revealing capability estimates and all-

pairs score for Project 4. 
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Figure 36: Relationship between defect-revealing capability  

 
(a) Sufficient 

 
(b)  SDL 

 
(c) VDL+CDL+ODL 

Figure 37: Relation between defect-detection capability estimates and µJava 

mutation scores for Project 4. 
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……… 

moderately in all-pairs score. These scores are visible on the top right corner of the picture. 

Note the all-pairs and defect-detection capability relationship plot for Project 4 is similar 

to the plot for Project 1 (Figure 33). Figure 37 (a), (b) and (c) present the relationship 

between defect-detection capability with sufficient mutation score, SDL mutation score 

and VDL+CDL+ODL mutation score. All three of them have very similar correaltions, 

though SDL performed better than the other three. Students who achieve high mutation 

scores on SDL mutation also scored high in defect-detection capability. Only 10 students 

scored high in defect-detection capability but moderately on SDL mutation score. They are 

visible on the top right corner. The same students are found on top right of the trend lines 

in sufficent mutation and VDL+CDL+ODL mutation score plots as well. 

 The relation between Javalanche’s mutation scores and defect-detection capability 

scores is depicted in Figure 38. The scores are clustered  beween 30% to 80%. The sharp 

trend line suggests a strong  linear relationship. However, the students’ scores in Figure 38 

are not as close to the trend line as they are in SDL mutation score plot shown in Figure 37 

Figure 38: Relation between defect-detection scores vs. Javalanche mutation 

scores for Project 4. 
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(b). We do not include the relationship plots of other measures, as they are not strongly 

correlated with defect-detection capability scores. 

4.3.4 Threats to Validity 

There are some limitations in our research. First, we used the same students’ 

programs to calculate all-pairs execution and defect-detection capability. For master suite 

creation we used valid student-written tests and reference tests. This procedure may create 

a bias towards the failures that students’ programs have. Creating a master suite covering 

different types of defects, such as SDL mutants, may be a good alternative to overcome 

this bias.  

Second, our research ourcome showed coverage measures were not strongly 

correlated with defect-detection capability. For both of the assignments, students were 

graded on their branch coverage. They also got feedback on coverage of their code. It is 

natural that they put effort into achieving high coverage. In fact, more than one third of the 

students achieved very high (> 90%) coverage scores. For example, 106 out of 147 students 

achieved 100% in Project 1. Thus, little (or no) variance between their coverage scores was 

observed. This affected the correlation between coverage metrics and defect-detection 

capability. Further investigation is required to find out how student-written tests perform 

if they are given no feedback or feedback on a different measure such as SDL. 

Third, we calculated failures based on the final submissions. It is plausible that 

students corrected easy defects between their first and final submissions. This raises the 

question of which defects were present when solutions were in their original, untested, 

undebugged state? Of course, few (if any) of the students ever had a complete solution in 

an untested state. Students in this course were taught beforehand to practice TDD and to 

incrementally develop their tests alongside their code. As a result, it is, impossible in many 

cases to construct a picture of an individual’s code “before testing” to attempt to capture 

all the defects. 

Finally, student-specific tests were not evaluated for all-pairs and mutation 

analysis. We tried to handle some student-specific designs in Project 4 by manually 

changing their base class names to the instructor-given interface name.  However, about 

30% of all the tests in that project were still either invalid or student-specific. Future 
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research on evaluating student-specific tests in all-pairs execution and mutation analysis 

(where mutants are generated from the reference solution) is important.
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Conclusion  

As educators add software testing to more and more courses, the question of how 

to best evaluate student-written tests arises. While code (statement and branch) coverage 

tools are readily available and are already being used by some educators, coverage metrics 

have known limitations as test quality indicators.  Other researchers and educators have 

proposed alternative measures aimed at addressing these limitations, but until recently, 

technical obstacles have prevented the use of these approaches. We investigated alternative 

measures to find the best test quality measure in terms of defect-detection capability of 

tests for automated assessment tools. We divide this chapter into four sections. Section 5.1 

summarizes our research findings. Contributions of this research are described in Section 

5.2. Section 5.3 focuses on more general implications of the research outcomes. Finally, 

future work and related research problems are presented in Section 5.4.   

5.1 Research Results  

In this thesis, we have analyzed three alternative test quality measures: all-pairs 

execution, mutation analysis and checked code coverage. We investigated four different 

sets of mutation operators that appeared most practical. Our research answered the 

following questions: 

1. Are these measures feasible to use for automated classroom grading 

systems? 

Yes all of the measures investigated proved feasible. Each of these measures have 

their own benefits and computational barriers to use them in automated grading systems. 

We provided novel solutions for the technical problems. We also examined their feasibility 

with CS2 assignments.   

The main technical obstacle behind all-pairs execution is student-written tests may 

refer to their own personal design features that are not present in other students’ code. In 

such cases, their JUnit tests do not compile against others’ code. We modified the bytecode 

Chapter 5 
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of students’ tests and applied late binding so that dependencies on student-specific design 

features are resolved at run-time rather than compile-time. As a result, tests referring to 

student-specific features will compile. Test cases that refer to student-specific features will 

throw run-time exceptions making those tests fail. However, tests checking common 

features will execute normally.  

Mutation testing required a correct and complete version of the program to as the 

source for mutants. Students’ programs are not good candidates for this purpose as they 

frequently submit incorrect and incomplete programs. We used an instructor-provided 

reference solution to resolve this issue. Mutation generation to evaluate each students’ tests 

takes time. Instead, we pre-generated mutants from the reference solution ahead of time 

and stored them for reuse. Finally, we determined non-equivalent mutants incrementally 

when at least one valid student-written test fails. This procedure is conservative but 

guarantees that non-equivalent mutants are observed to produce a different outcome from 

the original program by valid tests. 

Checked code coverage seemed to be promising but no automatic tool was available 

to calculate it. We developed a semi-automated system that works in five phases. First, it 

identifies explicit checks (i.e. asserts) inside the test suites. Second, it creates traces from 

all tests using JavaSlicer. Third, we filter out library code from traces. Fourth, we use 

JaCoCo to collect information about how many bytecode instructions are present in each 

class and each method under test. Finally, the system calculates checked coverage from the 

instructions present in the dynamic slices vs. total instructions in the programs. JavaSlicer 

traces each thread separately and cannot reconstruct data-dependencies between different 

threads. We modified JUnit 4 tests into JUnit 3 tests so that all tests run from the main 

thread. Though our system currently is only semi-automated, with some software 

engineering effort it can be made automatic.  

2. Are they better indicators of defect-detection capability? 

We designed a study to compare 10 different assessment approaches in terms of 

their prediction of defect-detection capability: all-pairs execution, mutation analysis with 

four different sets of mutation operators, statement coverage, branch coverage, OIC, OBC 

and checked coverage. To calculate defect-detection capability we created a master suite 
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representative of defects that students actually make in their code. Then we determined 

how many student-written tests overlap with the master suite tests and calculate the number 

of defects detected by those overlapped tests. If a test case of the master suite is overlapped 

by a student’s tests multiple times, then failures detected by the test are counted once. This 

score shows the likelihood that a test-suite will detect any specific defect that may exist in 

a program. 

Our experimental results show that all-pairs execution and mutation testing with 

any one of the four sets of mutation operators are better indicators of detect-detection 

capability than coverage measures. Although checked code coverage was expected to 

overcome the limitations of conventional coverage criteria, we did not find it to be a better 

predictor of defect-detection capability than other coverage measures. 

3. Which of these test quality measure is the best? 

Our research outcome shows all-pairs execution is the best predictor of defect-

detection capability. All of the four mutation operator sets we investigated showed strong 

correlation with defect-detection capability as well, though the SDL operator performed 

second best. However, all-pairs execution is computationally more expensive than SDL 

mutation analysis. In all-pairs execution, the number of tests executed grows quadratically 

with the number of students. The number of test runs are linear in mutation analysis. As an 

example, compare test executions for both measures in Project 4. In all-pairs execution, 

1,476 valid student-written tests were executed against 101 programs for Project 4, 

resulting in 149,076 test runs. For SDL mutation analysis, valid tests were run against 80 

mutants, resulting in 118,080 test executions (30,999 fewer test runs than all-pairs 

execution). Moreover, SDL generates fewer mutants than sufficient or other deletion 

operators. Another problem of all-pairs execution is feedback cannot be generated until 

after the deadline when all the students have submitted their final code and final tests. This 

may be impractical for classroom grading tools. Thus, though all-pairs execution is the best 

predictor of defect-detection capability, considering computational cost and feedback 

delay, SDL mutation analysis is the best alternative for practical use in automated grading. 
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5.2 Contributions  

This research investigates alternative approaches of test quality measures. We 

designed a study to compare 10 different measures in terms of their ability to predict defect-

detection capabilities. This study determined that all-pairs execution is the best predictor 

of defect-detection capability of tests. We provided a novel way to remove compile time 

dependencies between JUnit tests and corresponding programs using late binding through 

reflection. This enables evaluation of complete or incomplete tests against correct and 

erroneous solutions or programs. The same technique can be used to evaluate incomplete 

programs which was not possible before. 

We analyzed obstacles of all-pairs execution and provided novel solutions to 

overcome them. We also introduced a set of techniques including incrementally 

determining non-equivalent mutants and pre-generating mutants from a reference solution 

to apply mutation analysis in classroom grading tools. To calculate checked coverage, we 

developed a semi-automated system that calculates dynamic backward slices from checks 

and determines the percentage of code that influences checked results. 

5.3 Broader Impacts  

We found that students achieved high coverage scores but scores lower in all-pairs 

execution. This implies that they executed a large percentage of their code from their tests 

but did not detect many common failures or defects in other students’ programs. We also 

found that students write diverse test cases. When we combine valid tests from all the 

students, the collection produced a strong test suite. For example, this collection detected 

all the mutants (over thousand in total) generated by the four different mutation operators. 

The same collection detected about 92% of all the errors that students produced naturally 

in coding. However, individually their test cases were not strong. 

This research outcome provides educators and students an insight into the quality 

of students’ testing skills. Implementation of our solution to remove compile-time 

dependencies from the test cases will enable automated graders to evaluate partial 

solutions. Application of all-pairs execution, mutation analysis, and checked code coverage 

will encourage students to practice testing skills in many classes and will give them 
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concrete feedback on their testing performance. Educators will be able to automatically 

evaluate students’ tests using the test quality measure that predicts defect-detection 

capability most accurately. As a result, students will have more opportunities to find what 

defects they make, by getting a better evaluation on their test cases, and may improve the 

accuracy of their solution. 

5.4 Future Work  

In our experiments, we used final submissions of students work. It is very likely 

that students’ fixed defects between their first and final submissions. Thus, only the defects 

that students failed to detect remained in their code. This is a plausible reason behind their 

low scores in defect-detection capability. We plan to extend our experiments with all the 

defects—from all of their submissions so that the defect-detection capability score would 

reflect all types of defects. Exploration of types and frequencies of the defects that students 

make also would be helpful for instructors to give them better feedback. We used 

assignments as independent variables in our statistical analysis. Types of assignments, such 

as GUI assignments, may affect the correlation of different measures with defect-detection 

scores. We want to include more assignments from different semesters to generalize our 

research results.  

This research showed all-pairs execution is the best predictor, and SDL mutation 

was the second best predictor for detect-detection capability. We used the same defective 

programs from students to calculate all-pairs scores and to create master suites (that 

represent equivalence class of defects). We plan to create a master suite covering SDL 

mutants and investigate if that changes the correlation between different measures and 

defect-detection scores. Moreover, we want to categorize Javalanche-generated mutants in 

a similar way that we used for µJava generated mutants. This will help us to determine 

which mutation operators of Javalanche are creating more effective mutants. In addition, 

we will investigate a new tool, PITEST [5], for mutation analysis. 

We plan to investigate test cases that constitute the master suite. Not all the tests in 

the master suite detected the same number of defects. It is possible that some test cases 

detect more defects than others. We consider test case A is a superset of test case B if 1) 
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test case A detects more failures than test case B, and 2) test case A detects all the failures 

that test case B detects. A master suite consisting of the super set tests may be as effective 

as the complete set but may reduce cost of calculating defect-detection capability.  

A major concern of all-pairs execution and mutation analysis is giving students 

feedback on their tests. We are researching effective ways of generating feedback from the 

approaches without revealing reference solutions or other students’ solutions. In all-pairs 

execution, tests are evaluated on how many defects they can find in others’ code. It is not 

possible to give direct feedback on what defects a test case failed to detect. Similarly in 

mutation analysis, mutants are created from the reference solution. Students will not have 

access to the reference solution. Thus, some indirect but effective form of feedback is 

needed so that students can understand problems of their tests. 

Lastly, implementing practical alternative approaches, such as mutation analysis, 

in Web-CAT and other classroom assessment tools, and investigating students’ 

performance change with this addition will enable us to bring into reality the benefits of 

this research.  
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