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I. INTRODUCTION 

1.1 Discovery and deve1oprno_nt of linear programming 

1.1.1 Early operations res~arch 

It was once said that war often speeds and gives emphasis to re-

search that peacetime could never afford. Linear programming, although 

not a direct outgrowth of a war was made necessary by the need for 

rapid military decisions. Wood and Geisler (33) stated in 1951 that: 

"It was once possible for a Supreme Commander to plan operations 
personally. As the planning problem expanded in space, time, 
and general complexity however, the inherent limitations in the 
capacity of any one man were encountered. Military histories are 
filled with instances C1f commanders who failed because they bogged 
down in details, not because they could not have eventually 
mastered the details, but because they could not master all the 
relevant details in the time available for decision." 

The one-man planning of military operations continued until about 1860 

when the use of a General Staff emerged. This was the early approach 

to operations planning, permitting the subdivision of the planning 

process. By this point in time much work had been done on linear 

equations by Fourier (11) and Gauss(l4). Dantzig (6) points out that 

Fourier "may have been aware of its potential" as early as 1823. It is 

very doubtful that, even if the complete theory of linear programming 

were known at this early date, it could have been applied to military 

problems since a) their great complexity would have required large 

computers and b) they had not been defined as a set of linear inequal-

ities. 

So the military continued to further subdivide the planning pro-
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cess and theory continued r~ progress in the general direction of line-

ar progranuning. In 1939, K:mtorovich (17) of the U.S.S.R. advanced 

proposals that were very close to linear programming, but oddly, in a 

society that depends on central planning, his proposals were ignored. 

World War II put a tremendous strain on the staff planning concept. 

It was during this war that a Central Monitor was placed on the process. 

Dantzig (6) stated that: 

"The entire program was started off with a war plan in which were 
contained the wartime objectives. From this plan, by successive 
stages, the wartime program specifying unit deployment to combat 
theaters, training requirements of flying personnel and technical 
personnel, supply and maintenance, etc., was computed. To obtain 
consistent progranuning the ordering of the steps in the schedule 
was so arranged that the flow of information from echelon to 
echelon was only in one direction, and the timing of information 
availability was such that the portion of the program prepared at 

·each step did not depend on any following step. Even with the 
most careful scheduling, it took about seven months to complete 
the process." 

After the war the conuol function was further consolidated and it 

became quite obvious that tlie application of scientific computational 

techniques would be in order. Several events had taken place by 1947 

which brought together the knowledge and capability to tackle such 

problems; a) the design and construction of large scale computers, 

such as the Harvard Mark I and the ENIAC and b) the expression, in terms 

of linear inequalities, of allocation problems complete with objective 

functions such as the diet problem and Leontief's input-output model 

without the usual objective function and c) a growing interest in util-

ity functions which as will be seen had an even greater impact on sto-

chastic linear programming. 
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1.1.2 Project SCOOP 

These developments led to the formation in 1947 of a group of 

scientists who, under the sponsorship of the United States Air Force, 

were charged with the investigation of the Scientific Computation of 

Optimum Programs. Primary participants in this effort were G. B. 

Dantzig, M. Wood, John Norton and Murray Geisler. From their work 

resulted the simplex method for solving linear programs. Due to Air 

Force sponsorship, the first real applications were to Air Force prob-

lems. Several of these applications were(6): 

"(a) contract bidding, (b) balanced aircraft, crew training, and 
wing deployment schedules, (c) scheduling of maintenance overhaul 
cycles, (d) personnel assignment, and (e) airlift routing prob-
lems." 

It was only after Project SCOOP had demonstrated the usefulness of the 

technique and its application to many problems, that economists began 

to use it in their work. Much of their past work led up to the dis-

covery of the simplex method but none seemed inclined to attempt to 

develop a practical algorithm. Several economists such as Von Neumann 

approached the linear programming problem with appropriate linear 

formulations but resulted only with an elegant mathematical theorem. 

When the technique was developed, T. C. Koopmans organized a conference 

on linear progrannning held in Chicago on June 20-24, 1949, and attended 

by many of the most well-known economists and mathematicians of the 

day. This began a period of intensive study of applications of linear 

progrannning to economic problems and to "theory of the firm". 
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1.2 Extension to stochastic 'linear progrannning 

1.2.1 Dantzig's first paper 

This state of affairs continued for several years with literally 

hundreds of papers being written on linear programming. All of these 

papers had one point in connnon; they assumed deterministic costs, co-

efficients and resources. In 1955, Dantzig (5) published a paper which 

for the first time considered the possibility of uncertainty in the 

determination of the costs. This problem had undoubtly been apparent 

before this time but the increased efficiency brought about by the use 

of linear programming with the assumption of deterministic coefficients 

had been sufficiently great as to make this further refinement unneces-

sary. Dantzig 1 s approach seemed in retrospect to be somewhat over 

simplified and to have missed the point which is basic to both linear 

programming and statistics, that is, that the final objective is a 

decision and a decision is subjective. 

1.2.2 Early Problem Formulations 

Dantzig, in his 1955 paper (5), examined the situation of random 

costs, where the problem formulation is 

minimize c = px 

subject to Ax= b 

where p,x and bare vectors 

and A is a matrix of coefficients. 

Then he stated that to minimize the expected cost we merely minimize 

E(c) = E(p)x 
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= px 

where p, = E(p,) 
J J 

which will indeed minimize the expected cost. Note that nothing at all 

has been said about the variance of the P. or about confidence in the 
J 

value of c computed in this manner. 

Dantzig then explored a technique for solving the special case of 

the linear programming problem used by Ferguson and Dantzig (10) in 

solving the aircraft allocation problem. The problem as stated by 

Dantzig was to: 

minimize c 

subject to 

= E E 
i j 

E x 
j ij 

= a 
i 

and E b .. x .. = µ. 
i 1J 1J J 

h f h . th where xij is t e amount o t e 1 resource 

· d h ·th d t· t' ass1gne tote J es 1na ion, 

b .. is the number of units of demand at 1J 
destination j which can be satisfied 

by one unit of resource i, 

c .. is the cost of moving one unit of the 
1J 

th th i resource to the j destination, 

and d. = 
J 

where d. is the demand, 
J 

vj is the shortage, 



-8-

ands is excess. 
j 

He then proceeded to prove that the expected value of the objective 

function is convex, which was necessary in order that it have a unique 

and readily computable minimum. This led to an approximation technique 

in which the continuous objective function is replaced by a step func-

tion. This technique involved only the expected value and therefore 

made the implicit assumption that the variances are equal. The tech-

nique would not, therefore, be generally useful. 
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II VARIOUS FORMULATIONS OF THE PROBLEM 

In discussing the various formulations of stochastic linear pro-

gramming, it should be noted that all of these fonnulations revolve 

around one or a combination of random variates; the cost vector, the 

matrix of coefficients and the resources or right hand side. In the ma-

jority of papers reviewed, the possibility of a random coefficient 

matrix was ignored. This will also be done here, except to mention that 

a paper by Barbar (1) gives an excellent discussion of the matter. In 

that paper, the situation is treated as a problem in solution stability 

and the probability that a given solution will remain optimal under 

variation of the coefficient matrix is detennined. This same problem 

can be approached with perturbation techniques(24). 

2.1 Dantzig's two stage problem 

In his first paper on stochastic linear programming (5) and later 

in his book on linear programming (6), Dantzig fonnulated a method of 

solution which Madansky (20) later dubbed as the "Here and Now" method. 

It was: 

maximize z = c'x + f'y 

subject to 

and Ax+ By< b 

where c' is the vector of "profits" on x 

and f' is the vector of penalties for constraint 

violation. 

This is a two stage problem with a random resource vector, where, 
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~·, in the first stage, the vector b is unknown and must be estimated and 

the x vector chosen. Then in the second stage, the b vector becomes 

known and the 'slack' vector, y, must be chosen to minimize any error 

which occurred in the choice of x. This method was supposed to represent 

the actual decision process which management experiences and reduces to 

the problem of determining a method for finding the "best" estimate of 

the resource vector, b. Here 11best" may not be "best" in the usual 

sense. It may well be that the "best11 estimate is one in which 

P(Ax,:: b) ,:: £ for small values of £ • 

2.2 Elmaghraby's allocation problem 

In 1959 s. E. A. Elmaghraby published a paper (8) dealing with a 

linear progrannning problem having a cost vector which was distributed as 

a discrete random variable. The method of solution presented was to 

separate each variable into several new variables. Each of these new 

variables would then be used to represent only a portion of the density 

function of the variable for which they were substituted. This approach 

was quite similar to Dantzig's approach to the allocation problem which, 

notably, was not listed in the bibliography of the paper. 

Then, in 1960, Elmaghraby (9) published a paper which was a conden-

sation and extension of his Ph.D. thesis (7) of 1958. In this paper 

he addresses the allocation (transportation type) problem which he dis-

tinguishes from the programnlng problem. The problem is formulated as: 

minin ize c ::: f(x .. ) 
1J 

subject to g1. (x .. ) < a1• 1J - x .. > 0 
1J -
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are of the fonn 

and the f ( x .. ) are continuous density functions. 
l.J 

Elmaghraby then proved the existence of an optimum by virtue of the 

convexity of the objective function and constraints and then established 

the necessary conditions for a feasible x to be the optimal x. 

2.3 Freund's risk programing 

In 1956, Freund published a paper (12) on risk programming. In 

this paper he considered the problem from the viewpoint of a statisti-

cian, and in so doing generated one of the best of the early papers on 

stochastic linear programming. He treated the problem: 

maximize c I x= r 

subje.:t to Ax< b 

2 
where c. : N { µ i, a, } 

l. 1. 

Then the net revenue, r, is distributed 

r:N( 'x x' Vx) iJ , 

where µ =E(c) 
V = matrix of variances and covariances 

- er 
He then introduced a utility function, y(r) = 1-e , which he as-

sumed will describe the behavior of the decision maker. There is no jus-

tification for that particular function's being used except that it 

would seem to represent a "conservative" decision maker. It is a strong 

point in that it involves the notion of utility. He illustrated the 

point by showing other utility functions which might represent a 

"gambler" and so forth. 
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Using the specified utility function, Freund computed its expected 

value 2;20 2 f 00 _ Sr -(r-u) dr 
E(u) = _

00 
(1-e )e 

and showed that maximization of the above is accomplished if 

E(u*) = u-6 cr 
2 

the original problem variables; 

2 

E(u*) = c'x-SxVx 
2 

subject, of course, to 

Ax< b 
x>O 

is maximized or, in terms of 

Notice that in this formulation of the problem, one can choose to 

maximize any choice of mean and variance simply by the appropriate 

choice of the constant S • Thus a larger 8 would tend to be more 

conservative, introducing, less "risk" into the final solution. This 

was similar to the "coeffici2nt of optimism" introduced by Luce and 

Raiffa(l9). 

Finally, Freund introdu,:ed an unproven but workable algorithm to 

solve the resulting non-linear (note the squared term in the objective 

function) programming problem. This result was based on an earlier pa-

per of Hildreth(l6). Hildreth's paper will not be covered here as the 

author feels that more sophisticated techniques are now available (cf. 

Williams( 31)). 

The algorithm which Elmaghraby developed to solve the problem bears 

some resemblence to that of Freund's and, although he references many of 

those works upon which Freund bases his method, he does not reference 

Freund's paper. 
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These results of Freund's were further extended in 1959, in an un-

published thesis by Rein (23), to allow a ready choice of the variable 

a by plotting isograms of conservatism thus giving a basis to the sub-

jective evaluation of this constant. 

2.4 Madansky 1 s "Here and Now" problem 

Madansky, (20) who worked with Dantzig in later development of the 

two stage problem, tagged the two stage problem the "Here and Now" meth-

od. In this problem, a decision must be made in the first stage (here 

and now), knowing only the distribution of the resource vector. This is 

in contrast to the "Wait and See11 approach in which the decision maker 

"waits" and observes the random vector and then solves the problem. 

This latter method is how Madansky characterized the approach of Freund 

and Tintner(26). 

In his first paper, using this approach, (20) Madansky merely de-

rived certain inequalities which show the conditions under which the 

"Here and Now" results approach the "Wait and See" results and further, 

under what conditions the use of the expected value of the resource 

vector will yield good results. 

This result is developed by letting the objective function of the 

stochastic linear programming problem represented by C(b,x) and proving 

this to be a convex, continuous function of b. 

Now, note that the situation in which the expected value of the 

objective function is to be minimized by using an observed value of the 

vector b, is to be contrasted with that of using the expected value of b. 

If x(E(b)) is used to represent the value of x which minimizes the ob-
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jective function involving the expected value of b, C(E(b),x), then con-

sider the function of b, C(b,~(E(b))). The values which can be assumed 

by varying b over its allowable range can be determined by noting that 

since Ax(E(b)) E(b), then for this inequality to hold with probability 

1, i.e. Pr(Ax(E(b)) >b) == 1, b must be restricted to values greater 

than E(b). Therefore, for values of b over this restricted range, it 

follows that C(b,~(E(b))),:: minimum E(C(b,x)). 

Then let i be the x which minimizes EC(b,x) and let x(b) be that x 

which minimizes C(b,x). In the former case bis assumed to be an as 

yet unobserved random vector ("Here and Now") and in the latter case, b 

has already been observed ("Wait and See"). 

Next, note that in the former case, in order that Pr(Ax,:: b) == 1, x 

must be chosen to be much larger or at least as large as x(b) in the 

"Wait and See" situation. Thus, it follows that C(b,i),::C(b,x(b)) and 

hence EC(b,i) > EC(b,i(b)) and also minimum EC(b,x),:: E minimum C(b,x) 

or, in other words, the minimum value of the objective function of the 

"Here and Now11 problem will always be at least as great as the minimum 

value of the 11Wait and See" problem. 

The above proof is based primarily upon the work of Madansky, but 

this author added those elements of the proof referencing P (AX> b) == 1. r -
The question of considering the effect on the objective of allowing the 

case P(Ax> b)<l to occur (cf. Charnes and Cooper (3,4)) was not men-

tioned by Madansky. This case should be considered since it will, in 

general, allow "better" solutions to the problem. To observe this, it 

is only necessary to compare that value of the vector x which minimizes 
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C(b ,x) subject to Pr(Ax > b) = 1, to the value of the vector x, say x 

which minimizes C(b,x) subject to Pr(AxSb)::_ £ for small£. That is, 

in the latter case, the constraints may be violated with probability £ 

Thus the value of minimClll'l C(b,x) > C(b,x). A "more optimal" solution 

was obtained by allowing a certain amount of risk. 

Finally, returning to the above proof, Madansky invokes the convex-

ity and continuity of the function C(b,x) with respect to b along with 

Jensen's inequality and shows that 

and hence 

E min C(b,x) > min C(E(b) ,x) 
X X 

E(C(b,i(Eb))) ?:13{in E(C(b,x)) ::E(~in C(b,x)) 

> min C(E(b) ,x) 
-x 

One notes that bounds have now been established on the value of the 

objective function of the "Here and Now" problem, min EC(b,x), which are 
X 

E(C(b,i(Eb») and min C(E(b),x) and are computable. Note that these are 
X 

also bounds on the expected value of the "Wait and See" problem, 

E min C(b,x) as well. The use of the above inequalities therefore yields 

a method of determining whether the use of the expected value of the 

random resource vector will result in a close approximation to the 

"Here and Now" problem. And, in fact, Madansky not only refines the 

above inequalities but also shows that if C(b,x) = c1(b,x) + c2(b) then 

the "certainty" and "uncertainty" problems are equivalent with b = Eb. 

In a later paper, (21) Madansky considered the solution of the 

problem 

minimize c'x + f'y 
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subject to Ax+ By: b 

for random b. He approached the solution with three methods; the ex-

pected value method, the "fat method" and the "slack method". The ex-

pected value method was discussed above. In the "fat method", the val-

ues are chosen to be sufficiently pessimistic that P(-Ax::::. b) = 1. 

In the "slack method", P(Ax::, b) < 1 is allowed, by choosing some y 

to minimize ex+ fy, subject to Ax+ By= b. 

The vector f is a penalty placed on the "inaccuracies", that is, it 

is a utility function placed upon the violation of a constraint. 

2.5 Tintner's approaches 

Gerhard Tinter was wricing papers (25) on risk programming long be-

fore such a name was recognized. One of these was a rather general ex-

position which developed a general theory of production where the objec-

tive was to maximize profits from production subject to uncertainty of 

prices and certain production transformation equations. Tintner pro-

posed the use of Lagrange multipliers to solve these equations then as-

sumed the use of charactistic functions to determine the distribution of 

the profit. Finally, he introduced a risk preferential function to de-

termine an individuals' evaluation of profits and risk. 

Although the approach was impractical it, nevertheless, contained 

some essential points which were missed by many later authors. 

First, he was interested in the distribution of the profit. This 

was either overlooked or simply not noted in many papers twenty years 

later. Whether a stochastic resource vector or a cost vector is being 

considered, the value of the objective function does indeed have a dis-
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tribution. 

Secondly, he presented (perhaps not for the first time) the idea of 

a risk preferential function. This function is a measure of the sub-

jectivity of the decision maker. This point, while carefully concealed 

in most statistical decisions by the use of "standard" critical points, 

was, instead, emphasized in Tintner's paper. 

In 1960, Tintner (26) described the "passive" and "active" ap-

proaches to stochastic linear programming. The "passive" approach was 

to determine the distribution of the objective function and base deci-

sions upon this distribution. This might be accomplished by solving the 

problem for all values of the random variables and then computing the 

distribution of the objective function. As Tintner pointed out, this 

would be rather laborious. 

He suggested, instead, that the problem 

maximize p = a'x 

subject to Bx :Sc 
x>O 

where P(a,B,c) is a probability distribution, 

be transfonned to 

maximize p = a'x 

subject to bijxj = ciuij all i and j 
n 

where all O < u .. < 1 ; E u. . = 1 
- l.J - j l.J 

and where each u .. denotes the amount of resource c. to be allocated to 
l.J l. 

activity X • 
j 

This allocation of resources to be used in the problem 

solution he called the "active" approach. A probability function R(p,U) 

would be derived from P(a,B,c) which would depend on the uij' which he 
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states would be rather difficult to derive in practice. Tintner again 

introduced the preferential functional f = f(R(p,U)) where this func-

tion was to be maximized with respect to the elements of U. He pointed 

out that a special case is E(p) =fpd.R(p,U), where the integral is to 

be taken over the whole range of p. Tintner suggested that dynamic pro-

gramming might be used to solve this problem, 

While this was an interesting approach, how the distribution of p 

is to be derived was not clear. If it is assumed that a and care nor-

mally distributed then x will also be distributed normally. But since 

no assumptions can be made the independence of the elements of c under 

transformation, x cannot be assumed independent. Therefore, the vector 

product a'x has an unknown distribution. The distribution of a'x for in-

dependent a and independent x was noted by Miller (22) to be a modi-

fied Bessel function of the second kind. There appears to be very lim-

ited possibility of extending this result. 

2.6 Charnes and Cooper's "certainty equivalents" 

Charnes, in conjunction with others, wrote several papers (23) in 

the late Fifties and early Sixties on what they refered to as "chance 

constrained programming". The problem was one of 

maxir,1izing f(c ,x) 

subject to P ( Ax ::_ b) :::_ a 

for small values of the vector a • 

The approach taken was based on the availability of large amounts 

of historical data from which the desired probability estimates could be 

computed. The approach then paralleled the "expected value" method. 
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In 1963, Charnes and Cooper published a paper (4) with the word 

"satisfice" in the title. Here again the idea of "satisfying" an indi-

vidual is brought forth, emphasizing the subjective nature of the choice 

of the vector, a. 

Assuming that some vector, a , could be chosen, Charnes and Cooper 

presented three models, the "E model", the "V model" and the "P model". 

These were the maximization of the expected value, the minimization of 

the variance, and the maximization of certain probability levels of the 

objective. 

The "E model" was simply 

maxirniz e E ( c I x) 

subject to P(Ax b) :: a 

where Charnes, et al propostd the use of a decision rule matrix D, such 

that 

X = I:'b 

and Dis to be determined. They then proceeded in the following manner: 

E(c'x) = E(c'Db) 

= (E(c))' D (E(b)) 

or, setting µ~ = (E(c))' and µb = (E(b))', then E(c'x) = µ~D µb. 

The objective function is now deterministic. 

The constraints still involve a random vector. 

then assume that 

Let b = b- µ 
b 

-a! 1. 

,,.. 
Db) -a! 

1. 

.,.. 2 
Db} ) 
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thus, 

= P(b.-a~ Db>-µ 1. 1. - bi + a' i 

," /', 

( b. -a! Db 
=P l. l. 

{i;. -a! 
l. l. 

Let z equal the first term above so that z1.• : N(O,l). Then, 
i 

-µ +a' 
P(z > bi i 

C E {,S:. - a I 
l. i 

for the l.,th . 
constraint, or 

and hence 

F. ( ( 
l. 

-µ +a' Dµb bi i 

> (l 

i 

-1 
F. ( 

l. 

where a 
i 

will be assumed to be chosen such that K 

These equations lead to 

(l • 
l. 

O, all i. 

which leads to the deterministic convex programming problem: 

minimize - µ'D µ 
C b 
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2 2 
and -K a. • a . (D) 

1 1 

and v . > 0 
1-

2 2 2 
K,... 1. µ . (D)+v. > 0 

'"' 1 1- · 

2 
where a . (D) 

1 

2 
_ E(a! Db-b.) 

1 1 

Charnes and Cooper pointed out that this encompasses the results 

of Tintner, and this is easily seen if the elements u .. are divided in-
1J 

to the b. . thus : 
1J 

b .. 
1J 

x.. = c. 
u.. l.J 1 1J 

where, now, the matrix D car be seen to be a function of the original 

coefficient matrix and of Tintner's "decision variables'. 

To obtain the minimum variance about a chosen objective, Charnes 

and Cooper stated that it is only necessary to minimize E(c 1Db-z0) 2 

0 
subject to the above constraints; where z is to be ·the chosen objec-

tive value. 

The "P model" does not compare with any model presented by any 

other author and will not be discussed here. 

2.7 Other formulations 

Other authors have also treated the stochastic linear progranuning 

problem in recent years. Notable among these are Wets (30), Van Slyke 
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and Wets (27), Walkup and wets (2•j), Geoffrion (15) and Williams (31). 

The problem attacked by Wets, Van Slyke and Walkup was the original two 

stage problem of Dantzig. Their methods differ primarily in the use of 

measure theory in a manner that merely results in over complicating the 

problem. 

Williams, on the other hand, approached the problem involving only 

a stochastic resource vector and in which "salvage" and "penalty" costs 

are used to place a premium on constraint violation, similar to the 

penalty vector of Madansky's. He then derived an approximation formula 

to the solution of this problem and showed that it satisfied Madansky's 

inequalities. 

It is interesting to note that even though published in 1965 and 

1966, none of these authors referenced any other papers on stochastic 

linear progranuning except their own and those of Dantzig's and 

Madansky's. An exception to this is Geoffrion who, writing in 1966, 

referenced Katoaka (18), Dantzig (5,6), Charnes and others, but did not 

reference Rein or Freund. Geoffrion described an "E model", a "P model 

and a "fractile model" of which the latter will bear closer examination. 

The former two are similar to those of Charnes and Cooper and need not 

be discussed. 

The fractile model is an interesting problem, which is 

maximize px 

subject to Ax::_ b 

where p : N( µ ,V) 

This problem was originally discussed by Kataoka (18), but Geoffrion's, 
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who referenced Kataoka, will be cited here. Geoffrion stated that it 

can be shown that 

Fa (x) = Vx 

where Fa (x) is the a fractile of px and is to be maximized. This 

function bears a great deal of resemblence to the objective function 

proposed by Freund. Indeed, Geoffrion noted that a solution to the 

problem can be obtained by the graph of the (E, o ) tradeoff curve 

which, although not referenced by Geoffrion, is the approach used by 

Rein (23) in his unpublished thesis. The comparison becomes even more 
-1 

complete by noting that since qi ( a ) represents the inverse standard 

normal function, that values of a less than 0.5 result in negative 
-1 

qi ( a ) and hence a relationship between the normal curve and 

Freund' s value S , is established. 

The observation that the value of qi -\ a ) represented the utili-

ty of the expected value relative to the variance of the objective 

function was also made by Kataoka, but independently of Freund. The 

primary result of his paper was an algorithm for solution of this prob-

lem utilizing a method of Wolfe 1 s(32). Geoffrion's result was also an 

algorithm based upon a similar technique. 
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III TOWARD A UNIFIED APPROACH 

After studying these sometimes fragmentary approaches and results 

and noting the lack of communication and coordination which results in 

the re-discovery of earlier results, the question of which approach and 

result is correct, becomes intriguing. Charnes and Cooper stated in 

1959 (3) that: 

"The problem of stochastic (chance constrained) programming in-
volves difficulties of an order incommensurate to that of 
"certainty" progranuning. These difficulties stem fundamentally 
from the probabilistic constraints, which experience (let alone 
theory) has made clear, are NOT adequately represented as some 
have done by applying the expectation operator to the stochastic 
form." 

Yet, after making this statement, Charnes and Cooper continued to apply 

the expectation operator to the stochastic form(3,4). 

Any optimization involving risk must also involve a subjective 

determination of what is the "best" risk. The notion of "best" risk 

may vary from one situation to another depending on the utility value 

associated with risk. The gambler will allow, even desire, large risk 

while a banker will allow almost none at all. Freund, introduced a 

"risk coefficient" to allow the control of risk in the stochastic line-

ar progranuning problem. In statistics, the control of risk is allowed 

by the use of "critical points", a 99% point yields less risk than does 

the use of a 90% point. Therefore, when Kataoka and Geoffrion developed 

their objective function, they introduced the standard normal curve in 

such a fashion that it replaced the "risk coefficient" used by Freund. 

Thus, the amount of risk being taken could be quantitized in a statis-

tical manner. 
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It would seem, then, that a complete synthesis of stochastic line-

ar programming has been achieved by Kataoka and Geoffrion. Indeed, 

Kataoka has presented a fonnulation involving a stochastic resource 

vector and cost vector as well as an objective function in which risk 

has been quantitized. But, further analysis of Kataoka's formulation 

reveals that in order to show the solution vector as detenninistic, he 

used a device, first proposed by Charnes and Cooper. This was the fact 

that solution space described by the set of linear equations with a de-

terministic resource vector is a convex cone. To allow for a stochas-

tic resource vector, this convex cone was simply enlarged. Then, that 

portion of the solution space which would result in a constraint being 

violated with probability greater than a is disallowed, i.e., the so-

lution space is restricted to "admissible" values of the solution 

vector. Therefore, using this device, the solution vector is now deter-

ministic and hence its product with the stochastic cost vector will 

give the result shown by Kataoka. 

The above can be shown to be a false picture by the following con-

sideration. Suppose a valu2 for the stochastic resource vector is 

chosen from the appropriate distribution and the (now deterministic) 

linear program is solved. The result would be a solution vector x. 

Repeat this process a large number of times and the values of these op-

timal x's would form their own distribution. Hence, it can be seen 

that they are indeed a function of the stochastic resource vector and 

are themselves stochastic. Suppose this were carried a step further so 

that for each solution vector computed, a value of the cost vector was 
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observed. The value of thE objective function would depend on the 

product of two stochastic \·ectors and, therefore, would itself be sto-

chastic. This last distribution is the one assumed by Kataoka to be 

nonnal but, in fact, the objective function would be distributed ac-

cording to a much more complex distribution, as observed earlier. This 

is true since not one, but both vectors in the objective function are 

stochastic. 

The fact that the solution vector was itself stochastic was later 

recognized by Charnes and Cooper. Their derivation of a set of "cer-

tainty equivalent" constraints makes this fact clear. But in the deri-

vation of an objective function, they again returned to that which they 

had earlier referred to as an "inadequate approach" and took expected 

values. Therefore, using an approach similar to that taken by Kataoka 

(18), but taking intp consideration the stochastic nature of the solu-

tion vector, it would seem reasonable to combine Charnes and Cooper's 

"E model" and ''V model" in the following manner. 

Let 

z = c'x 

be the objective function, subject to 

Ax< b 

Then assume 

b N( µ b' I: b) 

c N( µc' EC) 

and let the objective be to maximize 
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This leads in a manner similar to Kataoka 1 s derivation to 

minimize -
-1 where G (a) is the standardized function and 

V(D) = E(c'Db- µ~n µb) 2 

subject to the same constraints derived by Charnes and Cooper. The 

fact that G(z) is unknown presents only a momentary problem. 

First, observe that since G is standardized, the values of primary 

interest will be negative. This can also be arrived at by roughly the 

same reasoning covered by Freund. Further, though the nature of G- 1(a) 

is unknown, it can readily be assumed that practical values will not be 
-1 

infinite, that is, there will be reasonable values of G ( a) which 

will be finite. If this were not true, the distribution F(z) would not 

integrate to unity. 

Next, substitute a parameter, -B 
-1 

for G ( a). This parameter 

can then be used with a suitable algorithm for solving convex program-

ming problems to compute a range of solutions (this range will be con-

tinuous) which can be used to partially determine the shape of the func-

tion F(z). It is possible, in theory at least, to develop an estimate 

of the· a involved and chose a suitable value of B, from the set of 

B 's, for the desired a level. 
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IV CONCLUSION 

Tracing the development of stochastic linear programming from its 

inception in 1955 to the present has resulted in an interesting array 

of problem formulations and solutions. First attempts at solution in-

volved taking expected values and returning the problem to the familiar 

linear programming problem. This approach was valuable if for no other 

reason than it illustrated the fact that uncertainty costs the decision 

maker. 

Then it seemed as though everyone in the field created his own pri-

vate "uncertainty" problem and started trying to solve it. There were 

one stage, two stage, transportation, infinite horizon, here and now, 

wait and see, and passive and active problems. Notions of utility 

crept in and thought was given to the inviolability of constraints. 

Slowly, sometimes by independent paths, it became apparent that this 

was a statistical problem, there were distributions involved and per-

haps statistical techniques should be used to solve it. 

It is now clear that the results in this paper will obtain a solu-

tion to the truly stochastic linear programming problem, although the 

distribution of the objective function may never be analytically deter-

mined when both the resource and cost vectors are stochastic. This 

formulation is an amalgamation, a synthesis of the work of Freund, Rein, 

Kataoka, Charnes and Cooper and embodies and encompasses the two stage 

probl6n; Madansky's fat, slack, and expected value problem; T:ntner 1 s 

active approach; and, of course, Charnes and Cooper's uncertainty µrob-
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lem. Each of these cases can be obtained by proper choice of parame-

ters. This, then, is indeed a unified approach. 

A lot remains to be done. Methods for solving nonlinear program-

ming problems are not complete. The nature of the distribntion of the 

objective function should be explored for various distributions and 

combinations of the stochastic variables. Theory should be expanded to 

include the simultaneous consideration of stochastic matrix elements 

along with the other variables. Finally, everyone should agree on one 

formulation of the problem, hopefully, this one. 
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ABSTRACT 

A Synthesis of Stochastic Linear Programming 

by 

Charles Samuel Matheny 

With the growing application of statistics to many areas of sci-

ence and engineering it was inevitable that the indeterministic nature 

of linear programming would be recognized. The first paper iu Lhe area 

of stochastic linear prograr;uning was written by one of the pioneers of 

linear programming, G. B. Dantzig. This paper led to increaseci inter-

est in the field and was fo:.lowed by the works of several prominent 

authors in linear progrannni:.g. 

At this point, there \,. s considerable divergence in the p:-oblem 

formulations and in method:: oi solution. These various formuL .. tions 

are discussed and compared iLLt:.sL::ac:ing the lack of communica.:ior. 

among the authors. 

Then, a problem formul..tion is developed which incorporates m.~~.y 

of the formulations of the other authors and recognizes completely the 

stochastic nature of the problem elements. 
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