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(ABSTRACT)

In this thesis, the plant identification, state estimation based on the identified
plant and also the design of a neuro-controller using multi-layer perceptrons
(MLPs) for a complex system are presented. The quasi-linear system to be
controlled is both unstable and nonlinear. The complete nonlinear feedback control
system is designed without a priori information of the plant dynamics, using only
measured input/output data. The first design step is to combine a conventional
method of multivariable system identification with a dynamic multi-layer
perceptron (MLP) to achieve a constructive method of system identification. Based
on the identified linear model of the system, states will be estimated and converted
to more appropriate state for control in the second design step. The class of quasi-
linear nonlinear systems is assumed to operate nominally around an equilibrium
point in the neighborhood of which a linearized model exists to represent the
system, although normal operation is not limited to the linear region. The results
presented here provide an accurate discrete-time nonlinear model, which is used in
the design of a nonlinear state estimator. The controller design is derived from a
switched-linear feedback controller from the estimated states using the identified
linearized model of the system around each suitable operating point, as a role

model for the neuro-controller in the initial phase. Finally, using the partially



trained controller, the neuro-controller can be further trained "on-line" using a
selected performance index to guide the learning. A prototype problem, an inverted
pendulum system, is simulated as a physical system to be identified and to be
controlled. Simulation results indicate that the present design method is very
reliable comparing with other methods and hence is suitable for both identifying
and controlling critical industrial processes. The prominent feature of this method
is that no specific model information is initially required throughout the
identification and control of the nonlinear plant. As an application of identifying
an unknown plant in power electronics systems, an empirical data modeling
approach which aims at generating small-signal equivalent models and also
nonlinear models for a general class of converters, including resonant converters,

and subsystems in a distributed power system is presented.
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1. Introduction

1.1. Background

Real-world industrial processes have always been of considerable interest for
control theorists and practioners. These processes are typically characterized with
partially understood nonlinear system dynamics as well as lack of knowledge of
true system parameters, noises, and uncertainties in the interactions between
process and its environment. Over the last decade, theorists of classical and modern
control have been promoting new and sophisticated techniques, under the headihg
of adaptive control to meet some of these difficult problems. However, rigorous
mathematical treatment is constrained usually by a set of assumptions with various
degrees of validity. To énsure applicability of certain theories, continuous
verification of underlying assumptions must be enforced, which from a practical
viewpoint is often impossible.

There has been ongoing research on using neural networks for identification
and control of unknown nonlinear dynamic systems since the early 1960's. The idea
of using neural networks for controlling physical systems has more recently seen
a great deal of attention. One of the main objectives is to remove the requirements
of having an exact detailed mathematical model for the system. The underlying
promise is that through recursive learning, a neural network will be able to mimic
the essential dynamical characteristics of the physical system. Until the advent of
recent neurocomputing techniques almost all feedback control designs required a
detailed model of the system to be controlled. Since real-world systems cannot be

modeled in precise mathematical terms due to unmodeled dynamics and, typically,



a noisy environment, it is very difficult to determine an exact model for a complex
nonlinear system. If there are significant plant dynamics that are not included in
design model, then feedback control system will perform worse than expected and
may be unstable around the operating point. Consequently, there is a need for a
non-classical technique which has the ability to accurately model these physical
processes to prevent the controller's failure due to modeling errors. The control of
an unknown plant becomes even more complicated, especially when the state of the
plant is not always measurable and control must be done using only input/output
data. But, it has been shown that a multi-layer perceptron (MLP), one of the many
forms of artificial neural networks (ANNs) is a universal function approximator,
i.e. with sufficient training on appropriate input/output data, an MLP can represent
arbitrarily closely any continuous vector map. Later this model is used to train a
neuro-controller for nonlinear plants [1,2]. One of the challenges for future research
in the field of control is to develop robust, adaptive, and fault-tolerant controllers.
So far, significant progress has been made in the theory and applications of
adaptive control. It has become a promising approach to achieve high performance
of advanced control systems. However, current adaptive control approaches have
their limitations. For one, these methods usually make use of a structured type of
uncertainty in which the plant model has a known form, but with unknown
parameters. Moreover, adaptive control systems designed according to existing
theory could become unstable due to the excitation of the inevitable unmodeled
dynamics and in the presence of unmeasurable output disturbances. Therefore, it
is important to develop an approach in which the structure of the plant model could
be well identified during an identification process.

Although the theory of linear system identification may now be considered

to be a mature discipline, new techniques, particularly for nonlinear system



identification, continue to be of interest. In this research such a method is
addressed in the context of using neural networks [3]. Neural networks of various
types and structures (paradigms) have been found to be efficient tools for
identifying nonlinear systems, e.g. through Volterra series models, group method
of data handling (GMDH) models, self-organizing neural nets (SONN) models and
radial basis functions [4,5,6,7]. Although there are many techniques available for
the corresponding linear identification problem, MLPs may be regarded as a non-
classical technique which can accomplish similar results using only input/output
data, i.e. without prior model information. Most importantly, MLPs do not require
the usual assumption of linearity. Thus, although it is true that neural networks can
offer little, if any, improvement over existing methods of identification of linear
systems, they do present a potential for capturing the complex nonlinearities of
industrial processes of all kinds in a universal manner never before imagined [8].
Among the several researchers of control community using ANNs over the
past two decades, Narendra has used dynamic ANNs as components in dynamical
systems, concentrating on system identification and control of the nonlinear plants
[9,10,11]. Pao introduced functional-link net which constructs a nonlinear mapping
into the input layer to reduce the complexity of ANNs [12]. Psaltis et al. introduced
a modified error-back propagation algorithm based on propagation of the output
error through the plant which is considered an additional unmodifiable layer of the
ANN, using its partial derivatives at the operating point [13]. Guez presented
trainable adaptive controllers which consist of a teacher, the trainable controller and
a plant. The teacher may be automated as a linear or nonlinear control law, or it
may be a human expert to provide the knowledge of the system dynamics through
the analysis of the controlled process [14]. Baird III et al. developed a hybrid

controller which is a combination of an adaptive controller and ANNs to cope with



time-varying dynamics [15]. One of the main trends in training an ANN is to learn
the system's inverse assuming that the system is invertible, and then the desired
system output is achieved using the control input generated by the system's inverse.
But Gu and Cui et al. pointed out that even if the system is invertible, the inverse
control scheme may not be acceptable due to possible internal instability in a non-
minimum phase system [16,17]. Another trend is borrowing the concept of linear
optimal theory in ANNs using, not only quadratic errors, but also a more general
cost function (or performance criterion) to reduce system output errors [18,19,20].
Since ANNs are used to take into account nonlinear effects of the system to the
conventional linear optimal controller, ANNs broaden the range of control beyond
the limited range of using linear optimal control law alone. In designing the above
mentioned controllers the most important thing is to develop an efficient training
algorithm. Usually, the "training" of an ANN is typically not straightforward. There
is still a high degree of "art" associated with selecting and training of an ANN.
However, in this work we will emphasize systematic steps used to achieve a
nonlinear feedback control design with an explanation of the state estimation
technique based on the identified model.

MLPs are regarded as a non-classical tool for identification and control of
nonlinear systems using only input/output data; however, there are many difficult
problems to overcome, such as when the nonlinear system is found to be both
complex and unstable. This latter condition complicates the "training" of the MLP
[21]. One approach is to stabilize the system locally. Such stabilization of a
nonlinear dynamic system can be done for systems which are controllable near an
equilibrium state, i.e. stabilizing the linearized model near the equilibrium point
with linear feedback [22,23,24,25]. From the extension of well-known linear system

theory, if all the states are available through measurements, both theory and



application indicate that "locally controllable" systems in the domain of our interest
can be controlled by forcing proper inputs to the system. Unfortunately, there is no
general theory regarding performance if estimated states (instead of actual states)
are used in the feedback process of the nonlinear system. In cases such as all the
states of the system are not accessible, but only outputs can be measured, the task
of control becomes more complicated. Therefore, the observability of the nonlinear
system is a critical issue. After checking the observability of the identified system
near an equilibrium point, we can define a "locally observable" system in the
domain of interest, whose concept is similar to that of a "locally controllable”
system in the neighborhood of the equilibrium point. In many control problems,
often it is inconvenient to measure every system state due to various restrictions,
but it would be desirable to feedback all the states of the system if it were possible
to generate the state variations in some indirect way.

In the group of researchers who are interested in constructing nonlinear
observers for feedback linearizable nonlinear systems, Hunt and Verma insisted that
a properly designed observer can work well together with the controller if the
system is feedback linearizable [26]. But they admitted that their result is local
because their domain of interest is sufficiently small. Therefore, there is little
difference from the well-known linear observer of a linearized model of the
nonlinear system. Dhingra et al designed an estimator by assigning "additional state
variables" as outputs of the nonlinear blocks. After all, the plant is re-modeled as
an "extended state space” model which permits a computationally efficient state
estimator to be devised [27]. Even though the estimation procedure, which is
similar to a Kalman filter algorithm, exhibits good structural robustness properties,
the system nonlinearities are assumed to be known in advance. During the process

of the fabrication of the controllers, Cheok and Beck generated state estimates by



a delayed-measurement observer which compares with Luenberger reduced-order
observer [28]. The observer which was originally designed by Loh and his
colleagues looks simpler and more efficient than that of Luenberger since it has no
dynamics [29]. But it depends heavily on the quality of the measurements.
Furthermore, they assumed that they already knew which state should be estimated
(either discrete integration or differentiation). Therefore, there is no generality
applicable to the system unless we are familiar with the internal structure of the
system.

The design approach proposed here involves three main steps: The first steps
are to determine an equilibrium point and identify the linearized system about this
equilibrium point by a combination of the connectionist approach (with back-
propagation supervised learning) and a conventional method of multivariable
system identification. This classical approach can examine all the admissible
structures of the system in order to obtain a (linear) model which optimally
generalizes over the available input/output data around the equilibrium point. This
linear model is, in turn, incorporated into the MLLP model as that part of the system
corresponding to the linear feedthrough terms of the MLP (using a linear output
activation function). The resulting identified model is called the modified dynamic
MLP model with inputs representing both the actual inputs and delayed versions
of the inputs and outputs to capture both the nonlinearities and the dynamics of
the system. This modified dynamic MLP will be restricted to a simple single
hidden layer form so that analytical information can be readily obtained from the
derived model. The reader is referred to Reference [8] for details. Since the order
or the structure of higher-order neural networks can be tailored to the order or
structure of the problem from the linear modeling stage, a neural network designed

for a particular class of problems such as quasi-linear systems can be specialized



and very efficient in solving those problems.

To demonstrate the validity of the technique, this method is used on certain
power electronics systems in order to provide discrete-time (D-T) small signal
models not only for pulse-width modulation (PWM) converters, but also for
resonant type converters. The resulting small-signal model describes the converter
as a linear time invariant system and the knowledge of the identified linear system
can be applied to switching converters. But switching regulators are inherently
nonlinear, only small-signal methods are generally used in order to apply linear
control theory. However, this small-signal approximation cannot represent the
nonlinear characteristics of the regulator, which becomes significant for large
perturbations. Due to an inadequate modeling of a switching regulator, the resulting
feedback controller might fail to control the regulator beyond the assumed small-
signal model boundary. Therefore, an MLP network with inputs representing both
the actual inputs and delayed versions of both the inputs and outputs is needed to
capture both the nonlinearities and the dynamics of the system in large-scale
simulation.

The second step is to generate the estimates of the state variables of the
system based on the identified linear model in order to construct an optimal linear
state feedback controller from the estimated states & near an equilibrium point, e.g.
x =0.

After completion of identifying and controlling the linear part of the plant,
the remaining nonlinear part of the system will be identified and controlled,
separately. At least conceptually, and for relatively tractable systems, the remaining
nonlinear part of the system can be captured with a single hidden layer having a
number of processing elements (neurons) with nonlinear memoryless activation

functions embedded in a linear dynamic system. In order to have a network of



minimal complexity, pruning is done by removing connections whose weights have
small values, including connections to neurons in the hidden layer if their contribu-
tion is insignificant.

The final step is to design a neuro-controller using the information from the
identified nonlinear parts of the system. The (constant) control gains are calculated
for each operating point chosen selectively—to be used for simulation and data
collection. The data is obtained using a switched-linear controller for the purpose
of developing a neural net replacement. The neural net is needed for
implementation and interpolation, two inherent and attractive properties of
feedforward multilayer networks. Utilizing the designed switched-linear state
feedback controller as an initial role model for the neuro-controller, this partially
trained neuro-controller can be trained completely based on a desired performance
index in the domain of interest. This final step ensures that the controller goes
beyond its previous training stage and captures the necessary control actions for the

nonlinear plant.

1.2. Problem Statement

A general class of discrete dynamical systems can be represented by the

following state space model:

x(k+1) = £[x®), u(®)]
y®) = gx(®), u®)] (1

where u and y are the system input and output vectors, respectively, and the state

x is some combination of delayed inputs and outputs. The nonlinear functions f and
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g are assumed to have continuous partial derivatives. The class of nonlinear
systems for this dissertation is called quasi-linear systems, meaning that around
some operating point a linearized model describes the local system stability; and,
further, the order of the system is assumed to be invariant over the desired
(nonlinear) operating region.

Given that neither the order of the system (dimension of x) , nor the vector
maps f and g are known, an MLP can be trained to represent the system by
assuming only that the inputs and corresponding outputs of the system are
measurable. Using the initial knowledge of the first MLP, a second MLP will be
introduced as a feedback controller based on the state estimates % instead of x,
trained on the minimization of a selected cost functional. Fig. 1 illustrates the
structure of the method. Since the ultimate control objective is to regulate the plant
output to zero asymptotically, for simplicity, the reference input r is taken to be
zero, i.e. for the present purpose of the regulation problem. |

Initially, the identification is carried out using a dynamic MLP which
consists of delayed inputs and outputs as additional inputs to the MLLP. Dynamics
are incorporated into the model using the standard assumption that the outputs of
the network, which correspond to the outputs of the actual plant, are used to derive
part of the network inputs, which include the system inputs as well as delayed
versions of the system inputs and outputs. This structure which is called a modified
dynamic MLP is presented in Fig. 2, with an arbitrary number, &, of delays. The
extent to which the outputs are delayed depends on the order of the unknown
system. Since all network inputs are connected through to the neurons in hidden
layer, keeping the number of network inputs small is very important in minimizing
the complexity of MLPs with desirable accuracy.

This work was motivated by the desire to extend the models of systems

9
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Fig. 1. Control from Identified Plant

which are linear (for small signal variations around an operating point) well into
their nonlinear range. Since constructing a linear controller is based on the
linearized model of the nonlinear plant around an equilibrium point, the
linearization must be done to reduce the dynamics of a nonlinear system to a
linear model. However, when the system goes deeper into its nonlinear range where
the assumption of linearity is not valid any more, the system with linear controller
may be unstable. In this research, our ultimate goal is to design a neuro-controller

which can stabilize the system far beyond the linearized region.

An inverted pendulum system is selected as a prototype example of this

class of nonlinear dynamic systems in Eqn. (1) for two reasons: (1) the system is
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Fig. 2. Modified Dynamic Neural Network

a classical unstable system with severe nonlinear dynamics and therefore
representative of this class of difficult control problems; and, (2) so many previous
researchers have investigated this problem with their own assumptions that it has
often been considered a "benchmark system" in the control literature [30,31,32].
The control objective is to balance the pole in the upright position while
maintaining cart at the center of the tracks as quickly as possible even with a large
initial deflection. Fig. 3 illustrates the cart within its position boundaries. Four
state variables represent the state of the system dynamics: 0 (the angular position
of the pole), 6 (the angular velocity of the pole), p (the position of the cart on the
track), p (the velocity of the cart on the track). The system dynamic equations are

the following two second-order differential equations, derived from first principles:
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Fig. 3. Cart/Pendulum System

where the parameters M, the cart mass; m, the pole mass; /, the pole length, have

the values 1, 0.1 and 1, respectively, all in SI units (g = 9.81 m/s?).
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1.3. Organization of Dissertation

The dissertation is organized in the following way. Chapter 2 begins with
a section which describes pre-processing of the input/output data to prepare the
data for training the MLP. More than simple scaling and shifting of the data, pre-
processing seeks to determine indications of relationships between the various
signals, e.g. involving a study of the statistical correlation between input and output
data. Also care must be taken to obtain data that is representative of the system's
entire range of response, since an MLP can only learn to model the system to the
extent that the data is complete. The details of a (hybrid) linear system
identification technique for the linearized model of nonlinear system around its
equilibrium point to extract the linear part of the unstable system are explained in
the remainder of Chapter 2. The conventional method of multivariable system
identification, which utilizes all possible observable structures of the system to
achieve a linearized model, is presented briefly. This method is used to optimally
generalize over the available input/output data around an equilibrium point. Chapter
3 addresses the topic of modeling of a highly nonlinear power electronics system.
The first section deals with small-signal modeling of power converters including
an open-loop boost converter, a series-resonant converter and a forward multi-
resonant converter, which is used to design feedback controllers. The following
section is concerned with large-signal modeling of both open-loop boost converters
and closed-loop buck converters. Due to the highly nonlinear characteristics of
power converter systems, it is not easy to check transient responses of the system
in various step-load (or line) changes. An MLP, which was trained without
transient response data, is used to identify the transient response of the plants in

the large-scale system simulation. The well-trained MLP shows the nonlinear

13



behavior of the system outside the linear region and also gives a close
approximation of the boundaries where the system might go unstable, i.e. beyond
the capability of the linear feedback controller. Identification of the inverted
pendulum system is discussed in Chapter 4. The method and algorithm of
generating the estimates of the states variables based on the robust hybrid linear
system identification technique is explained in Section 4.1.A and 4.1.B.
Identification and state estimation of the linearized inverted pendulum system is
discussed in Section 4.1.C. The structure of the final MLP (based on the identified
linear model of the system) completing the nonlinear part identification is given in
Section 4.1.D. Among others, these details are concerned with determining the
number of neurons needed to capture the nonlinearities of the system. Pruning is
used to ensure a network which is large enough to generalize, yet small enough to
implement easily. Section 4.2.A is concerned with designing a switched-linear
controller to stabilize the system initially. Using an optimal switched-state feedback
controller as an initial role model of the neuro-controller, final training of the
neuro-controller according to the performance index is discussed in Section 4.2.B.
Finally, a discussion of the simulation results and some directions for future work

are presented in Chapter 5.
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2. Robust Hybrid Identification

2.1. Introduction

Two widely differing identification techniques for MIMO systems are
presented in order to provide a basis for comparison and selection [8]. The first
technique is a novel identiﬁcationy procedure which uses input/output data to
establish, not only the system order, but also the minimal number of parameters
required for representation [33]. The second technique uses a connectionist
approach along with back-propagation learning to establish the identified model
[34]. After a development of each method, an example, which is necessarily
restricted to be linear, is presented to illustrate relative numerical accuracy as well
as advantages and disadvantages of each method. To identify a system, the classical
approach requires sequential data of the system, and identifies the parameters as
well as the initial state for different structures. Unless the state is initialized
appropriately, this model does not work well for a different set of sequential data
of the unstable system. In contrast, back-propagation learning does not need
specific initial states of the system in training, but does need information such as
the approximate order of the given system and the most appropriate structure of
state space form. Hence these two methods are not completely disparate and can
be combined to capture the advantages of both for a robust hybrid identification
technique. Particularly when the system is unstable, there is very little choice in
generating input/output data except choosing different initial conditions and
stopping the process before the states of the system leave the domain of interest or

beyond the limit of safety. Therefore, the initial stage of data selection for
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identifying the unstable system is crucial and is discussed in Section 2.2. The basic
modeling structure using an MLP with an explanation of nonlinear squashing
function is addressed in Section 2.3. After a review of the robust hybrid
identification approaches in the Section 2.4, 2.5, and 2.6, there follows a brief
summary of the identification process as applied to D-T systems in Section 2.7.
This hybrid method was developed to use only input/output data to determine both

the structure and the system parameters with no other system information.

2.2. Pre-processing

The initial stage of data selection for training an MLP is very important.
For example, it is not only the range of data, but its distribution, that is necessary
to define a good mapping. The reason for this is that the system will typically
occupy a very small region, i.e. the neighborhood around either a stable or unstable
(with controller) equilibrium point, for the vast majority of the response time. One
solution to this problem is to excite the system with varying amounts of pseudo-
random disturbance, up to the point where the system can be controlled by the
controller, so that the data collected will be representative of the entire range of the
system. Acquiring input/output data which show nonlinear characteristics of the
system, within safe operating conditions of an industrial process, is very important
in training MLPs.

Once a satisfactory statistical distribution of the data achieved, it is normally
found that the ranges of the unprocessed input/output data are not appropriate for
training a neural network. A common cause of problems stems from presenting
data to a back-propagation algorithm as raw values, rather than in values that have

been suitably scaled to the neuro-dynamic functions being used. The MLP network
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