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(ABSTRACT) 

In this thesis, the efficient simulation of large-scale system-level VHDL models is analyzed. The 

system-level models chosen for the investigation are multicomputer networks, which are scalable up to 

thousands of processing nodes. Initially, a classification of parallel processing architectures is presented 

along with performance criteria and design issues related to the various interconnection network 

topologies. Communication and synchronization issues of MIMD systems are explored. A major 

limitation of planar tree structures is discussed along with a solution to help alleviate the problem, which 

is to make use of the binary fat-tree. Practical aspects of efficiently simulating large behavioral and 

structural models (using the fat-tree model as a case study), on a uniprocessor system are analyzed. The 

system resources of the workstation used to perform the simulations are carefully monitored to see where 

resource utilization problems usually occur. The size of the model is increased and the run time of the 

simulation compared with that of smaller sized models. A memory threshold level is detected after which 

memory resource contention problems occur and the simulation efficiency declines. 

One of the problems observed in simulating complex models is the fact that simulation runs take 

a very long time to execute. A multicomputer using the fat-tree interconnection network is proposed as a 

suitable architecture for the distributed simulation of VHDL models. Various algorithms used for the 

parallel discrete event simulation (PDES) of VHDL models are evaluated. The feasibility of this approach 

is evaluated by analyzing the factors affecting the performance of the proposed architecture. The number 

of hops a message takes to travel from one processor to another in the fat-tree is used to estimate the time 

of an event message between two processors. The roll-back and communication costs amongst the 

processing nodes are taken into consideration when evaluating the speedup of the simulation time of a 

VHDL model, simulated over multiple processors. The speedup of the simulation obtained by using the 

fat-tree topology is compared with the results obtained with a linear array of processors. The future 

inclusion of the "shared variable" into the language and its impact on the implementation of parallel 

simulators on multicomputer networks is analyzed.
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Chapter 1 

Introduction 

During the last decade, we have seen a major growth in the performance of low-cost computers that 

are based on microprocessor technology. This growth is expected to continue into the foreseeable future 

due to the continuing progress in increasing the density of the VLSI chips from which modern computers 

are constructed. In the early 1980's, microprocessor performance became a major research area with focus 

on quantitative metrics such as instruction execution rates and instruction counts. Sophisticated 

architectural techniques which had been in widespread use in large mainframes and supercomputers were 

incorporated into the microprocessors. The introduction of processors with a simple instruction set made 

it easier to migrate these techniques to the microprocessor. 

During the next five years, we should see an increasing number of scalable parallel processing 

systems being built from these high-performance off-the-shelf microprocessors. These systems will be 

used to help solve the kind of single, large-scale problems (where N, the number of unknowns, is large) 

that overly tax the computational power of the fastest single-processor machines available today. 

Multicomputers are types of parallel processing system that consist of multiple processing nodes 

connected by a communication network. Each processor, also referred to as a node or a processing 

element, has computing, memory, and communication resources. The computing resources perform the 

processing assigned to the node. The memory stores both program and data. The communication facilities 

are used to transmit and receive data from other processing nodes. 
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1.1 Research Goals 

Since its introduction as a hardware description language, the VHDL language has been used only to 

a limited extent to model large-scale parallel processing systems. VHDL models of multicomputer 

networks have mainly been used to model the routing among the interconnecting switches found at the 

nodes of the network. The following issues are investigated in order to gain an insight into the modeling 

of (increasingly) complex systems with the VHDL hardware description language. 

i) In order to study the suitability of using VHDL in the design of system-level models of increasing 

complexity, a 32-node multicomputer network based on the fat-tree architecture, with structural-level 

processing nodes is simulated. The processor in each computer node is tightly coupled to a memory that 

is physically separate and logically private from the memories of the other node computers. 

Interprocessor communication in the multicomputer occurs by routing messages through the 

interconnection network. As the size of the multicomputer model is increased from 4 to 32 processing 

nodes, the resources of the workstation used to perform the simulation are carefully monitored. An 

analysis is performed on the type of resource contention problems which occur when simulating large and 

complex models and the impact that these problems have on the run time of the simulation. 

ii) Another aspect of the research focuses on the nature of the parallel algorithms used to program 

massively parallel processing systems. The von Neumann model of a computer is limited by all the 

communications between the central processing unit and the memory unit proceeding along what is 

essentially a single interconnection line, the so-called "von Neumann bottleneck." A negative aspect of 

this single link on the speed of a computer is not confined only to its limited capacity. In fact, the entire 

algorithm design process is adversely affected since we are forced to think about computational processes 

in sequential terms. If the dynamic instruction frequency mix of a given parallel program could be 

recorded from simulating the VHDL model of the multicomputer network, it would provide us with 

valuable information about the demands made on the processing nodes, in terms of whether the programs 
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are more "control" intensive or "ALU intensive." The information obtained would allow designers of 

future generations of microprocessors to make enhancements to better accommodate the needs of the 

processors used in these massively parallel processing systems. 

iii) One of the problems associated with the discrete event simulation of large models is the fact that 

simulation runs take a very long time to execute. Parallel discrete event simulation (PDES) techniques 

can be used to simulate large VHDL models on parallel processing systems. Experiments are performed 

to evaluate the feasibility of using the fat-tree architecture to perform the parallel simulation of VHDL 

models and determine if a speedup in simulation time would be obtained over simulating the models on a 

single processor. In the case of optimistic distributed time algorithms, communication latency issues and 

the cost of message ro//iback are also included in the analysis in order to determine the effect of these 

factors on the performance of the fat-tree multicomputer network. 

1.2 Outline of Thesis 

In Chapter 2, an overview of multicomputer networks is presented. A classification of parallel 

processing architectures is provided along with performance criteria and design issues related to the 

various interconnection network topologies. Communication and synchronization issues of MIMD 

systems are analyzed. The factors affecting the scalability of parallel processing systems are then 

discussed. The chapter concludes with an overview of factors used to determine how performance 

characteristics scale with the number of processors being interconnected, using a specific network 

topology. 

Chapter 3 describes the VHDL model of the processing node used in the multicomputer network. 

The structural-level VHDL model is based on the DLX processor, a 32-bit reduced instruction set 

processor described in [1]. The reasons for choosing this processor are discussed. The fact that parallel 

Chapter 1 3



algorithms make efficient use of the memory hierarchy is considered in the design, by providing a cache 

memory in each processing node. Instruction level parallelism is explored with a suitable test case. 

Chapter 4 begins with a series of definitions used to describe trees in graph theory. Examples are 

provided of earlier research projects which utilized tree-based structures. A major limitation of the 

planar tree structures is analyzed, along with a solution which is to make use of the binary fat-tree to help 

alleviate the problem. The inclusion of structural-level processing nodes in the model of the fat-tree 

multicomputer, described in Chapter 4, has a useful consequence. The dynamic instruction frequency mix 

of a given parallel program can be measured. 

A practical aspect of efficiently simulating large behavioral and structural models, (using the fat-tree 

model as a case study), on a uniprocessor system is analyzed. The system resources of the workstation 

used to perform the simulations are carefully monitored to see where resource utilization problems usually 

occur. The size of the model is increased and the run time of the simulation compared with that of 

smaller sized models. A memory threshold level is detected after which memory resource contention 

problems occur, and the simulation efficiency declines. 

One of the problems observed in simulating complex models is that simulation runs take a very long 

amount of time to execute. The trend is for run times to lengthen, since the combinatorial complexity of 

Circuits is out-stripping performance improvements in computers. In Chapter 5, a multicomputer using 

the fat-tree interconnection network is evaluated as a suitable architecture for the parallel simulation of 

VHDL models. Various algorithms used for the parallel discrete event simulation (PDES) of VHDL 

models are explored. The feasibility of this approach is carried out by analyzing the factors affecting the 

performance of the proposed architecture. Results obtained from simulating the model of the fat-tree 

multicomputer network, described in Chapter 4, are used to provide details about the interconnecting links 

between the various processing nodes. The number of hops a message takes to travel from one processor 

to another in the fat-tree is used to estimate the time of an event message between two processors. The 

roll-back cost and the cost of communication amongst the processing nodes are taken into consideration 
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when evaluating the speedup of the simulation time of a VHDL model, simulated over multiple 

processors. The speedup of the simulation of a VHDL model using the fat-tree topology is compared with 

the results obtained with a linear array topology. 

The future inclusion of the "shared variable" into the language and its impact on the implementation 

of parallel simulators on multicomputer networks is analyzed. Conclusions drawn from the results 

obtained in the previous chapters are presented in Chapter 6. 

Chapter 1 5



Chapter 2 

Overview of Multicomputer Networks 

2.1 Introduction 

During the last decade, we have seen a major growth in the performance of low-cost computers that 

are based on microprocessor technology. This growth is expected to continue into the foreseeable future 

due to the continuing progress in increasing the density of the VLSI chips from which modern computers 

are constructed. 

During the next five years, we should see an increasing number of parallel processing systems built 

from these high-performance off-the-shelf microprocessors. These systems will be used to help solve the 

kind of single, large-scale problems (where N, the number of unknowns, is large) that overly tax the 

computational power of the fastest single-processor machines available today. Examples of 

computationaly intensive problems include scientific simulation modeling, advanced computer-aided 

design, and real-time image processing of large-scale database and information retrieval operations [2]. 

In this chapter, an overview of multicomputer networks is presented. A classification of parallel 

processing architectures is provided along with performance criteria and design issues related to the 

various interconnection network topologies. Communication and synchronization issues of MIMD 

systems are analyzed. The factors affecting the scalability of parallel processing systems are then 

discussed. The chapter concludes with an overview of the factors used to determine how performance 

characteristics scale with the number of processors being interconnected, using a specific network 

topology. 
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2.2 Classification of Parallel Processing Architectures 

The most widely used scheme to classify the different type of processing systems was developed 

by Flynn [3]. It provides a four-way classification, in terms of whether one or several processors execute 

instructions on one or several streams of data. This scheme, though simplistic in nature, has endured the 

passage of time, probably because our understanding of multicomputers is still too primitive to replace it 

with a more definitive one. 

In the case of one or more processors operating on multiple streams of data, Flynn's classification is 

given below: 

SIMD (Single Instruction Multiple Data Stream) -- A network with only one controller although 

each processor works with information stored in its own and nearby memories. An example of such a 

system is the Connection Machine (CM-2) built by Thinking Machines Corporation which consists of a 

bit-slice array of up to 65,536 processing elements [2]. 

MIMD (Multiple Instruction Multiple Data Stream) -- A network where each processor has its own 

controller and can work in a completely asynchronous way, allowing multiple threads to be executed in an 

autonomous manner. Intel's mesh-connected Paragon system uses this model to connect its processing 

nodes [2]. Figure 2.1 shows a hierarchical classification of parallel processing architectures, with the 

MIMD model divided into a number of subclasses. Data parallelism refers to the situation where the same 

operation executes over a large array of data. Dataflow computers emphasize a high degree of parallelism 

at the fine-grain instruction level. Reduction computers are based on a demand driven mechanism which 

initiates an operation based on the demand for its result by other computations. 

A mix of SIMD and MIMD leads to the SPMD (Single Program Multiple Data) model in which each 

processor executes the same SIMD program on its local data, but with an individual flow of control. In 

this way, the computation may be switched between SIMD lock step and MIMD asynchronous operation, 

based on the structure of the SPMD program. Generally, SPMD is regarded to be more of a MIMD 

programming style (SIMD programming on an MIMD machine) rather than a distinct classification. 
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There are a number of other important distinctions to be considered which could be used to 

categorize parallel processing systems [4]. Among them are: 

2.2.1 Granularity -- The amount of processing and communication in the system needs to be balanced in 

order to obtain optimal performance. An important factor that helps determine the optimal topology is the 

way in which the application is partitioned into individual processing tasks. The granularity or grain size 

is the average size of each processor’s subtask, measured in number of instructions executed in a program 

segment. The grain size of the partition is the metric used to define the size of each processing task. In 

processing data, for example, processing could be done at the bit level, vector and matrix level, record 

level, file level and so on. A relatively small number of powerful processors would generally be used for 

coarse-grain parallelism with information rarely being passed from one processor to the other. At the 

other extreme we find fine-grain parallelism where a large number of less powerful processors are used to 

execute programs with a large amount of communication between the processors. 

2.2.2 Coupling -- The degree of coupling between the processing elements is another method commonly 

used to classify parallel processing systems. A system is considered to be tightly coupled if the processors 

share a common memory, as in the case of multiprocessors, or if the communication between the 

processors is good (irrespective of the underlying hardware/software mechanisms), as in the case of 

multicomputers. A loosely coupled system would have its processing elements located at greater distances 

from one another, as can be seen with a workstation cluster (used for distributed computing). 

The issue of whether the system has been designed to be used for general purpose computing or 

special purpose applications (digital signal processing, for example) and the different amounts and types 

of synchronization amongst processors are other factors which help in the overall classification. 
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2.3 Interconnection Topologies for Multicomputer Systems 

Multicomputers are types of parallel processing systems that consist of multiple processing nodes 

connected by a communication network. Each processor, also referred to as a node or a processing 

element, has computing, memory and communication resources. The computing resources perform the 

processing assigned to the node. The memory stores both program and data. The communication 

facilities are used to transmit and receive data from other processing nodes. 

2.3.1 Performance Criteria 

The issues related to the performance of an interconnection network connecting a set of processing 

nodes are the following [5]: 

2.3.1.1 Latency -- The message latency is the amount of time it takes a single message to travel between 

two processors. This performance metric depends on the time it takes a processor to prepare the message 

which is to be transmitted, the distance that the message has to travel, the amount of traffic prevalent in 

the network at that time and the length of time taken by the receiving node to process the message. 

2.3.1.2 Bandwidth -- The bandwidth helps indicate how much traffic a network can handle. It is defined 

as the mean number of active memory modules in one transfer cycle of the interconnection network [6]. 

The message locality should be kept as high as possible to help preserve the available bandwidth and 

reduce the possibility of congestion due to too much message traffic in the network at any particular time. 

2.3.1.3 Cost -- There are a number of factors which affect the cost of a network The number of overall 

links (wires) in the network is a factor to be measured as each physical connection adds to the overall cost. 

The number of links required per node is also a cost factor. Additionally, the physical layout should also 

be as efficient as possible as packaging complexity adds to the cost. If the routers are locally controlled 
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and are of a fixed degree, the cost can be minimized. Also, if the network can be built from easily 

available components, the cost can be greatly reduced. 

2.3.1.4 Reliability -- The reliability of a network is an important factor which has to be carefully 

considered in the case of interconnection networks, where the elements may number in the thousands and 

the possibility of component failure is quite high. The fault-tolerance of the network can be improved by 

providing multiple paths to connect processing nodes to each other. In the event of a failure in any link of 

the network, another path could be used and the network could continue to function in a fault-tolerant 

manner. 

2.3.2 Design Considerations 

The processors and memory of a multicomputer's processing nodes are essentially the same as those 

that are used in single processor machines. The distinguishing feature in the case of the multicomputer 

processing nodes is the support for interprocessor communication that is used to enable the sharing of data 

between the nodes through the message-passing mechanism. Thus, the overall performance of the system 

is heavily dependent on the interconnection networks performance. The topology of an interconnection 

network defines the placement and the number of the communication links which are used to join the 

processing nodes in a multicomputer system. Figure 2.2 shows some of the popular static interconnection 

topologies in use today. The designer of an interconnection network has to consider a number of design 

issues and make a trade-off between these issues before selecting a particular topology [7]. The issues 

involved in making the decision are as follows: 

2.3.2.1 Topology -- The interconnection network can be broadly categorized as being static or dynamic, 

with each class being further broken down into their own subclasses. 

Chapter 2 11



  

  

  

    

  

  

  

  

  
      

    
          

O O O— Oo 

(a) Linear Array (b) Star (c) Ring 

—_<( )— 

(d) Mesh (e) Binary Tree (f) Completely Connected 

Q O 

O 

(g) Four-dimensional Hypercube (h) Torus 

Figure 2.2 Static interconnection topologies 
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Static topologies are formed from point-to-point direct connections which will not change during 

program execution. They are used for fixed connections among subsystems of a centralized system or 

multiple computing nodes of a distributed system. They have been effectively used for problems with 

predictable communication patterns. Static topologies can be further classified based on the number of 

dimensions required for their layout. An example of a one-dimensional topology is the linear array. Two- 

dimensional topologies include the ring, star, tree and mesh. Three-dimensional topologies include the 

completely connected chordal ring and 3-cube-connected-cycles. | 

Dynamic topologies are implemented with switched channels, which are dynamically configured to 

match the communication demand in user programs. They have been found to be suitable for a wider 

range of problems than static topologies, but at a higher cost. They include buses, crossbar switches and 

multistage networks, which are often used in shared memory multiprocessors. Dynamic topologies are 

classified based on the number of stages that exist in the communication links between the nodes. A 

single-stage network has each communication link connected only to processing nodes. Processing nodes 

that do not have a direct link between them have to pass data through intermediate nodes when they want 

to communicate with each other. The individual links in this communication path are directly connected 

to pairs of processing nodes and hence these networks are also called direct networks. A multistage 

network consists of more than one stage of switching elements and is usually capable of connecting an 

arbitrary input terminal to an arbitrary output terminal. 

2.3.2.2 Operation mode -- Networks can be classified as being synchronous or asynchronous, based on 

their mode of operation. Synchronous communication is used for processing in cases where 

communication paths are established synchronously for data manipulation functions or instruction 

broadcasts. The regularity of the data enables the same operations to be applied in parallel by all the 

processing elements, constraining hardware processes to perform in "lock-step.". Asynchronous 

communication is needed for multiple processers in which communication is performed dynamically. The 
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individual processing elements can compete for common resources. Furthermore, the processing elements 

can communicate and cooperate with each other in order to improve the utilization of available resources. 

2.3.2.3 Switching Strategy -- There are three techniques commonly used to transmit messages between 

processing nodes. The message can be transmitted as a whole, as in circuit switching, where an exclusive 

independent virtual circuit is established for a source/destination pair. This is accomplished by a 

signaling message. The path once established, is unavailable to any other source/destination pair until 

both the original source and destination agree to stop communicating with each other. After a path is set 

up, no further signaling for addressing purposes is required. One of the drawbacks of circuit switching is 

the fact that no communication is possible between any other source/destination pair if that pair needs to 

use any of the lines which are currently being used by an already established circuit. 

In packet switching, the message is broken down into a series of small packets and then each packet 

is transmitted through the network from the source to the destination. The basic idea is to improve 

channel utilization by freeing up the channels on a path during periods in which the source and 

destination nodes are not communicating with one another. In the store-and-forward method, packets are 

routed towards their destination node without establishing a path beforehand. The packets are passed 

through a series of intermediate nodes. Each intermediate node receives the packets in a buffer (or store 

facility) where the node examines the packet's header information to determine where to forward the 

packet so that it gets closer to its final destination. The time it takes to receive and examine the packet 

headers and the time the message has to wait before a proper communication link becomes available are 

the main factors which affect the transmission time of a message. 

Another method used to switch messages is wormhole routing (or cut-through switching) [8]. This 

method tries to combine the positive features of both circuit switching, as well as packet switching. The 

first packet of the message contains status information such as the source, destination and the message 

length. An intermediate node which receives this first packet examines it to determine where it is headed. 
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