Simulation of Large-Scale System-Level Models

by

Vikrampal Chadha

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

APPROVED:

(Dr N. I Davxs Iv, Chalrman

O £ Qo 37/ /3&7

Dr. J. R. Armstrong Dr. F. G. Gray

September, 1994

Blacksburg, Virginia

c, 2

L0
NS

2
e

Simulation of Large-Scale System-Level Models
by
Vikrampal Chadha
Dr Nathaniel J. Davis IV, Chairman
Electrical Engineering
(ABSTRACT)

In this thesis, the efficient simulation of large-scale system-level VHDL models is analyzed. The
system-level models chosen for the investigation are multicomputer networks, which are scalable up to
thousands of processing nodes. Initially, a classification of parallel processing architectures is presented
along with performance criteria and design issues related to the various interconnection network
topologies. Communication and synchronization issues of MIMD systems are explored. A major
limitation of planar tree structures is discussed along with a solution to help alleviate the problem, which
is to make use of the binary far-tree. Practical aspects of efficiently simulating large behavioral and
structural models (using the fat-tree model as a case study), on a uniprocessor system are analyzed. The
system resources of the workstation used to perform the simulations are carefully monitored to see where
resource utilization problems usually occur. The size of the model is increased and the run time of the
simulation compared with that of smaller sized models. A memory threshold level is detected after which
memory resource contention problems occur and the simulation efficiency declines.

One of the problems observed in simulating complex models is the fact that simulation runs take
a very long time to execute. A multicomputer using the fat-tree interconnection network is proposed as a
suitable architecture for the distributed simulation of VHDL models. Various algorithms used for the
parallel discrete event simulation (PDES) of VHDL models are evaluated. The feasibility of this approach
is evaluated by analyzing the factors affecting the performance of the proposed architecture. The number
of hops a message takes to travel from one processor to another in the fat-tree is used to estimate the time
of an event message between two processors. The roll-back and communication costs amongst the
processing nodes are taken into consideration when evaluating the speedup of the simulation time of a
VHDL model, simulated over multiple processors. The speedup of the simulation obtained by using the
fat-tree topology is compared with the results obtained with a linear array of processors. The future
inclusion of the "shared variable" into the language and its impact on the implementation of parallel

simulators on multicomputer networks is analyzed.

Acknowledgments

I would like to express a deep sense of gratitude towards my advisor, Dr Nathaniel J. Davis IV, for
working with me to help further my educational goals. I consider myself very fortunate to have had as a
mentor, someone with the rare insight and wisdom who knew how to make me bring out the best in
myself by encouraging me to fully explore those ideas that I found to be the most fascinating. In the
process, I learnt a great deal and thoroughly enjoyed the research experience which led to the completion
of this thesis.

Thanks are also due to my committee members, Dr J. R. Armstrong and Dr. F. G. Gray for their
guidance and participation. There were numerous researchers and students around the world who spent
so much of their time in helping me that I was worried that their work would suffer as a result!. I would
especially like to thank Dr Peter Ashenden at the University of Adelaide, Australia, Paolo Faraboschi at
the University of Genoa, Italy and Frederic Petrot at the University et Marie Curie, France for their
patience in answering all my questions (and there were many!), and their quick responses at some crucial
moments.

I would like to dedicate this thesis to my parents who have always been my greatest source of

inspiration and who helped make this dream of mine come true.

il

Table of Contents

ADSEFACE. ...ttt et et h e et ettt et et e e bt e rae e e nens ii
ACKNOWIEAZEMENLS. ...ttt et s e e et a e e b e ensbeeestnee e abaeeetbee e e reenatraeannreas iii
LSt Of FUZUIES..........oooiiiiiiiiit ettt ettt st e st e e bt e taeseb e s taeeabaesaseanteassbaessseennas vii
List 0f TabIes..............cccoiviiiiiiiiiii e e ix
1o INEFOAUCHION.o.eiiiiiiit et ettt ettt re et e st e sht e e ta s ebe e sbbe e et e s e e ebe e eeenes 1
1.1 RESCATCH GOAS.....c.ueiiiiiiiieiie ittt ettt et st es e an e s nesiarabeen 2

1.2 OUtliNE Of TRESIS.c.eiiiiiieeriiiieeerte ettt ettt sb s en e e s bt st e sbb e nesesaresnsaanres 3

2. Overview of Multicomputer NetWOTrKS................oooiiiiiiiiiniiiec et 5
2.1 INTOQUCHON.oeiiiiiiicntciitiete ettt ettt e et ebbese e resaben 5
2.2 Classification of Parallel Processing ATChIteCIUTES..............ccveiviviirivieiie et 6
2.2.1 GIAMUIATILY....covtitieiieteetcoe ettt ettt ettt ettt s bt et st s bt e bt st e st eabeenbeereentaeraes 8

2.2.2 COUPLINE....couiiieiiiiierie ettt ettt et e b st e e st a e she e et e sbb e ee bt et s e baesebe s et e ebbeenne e et e enneeannees 8

2.3 Interconnection Topologies for Multicomputer SYStemS.............ccocevevreererierenrienieeieescre e 8
2.3.1 Performance CIItETIAccviteiiruintiereeeerie e sir ettt et s esbenbeestesbeeseessessaesaeeaneemeeaneaneean 9
T O B O 1 (< 1 Lo 2O OO PSSR 9

2.3.1.2 BandWidth........coooiiiieiiie ittt 9

2.3.1.3 COSE cuviiiiiieiieteetce ettt ettt sh e e e n e et se e r ek e e nes 9

2.3.1.4 REHADIILY......ovuiiiiit ittt et st s be e e 9

2.3.2 Design ConSIAETALIONS.ccoviitiiriiiiciretctieit et eeeertert et ees st e eteenee et eenenteeareabessbesbassseassenes 10
2.3.2.1 TOPOLOBYveeietieeiite ettt ettt s et sttt et ettt nae et e e bt e e s 10

2.3.2.2 Operation MOdE...........cooieiiiiiieiiienie ittt sttt siee et e e s te e ses e raesneeenbeaans 12

2.3.2.3 SWItChING StrAtEEY.......oiiiiiiitiieiiie ettt e te et e st e e sab e re e ereba s eebbaeeeerrens 12

2.4 Communication and Synchronization ISSUES.............c.cccceiviiiiiiiiiiieiee e 13
2.4.1 Synchronization Issues in Shared Memory COmMPULErS............c..cccoveeviericveeeiirieie e, 14

iv

2.4.2 Synchronization Issues in Distributed Memory Computers............c.c.ccceeevveevieineeeeenrennnn. 16

2.5 Scalability of Parallel Processing SYSIEINS...........cccovuvioieieiiiieieeireeiieeie e eeieeeiie s saeeear et e e 17
2.5.1 Network Scaling FaCtOTS.......c..oiiuiiiiiiiiiie ettt et e e staeeenra e 18
2.5.1.1 NOAE DEEIEE.......cccuueiiuiieieieeitieiee ettt ettt et e st e e ee e st e e tb e s sasseeseasaaessasaeeans 18
2.5.1.2 Network DIAIMELET........c..cooiiiiiiiiiiiiiit ettt et sate e seae e 19
2.5.1.3 Bisection Width.........c.ccoiiiiiiiiiiiiiiccecn et e 19
2.6 SUININATY.......cciiiieiieiseeeiiesteerte et ebe st e ebeesteeatesseeataeeeeeseeste e seeentaesseasaeantesssaanseesaseesssenseesnses 20
3. Design of a Single Processing NOGE..................occooiiiiiiiiieiiriee et se e se v st ebe s 21
3.1 IMETOAUCHION.eiiiiiiiice ittt ettt et e et e b e sae e eete st e esbeeebeaateesabeserneearen 21
3.2 Evolution of RISC Microprocessor ArchiteCtures...........ccooeeuviieveeiiiiieiie e 22
3.3 Instruction Set Architecture of the 32-bit DLX ProCessor............ccoceiiienieriierinierienieieeeceeneees 24
3.4 INStructon FOIMAL.oocoiiiiiiiiii ettt e st st e e e e s 26
3.5 BasiC Steps Of EXECULOI.cieiiiiieiiiiciiitcriee e et s et et e e st e et e esiteeeanteeestbeesasaeassnsaeesssaesanns 27
3.6 Structural Level VHDL Model of the Datapath..............cooccoiieiiiniiiiiiiieenien e 30
3.7 Processor Bus ATCRItECIUTE.o..eiiuiioiiiiiiii ettt st st e e e sne e seaeentaeeas 32
3.8 Cache DESiZN ISSUES........cccuiitieiieiirciieriteert ettt et st e et e nen e s s e sene 33
3.9 Instruction Level ParalleliSm............ccocoririiiniiniiniiiiiiinirceiiee ettt 40
3.10 CONCIUSIONS. ...ttt ettt sttt e et e bt b e ee e seesbe bbb e et ne e e enes 43
4, Model of the Fat-tree Interconnection Network...............cc..coccooininiiiiniiiiicee e, 44
4.1 INETOAUCHON.oviiitiiiiiee it sttt ettt ee e et e e set e bt e beeseneeme e et sate et e e s e e neseemeeasbeesmneeabeenebeeneneans 44
4.2 Tree TErMUNOLOZY.......ooiiiiiiiiiieirt ettt ettt b e ne e et e e ne s 45
4.3 Tree-bDased SIIUCIUTIES.coeeiiririiereirerrecteee sttt e et sbe et e sbe et e st see e e eenes 46
4.4 Universal Fat TTEES......ccooiuiiiiiiiiii ettt 46
4.5. VHDL model 0f the Fat TTEE........ccociiiiiiiiiiiiiiic et 49
4.6 Dynamic Instruction Frequency COUNLS............c.ccocuiiiiiniiiiiniiiitii et 52
4.7 System Resource UtIlIZAHOMN.coviiiiiiiiiiiiiicicneere ettt sa e e 56
4.7.1. VHDL Source Code OptmiZation.............ceooieiiiiiiienieiiierieereeieescesneesaesveesveesseesevee e 57

4.7.2. Monitoring SyStem RESOUITES.c.eiiiiiiiriieiiie ittt e e ae st et eesibeeesaeneeans 59

4.8 CONCIUSIONS.ouvieitiiiiieeirettee ittt et es et ettt e bt e et eebeestee e haesbte st b e set s ee b e shteeat s et bt asaseanssennenaaneennnran 63

5. Parallel Simulation of VHDL models over a Fat-tree Interconnection Network............................ 65
5.1 IMTOAUCTION. ... coiuiiiriiiie ettt ettt ettt et s e et e s b e ekt eeste e bt e eabeembe s bt e este e nee e s 65
5.2 VHDL Parallel Discrete Event SIMUIation...............coccooviiiiiniiioiiiiiicnieneencn e 66
5.2.1 Sequential Discrete Event SIMulationc.coocooiiiiiiiniiiiin e 66

5.2.2 Centralized-queue AIZOTIthINS..............coooiiiiiiiiieccc e 67

5.2.3 Distributed-time AIZOTItIINS.........c.ocoriiriiriiiiic ettt 67
5.2.3.1 Conservative Distributed-time Algorithms...............ccoco i 67
5.2.3.2 Optimistic Distributed-time AlIgOTithmS.................cccooviieiiiii e 68

5.3 The VHDL ParalleliSm ANalyZer..............ccocoiiiviiiiiiiiiiiie et e ae e svree e s 68
5.4 Experimental Results and ANALYSIS.........cc.eecirieriniiiieieiiieer ettt 70
5.5 VHDL Language Extensions for System-level Modeling...............cccoceeeiiiiiiiniciiinie e 81
5.6 COMCIUSIONS.eeiuiieiiieiieeiie sttt sttt e et eene e stce st e st ea e e rteeateesbe et e sbeenbe e saesreentnessbeeanesenneenreesnnes 84

6. COMCIUSIONS.ouiiiietitieerete ettt ettt et h e s bt bt st e s s et st et s e e e e aresanenbeneneene 86
6.1 Summary of Research WOTK...........ccooiiiiiiiiiii e 87
6.2 FULUIE WOTK ...ttt ettt sat ettt et eesabe s st eeraneeeaenee s 90
APPEIAIX Al oottt h ettt eh e bbbt h e et e bt ean e et e 91
BiblIOrapRyot e ettt e nr e e raee s 93

vi

List of Figures

Figure 2.1 Classification of Parallel Processing Architectures...........ccvuvevieveerercernsiesenieseee et 8
Figure 2.2 Static interconnection tOPOIOZIES.couveerreruirierierereieeere e et et ses e e e saessss e e eaaeens 12
Figure 2.3 Taxonomy of MIMD COMPULETS..........ccccviiiiireeeeriiieerreeeteeeteesieeeereeesseeesaeeeseessreressenssssesenns 16
Figure 2.4 (a) MIMD system with distributed memory............c..cccviirieereririeiereecesee v 16
Figure 2.4 (b) MIMD system with shared MemoOry.........ccocoeiveriiiinieirieees et e 16
Figure 3.1 An abstract view of the implementation of the processor subset............ccccevveevierceeeieienreennenne 30
Figure 3.2 Block diagram of the 32-bit DLX ProCESSOL.....c.coiuiviiemricrirercesrceeceeeeresre et neenees 33
Figure 3.3 Processor bus read transaction.........c..cooiiieeienieriieniieit ettt ettt e ss e 36
Figure 3.4 Processor bus WIite tranSaCtion.........o.ciiiiruieeiitenrieireesiee st e et e bee st s tee s e eeeee s anessasneesaeeean 36
Figure 3.5 Block diagram of the SWIFT processor with cache and memory modules............c.ccccovunneen. 39
Figure 3.6 Processor write to cache (write-through).......c.ccooovviiiieiicieeeeer e 40
Figure 3.7 Processor write to cache (Writ€-Dack).........cccoiveiriiiieiiianienice et ceene s 41
Figure 3.8 Output result of a loop, used to add a scalar value to a VeCtor in MeMmOTY........cccccrrreercrrcens 44
Figure 3.9 Output result of a loop after scheduling and unrolling Operations..........c.ccoceeereerereerereenverieenes 44
Figure 4.1 A complete binary tree where all the switches have one parent and two children................... 49
Figure 4.2. Hop count of the messages, and message path for a 16-node fat tree..........c.cceeveerceeninennne 53
Figure 4.3 A 16-node binary fat-tree, where all non-root switches have two parents...............c..c.c.co... 55
Figure 4.4 A 16-node quadtree, where all non-root switches have two parents and four children............ 56

Figure 4.5 Comparison of the available memory resources for a 32-node fat-tree when a

recursive structure is used and when a non-recursive (repetitive) structure is used................ 63

vii

Figure 4.6 The run time is seen to increase in a non-linear way, due to memory contention,

with an increase in the size of the fat-tree model.........cc.cccooeiiriiiiiniiiiiir 63
Figure 5.1. Performance of a centralized-queue algorithm on fat-trees of different sizes..........c.cccceeec.... 72
Figure 5.2. Performance of a distributed-time algorithm on fat-trees of different sizes.........c..cccoceeeeee. 74

Figure 5.3. Performance of an optimistic distributed-time algorithm of a 32-node

fat-tree with increasing rollback COSES.....c.cevirreriiriierienieceeer et 75
Figure 5.4 Performance of an optimistic distributed-time algorithm of a 32-node

fat-tree with increasing COMMUNICALION COSLS....o.uevrrrrerieriuerieenennernreererrerrereessasseesneesiessseeane 77
Figure 5.5 Performance of an optimistic distributed-time algorithm of a 32-node

fat-tree with increasing communication and rollback COStS..........ccocerviriirieicnniinnieee 78
Figure 5.6 Performance of an optimistic distributed-time algorithm of a 32

processor linear array with increasing communication COSES.......covuineiineereieenieniinencierseneenns 79
Figure 5.7. Comparison of the performance decline between a 32-node fat-tree

and a 32-node linear array with increasing communication COStS.........cccoevrvviinieninninnicicnne 80

viii

List of Tables

Table 2.1 Network Scaling FaCOTS.............ccooiiiiiiiiiieiiiiece ittt et r et eneeereeneas 22
Table 3.1 Comparison of the major features of some of the older CISC architectures.............................. 25
Table 3.2 Comparison of the major features of some of the recent RISC architectures............................. 25
Table 3.3 A list of the instructions used by the Swift (DLX) processor model..................cccccoivevereennnnne 27
Table 4.1 Dynamic instruction mix statistics of parallel benchmark programs...................ccccocoeveevenne. 57
Table 4.2 Dynamic instruction mix statistics of benchmark programs run on a uniprocessor................. 58

Table 4.3 Dynamic instruction frequency counts obtained from the execution of a

test program on the VHDL model of the 32-node fat-tree multicomputer.................occeeenneee. 59
Table 4.4 A report on memory paging and swapping information generated using

the vmstat command, for a 16-node fat-tree simulation on a Sun Sparksation 2...................... 61
Table 4.5 A report on memory paging and swapping information generated using

the vmstat command, for a 32-node fat-tree simulation on a Sun Sparksation 2.................... 61
Table 5.1 Static and dynamic information on the VHDL models used in the tests..............ccoccevreeieeenne 70
Table 5.2 Results obtained with Centralized and Distributed-time algorithms

(rollback cost and communication cost are not considered)...............cocceeeiireeiiiiiiieieeee e 73

ix

Chapter 1

Introduction

During the last decade, we have seen a major growth in the performance of low-cost computers that
are based on microprocessor technology. This growth is expected to continue into the foreseeable future
due to the continuing progress in increasing the density of the VLSI chips from which modern computers
are constructed. In the early 1980's, microprocessor performance became a major research area with focus
on quantitative metrics such as instruction execution rates and instruction counts. Sophisticated
architectural techniques which had been in widespread use in large mainframes and supercomputers were
incorporated into the microprocessors. The introduction of processors with a simple instruction set made
it easier to migrate these techniques to the microprocessor.

During the next five years, we should see an increasing number of scalable parallel processing
systems being built from these high-performance off-the-shelf microprocessors. These systems will be
used to help solve the kind of single, large-scale problems (where N, the number of unknowns, is large)
that overly tax the computational power of the fastest single-processor machines available today.

Multicomputers are types of parallel processing system that consist of multiple processing nodes
connected by a communication network. Each processor, also referred to as a node or a processing
element, has computing, memory, and communication resources. The computing resources perform the
processing assigned to the node. The memory stores both program and data. The communication facilities

are used to transmit and receive data from other processing nodes.

Chapter 1 1

1.1 Research Goals

Since its introduction as a hardware description language, the VHDL language has been used only to
a limited extent to model large-scale parallel processing systems. VHDL models of multicomputer
networks have mainly been used to model the routing among the interconnecting switches found at the
nodes of the network. The following issues are investigated in order to gain an insight into the modeling
of (increasingly) complex systems with the VHDL hardware description language.
i) In order to study the suitability of using VHDL in the design of sys‘tem-level models of increasing
complexity, a 32-node multicomputer network based on the fat-tree architecture, with structural-level
processing nodes is simulated. The processor in each computer node is tightly coupled to a memory that
is physically separate and logically private from the memories of the other node computers.
Interprocessor communication in the multicomputer occurs by routing messages through the
interconnection network. As the size of the multicomputer model is increased from 4 to 32 processing
nodes, the resources of the workstation used to perform the simulation are carefully monitored. An
analysis is performed on the type of resource contention problems which occur when simulating large and

complex models and the impact that these problems have on the run time of the simulation.

i) Another aspect of the research focuses on the nature of the parallel algorithms used to program
massively parallel processing systems. The von Neumann model of a computer is limited by all the
communications between the central processing unit and the memory unit proceeding along what is
essentially a single interconnection line, the so-called "von Neumann bottleneck." A negative aspect of
this single link on the speed of a computer is not confined only to its limited capacity. In fact, the entire
algorithm design process is adversely affected since we are forced to think about computational processes
in sequential terms. If the dynamic instruction frequency mix of a given parallel program could be
recorded from simulating the VHDL model of the multicomputer network, it would provide us with

valuable information about the demands made on the processing nodes, in terms of whether the programs

Chapter 1 2

are more "control” intensive or "ALU intensive." The information obtained would allow designers of
future generations of microprocessors to make enhancements to better accommodate the needs of the

processors used in these massively parallel processing systems.

iii) One of the problems associated with the discrete event simulation of large models is the fact that
simulation runs take a very long time to execute. Parallel discrete event simulation (PDES) techniques
can be used to simulate large VHDL models on parallel processing systems. Experiments are performed
to evaluate the feasibility of using the fat-tree architecture to perform the parallel simulation of VHDL
models and determine if a speedup in simulation time would be obtained over simulating the models on a
single processor. In the case of optimistic distributed time algorithms, communication latency issues and
the cost of message rollback are also included in the analysis in order to determine the effect of these

factors on the performance of the fat-tree multicomputer network.

1.2 Outline of Thesis

In Chapter 2, an overview of multicomputer networks is presented. A classification of parallel
processing architectures is provided along with performance criteria and design issues related to the
various interconnection network topologies. Communication and synchronization issues of MIMD
systems are analyzed. The factors affecting the scalability of parallel processing systems are then
discussed. The chapter concludes with an overview of factors used to determine how performance
characteristics scale with the number of processors being interconnected, using a specific network
topology.

Chapter 3 describes the VHDL mode!l of the processing node used in the multicomputer network.
The structural-level VHDL model is based on the DLX processor, a 32-bit reduced instruction set

processor described in [1]. The reasons for choosing this processor are discussed. The fact that parallel

Chapter 1 3

algorithms make efficient use of the memory hierarchy is considered in the design, by providing a cache
memory in each processing node. Instruction level parallelism is explored with a suitable test case.

Chapter 4 begins with a series of definitions used to describe trees in graph theory. Examples are
provided of earlier research projects which utilized tree-based structures. A major limitation of the
planar tree structures is analyzed, along with a solution which is to make use of the binary fat-tree to help
alleviate the problem. The inclusion of structural-level processing nodes in the model of the fat-tree
multicomputer, described in Chapter 4, has a useful consequence. The dynamic instruction frequency mix
of a given parallel program can be measured.

A practical aspect of efficiently simulating large behavioral and structural models, (using the fat-tree
model as a case study), on a uniprocessor system is analyzed. The system resources of the workstation
used to perform the simulations are carefully monitored to see where resource utilization problems usually
occur. The size of the model is increased and the run time of the simulation compared with that of
smaller sized models. A memory threshold level is detected after which memory resource contention
problems occur, and the simulation efficiency declines.

One of the problems observed in simulating complex models is that simulation runs take a very long
amount of time to execute. The trend is for run times to lengthen, since the combinatorial complexity of
circuits is out-stripping performance improvements in computers. In Chapter 5, a multicomputer using
the fat-tree interconnection network is evaluated as a suitable architecture for the parallel simulation of
VHDL models. Various algorithms used for the parallel discrete event simulation (PDES) of VHDL
models are explored. The feasibility of this approach is carried out by analyzing the factors affecting the
performance of the proposed architecture. Results obtained from simulating the model of the fat-tree
multicomputer network, described in Chapter 4, are used to provide details about the interconnecting links
between the various processing nodes. The number of hops a message takes to travel from one processor
to another in the fat-tree is used to estimate the time of an event message between two processors. The

roll-back cost and the cost of communication amongst the processing nodes are taken into consideration

Chapter 1 4

when evaluating the speedup of the simulation time of a VHDL model, simulated over multiple
processors. The speedup of the simulation of a VHDL model using the fat-tree topology is compared with
the results obtained with a linear array topology.

The future inclusion of the "shared variable" into the language and its impact on the implementation
of parallel simulators on multicomputer networks is analyzed. Conclusions drawn from the results

obtained in the previous chapters are presented in Chapter 6.

Chapter 1 5

Chapter 2

Overview of Multicomputer Networks

2.1 Introduction

During the last decade, we have seen a major growth in the performance of low-cost computers that
are based on microprocessor technology. This growth is expected to continue into the foreseeable future
due to the continuing progress in increasing the density of the VLSI chips from which modern computers
are constructed.

During the next five years, we should see an increasing number of parallel processing systems built
from these high-performance off-the-shelf microprocessors. These systems will be used to help solve the
kind of single, large-scale problems (where N, the number of unknowns, is large) that overly tax the
computational power of the fastest single-processor machines available today. Examples of
computationaly intensive problems include scientific simulation modeling, advanced computer-aided
design, and real-time image processing of large-scale database and information retrieval operations [2].

In this chapter, an overview of multicomputer networks is presented. A classification of parallel
processing architectures is provided along with performance criteria and design issues related to the
various interconnection network topologies. Communication and synchronization issues of MIMD
systems are analyzed. The factors affecting the scalability of parallel processing systems are then
discussed. The chapter concludes with an overview of the factors used to determine how performance

characteristics scale with the number of processors being interconnected, using a specific network

topology.

Chapter 2 6

2.2 Classification of Parallel Processing Architectures

The most widely used scheme to classify the different type of processing systems was developed
by Flynn [3]. It provides a four-way classification, in terms of whether one or several processors execute
instructions on one or several streams of data. This scheme, though simplistic in nature, has endured the
passage of time, probably because our understanding of multicomputers is still too primitive to replace it
with a more definitive one.

In the case of one or more processors operating on multiple streams of data, Flynn's classification is
given below:

SIMD (Single Instruction Multiple Data Stream) -- A network with only one controller although
each processor works with information stored in its own and nearby memories. An example of such a
system is the Connection Machine (CM-2) built by Thinking Machines Corporation which consists of a
bit-slice array of up to 65,536 processing elements [2].

MIMD (Multiple Instruction Multiple Data Stream) -- A network where each processor has its own
controller and can work in a completely asynchronous way, allowing multiple threads to be executed in an
autonomous manner. Intel's mesh-connected Paragon system uses this model to connect its processing
nodes [2]. Figure 2.1 shows a hierarchical classification of parallel processing architectures, with the
MIMD model divided into a number of subclasses. Data parallelism refers to the situation where the same
operation executes over a large array of data. Dataflow computers emphasize a high degree of parallelism
at the fine-grain instruction level. Reduction computers are based on a demand driven mechanism which
initiates an operation based on the demand for its result by other computations.

A mix of SIMD and MIMD leads to the SPMD (Single Program Multiple Data) model in which each
processor executes the same SIMD program on its local data, but with an individual flow of control. In
this way, the computation may be switched between SIMD lock step and MIMD asynchronous operation,
based on the structure of the SPMD program. Generally, SPMD is regarded to be more of a MIMD

programming style (SIMD programming on an MIMD machine) rather than a distinct classification.

Chapter 2 7

[Parallel Computers

Y

Von-Neumann

[Reduction

Data Flow

Single Instruction
Multiple Data

Multiple Instruction
Multiple Data

Multiple Instruction
Single Data

Single Instruction
Single Data

%{%’;?:,‘ég Pipelined Processor%
[Multistage Direct Crossbar Bus
Processor Arrays Hierarchical Hypercubes
Pyramid (Tree Prism
[Binary Tree Quad Tree Fat Tree

Figure 2.1 Classification of Parallel Processing Architectures

Chapter 2

There are a number of other important distinctions to be considered which could be used to
categorize parallel processing systems [4]. Among them are;
2.2.1 Granularity -- The amount of processing and communication in the system needs to be balanced in
order to obtain optimal performance. An important factor that helps determine the optimal topology is the
way in which the application is partitioned into individual processing tasks. The granularity or grain size
is the average size of each processor’s subtask, measured in number of instructions executed in a program
segment. The grain size of the partition is the metric used to define the size of each processing task. In
processing data, for example, processing could be done at the bit level, vector and matrix level, record
level, file level and so on. A relatively small number of powerful processors would generally be used for
coarse-grain parallelism with information rarely being passed from one processor to the other. At the
other extreme we find fine-grain parallelism where a large number of less powerful processors are used to

execute programs with a large amount of communication between the processors.

2.2.2 Coupling -- The degree of coupling between the processing elements is another method commonly
used to classify parallel processing systems. A system is considered to be tightly coupled if the processors
share a common memory, as in the case of multiprocessors, or if the communication between the
processors is good (irrespective of the underlying hardware/software mechanisms), as in the case of
multicomputers. A loosely coupled system would have its processing elements located at greater distances
from one another, as can be seen with a workstation cluster (used for distributed computing).

The issue of whether the system has been designed to be used for general purpose computing or
special purpose applications (digital signal processing, for example) and the different amounts and types

of synchronization amongst processors are other factors which help in the overall classification.

Chapter 2 9

2.3 Interconnection Topologies for Multicomputer Systems

Multicomputers are types of parallel processing systems that consist of multiple processing nodes
connected by a communication network. Each processor, also referred to as a node or a processing
element, has computing, memory and communication resources. The computing resources perform the
processing assigned to the node. The memory stores both program and data. The communication

facilities are used to transmit and receive data from other processing nodes.

2.3.1 Performance Criteria

The issues related to the performance of an interconnection network connecting a set of processing
nodes are the following [5]:
2.3.1.1 Latency -- The message latency is the amount of time it takes a single message to travel between
two processors. This performance metric depends on the time it takes a processor to prepare the message
which is to be transmitted, the distance that the message has to travel, the amount of traffic prevalent in

the network at that time and the length of time taken by the receiving node to process the message.

2.3.1.2 Bandwidth -- The bandwidth helps indicate how much traffic a network can handle. It is defined
as the mean number of active memory modules in one transfer cycle of the interconnection network [6].
The message locality should be kept as high as possible to help preserve the available bandwidth and

reduce the possibility of congestion due to too much message traffic in the network at any particular time.

2.3.1.3 Cost -- There are a number of factors which affect the cost of a network The number of overall
links (wires) in the network is a factor to be measured as each physical connection adds to the overall cost.
The number of links required per node is also a cost factor. Additionally, the physical layout should also

be as efficient as possible as packaging complexity adds to the cost. If the routers are locally controlled

Chapter 2 10

and are of a fixed degree, the cost can be minimized. Also, if the network can be built from easily

available components, the cost can be greatly reduced.

2.3.1.4 Reliability -- The reliability of a network is an important factor which has to be carefully
considered in the case of interconnection networks, where the elements may number in the thousands and
the possibility of component failure is quite high. The fault-tolerance of the network can be improved by
providing multiple paths to connect processing nodes to each other. In the event of a failure in any link of
the network, another path could be used and the network could continue to function in a fault-tolerant

manner.

2.3.2 Design Considerations

The processors and memory of a multicomputer's processing nodes are essentially the same as those
that are used in single processor machines. The distinguishing feature in the case of the multicomputer
processing nodes is the support for interprocessor communication that is used to enable the sharing of data
between the nodes through the message-passing mechanism. Thus, the overall performance of the system
is heavily dependent on the interconnection networks performance. The topology of an interconnection
network defines the placement and the number of the communication links which are used to join the
processing nodes in a multicomputer system. Figure 2.2 shows some of the popular static interconnection
topologies in use today. The designer of an interconnection network has to consider a number of design
issues and make a trade-off between these issues before selecting a particular topology [7]. The issues

involved in making the decision are as follows:

2.3.2.1 Topology -- The interconnection network can be broadly categorized as being static or dynamic,

with each class being further broken down into their own subclasses.

Chapter 2 11

(a) Linear Array (b) Star (c) Ring

(d) Mesh (e) Binary Tree (f) Completely Connected

(g) Four-dimensional Hypercube (h) Torus

Figure 2.2 Static interconnection topologies

Chapter 2 12

Static topologies are formed from point-to-point direct connections which will not change during
program execution. They are used for fixed connections among subsystems of a centralized system or
multiple computing nodes of a distributed system. They have been effectively used for problems with
predictable communication patterns. Static topologies can be further classified based on the number of
dimensions required for their layout. An example of a one-dimensional topology is the linear array. Two-
dimensional topologies include the ring, star, tree and mesh. Three-dimensional topologies include the
completely connected chordal ring and 3-cube-connected-cycles. ‘

Dynamic topologies are implemented with switched channels, which are dynamically configured to
match the communication demand in user programs. They have been found to be suitable for a wider
range of problems than static topologies, but at a higher cost. They include buses, crossbar switches and
multistage networks, which are often used in shared memory multiprocessors. Dynamic topologies are
classified based on the number of stages that exist in the communication links between the nodes. A
single-stage network has each communication link connected only to processing nodes. Processing nodes
that do not have a direct link between them have to pass data through intermediate nodes when they want
to communicate with each other. The individual links in this communication path are directly connected
to pairs of processing nodes and hence these networks are also called direct networks. A multistage
network consists of more than one stage of switching elements and is usually capable of connecting an

arbitrary input terminal to an arbitrary output terminal.

2.3.2.2 Operation mode -- Networks can be classified as being synchronous or asynchronous, based on
their mode of operation. Synchronous communication is used for processing in cases where
communication paths are established synchronously for data manipulation functions or instruction
broadcasts. The regularity of the data enables the same operations to be applied in parallel by all the
processing elements, constraining hardware processes to perform in "lock-step." Asynchronous

communication is needed for multiple processers in which communication is performed dynamically. The

Chapter 2 13

