
Simulation of Large-Scale System-Level Models

by

Vikrampal Chadha

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

APPROVED:

lp N. J. Divis IV, Chairman

OR. Qnon nS.
U/

Ss

Dr. J. R. Armstrong Dr. F. G. Gray

September, 1994

Blacksburg, Virginia

C,&

Simulation of Large-Scale System-Level Models

by

Vikrampal Chadha

Dr Nathaniel J. Davis IV, Chairman

Electrical Engineering

(ABSTRACT)

In this thesis, the efficient simulation of large-scale system-level VHDL models is analyzed. The

system-level models chosen for the investigation are multicomputer networks, which are scalable up to

thousands of processing nodes. Initially, a classification of parallel processing architectures is presented

along with performance criteria and design issues related to the various interconnection network

topologies. Communication and synchronization issues of MIMD systems are explored. A major

limitation of planar tree structures is discussed along with a solution to help alleviate the problem, which

is to make use of the binary fat-tree. Practical aspects of efficiently simulating large behavioral and

structural models (using the fat-tree model as a case study), on a uniprocessor system are analyzed. The

system resources of the workstation used to perform the simulations are carefully monitored to see where

resource utilization problems usually occur. The size of the model is increased and the run time of the

simulation compared with that of smaller sized models. A memory threshold level is detected after which

memory resource contention problems occur and the simulation efficiency declines.

One of the problems observed in simulating complex models is the fact that simulation runs take

a very long time to execute. A multicomputer using the fat-tree interconnection network is proposed as a

suitable architecture for the distributed simulation of VHDL models. Various algorithms used for the

parallel discrete event simulation (PDES) of VHDL models are evaluated. The feasibility of this approach

is evaluated by analyzing the factors affecting the performance of the proposed architecture. The number

of hops a message takes to travel from one processor to another in the fat-tree is used to estimate the time

of an event message between two processors. The roll-back and communication costs amongst the

processing nodes are taken into consideration when evaluating the speedup of the simulation time of a

VHDL model, simulated over multiple processors. The speedup of the simulation obtained by using the

fat-tree topology is compared with the results obtained with a linear array of processors. The future

inclusion of the "shared variable" into the language and its impact on the implementation of parallel

simulators on multicomputer networks is analyzed.

Acknowledgments

I would like to express a deep sense of gratitude towards my advisor, Dr Nathaniel J. Davis IV, for

working with me to help further my educational goals. I consider myself very fortunate to have had as a

mentor, someone with the rare insight and wisdom who knew how to make me bring out the best in

myself by encouraging me to fully explore those ideas that I found to be the most fascinating. In the

process, I learnt a great deal and thoroughly enjoyed the research experience which led to the completion

of this thesis.

Thanks are also due to my committee members, Dr J. R. Armstrong and Dr. F. G. Gray for their

guidance and participation. There were numerous researchers and students around the world who spent

so much of their time in helping me that I was worried that their work would suffer as a result!. I would

especially like to thank Dr Peter Ashenden at the University of Adelaide, Australia, Paolo Faraboschi at

the University of Genoa, Italy and Frederic Petrot at the University et Marie Curie, France for their

patience in answering all my questions (and there were many!), and their quick responses at some crucial

moments.

I would like to dedicate this thesis to my parents who have always been my greatest source of

inspiration and who helped make this dream of mine come true.

ii

Table of Contents

ADSEV ACE... eee ccccccceseeeeneeeceeeeenseeteneceasecceceeseeecenaecssecsseeeenseeceaeenaecsaeeseaeeseseceseereneeseaaeseeaeeeesseeseneees li

ACknowled geme nts. ..0................ccccccscsssssssensscneeeaaeeneeaaaeeaaeaeaeeeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeeeeeeeeeeseeneaaeaanaaaagen ili

List Of Figurres.....00.....00. cece cccccccccscccsseesesneetssneeesessceesesaceeeteseessaeeecsseeeeseeesesesaeseseseeseesageeeatsusesecstareessd vii

List Of Tablles......0..0..0.c ccc cece ces ceeceecsecneseesneseescseesseesenesessseaeetseesieenees deeeeasesseeeseaeeseesssecseensoeaes 1X

Ve Tinto actionn. oo... ce cece eesceeenneneseeaneeeseaeeeceaaeeseseeesesaneeseeneeeesaeeeessaaesesnaeesensaaeeesensaeeeeeseeeeees l

1.1 Research Goals....... ccc ceccceescccesseeeeeseeeessnneecesecessneceesnaceesesseseessaeessaeeceseaeeeseaaeeeeeaaeeeeseneasesevageess 2

1,2 Outline Of Thesis..........0.0eecceccccecesceeeesseecesecneeeeseeecceeesceeescaseeeeseeecseneeesceaeseseteessstareseeteareetens 3

2. Overview of Multicomputer Networks. ..00.......000...0cccccccccssscceccesseeeescessaneeeecessaneeeeesseeaseeeessesseneseeeees 5

ZL UmtrOduction...... ee ceceesesneccesneecesnseeecneeecceseeessaeeesssaeesseetcesseesesnaeeerenaeeeseeeesesnaaeseeseneeeerensiees 5

2.2 Classification of Parallel Processing Architectures.ccccccesseccsseeeeeeeceeeecseecesetresecesneneeesas 6

2.2.1 Gramullarity........ccccccscccscccsscescceseecneeseaecesececeeaeeeceesecececeeecnseseaessueeseeeeeaesnaneeneesseseeeeeneeenags 8

2.2.2 Coupling... ccccccccccsscsscceeesseseeseessnseeeesesssaeeecesseeescesneaeeeeseeaeeseceeeaseeseessessaeeeeeseeesaasaeeees 8

2.3 Interconnection Topologies for Multicomputer System.................ccsscceesscceesneeeeeeneeeeetsaeeeeensaeeees 8

2.3.1 Performance Criteria 0.0.0.0... cee eeccecceseeccesteeecesneecesneecesaeeesenaeeecseasecesaaeestenaceesesaeeenssaneessneaes 9

2.3.1.1 Latency... cece ccecccsensesseeneensseteeseenseneaseaaeassesneasaneaaaaaesaasaaaaaaaaaeaaaaaaaaaeasageaseeesees 9

2.3.1.2 Bamd@width. oo... cccccccccccseceseesseessceceeeceeseeaecnseeeseesseceaeceeesaeeseeeesnesseeseeeessesenaeseneeeeaees 9

2.3.1.3 COSt ..ocecccccccsccccestcneceeeesensceecesneeeesceseaneesseseaneeeeseaueceesennaeeeecessaasaeeseseraaeeseesensaaeeeseseees 9

2.3.1.4 Reliability... ceccccccccessecseseecteesseeeeensceteecceeeesneecenaeesteesseeecceeseeaeesteeeseaeessaeessaters 9

2.3.2 Design Considerations.0:.ccccsscccccssssneeeeceesneeeerescsaeeecessaeeeceeseneeeeessseeateeeesesssaeeeeesesens 10

2.3.2.1 TOpology............ccccceecsccccccseeeeenensceeeeseeteeeesnsaneeeeeeeeeesnnaaeeeseceeeeeseesinaaaeaeeeeeeeseseeeetereeages 10

2.3.2.2 Operation Mode... cece cceccccecceceeessensneeeeceesensessneeeeeseeeeseseeneseeeeeeeseseseetetesnensaaaens 12

2.3.2.3 Switching Strategy... ccc cccccccccesesseeeeeneeeeeeeeeeensneeeeeeeeeseseeeeeessaeeeeeeeeseeeseeseeen ees 12

2.4 Communication and Synchronization ISSUES.:.ccccscccesseccssssceeesseceesseusecssastecessaseecensaeeeensns 13

2.4.1 Synchronization Issues in Shared Memory ComputerS......0....0...0.cccccccteeeeseeseeeteesseteneeens 14

iv

2.4.2 Synchronization Issues in Distributed Memory Computers..............00...ccccccessesessseseeeeenseees 16

2.5 Scalability of Parallel Processing SysteMs............0....cccccccccccssscceesesnceeeeceseaeeeeecesesseeeeeetesessaaeeses 17

2.5.1 Network Scaling Factors............cccccccccccccccccecceceeeeeeeeeeeeeeeeeseeeeeeeeveeeeeeseeeeeeeeeeeeeeeseneeeeeeseeeaneas 18

2.5.1.1 Node Degree. cc ccccccccccccccescesennnneeeeceeeesestsaeaeeeeceeseeseesanesaeeeeeeeesseseatenaaasaseeeeneneese 18

2.5.1.2 Network Diametet........0..0. cee cecceseecnencnecanenneneeneeceeaeeeeseeneeeeneeeeeeeneeesaeeaaasssseageeaeee esses 19

2.5.1.3 Bisection Width... ccc ececceceecneeeeeseeeeseacecsecaececsaeeeseeeeseeaeeeesaceeseeeeseseseeseesees 19

2.6 SUMMALY.........ccc ccc ccceesscceseceseeeccesesseeceescsseeeccesnussecceseussaseecsssseeecesssceeessesssseeeeceesssatesesessenssseenes 20

3. Design of a Single Processing Node.c..cccccccccsscccessceessseeserseeeesseescseseeeeseeesenseeeeeeenssaaeeees 21

BL Tmtroduction. 0.00.0... ccc cceccccesccccseeeecsneceecaeeeseaeeecesanecenueecetaneesseeeescaeeeceneeserseneeeesesesetetaeessseaneees 21

3.2 Evolution of RISC Microprocessor Architectures.c::cccccecssseceessuseeeeecesecteeeeeessssteneseseesenes 22

3.3 Instruction Set Architecture of the 32-bit DLX Processor...............cccccccccescssseeeeceseeeeeceesesssseeeeees 24

3.4 Instruction Format.0..0....ccccceceeceeceeessceeeeeceseneceeessanseeecsesaeeescessaaeeeeesseneneeeeseesseeeeeeeenaaseaeeeenes 26

3.5 Basic Steps Of Execution............0..ccccccccccessessccecessseceeeesesneeeesceseeeescseseeeeesesscsseeeesrsesaeeesessensnssaaes 27

3.6 Structural Level VHDL Model of the Datapath...0...0.......... cece ccscesesseessesneeeereeeseersetsteeteeseeeeeeeneees 30

3.7 Processor Bus Architecture........0....cccccceccesceccecceseaneeeeesecneeeceeanaeceeseseaeeeseesenneceseessenaeeeeresseentaneees 32

3.8 Cache Design ISSUES...............cccccccecsseeeeeeeeneeeeeseesceeereesaneeeeesnaeeeesseaeeeeseeseaeeeecesenaaeeesereesesanenesesed 33

3.9 Instruction Level Parallelism.0..ccccccececcecsccceeecseeeeeeeeeceeaaeeceaeecesneeeeensaeeessaaeeseseanesecsaeeesees 40

3.10 COomclusions..............ccccccccccsseeceseneeecnneeeseeeeseensceccnaaecsesaeecesaeecevsaeeeseneeeeenueeseseeeseenaceeeseseeseseeas 43

4. Model of the Fat-tree Interconnection Network........0.....00.0.cccccccccceeecceeenneeceseaneeeseaeeetetaeesessuneneees 44

ALL [mtroduction..........c ee ccecccssccesneceseesseeseeneessnecesaeesseeeessesesneersaeesseesesaecenaeeceseesessesesavesteersneeeesaae 44

4.2 Tree Termimology.............ccccccccccccessccecssscececesceceeececsnneeeessenseeescseeneeesescsaeesseseneuaeeeeeseeniatatesesesaaas 45

4.3 Tree-based Structures... ccccecsncceseeeeesecnecessneeeeseceesneeessseeceeneeeessuseesessaeesseeaeeetseeeeeececaeees 46

4.4 Universal Fat Trees............cccccccccccccsssssceceeceeecesssecneneeceeceeseeseaenaeeececeesesseneeeeeeeeceseesesseseeentnsieseeaees 46

4.5. VHDL model of the Fat Tree... cece ceeeeecncerecceenenneneeaneeeeneeeeeeereeeeneeneeeaeeneeneeaaaaaaaaesaeeeees 49

4.6 Dynamic Instruction Frequency Coumts............cccccceccccecseeseaneececneeeseneeeesetaeeeseteeeeveatesesseneseessnanes 52

4.7 System Resource Utilization.ccccccecesccccesseecesceeeeeneeceeeeessneeeeeseeeeeseseeeecseaeeeessueresensssenesenas 56

4.7.1. VHDL Source Code Optimization... cccccscscccceceessesnseeeeeeeeeseseeseeeessenassscenaesesens 57

4.7.2. Momitoring System ReSOUICES...............ccccccccccceesessssseeeeecesessesesseaeeaeeeeeseeeecssessseasseeseeasseeseess 59

A.B COmclusions. 0.0... ccccccccccccesseceeseereeeeceteneeeeeesneeeeeeeseseeeeseenneeeeeceeeeeeseeseeaaeeseeseseaeeeeeenenaaqeeeseseneanas 63

5. Parallel Simulation of VHDL models over a Fat-tree Interconnection Network...................0...... 65

5.1 UmtrOduction...........0.ecececcceceneeeeeteenneeeeseeneeeeeeseaeeeeeeeenaeeeessesaaeeeeeseaeteeeseseaeeeseesenaatecensaenneneeeseay 65

5.2 VHDL Parallel Discrete Event Simulation.0.....0.0 ccc cccccecencceeeceeeeeeeeeesenaeeeceeeesesstaeeecstesesens 66

5.2.1 Sequential Discrete Event Simulation 0.0.0.0... cccccccccesscsccesessseeeeeeesssseeeesessesnesesescausseceees 66

5.2.2 Cemntralized-queue Algorithms.ccccccccccccccessssteceeececcesensesssseeesescecesceennenstnnseneaeuess 67

5.2.3 Distributed-time Algorithms.ccceccccccccccceeeeeeensneeneeeeecessanesnaeeeeeeeeeersssueeenenaaeaenaeeeseneees 67

5.2.3.1 Conservative Distributed-time Al gorithms.0..0.cccccccccccessseceeeseseeeeeeesesseeeeeseseeaas 67

5.2.3.2 Optimistic Distributed-time Algorithms.0.00cccccccccccescceesessnseeeecesssseeeeessetseaseeeeees 68

5.3 The VHDL Parallelism AmalyZer.................cccccccccccccesscsseensneeeeesecseeescneaaeeeeeeeeessesseesanaaasanseeeneeess 68

5.4 Experimental Results and Analysis........0. cc ececcesssceccecneeeeneeeeesnceesseneeeesncnescesaaeestenaneceesaneeeeees 70

5.5 VHDL Language Extensions for System-level Modeling................ccccccccccesssseceeesensnseeeeensesnaness 81

5.6 COmclusions.............ccccccccecssecesscesseeceneesenseessceecsscessaeeecsaceseccaeeseeeeenteeteessieeseeeeseeaaeesneeeseeesenaeeeeas 84

©. COmCIUSIONS.c ce cecccccceceeeeeceeeeeseaeeseesesneeeeceenenseecorsenseeecceenaeeceeseeeeesseseeeteeseneanaaseseseeaaeesesetaes 86

6.1 Summary of Research Work... ccccscssccncnecnsenenncneeneeeeeeeseeeeeeeeeeeeeeeeseeeeeeeeeeeeseeeeeeeeeneeeteenaaaaaea 87

6.2 Future Work... cccccccccccesesessneeeeceeceseesesnanseaeeeseceesseseaaeeeeceeseseeseanseeeeeesessessevensanaaaeneseeeeseseees 90

Appendix Aon... ccccccccccsccsteeceesensceeeeseneeeeceseaeeseeeeeeneeesteaaeecessecieeseeseaneesesecounaneeesesenaeeeeeseveneaeess 91

Bibliography.00..0.cccccccccceecessesesseeececeanneaaenaaneeaanesaeeaeeneeeeneeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeeeteeeeeeneaaanen 93

Vi

List of Figures

Figure 2.1 Classification of Parallel Processing Architectures.cccccscccccsssseecececsessesceeesessssssccseceeseues 8

Figure 2.2 Static interconnection topOlogies.............cccecescccesscessceceseecsececsssecceaseeeseecsasecesaeseescsesnessstesenas 12

Figure 2.3 Taxonomy of MIMD ComputteTS..........ccceecseccssscsseecssescssreessneessseeceseeeeaaeeesaeecesaueesesessesenseers 16

Figure 2.4 (a) MIMD system with distributed MEMOTY..............c..cccccccceessscessseceeesseecesserscesesreseesssceseeeeees 16

Figure 2.4 (b) MIMD system with shared MeEMOTY.............ccccccccsscccesseeesssececesseeeesesseceesnsseecessaeeecensenseeees 16

Figure 3.1 An abstract view of the implementation of the processor subset...............:::cccsssceeceesssneecceneees 30

Figure 3.2 Block diagram of the 32-bit DLX processot............ccccecssceeenceessseecesteeeeesesceceessaeeseesuaceessnaneees 33

Figure 3.3 Processor bus read tramSaction..............ccccesceccccessssseceeseetencecececsnsanseeeeesenecnaceeseeeeseeeesenneaeeeeees 36

Figure 3.4 Processor bus write transaction............cccccscsceecesssneccceceesececeetecsnaeececersecneeeceeseseeeseusetneeeeseeeens 36

Figure 3.5 Block diagram of the SWIFT processor with cache and memory modules................eesseeees 39

Figure 3.6 Processor write to cache (write-through)............:cccccccsssssseesceseseeeeeeesesnennaeaeceeeereeereceeeeeceereetees 40

Figure 3.7 Processor write to cache (Write-Dack) 2.0.0... cecessccccecececcecceceececeececceseesesenencesceseeseauaenaeseseeeeees 41

Figure 3.8 Output result of a loop, used to add a scalar value to a vector iN MEMOTY..........-scceeseeseeneeeeees 44

Figure 3.9 Output result of a loop after scheduling and unrolling operations.........0......eeeeeeeeneneeeceteeeee’ 44

Figure 4.1 A complete binary tree where all the switches have one parent and two children................... 49

Figure 4.2. Hop count of the messages, and message path for a 16-node fat tree... eee eeesneereeeeeee 53

Figure 4.3 A 16-node binary fat-tree, where all non-root switches have two parents..............sseeeseeeees 55

Figure 4.4 A 16-node quadtree, where all non-root switches have two parents and four children............ 56

Figure 4.5 Comparison of the available memory resources for a 32-node fat-tree when a

recursive structure is used and when a non-recursive (repetitive) structure is used................ 63

Vil

Figure 4.6 The run time is seen to increase in a non-linear way, due to memory contention,

with an increase in the size of the fat-tree Model]... eee ceeeecessceeeeeceeetneneertesseeeeeeteeeesensees 63

Figure 5.1. Performance of a centralized-queue algorithm on fat-trees of different sizes......0.........c:00 72

Figure 5.2. Performance of a distributed-time algorithm on fat-trees of different sizes..............c:cceceseees 74

Figure 5.3. Performance of an optimistic distributed-time algorithm of a 32-node

fat-tree with increasing rollback COStS....... ec eee eeseceeeneesenectscneecneersenecesousecsaueerssntceseeneteeas 75

Figure 5.4 Performance of an optimistic distributed-time algorithm of a 32-node

fat-tree with increasing COMMUNICATION COSTS...........cccccceceesssssecceecsnenececeeseensesseceeeeensesenseeeens 77

Figure 5.5 Performance of an optimistic distributed-time algorithm of a 32-node

fat-tree with increasing communication and rollback COStS.............:cccceeeeseseeeeeeseeetseeeeeeeseeesees 78

Figure 5.6 Performance of an optimistic distributed-time algorithm of a 32

processor linear array with increasing COMMUNICATION COSTS............cescseeeeseeeeseeseesesetseeeeseones 79

Figure 5.7. Comparison of the performance decline between a 32-node fat-tree

and a 32-node linear array with increasing COMMUNICATION COSIS........... cesses eeeeeeeteereeeeeeeees 80

Vill

List of Tables

Table 2.1 Network Scaling Factors.........0....ccccccccccccesssccecssscescessesserccvsssescececssseseccesscssesecsessssaeseceesesenaes 22

Table 3.1 Comparison of the major features of some of the older CISC architectures................0000.000008 25

Table 3.2 Comparison of the major features of some of the recent RISC architectures...........00....cccccce 25

Table 3.3 A list of the instructions used by the Swift (DLX) processor model.................ccceecceeeeeseeeeneees 27

Table 4.1 Dynamic instruction mix statistics of parallel benchmark programs.............0....cccccccccseseseees 57

Table 4.2 Dynamic instruction mix statistics of benchmark programs run on a uniprocessol................. 58

Table 4.3 Dynamic instruction frequency counts obtained from the execution of a

test program on the VHDL model of the 32-node fat-tree multicomputer............0.0........ee 59

Table 4.4 A report on memory paging and swapping information generated using

the vmstat command, for a 16-node fat-tree simulation on a Sun Sparksation 2...................... 61

Table 4.5 A report on memory paging and swapping information generated using

the vmstat command, for a 32-node fat-tree simulation on a Sun Sparksation 2...................... 61

Table 5.1 Static and dynamic information on the VHDL models used in the tests............00..cccsssceeeeeeeees 70

Table 5.2 Results obtained with Centralized and Distributed-time algorithms

(rollback cost and communication cost are mot Considered)... ce ccccessesstssceecseeseeeeeseeees 73

1x

Chapter 1

Introduction

During the last decade, we have seen a major growth in the performance of low-cost computers that

are based on microprocessor technology. This growth is expected to continue into the foreseeable future

due to the continuing progress in increasing the density of the VLSI chips from which modern computers

are constructed. In the early 1980's, microprocessor performance became a major research area with focus

on quantitative metrics such as instruction execution rates and instruction counts. Sophisticated

architectural techniques which had been in widespread use in large mainframes and supercomputers were

incorporated into the microprocessors. The introduction of processors with a simple instruction set made

it easier to migrate these techniques to the microprocessor.

During the next five years, we should see an increasing number of scalable parallel processing

systems being built from these high-performance off-the-shelf microprocessors. These systems will be

used to help solve the kind of single, large-scale problems (where N, the number of unknowns, is large)

that overly tax the computational power of the fastest single-processor machines available today.

Multicomputers are types of parallel processing system that consist of multiple processing nodes

connected by a communication network. Each processor, also referred to as a node or a processing

element, has computing, memory, and communication resources. The computing resources perform the

processing assigned to the node. The memory stores both program and data. The communication facilities

are used to transmit and receive data from other processing nodes.

Chapter 1 1

1.1 Research Goals

Since its introduction as a hardware description language, the VHDL language has been used only to

a limited extent to model large-scale parallel processing systems. VHDL models of multicomputer

networks have mainly been used to model the routing among the interconnecting switches found at the

nodes of the network. The following issues are investigated in order to gain an insight into the modeling

of (increasingly) complex systems with the VHDL hardware description language.

i) In order to study the suitability of using VHDL in the design of system-level models of increasing

complexity, a 32-node multicomputer network based on the fat-tree architecture, with structural-level

processing nodes is simulated. The processor in each computer node is tightly coupled to a memory that

is physically separate and logically private from the memories of the other node computers.

Interprocessor communication in the multicomputer occurs by routing messages through the

interconnection network. As the size of the multicomputer model is increased from 4 to 32 processing

nodes, the resources of the workstation used to perform the simulation are carefully monitored. An

analysis is performed on the type of resource contention problems which occur when simulating large and

complex models and the impact that these problems have on the run time of the simulation.

ii) Another aspect of the research focuses on the nature of the parallel algorithms used to program

massively parallel processing systems. The von Neumann model of a computer is limited by all the

communications between the central processing unit and the memory unit proceeding along what is

essentially a single interconnection line, the so-called "von Neumann bottleneck." A negative aspect of

this single link on the speed of a computer is not confined only to its limited capacity. In fact, the entire

algorithm design process is adversely affected since we are forced to think about computational processes

in sequential terms. If the dynamic instruction frequency mix of a given parallel program could be

recorded from simulating the VHDL model of the multicomputer network, it would provide us with

valuable information about the demands made on the processing nodes, in terms of whether the programs

Chapter 1 2

are more "control" intensive or "ALU intensive." The information obtained would allow designers of

future generations of microprocessors to make enhancements to better accommodate the needs of the

processors used in these massively parallel processing systems.

iii) One of the problems associated with the discrete event simulation of large models is the fact that

simulation runs take a very long time to execute. Parallel discrete event simulation (PDES) techniques

can be used to simulate large VHDL models on parallel processing systems. Experiments are performed

to evaluate the feasibility of using the fat-tree architecture to perform the parallel simulation of VHDL

models and determine if a speedup in simulation time would be obtained over simulating the models on a

single processor. In the case of optimistic distributed time algorithms, communication latency issues and

the cost of message ro//iback are also included in the analysis in order to determine the effect of these

factors on the performance of the fat-tree multicomputer network.

1.2 Outline of Thesis

In Chapter 2, an overview of multicomputer networks is presented. A classification of parallel

processing architectures is provided along with performance criteria and design issues related to the

various interconnection network topologies. Communication and synchronization issues of MIMD

systems are analyzed. The factors affecting the scalability of parallel processing systems are then

discussed. The chapter concludes with an overview of factors used to determine how performance

characteristics scale with the number of processors being interconnected, using a specific network

topology.

Chapter 3 describes the VHDL model of the processing node used in the multicomputer network.

The structural-level VHDL model is based on the DLX processor, a 32-bit reduced instruction set

processor described in [1]. The reasons for choosing this processor are discussed. The fact that parallel

Chapter 1 3

algorithms make efficient use of the memory hierarchy is considered in the design, by providing a cache

memory in each processing node. Instruction level parallelism is explored with a suitable test case.

Chapter 4 begins with a series of definitions used to describe trees in graph theory. Examples are

provided of earlier research projects which utilized tree-based structures. A major limitation of the

planar tree structures is analyzed, along with a solution which is to make use of the binary fat-tree to help

alleviate the problem. The inclusion of structural-level processing nodes in the model of the fat-tree

multicomputer, described in Chapter 4, has a useful consequence. The dynamic instruction frequency mix

of a given parallel program can be measured.

A practical aspect of efficiently simulating large behavioral and structural models, (using the fat-tree

model as a case study), on a uniprocessor system is analyzed. The system resources of the workstation

used to perform the simulations are carefully monitored to see where resource utilization problems usually

occur. The size of the model is increased and the run time of the simulation compared with that of

smaller sized models. A memory threshold level is detected after which memory resource contention

problems occur, and the simulation efficiency declines.

One of the problems observed in simulating complex models is that simulation runs take a very long

amount of time to execute. The trend is for run times to lengthen, since the combinatorial complexity of

Circuits is out-stripping performance improvements in computers. In Chapter 5, a multicomputer using

the fat-tree interconnection network is evaluated as a suitable architecture for the parallel simulation of

VHDL models. Various algorithms used for the parallel discrete event simulation (PDES) of VHDL

models are explored. The feasibility of this approach is carried out by analyzing the factors affecting the

performance of the proposed architecture. Results obtained from simulating the model of the fat-tree

multicomputer network, described in Chapter 4, are used to provide details about the interconnecting links

between the various processing nodes. The number of hops a message takes to travel from one processor

to another in the fat-tree is used to estimate the time of an event message between two processors. The

roll-back cost and the cost of communication amongst the processing nodes are taken into consideration

Chapter 1 4

when evaluating the speedup of the simulation time of a VHDL model, simulated over multiple

processors. The speedup of the simulation of a VHDL model using the fat-tree topology is compared with

the results obtained with a linear array topology.

The future inclusion of the "shared variable" into the language and its impact on the implementation

of parallel simulators on multicomputer networks is analyzed. Conclusions drawn from the results

obtained in the previous chapters are presented in Chapter 6.

Chapter 1 5

Chapter 2

Overview of Multicomputer Networks

2.1 Introduction

During the last decade, we have seen a major growth in the performance of low-cost computers that

are based on microprocessor technology. This growth is expected to continue into the foreseeable future

due to the continuing progress in increasing the density of the VLSI chips from which modern computers

are constructed.

During the next five years, we should see an increasing number of parallel processing systems built

from these high-performance off-the-shelf microprocessors. These systems will be used to help solve the

kind of single, large-scale problems (where N, the number of unknowns, is large) that overly tax the

computational power of the fastest single-processor machines available today. Examples of

computationaly intensive problems include scientific simulation modeling, advanced computer-aided

design, and real-time image processing of large-scale database and information retrieval operations [2].

In this chapter, an overview of multicomputer networks is presented. A classification of parallel

processing architectures is provided along with performance criteria and design issues related to the

various interconnection network topologies. Communication and synchronization issues of MIMD

systems are analyzed. The factors affecting the scalability of parallel processing systems are then

discussed. The chapter concludes with an overview of the factors used to determine how performance

characteristics scale with the number of processors being interconnected, using a specific network

topology.

Chapter 2 6

2.2 Classification of Parallel Processing Architectures

The most widely used scheme to classify the different type of processing systems was developed

by Flynn [3]. It provides a four-way classification, in terms of whether one or several processors execute

instructions on one or several streams of data. This scheme, though simplistic in nature, has endured the

passage of time, probably because our understanding of multicomputers is still too primitive to replace it

with a more definitive one.

In the case of one or more processors operating on multiple streams of data, Flynn's classification is

given below:

SIMD (Single Instruction Multiple Data Stream) -- A network with only one controller although

each processor works with information stored in its own and nearby memories. An example of such a

system is the Connection Machine (CM-2) built by Thinking Machines Corporation which consists of a

bit-slice array of up to 65,536 processing elements [2].

MIMD (Multiple Instruction Multiple Data Stream) -- A network where each processor has its own

controller and can work in a completely asynchronous way, allowing multiple threads to be executed in an

autonomous manner. Intel's mesh-connected Paragon system uses this model to connect its processing

nodes [2]. Figure 2.1 shows a hierarchical classification of parallel processing architectures, with the

MIMD model divided into a number of subclasses. Data parallelism refers to the situation where the same

operation executes over a large array of data. Dataflow computers emphasize a high degree of parallelism

at the fine-grain instruction level. Reduction computers are based on a demand driven mechanism which

initiates an operation based on the demand for its result by other computations.

A mix of SIMD and MIMD leads to the SPMD (Single Program Multiple Data) model in which each

processor executes the same SIMD program on its local data, but with an individual flow of control. In

this way, the computation may be switched between SIMD lock step and MIMD asynchronous operation,

based on the structure of the SPMD program. Generally, SPMD is regarded to be more of a MIMD

programming style (SIMD programming on an MIMD machine) rather than a distinct classification.

Chapter 2 7

 Reduction

Parallel Computers

Von-Neumann

Data Flow

Single Instruction
Multiple Data

Multiple Instruction

Multiple Data Single Data
Multiple Instruction

Single Instruction
Single Data

Connectivity Pipelined Processors

Multistage Direct Crossbar Bus

Processor Arrays Hierarchical Hypercubes

Pyramid Tree Prism

Binary Tree Quad Tree Fat Tree

Figure 2.1 Classification of Parallel Processing Architectures

Chapter 2

There are a number of other important distinctions to be considered which could be used to

categorize parallel processing systems [4]. Among them are:

2.2.1 Granularity -- The amount of processing and communication in the system needs to be balanced in

order to obtain optimal performance. An important factor that helps determine the optimal topology is the

way in which the application is partitioned into individual processing tasks. The granularity or grain size

is the average size of each processor’s subtask, measured in number of instructions executed in a program

segment. The grain size of the partition is the metric used to define the size of each processing task. In

processing data, for example, processing could be done at the bit level, vector and matrix level, record

level, file level and so on. A relatively small number of powerful processors would generally be used for

coarse-grain parallelism with information rarely being passed from one processor to the other. At the

other extreme we find fine-grain parallelism where a large number of less powerful processors are used to

execute programs with a large amount of communication between the processors.

2.2.2 Coupling -- The degree of coupling between the processing elements is another method commonly

used to classify parallel processing systems. A system is considered to be tightly coupled if the processors

share a common memory, as in the case of multiprocessors, or if the communication between the

processors is good (irrespective of the underlying hardware/software mechanisms), as in the case of

multicomputers. A loosely coupled system would have its processing elements located at greater distances

from one another, as can be seen with a workstation cluster (used for distributed computing).

The issue of whether the system has been designed to be used for general purpose computing or

special purpose applications (digital signal processing, for example) and the different amounts and types

of synchronization amongst processors are other factors which help in the overall classification.

Chapter 2 9

2.3 Interconnection Topologies for Multicomputer Systems

Multicomputers are types of parallel processing systems that consist of multiple processing nodes

connected by a communication network. Each processor, also referred to as a node or a processing

element, has computing, memory and communication resources. The computing resources perform the

processing assigned to the node. The memory stores both program and data. The communication

facilities are used to transmit and receive data from other processing nodes.

2.3.1 Performance Criteria

The issues related to the performance of an interconnection network connecting a set of processing

nodes are the following [5]:

2.3.1.1 Latency -- The message latency is the amount of time it takes a single message to travel between

two processors. This performance metric depends on the time it takes a processor to prepare the message

which is to be transmitted, the distance that the message has to travel, the amount of traffic prevalent in

the network at that time and the length of time taken by the receiving node to process the message.

2.3.1.2 Bandwidth -- The bandwidth helps indicate how much traffic a network can handle. It is defined

as the mean number of active memory modules in one transfer cycle of the interconnection network [6].

The message locality should be kept as high as possible to help preserve the available bandwidth and

reduce the possibility of congestion due to too much message traffic in the network at any particular time.

2.3.1.3 Cost -- There are a number of factors which affect the cost of a network The number of overall

links (wires) in the network is a factor to be measured as each physical connection adds to the overall cost.

The number of links required per node is also a cost factor. Additionally, the physical layout should also

be as efficient as possible as packaging complexity adds to the cost. If the routers are locally controlled

Chapter 2 10

and are of a fixed degree, the cost can be minimized. Also, if the network can be built from easily

available components, the cost can be greatly reduced.

2.3.1.4 Reliability -- The reliability of a network is an important factor which has to be carefully

considered in the case of interconnection networks, where the elements may number in the thousands and

the possibility of component failure is quite high. The fault-tolerance of the network can be improved by

providing multiple paths to connect processing nodes to each other. In the event of a failure in any link of

the network, another path could be used and the network could continue to function in a fault-tolerant

manner.

2.3.2 Design Considerations

The processors and memory of a multicomputer's processing nodes are essentially the same as those

that are used in single processor machines. The distinguishing feature in the case of the multicomputer

processing nodes is the support for interprocessor communication that is used to enable the sharing of data

between the nodes through the message-passing mechanism. Thus, the overall performance of the system

is heavily dependent on the interconnection networks performance. The topology of an interconnection

network defines the placement and the number of the communication links which are used to join the

processing nodes in a multicomputer system. Figure 2.2 shows some of the popular static interconnection

topologies in use today. The designer of an interconnection network has to consider a number of design

issues and make a trade-off between these issues before selecting a particular topology [7]. The issues

involved in making the decision are as follows:

2.3.2.1 Topology -- The interconnection network can be broadly categorized as being static or dynamic,

with each class being further broken down into their own subclasses.

Chapter 2 11

O O O— Oo

(a) Linear Array (b) Star (c) Ring

—_<()—

(d) Mesh (e) Binary Tree (f) Completely Connected

Q O

O

(g) Four-dimensional Hypercube (h) Torus

Figure 2.2 Static interconnection topologies

Chapter 2 12

Static topologies are formed from point-to-point direct connections which will not change during

program execution. They are used for fixed connections among subsystems of a centralized system or

multiple computing nodes of a distributed system. They have been effectively used for problems with

predictable communication patterns. Static topologies can be further classified based on the number of

dimensions required for their layout. An example of a one-dimensional topology is the linear array. Two-

dimensional topologies include the ring, star, tree and mesh. Three-dimensional topologies include the

completely connected chordal ring and 3-cube-connected-cycles. |

Dynamic topologies are implemented with switched channels, which are dynamically configured to

match the communication demand in user programs. They have been found to be suitable for a wider

range of problems than static topologies, but at a higher cost. They include buses, crossbar switches and

multistage networks, which are often used in shared memory multiprocessors. Dynamic topologies are

classified based on the number of stages that exist in the communication links between the nodes. A

single-stage network has each communication link connected only to processing nodes. Processing nodes

that do not have a direct link between them have to pass data through intermediate nodes when they want

to communicate with each other. The individual links in this communication path are directly connected

to pairs of processing nodes and hence these networks are also called direct networks. A multistage

network consists of more than one stage of switching elements and is usually capable of connecting an

arbitrary input terminal to an arbitrary output terminal.

2.3.2.2 Operation mode -- Networks can be classified as being synchronous or asynchronous, based on

their mode of operation. Synchronous communication is used for processing in cases where

communication paths are established synchronously for data manipulation functions or instruction

broadcasts. The regularity of the data enables the same operations to be applied in parallel by all the

processing elements, constraining hardware processes to perform in "lock-step.". Asynchronous

communication is needed for multiple processers in which communication is performed dynamically. The

Chapter 2 13

individual processing elements can compete for common resources. Furthermore, the processing elements

can communicate and cooperate with each other in order to improve the utilization of available resources.

2.3.2.3 Switching Strategy -- There are three techniques commonly used to transmit messages between

processing nodes. The message can be transmitted as a whole, as in circuit switching, where an exclusive

independent virtual circuit is established for a source/destination pair. This is accomplished by a

signaling message. The path once established, is unavailable to any other source/destination pair until

both the original source and destination agree to stop communicating with each other. After a path is set

up, no further signaling for addressing purposes is required. One of the drawbacks of circuit switching is

the fact that no communication is possible between any other source/destination pair if that pair needs to

use any of the lines which are currently being used by an already established circuit.

In packet switching, the message is broken down into a series of small packets and then each packet

is transmitted through the network from the source to the destination. The basic idea is to improve

channel utilization by freeing up the channels on a path during periods in which the source and

destination nodes are not communicating with one another. In the store-and-forward method, packets are

routed towards their destination node without establishing a path beforehand. The packets are passed

through a series of intermediate nodes. Each intermediate node receives the packets in a buffer (or store

facility) where the node examines the packet's header information to determine where to forward the

packet so that it gets closer to its final destination. The time it takes to receive and examine the packet

headers and the time the message has to wait before a proper communication link becomes available are

the main factors which affect the transmission time of a message.

Another method used to switch messages is wormhole routing (or cut-through switching) [8]. This

method tries to combine the positive features of both circuit switching, as well as packet switching. The

first packet of the message contains status information such as the source, destination and the message

length. An intermediate node which receives this first packet examines it to determine where it is headed.

Chapter 2 14

