Personal Anomaly Detection and Smart-Phone Security

Huijun Xiong

Danfeng (Daphne) Yao

Department of Computer Science
Virginia Tech
Blacksburg VA 24060
huijun@cs.vt.edu, danfeng@cs.vt.edu

Lu Han

Liviu Iftode

Department of Computer Science
Rutgers University

Piscataway NJ 08854
luhan@cs.rutgers.edu, iftodelcs.rutgers.edu

April 22, 2010

Abstract

Mobile devices increasingly become the computing plat-
form for networked applications such as Web and email.
This development requires strong guarantees on the sys-
tem integrity and data security of mobile devices against
malicious software (malware in short). This work in-
troduces a new personalized anomaly detection approach
that is able to achieve host security by modeling and en-
forcing the legitimate behavior characteristics of a human
user. Specifically, we identify characteristic human-user
behaviors (namely application-level user inputs via key-
board and mouse), developing protocols for fine-grained
traffic-input analysis, and preventing forgeries and at-
tacks by malware. Our solution contains a combina-
tion of cryptographic techniques, correlation analysis, and
hardware-based integrity measures. Our evaluation is
done in computers with real-world and synthetic mal-
ware. The uniqueness of this personalized anomaly de-
tection technique is that it allows computer security to be
realized without the need for continually monitoring ever-
changing malware patterns.

Keywords: Network security, anomaly detection, smart-
phone, input, correlation.

1 Introduction

Most of existing malicious software (malware) detection
solutions are effective in detecting existing malware and
known attack patterns [11, 7, 8, 5, 6, 15, 12]. These ap-
proaches typically focus on analyzing the network traf-
fic of potentially infected machines to identify suspicious
network communication patterns. However, current de-
fenses still leave much room for improvement. The rea-
son is that malware constantly evolves to avoid detection
— code used by Mariposa botnet changes every 48 hours,
and thus their behaviors change accordingly. For exam-
ple, although IRC is still the dominating botnet command
and control protocol, recent studies have found that many
botmasters are responding to detection systems by switch-
ing away from IRC to HTTP [10, 16]. Unlike IRC C&C
traffic, HTTP traffic is usually allowed through firewalls
and can be easily camouflaged to be used for covert chan-
nels. Sole reliance on following and leveraging bots’ be-
haviors for detection requires continuous modifications in
order to keep up with the newest development of botnets.

We view malicious bots or malware in general as ghost
entities stealthily residing inside a human user’s computer
and interacting with the user’s computing resources.



Key research challenges for host-based malware detec-
tion include: how to select characteristic behavior fea-
tures, how to prevent bot forgery, and how to make so-
lution nonintrusive to users. Certain features extracted
from humans’ computer interactions, such as click counts,
email sizes, or chat message sizes, may not be character-
istic enough and cannot be used to uniquely represent an
individual. In addition, advanced malware may attempt to
mimic human activities to spoof the legitimate user in the
detection. Thus, the host used to collect behavior features
should distinguish true events from fake events that are
injected by malware in hope to circumvent the authenti-
cation system (i.e., fake events need to be identified). We
propose to address both challenges by developing an ad-
vanced input-traffic correlation analysis framework.

In this poster, we describe our experience in design-
ing host-based malware detection solutions utilizing user-
input activities on personal computers, and illustrate how
this approach can be applied to secure mobile personal de-
vices such as smart phones. Instead of chasing the ever-
changing malware behavior patterns, we propose a per-
sonal anomay detection approach that aims at enforcing
the correct

Our key observation is that user-initiated outbound traf-
fic all has corresponding human inputs, i.e., keystroke or
mouse clicks !. Our goal is to block (malware) traffic that
is not associated with legitimate user inputs. For both syn-
tactic and semantic based analysis, we will extract and
perform exact matching and more efficient approximated
matching between the user inputs and contents in the out-
bound traffic, which is specific to an application, e.g.,
Web, Email, P2P file sharing.

2 Preliminaries

We propose to perform syntactic and semantic input-
traffic correlation analysis for malware detection purpose
in Section 3. In our preliminary study, we already im-
plemented a TPM-based infrastructure, called TUBA in-

'In what follows, user inputs refer to data that a human physically
enters into a computer through keystroke events or mouse events, as op-
posed to the (formatted) input fields to a program (e.g., web application).
The latter concept is typically used in existing program-analysis based
security literature such as tainted inference for detecting SQL injection
or cross-site scripting attacks [13].

tegrity service, which cryptographically ensures the in-
tegrity of user input events and prevents malware injection
of (fake) keystroke events [14]. We developed a crypfo-
graphic provenance verification technique for keystroke
integrity verification and demonstrated it in a client-server
architecture. TUBA integrity service demonstrated the
feasibility of 1) selecting keystrokes as characteristic of
human behavior and 2) successfully preventing malware
mimicking. As it will become clear, in our proposed solu-
tion in Section 3, outbound traffic that cannot be mapped
to legitimate user inputs is identified and flagged.

We propose to examine every single outgoing network
segment in the correlation analysis, which means that no
packet should circumvent our detection. In our prelimi-
nary study, we already implemented a host-based frame-
work, called CompareView [17], which cryptographically
ensures that all outbound traffic must flow through a sin-
gle transport-layer checkpoint. We extended our cryp-
tographic provenance verification technique to the host’s
network stack and implemented two kernel modules, Sign
and Verify modules, that coordinate to ensure the network
flow. TPM-based integrity service similar to TUBA’s en-
sures the integrity of CompareView and prevents mal-
ware tampering on the framework itself. CompareView
demonstrated the feasibility of installing a single check-
point on network stack for all (outbound) packets, e.g., at
the Sign module, without worrying about being bypassed.
Our extensive experimental evaluation showed that over-
head CompareView imposes to outbound traffic stream is
minimal when transport-layer segment size is large (e.g.,
64KB). In what follows, our correlation analysis may be
performed at the Sign module of CompareView.

In next section, we describe an input-traffic correla-
tion approach that naturally leverages and systematically
expands on our above infrastructures to build up the
foundation and develop advanced techniques for human-
behavior driven malware detection.

3 Syntactic and Semantic Input-
Traffic Correlation Analysis
Recently, researchers have attempted to perform simple

timing-based correlation analysis between user inputs and
outbound traffic [2], which, however, is vulnerable to sev-



eral attacks such as piggybacking attacks 2. In another
study Not-A-Bot [9], the authors were unable to perform
application-specific input analysis, due to the use of vir-
tual machine monitor (VMM) and the resulting techni-
cal difficulties in accessing and reconstructing dynamic
application-level data.

In what follows, we describe our ongoing work on
designing advanced and robust input-traffic correlation
framework. We will syntactically and semantically ex-
amine outgoing contents and identify abnormal traffic by
collecting two data streams, one for inputs and one for
outbound network packets, and designing a correlation
engine, which is a stand-alone program independent to
the application. The analysis will be performed at Com-
pareView’s checkpoint on the transport layer.

3.1 Syntactic correlation analysis

We will first support syntactic matching between user in-
puts (e.g., URL) and outbound traffic (e.g., HTTP Re-
quest packet), e.g., exact or approximate matching be-
tween strings. For each outgoing transport layer segment,
we will examine the application-layer payload ® and ex-
tract the content, e.g., URL of a web object. We plan to
adapt and compare several existing exact and approximate
matching algorithms, such as edit distance, to our settings.

3.2 Semantic interpretation of user inputs

Meanings of user inputs need interpretation due to their
transformation. For example, mouse clicks on a web page
need to be translated to the actual hyperlinks assisted by
the browser. Computation on user inputs is another type
of transformation. For example, in P2P file sharing, a
search keyword (e.g., Britney Spears) is entered by a user,
the hash of which (e.g., H(BritneySpears)), is used to
form a P2P search request for corresponding file. Also,
browser may generate automatic HTTP requests for em-
bedded objects without any user inputs. Thus, our ap-
proach is to perform application-specific semantic inter-

2A piggybacking attack is where malware traffic is only sent out
whenever a user has input activities. This attack is possible because
of the ease of doing keylogging.

3Typical application layer payload can fit in one transport layer seg-
ment whose maximum segment size (MSS) is usually 64KB. Thus, de-
fragmentation is not needed.

pretation on user inputs and enforce outbound traffic with
interpreted inputs. There are two main operations: seman-
tic interpretation and matching. Matching operation be-
tween two strings (i.e., interpreted inputs and application-
layer payload) will be similar to that of the above syntactic
analysis.

To better analyze the impact of user inputs on network
traffic, we adopt a graph approach for formalizing the
causal relationships among inputs and subsequent out-
bound requests for plug-in objects that are direct or indi-
rect results of inputs. The causal relationship is expected
to form a tree-like structure where the root is the user in-
put, which we call an emission graph *. The task of mal-
ware detection is to identify and block any network traffic
that cannot be attributed to an emission graph rooted by
certain legitimate user inputs. Our detection method need
be valid even if the attacker hosts his own server.

In the Web environment, the construction of emis-
sion graphs requires the content analysis on web pages °.
We will study graph properties of emission graphs, e.g.,
tree depth, degrees of nodes, and node types (leaf node
vs. internal node), which represent normal or abnormal
traffic structures. We will examine the impact of dy-
namic contents (e.g., randomized advertisement rotation)
on the accuracy of tree construction and traffic classifica-
tion. We will begin our investigation with static webpages
and gradually move on to process more dynamic AJAX-
types of contents that are prevalent today. Existing tools,
such as Gecko [4] for manipulating web content such as
JavaScript, will also be utilized for handling dynamic link
creation in the construction of emission graphs. We note
that our method does not require language-based static
or dynamic analysis on JavaScript, which is more com-
plex due to JavaScript’s flexibility. Visualization tools for
examining emission graphs dynamically in web environ-
ments can also be produced by utilizing existing graph
drawing programs [1, 3]. We expect the above work
to produce a powerful and general method that will en-
able the precise control over network activities of a host
through leveraging human inputs.

The integrity to correlation analysis needs to be realized

4An emission graph will be different from a DOM tree in browser
as we focus on hierarchical relationships in the (materialized) outbound
network connections, not the document objects

SWeb page contents can be retrieved without the browser, e.g., wget,
which we call out-of-band retrieval.



to detect and deter the tampering of the analysis frame-
work itself. One approach is to extend our existing TPM-
based attestation prototype [14].

A detailed description of our HTTP-anomaly-detection
prototype implementation and evaluation in personal
computers can be found in [18].

The above approaches have never been systematically
investigated before. The main technical enabler in our
study is our (established) ability to ensure the integrity of
user input events and outgoing network traffic (described
in Section 2).

4 Securing Android Phones with
Input-Traffic Monitoring

We are currently working on applying our input-traffic
technique to smart phones with Android operating sys-
tem. We describe our work in progress in this section.
Android is a software stack for mobile devices that in-
cludes an operating system, middleware and build-in ap-
plications. The Android is developed by Google and Open
Handset Alliance (OHA) as an open source, lightweight
and full featured platform, which allows developers to
write managed code using JAVA programming language
and control the smart device via necessary JAVA libraries
and APIs. Android does not use established Java stan-
dards (i.e. JAVA SE or ME) so that it prevents compati-
bility.

4.1 Android Architecture and Functionali-
ties

Figure 1 shows the five major components (in different
colors) of Android platform: build-in applications, appli-
cation framework, libraries, Android runtime, and open
source Linux kernel.

Build-in Application The Android platform comes with
a set of build-in applications include all necessary smart
phone functionalities: SMS program, contact book, maps,
email client, browser and others. The build-in applica-
tions are developed using Java as the user application, and
can be replaced with user applications.

Application Framework The application framework is
a software framework that implements the standard struc-

ture of an application in Android. It utilizes managers,
content provider and other service modules to manage ap-
plication life cycle.

Libraries The Android native libraries are written in
C/C++ and used by various components of the Android
system. The libraries can be called through the Android
software framework. For example, the WebKit library is
the open source web browser engine; the SQLite library
is used to support structured data storage, etc.

Android Runtime There are two components in the An-
droid Runtime module: core libraries of the Java pro-
gramming language, and Dalvik Virtual Machine. Instead
of using Java Virtual Machine (JVM), android utilizes
Dalvik VM. Dalvik VM is a register-based VM which
is designed to allow multiple VM instances to run effi-
ciently, and optimized for low memory requirements.

Linux Kernel Linux kernel in Android acts as a hard-
ware abstraction layer (HAL) between hardware and the
rest of the software stack. Android relies on Linux ver-
sion 2.6 for core system services such as security, memory
management, process management, network stack, and
driver model.

Nexus phone supports full smartphone functionalities
such as GSM telephony, Bluetooth, EDGE, 3G, WiFi,
Camera, GPS, compass and accelerometer. Android pro-
vides rich development environment for developers in-
cluding a device emulator, debugging tools and a plug-in
for Eclipse IDE for application development. Compared
with Symbian based smartphones and [Phone, Android
is supported by large number of associations (OHA) and
provides full open source development environment for
developers.

4.2 Intercept Network Traffic and User In-
puts on Android

Android relies on Linux kernel for network stack manage-
ment. Usually, in a Linux system, we utilize t cpdump
(1ibpcap library) to capture the packets being transmit-
ted or received over network. The libpcap is included in
the Android fully build tree. This allows us to utilize libp-
cap/tcpdump to intercept the network traffic.

We are currently working on collecting user keyboard
inputs and store the logged information on the mobile de-
vice. We note that media inputs such as voice and pic-



APPLICATIONS

Contacts

Phone

Browser

APPLICATION FRAMEWORK

Window

Activity Manager Manager

Telepheny

Package Manager anager

LIBRARIES

Media

Surface Mana
AT e Framework

OpenGL | ES FreeType

SGL S5L

Resource
Manager

SQLite

WebKit

libe

View
System

Content
Providers

Notification
Manager

Location
Manager

ANDROID RUNTIME
Core Libraries

oV

Machine

LINUX KERNEL

Display
Driver

Camera Driver

Flash Memary
Jriver

Binder (IPC)
river

Figure 1: Components of Android software stack.

tures will not be collected by us. Android offers both the
hardware keyboard and software keyboard (virtual key-
board) for users. The hardware keyboard is a QWERTY
keyboard, the virtual keyboard usually supports three key-
board layouts: the QWERTY, compact QWERTY and T9.
Therefore, we need to collect users’ key strike, scroll and
key touch from both physical and the virtual keyboard.
Android provides rich UI components for human com-
puter interactions. Various View classes are for users to
compose the layout of programs. Callback methods are
called by Android framework to handle UI events. There-
fore, to capture user input is to capture the events from
the specific View object. We can utilized these compo-
nents to intercept user input by having the onKeyPressed
or onTouchEvent events set, and override the event lis-
tener callback methods onKeyDown or onKeyUp to han-
dle the events.

S Summary

In this poster, we described a human-behavior driven mal-
ware detection approach, and gave feasible techniques for
performing advanced input-traffic correlation analysis in
both PCs and smart phones. Our proposed methods are to
build on our existing TUBA infrastructure that ensures the
provenance of user input events and prevents fake event

injection, and CompareView infrastructure that enforces
outbound traffic flow. We are currently implementing our
detection system in Android developer phones. We plan
to finish the implementation of our solution and perform
extensive experiments on its accuracy, efficiency, and us-
ability with both real-world and synthetic malware sam-
ples.

References

[1] N. S. Barghouti, J. Mocenigo, and W. Lee. Grappa:
A Java graph package. In Fifth International Sympo-
sium on Graph Drawing, pages 336-343. Springer-
Verlag, 1997.

[2] W. Cui, R. H. Katz, and W. tian Tan. Design and im-
plementation of an extrusion-based break-in detec-
tor for personal computers. In ACSAC, pages 361—
370. IEEE Computer Society, 2005.

[3] J. Ellson, E. R. Gansner, L. Koutsofios, S. C. North,
and G. Woodhull. Graphviz and dynagraph - static
and dynamic graph drawing tools. Graph Drawing
Software, 2003.

[4] Gecko. https://developer.mozilla.

org/en/Gecko.



(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

J. Goebel and T. Holz. Rishi: Identify bot contam-
inated hosts by IRC nickname evaluation. In Pro-
ceedings of First USENIX Workshop on Hot Topics
in Understanding Botnets, April 2007.

J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang,
and D. Dagon. Peer-to-peer botnets: Overview and
case study. In Proceedings of First USENIX Work-
shop on Hot Topics in Understanding Botnets, April
2007.

G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer:
Clustering analysis of network traffic for protocol-
and structure-independent botnet detection. In Pro-
ceedings of the 17th USENIX Security Symposium,
2008.

G. Gu, J. Zhang, and W. Lee. Botsniffer: Detect-
ing botnet command and control channels in net-
work traffic. In Proceedings of the 15th Annual Net-
work and Distributed System Security Symposium
(NDSS), 2008.

R. Gummadi, H. Balakrishnan, P. Maniatis, and
S. Ratnasamy. Not-a-Bot: Improving service avail-
ability in the face of botnet attacks. In Proceedings
of the 6th USENIX Symposium on Networked Sys-
tems Design and Implementation (NDSI), 2009.

N. Ianelli and A. Hackworth. Botnets as a vehicle for
online crime, 2005. http://www.cert.org/
archive/pdf/Botnets.pdf.

A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-
scale botnet detection and characterization. In Hot-
Bots’07: Proceedings of the first conference on First
Workshop on Hot Topics in Understanding Botnets,
pages 7-7, Berkeley, CA, USA, 2007. USENIX As-
sociation.

M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis.
My botnet is bigger than yours (maybe, better than
yours). In Proceedings of the First USENIX Work-
shop on Hot Topics in Understanding Botnets, April
2007.

R. Sekar. An efficient black-box technique for de-
feating web application attacks. In ISOC Network

[14]

[15]

[16]

[17]

[18]

and Distributed Systems Symposium (NDSS), Febru-
ary 2009.

D. Stefan and D. Yao. Keystroke dynamics authen-
tication and human-behavior driven bot detection.
Technical report, Rutgers University, 2009.

P. Wang, S. Sparks, and C. C. Zou. An advanced
hybrid peer-to-peer botnet. In Proceedings of First
USENIX Workshop on Hot Topics in Understanding
Botnets, April 2007.

S. Webb, J. Caverlee, and C. Pu. Predicting web
spam with HTTP session information. In Proceed-
ings of the Seventeenth Conference on Information
and Knowledge Management (CIKM 2008), Octo-
ber 2008.

C. Wu and D. Yao. Compareview - a provenance ver-
ification framework for detecting rootkit-based mal-
ware. IEEE Symposium on Security and Privacy.
Oakland, CA. May 2009. Extended Abstract.

H. Xiong, P. Malhotra, D. Stefan, C. Wu, and
D. Yao. User-assisted host-based detection of out-
bound malware traffic. In Proceedings of Interna-

tional Conference on Information and Communica-
tions Security (ICICS), December 2009.



