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Spatial Econometrics Revisited: A Case Study of Land Values in Roanoke 
County 

 
 
 
 

Ioannis K. Kaltsas 
 
 
 
 

(ABSTRACT) 
 
  
 
An increasing volume of empirical literature demonstrates the possibility of spatial 

autocorrelation in land value models. A number of objections regarding the methodology 

followed in those empirical studies have been raised. This thesis examines three 

propositions. The first proposition states that there is spatial dependence in the land value 

model in Roanoke County. The second proposition is that mechanical construction of 

neighborhood effects, or grouping nearby land parcels into neighborhoods, is not always 

the best way to capture spatial effects. Finally, the third and most important proposition 

states that by implementing a comprehensive set of individual and joint misspecification 

tests, one can better identify misspecification error sources and establish a more 

statistically sound and reliable model than models based on existing spatial econometric 

practices. The findings of this dissertation basically confirm the validity of those three 

propositions. In addition, we conclude that based on their development status prices of 

land parcels in Roanoke County may follow different stochastic processes. Changes in 

the values of hedonic variables have different implications for different groups of land 

parcels. 
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CHAPTER 1 
   

Problem Statement 

 
1.1 Introduction 
    

Land value indices contribute towards better understanding of local and national land 

markets and can be useful for comparative analysis of price trends, real estate investment 

analysis and regional development program evaluation. The accuracy and the precision of 

the indices will be affected by the predictive power of the land value model. 

Traditionally, economists have constructed hedonic functions to capture the relative 

importance of a number of land attributes affecting land values (Xu F. et al., 1993).  

 

A growing consensus regarding the importance of spatial structure in land and residential 

value models is reflected in the number of recent studies that also incorporate spatial 

characteristics as explicit variables (Can and Megboludge 1998, Basu and Thibodeau 
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1998). Bockstael (1996) emphasizes the importance of including explicit spatial 

variables, such as proximity to amenities and disamenities, in the hedonic representation 

of land value. Despite the inclusion of these additional “spatial” variables, it is 

acknowledged that there may exist more spatial features that are unobserved and thus, 

omitted from the model (Bockstael and Bell 1998, Irwin 1998, Fleming 1988). As a 

result, the “true” underlying error of the regression is assumed to be spatially 

autocorrelated.   

 

Error spatial autocorrelation means that observations that are relatively close in space 

have error terms that are correlated, while observations that are far apart in space tend not 

to be correlated. Spatial autocorrelation causes least square estimators to be biased and 

inefficient, making inference based on them invalid (Basu and Thibodeau, 1998). Spatial 

error autocorrelation can occur for reasons other than omitted spatially dependent 

variables. For example, autocorrelation can also occur when the error variance is 

heteroskedastic (Anselin 1988). Davidson and Mackinnon (1993) conclude that the 

situation where a model is correctly specified except for a failure to account for error 

autocorrelation does not account for a very high proportion of the cases in which residuals 

from a regression model appear to be correlated. Consequently, it is important to 

determine the source of autocorrelation for respecification purposes; the appropriate 

“cure” for spatial correlation, depends on its source.   

 

Anselin (1988) and Anselin and Kelejian (1997) have suggested that a spatial 

autoregressive error model can be used to model the spatial structure of the errors arising 

from omitted “spatial” effects and generate more precise results. According to Anselin 

(1988) the spatial autoregressive component corrects predicted values by an estimate of 

the prediction error’s relationship to nearby observations and thus mimics the behavior of 

real estate appraisers. The absolute influence that nearby properties have on land value is 

determined using an exogenously determined weight matrix. Different weight matrices 

represent different hypotheses regarding the structure of spatial dependence and an 

educated selection is possible through a series of non-nested tests.  



 

 

3

 

Some researchers (Basu and Thibodeau 1998) argue that a spatial autoregressive model 

may not be effective in cases where the observed spatial dependence is caused by some 

factors other than omitted variables. Sometimes the chosen functional form does not 

adequately allow for heterogeneity over space, and the estimated parameters are unstable, 

usually varying by location. For example, most of the land value models assume that the 

functional form is the same for both developed and vacant land parcels (Beaton, 1991). 

However, prices of developed parcels may follow a different stochastic process from 

prices of vacant land. Part of the observed spatial autocorrelation in the residuals may be 

attributed to this structural instability. Anselin (1988) believes that the problem of 

distinguishing the sources of observed spatial autocorrelation is “highly complex” and 

proposes testing structural stability before creating an autoregressive model. According to 

this literature, the assumptions of normality and heteroskedasticity should also be tested 

before the researcher tests the model for spatial autocorrelation (Anselin 1988, Anselin 

and Kelejian 1997). By first verifying the assumptions of normality, heteroskedasticity 

and correct functional form, they hope to “ensure” that spatial dependence is the source of 

autocorrelation and the incorporation of spatial structure in the model improves the 

properties of the estimators.  

 

However, there are a number of objections to current spatial modeling approaches, which 

potentially limit their success. First, current spatial econometric studies test only for a 

subset of the assumptions underlying the statistical model. For example, Anselin (1999) 

summarizes the findings of a large number of spatial econometric studies. The 

overwhelming majority of these studies do not report more than two misspecification 

tests. Typically, there are many more than two assumptions underlying a regression 

model. Spanos (1986) clearly indicates that testing the validity of all the assumptions 

underlying the statistical model is an issue of paramount importance. When some of these 

assumptions are invalid, the statistical inference results are, in general, invalid.  
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Even if current spatial econometric studies assessed the validity of all the assumptions 

underlying the statistical model, the approach of testing individual assumptions one-by-

one and fixing problems when necessary is very unlikely to lead to a well-specified 

model. The first reason is that most tests of assumptions are only valid if all other 

assumptions underlying the model are correct. If one of the other assumptions is invalid 

the test may be unreliable (Spanos 1986). The test results are unreliable in the sense that 

they may lead to either too many rejections, or too few rejections. The implication of this 

fact for the current approach to spatial econometrics is that if there is spatial dependence, 

the tests conducted to ensure that all assumptions are valid except for the assumption of 

no spatial autocorrelation will be unreliable, and thus inference based on these tests will 

be misleading. The second reason the strategy of testing and curing assumptions one-by-

one is likely ineffective is that rejection of a particular null hypothesis (that an 

assumption is valid) should not be interpreted as acceptance of the alternative hypothesis. 

Tests should not be interpreted one-by-one, but rather contribute to a bigger picture of 

potential misspecification sources. Model assumptions are very closely related to each 

other in the sense that the model assumptions are all about a conditional distribution that 

is derivable from some joint distribution (Spanos 1986). This means that all the model 

assumptions are really interconnected via reduction assumptions, and if any one of the 

reduction assumptions is invalid then it is likely that more than one of our model 

assumptions are invalid. Bockstael and Bell (1998) recognized the possibility that 

violation of an assumption can lead to violation of other assumptions. They attribute 

violations of the assumptions of normality and homoskedasticity to the existence of 

spatial autocorrelation in their land value model. However, they never retest the final 

model to verify whether their corrected (for spatial autocorrelation) model also “cures” 

the non-normality and heteroskedasticity problems. 

 

A battery of tests to identify misspecification sources is particularly necessary when 

violations of the autocorrelation assumption are observed. According to Spanos (1986), 

autocorrelation type tests are particularly sensitive to violations of other model 

assumptions. That is, violations of other assumptions often lead to rejection of the no 
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autocorrelation hypothesis. Thus, the assumption of no spatial autocorrelation is usually 

rejected when some other assumptions are violated. In addition to individual tests, this 

battery of tests should also include joint misspecification tests. McGuirk et al. (1993) 

conclude that misspecification tests of individual assumptions underlying regression 

models often lead to erroneous conclusions regarding sources of misspecification. Joint 

misspecification tests have fewer maintained hypotheses and are potentially very helpful 

in identifying misspecification sources. Consequently, both individual and joint tests are 

necessary to identify misspecification sources and guide respecification efforts in an 

attempt towards achieving a statistically adequate model.  

 

Furthermore, the success of the current spatial econometric approaches has been judged 

solely by the changes in the fitting power of the models. However, it is widely accepted 

that higher fitting power (higher R2) alone is not an adequate criterion to judge a model. 

McGuirk et al. (1993) argue that high fitting power does not guarantee the validity of an 

econometric model, and an increase in R2 does not necessarily imply that a model 

represents an improvement over models with lower R2.  This work suggests that although 

spatial autoregressive corrections often lead to models with higher fit, the correct model 

may or may not be an improvement over the original model; one needs to look at more 

than the overall fit, when assessing the success of the spatial autoregressive models. 

 

 Finally, in current approaches to dealing with spatial autocorrelation, the specification of 

spatial structure in an econometric model is completely arbitrary. There are no specific 

rules to determine the spatial relationship among individual observations. In addition, 

there is no way to test the validity of the structure of the exogenously determined spatial 

weight matrix. Existing non-nested tests only select the weight matrix that maximizes the 

fitting power of the econometric model. In addition, spatial weight matrices are typically 

constructed using mathematically computed distances and, thus, geographical proximity 

is the only criterion to account for neighborhood effects. However, the size of 

neighborhoods might often be inappropriate for a given case study and proximity might 

not be always the best criterion for determining neighborhoods. 
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Despite the fact that the possibility of spatial dependence in a cross-sectional model is 

widely accepted, it is unclear whether current practices designed to incorporate the spatial 

structure in cross-sectional data really improve the model and lead to more precise 

estimates. There is a need to extend current spatial econometric practices to address the 

above limitations. Indeed, the overall purpose of this dissertation is to address these 

issues in the context of modeling land values. Land value modeling has been widely used 

by the "traditional" spatial econometric literature to demonstrate its achievements. In this 

dissertation we first attempt to evaluate the usefulness of existing spatial autocorrelation 

models in capturing land values, using data from Roanoke County in Virginia. It turns out 

for this particular example, existing methods are inadequate in terms of their ability to 

capture the systematic information of our data. Once we identify the shortcomings of 

current practices in modeling land values in Roanoke County, we demonstrate a more 

successful approach, which utilizes the idea of a battery of individual and joint 

misspecification tests to guide respecification efforts. 

 

1.2 Objectives and Propositions 

 

This thesis is a case study of hedonic land value modeling in Roanoke County, Southwest 

Virginia. The study is part of a combined effort of 6 academic departments of Virginia 

Tech to analyze the consequences of alternative residential development on rural areas 

(Diplas et al. 1997). Urban expansion can be achieved with different arrangements of 

residential lots. Each of these forms has different economic, environmental and social 

implications for the future of Roanoke County. The construction of a land value model 

serves the purpose of capturing the economic effects of alternative residential settlement 

forms. Simulating potential future developments, the model assigns prices to each 

individual land parcel. In this way, the policy maker can assess the change in the value of 

land assets and in the property tax revenues for the local government resulting from 

different development forms.    
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The contribution of this thesis to the overall study is the construction of a statistically 

adequate land value model, which will provide reliable land value indices for Roanoke 

County. The realization of this goal coincides with the necessity to revisit current spatial 

econometric practices. This thesis aims to: a) demonstrate weaknesses in the current 

econometric approach to dealing with spatial dependence and b) propose a more reliable 

way towards achieving a statistically adequate model for analyzing data, which may be 

characterized by spatial dependence. Thus, the contribution of this study to the economic 

literature is expected to go beyond the construction of an empirical model for the case of 

Roanoke County.  

 

This dissertation is built around a set of three propositions. The first proposition is related 

to the question of whether the appearance of spatial autocorrelation in land value models 

of Roanoke County is the result of some model misspecification. Our proposition is that 

there is spatial dependence in the values of land parcels in Roanoke County. This is the 

starting point of the thesis and justifies the use of the spatial econometric approach. To 

assess the relevance of this proposition, we initially follow current econometric practices. 

That is, we test for possible model misspecification using tests of assumptions commonly 

implemented in this literature. Once we make sure that the statistical model does not 

violate those assumptions, we then test for spatial autocorrelation. Spatial autocorrelation 

is tested by using the Moran’s I test, which is widely accepted in the spatial statistic 

literature (Cliff and Ord, 1981), as well as by standard auxiliary regression tests. The 

results of these tests represent an initial assessment regarding the validity of the first 

proposition. 

 

The first proposition of the thesis is later reassessed when the problem of spatial 

autocorrelation is addressed using the alternative approach. A battery of individual and 

joint misspecification tests of all assumptions is conducted. Based on these tests, our 

model is respecified and the same battery of tests reconducted. This procedure is repeated 

until a statistically adequate model is obtained. Based on this model, the validity of the 

first proposition of the thesis is reassessed; if the final statistically adequate model 
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includes spatial lags in its structure, we will conclude there is spatial dependence in land 

values. 

 

The second proposition relates to current practices regarding specification of 

neighborhoods used for constructing the spatial weight matrix. To date, most spatial 

empirical studies (Fleming 1998, Bockstael and Bell 1998) use metric distances to create 

spatial lags to capture effects within neighborhoods, without examining the 

appropriateness of the particular distance function in the specific case study. The second 

proposition of this study states that mechanical construction of neighborhood effects, or 

the grouping of geographically nearby land parcels into neighborhoods, is not always the 

best way to capture spatial effects. The researcher should also pay close attention to the 

particularities of the data before defining spatial relationships among empirical 

observations. In addition to geographical proximity, neighborhood effects may also 

include morphological and socioeconomic elements of the empirical information. 

     

Finally, the third and most important proposition of the thesis is related to the success of 

current spatial econometric practices in capturing the spatial aspects of land values. It 

states that by implementing a comprehensive set of individual and joint misspecification 

tests, proposed by Spanos (1986), one can better identify misspecification error sources 

and thus, establish a more statistically sound model, which is more reliable than models 

based on the existing spatial econometric practices. The current spatial econometric 

techniques and the alternative comprehensive testing approach will be illustrated in detail 

in the following chapters. The validity of the third proposition will be assessed by 

comparing results from both approaches.  

 

Before examining the above propositions, the second chapter of the thesis provides the 

basic empirical framework in land value modeling. It also presents the empirical 

information from Roanoke County and the construction of relevant variables. The third 

chapter of the thesis introduces the concept of spatial autocorrelation, explains the 

practical reasons for the use of weight matrices, and presents current spatial econometric 
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practices as well as an alternative approach. The fourth chapter follows the current spatial 

econometric approach and attempts to ensure that all assumptions of concern in these 

studies other than spatial autocorrelation are satisfied. Chapter 4 also discusses the 

optimal construction of a weight matrix to capture neighborhood effects and analyzes the 

implications of a mathematically computed weight matrix for our case study. In the fifth 

chapter of the thesis, current spatial econometric techniques are applied to deal with the 

problem of spatial autocorrelation. Current techniques are then compared and contrasted 

with the results of an alternative methodology demonstrated in Chapter 6. The sixth 

chapter will also demonstrate that grouping of geographically nearby land parcels into 

sets of neighborhoods, is not always the best approach. Conclusions and hypotheses for 

future research efforts are provided in the last chapter, which also summarizes the 

findings of the thesis.  

 

 

1.3 Conclusions 
 

There is an increasing volume of empirical literature, which demonstrates the possibility 

of spatial autocorrelation in land value models. Current spatial econometric approaches 

examine the assumptions of normality, heteroskedasticity, and structural stability to make 

sure that spatial error autocorrelation is not observed due to other misspecification 

problems. According to this “traditional” approach the problem of true spatial 

autocorrelation can be corrected successfully by using a spatial error autoregressive 

model. However, a number of objections regarding the methodology followed in those 

empirical studies have been raised. Current spatial econometric studies examine only a 

subset of the underlying model assumptions to determine the source of misspecification 

problems. Even if they examined all the necessary assumptions, their approach of 

examining misspecification tests one-by-one and fixing misspecification problems one at 

a time also probably leads to erroneous conclusions. A battery of individual and joint tests 

is necessary to identify misspecifications sources and lead respecification efforts. Another 

objection to current methods is that the success of their results is judged by the changes in 
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the fitting power of the model. Finally, in the current approach to dealing with spatial 

autocorrelation, the specification of spatial structure in an econometric model is 

completely arbitrary.  

 

Using data from Roanoke County, we question the success of current spatial econometric 

practices in capturing the spatial aspects of land values, and we attempt to present a more 

reliable approach to model cross-sectional data. This thesis examines three propositions. 

The first proposition states that there is spatial dependence in the land value model in 

Roanoke County. The second proposition is that mechanical construction of 

neighborhood effects, or grouping nearby land parcels into neighborhoods, is not always 

the best way to capture spatial effects. Finally, the third and most important proposition 

states that by implementing a comprehensive set of individual and joint misspecification 

tests, one can better identify misspecification error sources and establish a more 

statistically sound model, which is more reliable than models based on existing spatial 

econometric practices. 
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CHAPTER 2 
 

The Case Study in Roanoke County 
 

 

2.1 Introduction 
 

This chapter introduces the basic empirical framework of land value modeling, gives 

details on the available data from Roanoke County, and illustrates the construction of 

explanatory variables, which will be used to capture land price variations. Existing 

empirical evidence guided efforts to identify relevant empirical information, while 

existing empirical studies helped in formulating specific variables. 
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2.2 Existing Empirical Literature in Land Value Modeling 
 

In 1889, Francis Galton used correlation analysis and paved the way for numerous studies 

in which researchers attempted to ascertain the importance of various attributes of land. 

The large body of existing empirical literature suggests that property derives value from 

three different sources. First, the productivity of land reflects its ability to provide 

consumers with goods and services. It is assumed that land derives a good portion of its 

value from characteristics of the parcel itself. The quality of land is usually associated 

with its innate characteristics such as quality of soil, elevation, erosiveness (which is 

usually related to slope), and flooding potential. Additional characteristics that have an 

impact include the size of the parcel, the amount of land available for production 

purposes, and the level of productivity-enhancing land investment, such as roads and 

buildings. 

 

Second, location is an important determinant of land value. The price an individual will 

pay is influenced by access to various goods and services. The proximity of land parcels 

to towns or malls that offer such amenities and services as shopping, entertainment and 

educational facilities is expected to increase the value of land. In addition, several studies 

(Nelson 1986; King and Sinden 1994) conclude that population pressure from nearby 

towns is expected to increase rural land values. Proximity to good roads will likely have a 

positive effect on the value of land, as it allows for access to both towns and highways. 

However, strip development along those same state roads may have a price depressing 

effect. 

 

Finally, the preferences of both buyers and sellers are usually reflected in the transaction 

price. If the land attribute of central importance is its production value, its price will 

reflect relative productivity of alternative parcels (King and Sinden 1994). However, if 

land is perceived as developable, the land parcel should reflect its speculative value. 

Policies such as zoning affect productivity, speculative, or consumptive values of the land 

in positive or negative ways.   
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2.2 Land Value Empirical Information 
 

The sensitivity of land value indices to changes of geographical patterns depends on the 

level of disaggregation of the spatial units. To achieve the most detailed level of spatial 

information possible, this study makes use of information related directly to the 

individual land parcels. Geographical Information Systems (GIS) can provide detailed 

information about the exact location and attributes of a land parcel based on a system of 

coordinates. This is also essential for determining the proximity of the parcels and 

achieving ordering of spatial observations (Gleeson, 1979). The Roanoke County 

Planning Department has geocoded the parcels in the tax assessment database, and this 

study uses the product of their work. Locating the parcels in a GIS means that we can 

employ our geocoded maps of features of the landscape and road network to describe the 

parcel characteristics more completely. Most of these characteristics were quantified with 

the help of the GIS tools. 

 

A random sample of observations used to estimate the model is extracted from the 

Roanoke County Division of Planning and the Roanoke County Division of Tax and 

Assessment data base, which includes market prices and transaction dates over the last 

five years for each privately held parcel in the county. There were 1,844 transactions of 

vacant and non-vacant land parcels for the period of 1996 to 1997. Our problem is 

complicated by the fact that we attempt to estimate a model, which will predict the value 

of the land in any economic use, minus the value of any structure. One way of dealing 

with this problem is to include in the model as many variables describing the existing 

structure as possible in the hope that it is feasible to separate the value due to location and 

size of the lot from the value of the structure. This idea, however, may be problematic for 

a number of conceptual and econometric reasons, including the absence of structural 

characteristics for a large portion of the available database. The alternative course of 

action is to extract the cost of the structure from the locational value by subtracting the 
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assessed value of the structure from the transaction price (Bockstael and Bell, 1998). This 

latter course of action is taken in this dissertation. 

 

Table 2.1 contains the descriptive statistics for a number of variables essential for the 

construction of a land value model. The price of the parcels (Price) is measured in dollars 

per square meter. The average price of our sample is $23.13 while the median is $3 per 

square meter. The area of the parcels (Area) is measured in square meters. The size of the 

parcels varies from 0.005 hectares (a parcel close to the urban fringe of Roanoke County 

dedicated to commercial use) to 216 hectares (a parcel of steep and remote agricultural 

land). The elevation of the center of the parcel (Elevation) is measured in meters above 

the average elevation of the GIS map from sea level. The average slope of the parcel 

(Slope) is measured in geometric degrees. There is a high correlation (r=0.68) between 

the slope of the parcel and its elevation. Most of the developed parcels are located on 

relatively flat land with low elevation. The soil quality of the land parcels was classified 

into three categories according to the permeability to water. The dummy variable 

representing Soil Quality 11 is the less absorbing category of soil, while Soil Quality 22 

has an intermediate level of penetrability. The ability of the soil to absorb water is related 

to lower flood risk and soil erosion. The category Soil Quality 1 contains 3% of the 

parcels, while the category Soil Quality 2 accounts for 87% of the parcels. 

 

Point to point distances of the parcels from the shopping malls, the town of Roanoke and 

the town of Blacksburg are measured in meters. The minimum distance of the parcels to 

either of two urban centers is about 3 kilometers and the maximum is close to 15 

kilometers. However, the town centers may be less important than the shopping malls in 

terms of daily commuting. The Planning Department of Roanoke County (PDRC) 

estimates that several thousand consumers visit daily the two malls of the county. 

Additionally, these malls have become the center of development of hundreds of small 

businesses, which offer employment to thousands of Roanoke County residents. 

                                                           
1 Inceptisoils 
2 Ultisoils 
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According to the PDRC the development rates of the areas close to the shopping malls 

are expected to be the highest in the county for the next five years.    

 

Table 2.1. Descriptive Statistics of the Empirical Information 

 

Variable  Average S.D.  Min  Max 

 

Price ($/m2)   23.13  18.08  0.02  133.40 

Area (m2)    8546.53 75202.91 56.97  2165233 

Elevation (m)   379.82  88.69  3.22  1003.00 

Slope (degrees) 5.49  3.54  0.00  34.56 

Soil Qual. 1   0.03  0.17  0.00  1.00 

Soil Qual. 2  0.87   0.33   0.00  1.00 

Mall 1 (m)   8861.89 4281.51 2002.89  27024.59 

Mall 2  (m)  9246.60 4774.35  435.92  27483.35  

Roanoke (m)  8828.68 3818.12 3395.87  28794.36 

Blacksburg (m)  39858.68 6786.72 18165.42 51206.84 

Road        0.05  0.22  0.00  1.00 

Population (p/He) 5.90  4.60   0.05  18.65 

Developed       0.88  0.33  0.00  1.00 

Coord. Y    16881.90 6022.44 1.81  30585.74 

Coord. X    24888.27 6766.91 0.15   36626.16 

Year       0.49  0.50  0.00  1.00 

 

 

About 5% of the parcels are located next to a major road (state or interstate highway). In 

case of Roanoke County, the existence of a major road (Road) is associated with several 

disamenities (i.e. noise and air pollution), which may affect negatively the land price. 

More open space and easier access to natural amenities may also be captured by the 

measurement of population density of the census blocks in which the parcel belongs. The 



 

 

16

average population density (Population) of our sample is about 6 people per hectare. 

Twelve per cent of the sample consists of vacant parcels, while the remaining 88% of the 

parcels includes some type of construction. The dummy variable “Developed” equals one 

if the tax assessors of the Roanoke County indicated the existence of a building on the 

parcel, otherwise zero. The Coordinates X and Y can be used to identify the exact 

location of the center of each parcel on a map. The Coordinate X increases as we move 

West and North in Roanoke County, while the Coordinate Y increases as we move East 

and North in Roanoke County.  These coordinates can calculate direct distances and 

define the proximity and the neighboring effects of the parcels. Finally the dummy 

variable “Year” indicates whether a parcel was sold in 1996 (Year=0) or in 1997 

(Year=1). According to the U.S. Bureau of Census the average price of rural land in 

Roanoke County increased by 1.5% in 1997 relative to the previous year.     

 

2.3 Conclusions 
 

Economic theory suggests that location is probably the most important determinant of 

land values. However, a number of empirical studies also suggest that hedonic attributes 

(i.e. soil quality, elevation, access to road, development status) can also explain variation 

in land prices. With the help of GIS, we collected a number of geographical, 

morphological and socioeconomic characteristics of land parcels in Roanoke County. 

Before the construction of a land value model, which links those parcel characteristics to 

their transaction prices, the next chapter introduces some elements of spatial statistics.  
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CHAPTER 3 
 

 

Basic Elements of Spatial Statistics 
 

3.1 Introduction 
 

In this chapter, some of the fundamental notions of spatial statistics are illustrated, setting 

the necessary framework for proceeding with the empirical analysis in the following 

chapters. We begin by introducing the concept of spatial autocorrelation and explaining 

the practical reasons for the use of weight matrices and the different ways of constructing 

a spatial weight matrix. A measure of spatial autocorrelation, the Moran I test, introduces 

the idea of testing spatial autocorrelation. Then, current spatial econometric modeling 

practices and an alternative approach proposed by Spanos (1986) are presented.  
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3.2 Spatial Autocorrelation 
 

Consider a region, which can be exhaustively partitioned into n non-overlapping parcels 

of land. Let the observed value of land price Y, in the typical parcel i, be yi. Y describes a 

single population from which repeated drawings are made to give the sample {yi}. If for 

each pair of parcels i and j, the drawings that yield yi and yj are uncorrelated, then we say 

that there is no spatial autocorrelation of land prices. Conversely, spatial autocorrelation 

in land prices exists if the drawings are not all pairwise uncorrelated. The problem of 

spatial autocorrelation or of determining whether geographical data are spatially 

autocorrelated is fundamentally different from testing autocorrelation in stationary time 

series. This is due to the fact that the observed variable in a time series is influenced by 

past values, while spatial dependence potentially extends in all directions.  

 

Formally, in time series analysis a first order autoregressive model can be formulated as: 

 

yt = ayt-1 + et         (3.1) 

   

where yt is the value of Y at period t, a is an unknown parameter, and et is a random 

disturbance. In the spatial situation, the first order autoregressive model for a regular 

lattice with K rows and Z columns, considering only interactions between cells with 

common edge, can be stated as: 

 

 yk,z = a1yk-1,z + a2yk+1,z +  a3yk,z-1 + a4yk,z+1+ ek,z     (3.2) 

 

where a1, a2, a3 and a4 are parameters. Note, however, that model (3.2) assumes the ideal 

case where different parcels have the same shape and size. If the shape and size of the 

different parcels vary then model formulation becomes more complicated. Different 

shapes and sizes demand different numbers of weights for the parameters. Furthermore, 

formulating model (3.2) is practically infeasible due to the assumption that each parcel 
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should be contiguous to a maximum of four other parcels - when in fact parcels may 

border more than four parcels. 

 

The idea of a weight matrix designed to overcome these problems dates backs to the first 

days of spatial statistics. A weight matrix can make model (3.2) operational by imposing 

restrictions on the parameters of the lagged spatial variables. The size and shape of 

parcels and the relative strength of links between them (road and rail links, for example) 

can be captured by choosing a set of weights for the matrix. However, the structure of the 

weight matrix is ad hoc and its validity cannot be tested directly. 

 

 

3.3 Weight Matrices 

 

A weight matrix has the role of ordering observations in space. In a time-series, the 

ordering is obvious. However, in space it is sometimes preferable instead of ordering one 

observation after another in an arbitrary fashion to order one observation after the average 

of more than one observation. The idea is that averaging neighboring yi's results in a 

smoother map of land values than the map of the original observations. In this way, the 

researcher can observe trends in her spatial data and use them in her modeling. The more 

points included in the moving average, the greater the smoothing will be. In a binary 

contiguous matrix the underlying structure of the neighbors is expressed by 0-1 values. In 

other words, the nearby neighbors get a weight of 1 and others 0. If neighbors are 

characterized as the nearest 4 points, then a four point spatial weight moving average can 

smooth out the land value map. 

 

The obvious problem with using the binary contiguous matrix is that it does not allow for 

spatial variations in the distribution of sample sites. For example, there is no 

discrimination between a site where the closest four points have an average distance of 10 

km and another site where the closest four points have an average distance of 50 m. In 

both cases, the four closest points to a site define a neighborhood. To counter this 
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problem geologists have developed the notion of a generalized weight matrix, which 

essentially uses a weighted average of neighboring points. Usually, the weighting factor is 

chosen to be zero beyond some appropriate distance, downgrading the influence of 

neighbors beyond some distance from the site under consideration. In a similar manner, 

the researcher can consider several orders of contiguity by defining a series of concentric 

bands around the spatial unit under consideration. 

 

In general, we can define a spatial weight matrix W, such that each element, wij 

represents a measure of spatial proximity between two parcels i and j. As a rule, the 

choice of wij will depend upon the sort of data that the researcher is dealing with and the 

particular mechanisms through which one expects spatial dependence to arise. According 

to Griffith (1988), some possible criteria might be: 

 

wij=  1 centroid of j is one of the k nearest centroids of i,  

0  otherwise 

wij=  1 centroid of j is within some specified distance of i, 

0  otherwise 

wij=  zij if inter-centroid distance zij<R (R>0),  

0  otherwise 

wij=  1  parcel j shares a common boundary with parcel i,   

0  otherwise 

wij=  Lij/Li where Lij is the length of common boundary between i and j,  

and Li is the perimeter of i 

 

Similarly, it is sometimes necessary to specify spatial weight matrices of different orders, 

often referred to as spatial lags. For example, we might require a series of weight matrices 

W1,…, Wk where W1 represents spatial proximity of the areas at spatial lag 1 (within 

some distance band) then W2 represents spatial proximity at spatial lag 2 (within next 

distance band) and so on. 
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There is no convention as to which type of weight matrix should be used in spatial 

statistics analysis. However, it is evident that the structure of spatial dependence 

incorporated in the spatial weight matrix should be chosen judiciously, and in agreement 

with general concepts from spatial interaction theory, such as the notion of accessibility 

and morphological similarity (Anselin, 1988). A spatial weight matrix should be based on 

the visualization of spatial patterns and of the interaction among spatial units. A 

theoretical conceptualization of the structure of dependence should not justify the choice 

of a weight matrix. Rather careful observation of the existing information in each case 

study could reveal the ordering of the data in space and the appropriate choice of weights. 

 

Practically, the creation of a weight matrix assumes the existence of a map, which depicts 

the spatial arrangement of the spatial units. In this matrix, each unit is represented both as 

a row and as a column. In each row, the nonzero column elements correspond to 

contiguous spatial units. For example, for the nine cells of Figure 3.1, the corresponding 9 

by 9 matrix (with the cells numbered from left to right and top to bottom) is given in 

Table 3.1. For example, the cell Y11 corresponds to the first column and row of the 

matrix, while the cell Y21 corresponds to the fourth column and row of the matrix. 

 

Figure 3.1 An Example of Spatial Arrangement of Nine Spatial Units 
Y11 Y12 Y13 

Y21 Y22 Y23 

Y31 Y32 Y33 

 

In this case, two cells are defined as contiguous when they are next to each other either 

vertically or horizontally. By convention, a cell is not contiguous to itself, which results 

in zero diagonal elements. The weight matrix is also a symmetric matrix, because when a 

cell A is contiguous to a cell B, then by definition the cell B is also contiguous to a cell A. 

For example, the cell Y23 is contiguous to the cells Y13, Y22 and Y33, so both the sixth 
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row and the sixth column of the weight matrix will have values of one only in the third, 

fifth and ninth positions. 
 

 

Table 3.1. Weight Matrix Based on the Arrangement of the Spatial Units in 

Figure 3.1* 

0 1 0 1 0 0 0 0 0 

1 0 1 0 1 0 0 0 0 

0 1 0 0 0 1 0 0 0 

1 0 0 0 1 0 1 0 0 

0 1 0 1 0 1 0 1 0 

0 0 1 0 1 0 0 0 1 

0 0 0 1 0 0 0 1 0 

0 0 0 0 1 0 1 0 1 

0 0 0 0 0 1 0 1 0 

*Cells are numbered from left to right and top to bottom. For example, the first column, first row entry corresponds to Y11 in 

Figure3.1, and second column, first row entry to Y12. 

 

Usually, though not necessarily, the spatial weight matrix is standardized to have row 

sums of unity. The standardized weight matrix of Figure 3.1 is presented in Table 3.2. 
 

Table 3.2. Standardized Weight Matrix Based on the Arrangement of the 

Spatial Units in Figure 3.1 

0 1/2 0 1/2 0 0 0 0 0 

1/3 0 1/3 0 1/3 0 0 0 0 

0 1/2 0 0 0 1/2 0 0 0 

1/3 0 0 0 1/3 0 1/3 0 0 

0 1/4 0 1/4 0 1/4 0 1/4 0 

0 0 1/3 0 1/3 0 0 0 1/3 

0 0 0 1/2 0 0 0 1/2 0 

0 0 0 0 1/3 0 1/3 0 1/3 

0 0 0 0 0 1/2 0 1/2 0 

* Cells are numbered from left to right and top to bottom. For example, the first column, first row entry corresponds to Y11 in Figure3.1, and second column, first 

row entry to Y12. 
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3.4 Testing Spatial Autocorrelation 
 

At first sight, spatial dependence may seem similar to the more familiar time-wise 

dependence encountered in time series econometrics. However, this is only partially the 

case. Standard theoretical results from time series econometrics do not always carry over 

in a straightforward way to the multi-dimensional dependence in space. This realization 

led researchers to create measures of spatial dependence, which differ from those of serial 

dependence. The first measure of spatial dependence (or, more precisely, spatial 

autocorrelation) proposed by Moran (1948) is the best known and most widely used 

measure to test for spatial autocorrelation. This statistic has been widely adopted in 

geology and biology because it is also fairly easy to compute.  

 

Formally the Moran’s I statistic (using a spatial weight matrix W) measures spatial 

correlation in attribute values yi as: 

 

I = Σi Σj wij (yi - µ) (yj - µ) / ΣI (yi - µ)2      (3.3) 

 

where wij is the element in the spatial weight matrix W corresponding to the observation 

pair i,j, yi and yj are observations of land values for location i and j (with mean µ). 

Moran’s I is similar but not equivalent to the correlation coefficient of yiyj and is not 

centered around 0. In fact, the theoretical mean of Moran’s I is -1/(N-1). In other words, 

the expected value is negative and is only a function of the sample size N. As the sample 

size increases, however, the mean will tend to zero. A Moran’s I coefficient larger than its 

expected value indicates positive spatial autocorrelation, and a Moran’s I less than its 

expected value indicates negative spatial autocorrelation. 
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3.5 The Traditional Spatial Autoregressive Model 
 

According to Anselin (1988), the spatial econometric literature was developed to deal 

with the case of true spatial autocorrelation where an econometric model satisfies all the 

usual econometric assumptions but exhibits spatial autocorrelation. In this case, the 

model is correctly specified except for the failure to take spatial autocorrelation into 

account. Errors in the regression models show spatial dependence and the standard 

assumption of a spherical error covariance matrix fails to hold. Analogous to the 

treatment of temporal autocorrelation, the usual method for correcting spatial 

autocorrelation requires assuming a structure for spatial dependence and estimating one 

or more parameters of the structure in conjunction with the parameters of the economic 

model. Following Anselin (1988), the conventional autocorrelation problem is 

represented as a spatial autoregressive process with the standard regression models 

revised as: 

 

 

  Y = Xβ  + u        (3.4) 

where 

 u = λWu + ε        (3.5) 

 

where Y is an Nx1 vector of observations on the dependent variable, X is an NxK matrix 

of explanatory variables, W is an NxN spatial weight matrix, β is the vector of parameters 

to be estimated, λ is a scalar to be estimated, ε is an Nx1 vector of random error terms 

with mean zero and variance-covariance matrix σ2IN, and u is an Nx1 vector of random 

error terms with mean zero and non-spherical variance-covariance matrix σ2(IN-λW)-1 (IN-

λW’)-1. 

 

 As noted earlier, the spatial weight matrix, W, contains information on the spatial 

dependence between pairs of errors. The i,jth element of the weight matrix, denoted as wij, 

represents the relative spatial dependence between the ith and the jth error. All the diagonal 
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elements of W are equal to zero. Obviously, each observation, i, can have as many as N-1 

neighbors, but the relative influence of each neighbor must be specified, a priori, since 

these elements are impossible to estimate independently.  

 

Based on a joint normal distribution for the error term u ~ N (0 , Σ) with Σ = σ2 [(I-λW)' 

(I-λW)]-1, the estimation of the parameters of interest (β, λ, σ2) comes from maximizing 

the likelihood function3, 

 

L(λ, β, σ2) =  ln|I-λW| - N/2 ln(2π) - N/2 ln(σε
2) - [(Y - λWY - Xβ + λWXβ)’  

(Y - λWY - Xβ + λWXβ)]/2σε
2    (3.6) 

 

The first order conditions yield the familiar generalized least squares estimator : 

 

  βML= [(X - λWX)’(X - λWX)]-1(X - λWX)’(Y - λWY)  (3.7) 

 

and, similarly, the ML estimator for σML
2 follows as: 

 

σML
2 = (e - λWe )’(e - λWe)/N when e = Y - XβML   (3.8) 

 

 

It is argued that the above maximum likelihood procedure accounts for the problem of 

spatial autocorrelation, which existed in the initial model. In this sense, “reliable” results 

are obtained and the fitting power of the initial model improved. In the case that spatial 

autocorrelation still exists in the error terms of the autoregressive model, the accepted 

approach is to look more carefully at the spatial patterns in the data and define another 

weight matrix which captures better the structure of spatial dependence. The ad hoc 

nature of the selection of an appropriate spatial weight matrix is a widely acknowledged 

weak point of the traditional spatial econometric approach (Anselin 1988, Bockstael 

1996). 

                                                           
3 For analytical derivation of the likelihood function see Breusch (1980) 
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3.6 The Alternative Approach 
 

The approach to spatial econometrics as just described can be viewed as a simple 

extension to what Spanos refers to as “traditional” or “textbook” time series econometrics 

(Spanos 1989, 1994). The criticisms of Spanos (1986) regarding the “textbook” approach 

are mainly focused on the confusion between theoretical and statistical issues in the 

“traditional” econometric thinking, the lack of a comprehensive set of statistical 

assumptions which support the statistical model, and a completely different philosophy in 

misspecification testing. This section does not attempt to summarize Spanos’ views on 

econometrics, but briefly mentions some basic elements of Spanos’ approach that could 

also apply in the case of spatial autocorrelation. 

 

Spanos (1986) presents a set of consistent statistical assumptions underlying the linear 

regression model, which forms the backbone of most other statistical models. The validity 

of those assumptions is essential for the interpretation of the empirical results. The list of 

the assumptions defining the linear regression model is specified as following: 

 

I] Statistical Generating Mechanism 

Ys = Xsb + us 

1] µs = E(Ys/Xs=xs) is the systematic component; and us = Ys- E(Ys/Xs=xs) is the 

non-systematic component. 

2] θ = (b,σ2) are the parameters of interest 

3] Xs is weakly exogenous with respect to θ 

4] No a priori information on θ 

5] Rank(Xs) = k 

 

II] Probability Model 

6] i] D(Ys/Xs; θ) is normal; 

  ii] Linearity in Xs 

  iii] Homoskedastic Variance 
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7] θ is invariant in s 

III] Sampling Model 

8] Identical sample is sequentially drawn from D(Ys/Xs; θ) 

 

It is important to note that the index s refers to spatial ordering in the case of a cross-

sectional data set. The above model assumptions (which are more than the assumptions 

mentioned in traditional spatial econometric studies) are all very closely connected to 

each other in the sense that the model assumptions are all about a conditional distribution 

that is derivable from a large joint distribution. If any one of the model assumptions is 

invalid it is likely that several of the model assumptions are invalid. Spanos (1986) 

clearly indicates that testing the validity of all the underlying assumptions is an issue of 

paramount importance, and argues that any particular misspecification test is only valid if 

all other assumptions underlying the model are valid. A test may result in too many or too 

few rejections if another assumption underlying the model is invalid. In particular for the 

case of autocorrelation type tests, Spanos (1986) notes that the assumption of no 

autocorrelation is usually rejected when other assumptions are violated, and also many 

other assumptions are usually rejected when there is autocorrelation in the statistical 

model. 

 

It is primarily for these reasons that Spanos (1986) advocates testing and interpreting the 

assumptions as a whole. That is, a battery of individual and joint misspecification tests is 

essential at every step of the misspecification-respecification procedure.  Rejection of the 

null hypothesis of one particular assumption should not be viewed as an acceptance of the 

alternative. Misspecification tests should provide only a rough guide as to whether or not 

empirical information supports the null hypothesis. Identification of misspecification 

sources should lead respecification efforts, until we obtain a statistical model that satisfies 

all necessary assumptions at the same time.   

 

Although the above elements of Spanos’ approach have not been applied to spatial data, 

they are clearly applicable. This approach to misspecification and model respecification 
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can potentially help isolate the source or sources of observed autocorrelation. Even when 

the data are spatially based we still need to do a battery of tests, interpret all results as for 

or against the null hypothesis, and try to figure out the most likely source of all symptoms 

highlighted by all different tests including observed spatial autocorrelation. Finally, 

testing the validity of the underlying model assumptions may help reduce the ad hoc 

nature of choice of the weight matrix. When the choice of the weight matrix leads us 

towards a statistically adequate model then its choice can be validated. 

 

 

3.7 Conclusions 
 

In this chapter we have introduced some basic tools that may be used in analyzing and 

testing patterns of spatial dependence. Fundamental to much of this material is the notion 

of a weight matrix, W, which captures the spatial relationship between a set of spatial 

units. A weight matrix has the role of averaging values at neighboring sampled data 

points. Several alternative definitions of a spatial weight matrix have been discussed. The 

researcher should use the type of weight matrix that is consistent with the available 

empirical information, but be aware of its ad hoc nature when interpreting her results.  

 

This chapter also contains a description of the Moran I test, which is the most widely 

used test for spatial autocorrelation. Then, we presented the structure and the maximum 

likelihood estimators of the spatial error autoregressive model. Finally, we briefly 

introduced some basic elements of an alternative approach for econometric modeling, as 

proposed by Spanos (1986). This approach has not been applied to spatial data, however, 

its principles could help us understand sources of spatial autocorrelation and direct our 

misspecification and respecification efforts. 
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CHAPTER 4 
 

 

Neighborhoods and Spatial Autocorrelation 
 

 

4.1 Introduction 
 

 

A search in electronic databases for academic work devoted to land value modeling will 

locate thousands of papers and dozens of books. The overwhelming majority of these 

documents do not examine the assumption of spatial autocorrelation in their empirical 

applications. It has only been during the last decade that studies have considered the 

possibility that land value models may suffer from spatial autocorrelation. This chapter 

will investigate whether land values in Roanoke County are spatially correlated, 

demonstrating the possibility that an econometric model, which does not consider the 

spatial configuration of the data may lead to biased and inconsistent estimators. 

Following current spatial econometric techniques, we initially estimate a land value 

model for Roanoke County, and then we examine whether spatial autocorrelation is 
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present. Prior to testing for spatial autocorrelation, the land value model for Roanoke 

County is tested for the assumptions of normality, heteroskedasticity and structural 

stability. In this way, we follow current spatial econometric practices and attempt to 

verify that the observed autocorrelation is “true”; and not due to violation of an 

underlying assumption (i.e. normality, heteroskedasticity and structural stability).  

 

As we saw in the previous chapter, the construction of an appropriate weight matrix to 

account for neighborhood effects is necessary for testing spatial autocorrelation. A weight 

matrix can be based either on the Euclidean distances between centers of parcels or on 

existing information about designated neighborhoods in Roanoke County. Current spatial 

econometric studies construct weight matrices, which are based on mathematical 

computation of distances, and pay little attention to the particularities of the empirical 

information in the study area. The choice of a weight matrix can not be based on 

statistical tests, and the ad hoc nature of the matrix is widely acknowledged as a serious 

drawback of spatial econometric modeling. In the following sections, we will see that in 

our case study, the mechanically constructed matrix makes no sense and thus, would 

probably lead to erroneous conclusions. At the end of this chapter two different tests are 

conducted, both of which reject the hypothesis that the residuals of the model are spatially 

independent. 
 

 

4.2  A Statistical Model That Assumes Spatial Independence    
 

In this section, we try to create the best possible model assuming that the sample 

observations are not spatially correlated. In other words, we try to develop a land value 

model, which satisfies the “relevant” assumptions of current spatial econometric studies 

(Anselin 1988). Most of the “traditional” spatial econometric studies do not report 

misspecification tests results. Some papers, which report results of misspecification tests 

(Bockstael and Bell 1998), find violations of fundamental assumptions. However, they 

often justify these violations as due to the presence of spatial autocorrelation.  
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After performing a number of misspecification tests (see Table 4.1) for the assumptions 

of normality, heteroskedasticity and structural stability, the land value model is specified 

as follows: 

 

Log(Price) = A0 + A1[Log(Size)] + A2[Log(Size)]2 + A3[Log(Elevation)] + 

A4[Log(Elevation)]2 + A5(Soil1) + A6(Soil2) +A7(Population) + A8(Population)2 + 

A9[Log(Mall)] + A10[Log(Mall)]2 + A11[Log(Town)] + A12(Developed) + A13(Road) + 

A14(Year) + A15[Log(X)] + A16[Log(Y)] + A17Log(X)Log(Y)] + u      (4.1) 

 

where Price is the price of the parcel per square meter, Size is the area of the parcel, 

Elevation is the average elevation of the parcel, Soil1 and Soil2 are dummy variables 

capturing soil quality, Population is the population density in the U.S. census block 

containing the parcel, Mall is the minimum distance to an existing mall, Town is the 

minimum distance to the closest town, the dummy variable Developed indicates whether 

the parcel is vacant, Road is another dummy variable which reveals whether the parcel is 

adjacent to a major Road, the dummy variable Year shows if the parcel was sold in 1996 

or 1997, the Coordinates X and Y determine the exact location of the parcel and finally u 

represents the error term of the model.   

 

Table 4.2 contains the OLS estimates of the land value model (4.1) for Roanoke County. 

If one were to assume neither spatial autocorrelation nor any other misspecification 

problems the results of the OLS estimation suggest this model explains approximately 

80% of the variation in the land transaction prices. The value of a land parcel per square 

meter is expected to be lower for larger parcels. Parcels, which already have some type of 

residential or commercial development, have higher transaction prices. Lower water 

permeability (and consequently higher flood risk) affects negatively the parcel value, 

while a parcel sold in 1997 is expected to have higher value than a similar parcel sold in 

1996. A careful analysis of the non-linear relations of the model and the value range of 

the variables indicates that longer distance from the closest mall as well as higher 

elevation and lower population density affect positively the land transaction prices but at 
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a decreasing rate. The effect of land size on price is opposite to that found in some 

previous empirical studies (Xu et al, 1993).  

 

Table 4.1 includes the misspecification tests that are usually performed in current spatial 

econometric studies. The Jacque-Bera test rejects the null hypothesis that the errors are 

normally distributed. However, it is well known that this test is very sensitive to outliers. 

After dropping some of the extreme sample observations (about 2%) we realized that 

outliers were driving the rejection of the normality hypothesis. The P-value of the White 

test supports the hypothesis of homoskedasticity. A series of Chow tests also indicates 

that the model is unlikely to have some structural break. Model observations are ordered 

by neighborhood according to the numerical code of the Roanoke County Planning 

Commission. Following the existing spatial econometric literature (Anselin 1988), we 

can conclude that if we find observed spatial autocorrelation in the econometric model 

then this spatial autocorrelation is the result of omitting relevant spatial characteristics.  

 

Table 4.1 Misspecification Tests for the Land Value Model for 

Observations in Roanoke County 

Test    Null Hypothesis  Specification                     P-Value 

 
Jacque-Bera  Residuals are normally  JB = (N-k)(4S2+ (K-3)2)/24  0.000000 
(Normality)  distributed    S is the skewness, K is the Kurtosis, 
       and N-k are the degrees of freedom 

 
White Test   Homoskedasticity   u2 = c +bx2 + dy   0.762358 
(Heteroskedasticity)      u is the vector of residuals, c is a con-  
       stant, x is the vector of variables, y is  

the vector of cross-product variables  
  

Chow Test   Existence of structural change  F statistic based on the comparison of   0.853459 
(Structural Break)  (Breakpoint n = 300)   restricted and unrestricted sum of square 
       residuals. 
 
Chow Test   Existence of structural change  F statistic based on the comparison of   0.800440 
(Structural Break)  (Breakpoint n = 600)   restricted and unrestricted sum of square 
       residuals 
 
Chow Test   Existence of structural change  F statistic based on the comparison of   0.281454 
(Structural Break)  (Breakpoint n = 900)   restricted and unrestricted sum of square 
       residuals 
 
Chow Test   Existence of structural change  F statistic based on the comparison of   0.521240 
(Structural Break)  (Breakpoint n = 1200)  restricted and unrestricted sum of square 
       residuals 
*For analytical discussion of misspecification tests see Appendix 1. 
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Table 4.2 OLS Estimates for the Land Value Model in Roanoke County 

Variable  Coefficient  Std. Dev.  t-ratio 

Constant  -17.46850  3.214461   5.434 

Log(Size)  -0.483947       0.069485     6.964 

[Log(Size)]2   -0.030618       0.009440      3.243 

Log(Elevation)  0.337926  0.274165       1.233 

[Log(Elevation)]2 -0.106225       0.065750     1.616 

Soil1   -0.056682  0.019007  2.982 

Soil2   -0.091607  0.036173  2.532 

Population  0.004845  0.004217  1.149 

(Population)2  -0.000059    0.000023     2.571 

Log(Mall)  1.402944       0.417148       3.363 

[Log(Mall)]2  -0.220563      0.057922     3.808 

Log(Town)  0.250346     0.068201      3.671 

Developed  0.094025  0.015405     6.103 

Road   -0.070932  0.022242     3.189 

Year   0.056391  0.009418  5.987 

LogX   4.190094   0.732566  5.719 

LogY   3.811132   0.695302  5.481 

(LogX)*(LogY) -0.930265       0.167058     5.569 

 

R2        0.809 

Adjusted R2    0.807 
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4.3 Neighboring Effects and Weight Matrices 
 

 

The testing of spatial independence requires the creation of at least one spatial lag. In the 

case of a land value or a housing model the notion of a spatial lag is synonymous with the 

neighborhood around the parcel or the house, and spatial effects are usually referred to as 

neighboring effects. The magnitude of the neighborhood depends on the population 

density and the structure of observations. For example, the area of a neighborhood in New 

York City is expected to be much smaller than a neighborhood in rural Arizona. The 

purpose of a weight matrix is to capture the neighboring effects of the land parcels. 

Spatial proximity, which may generate neighboring effects, can be identified through 

many ways. Perhaps the most popular is the use of interactive GIS maps and defining 

contiguity between spatial units as a function of the distance that separates them. In this 

case, the distance is usually computed between the geometrical centers of the parcels. 

Two units are then considered contiguous if these points are less than a pre-specified 

distance apart. Descriptive statistics of the distances among the centers of the parcels are 

usually computed to enhance our understanding of the study area. Table 4.3 presents the 

descriptive statistics of parcel distances in Roanoke County.   

 

Table 4.3 Descriptive Statistics of Distances between Parcel Centers in 

Roanoke County 

Number of parcels       1,844.00 

Average Distance(meters)     11,076.39 

Standard Deviation(meters)      6,439.35 

Minimum Distance(meters)             6.53 

Maximum Distance(meters)    37,078.10  

Minimum Contiguity(meters)      2,781.95 
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Perhaps the most important information in Table 4.3 is related to the minimum distance 

required for the creation of a spatial weight matrix, which is indicated by the minimum 

contiguity. Minimum contiguity is defined as the minimum distance necessary for every 

parcel to have at least one neighbor. The minimum diameter of a spatial lag in Roanoke 

County should be at least 2,782 meters. A smaller distance would result in a lack of 

contiguity for a number of parcels and thus, in the creation of discontinuous spatial 

variables. This is because each parcel must be contiguous with another parcel in order to 

create a spatial lag, and each row of a weight matrix must have at least one non-zero 

element.  

 

However, a neighborhood of approximately 3 km diameter may be not sensitive enough 

to capture neighborhood effects among land parcels. In the case of large distances among 

parcels, Anselin (1988) suggests the use of a non-linear relationship between distance and 

neighborhood effects for the creation of the appropriate spatial weight matrix. Ad hoc 

determinations of different functional forms can lead to the construction of different 

weight matrices. The optimal weight matrix is usually selected through a series of non-

nested tests. A major disadvantage of this procedure is that it fails to take into 

consideration the natural borders of different neighborhoods as well as other spatial 

particularities of the study area. 

 

Fortunately, the Tax Department of Roanoke County has classified the land parcels of the 

study area into different neighborhoods. The criteria used for this classification are: the 

geographic proximity of spatial units, level of economic development, geographical and 

morphological elements as well as conventional and administrative definitions of 

"neighborhood" from other departments of the local government. There are 164 different 

neighborhoods in our sample, and each neighborhood contains an average of 12 land 

parcels included in the sample. The magnitude of these neighborhoods is not the same. 

Some of these neighborhoods close to the town of Roanoke have a diameter smaller than 

0.3 Km to capture different types of residential development, while neighborhoods at the 

borders of the Roanoke County are large enough to capture similar characteristics of 
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remote parcels. These neighborhoods can be used to define spatial lags for our case study, 

and a weight matrix can average the value of the neighboring land parcels in each defined 

neighborhood.  
 

 

 

4.4 Testing Spatial Autocorrelation in Roanoke County 
 

 

Let W be the weight matrix based on the existing neighborhood information. Two 

different tests have been selected to test the hypothesis of no spatial autocorrelation in the 

land value model (4.1) for Roanoke County. The first test is the Moran’s I test, which is 

the most common in spatial statistics and is demonstrated in the previous chapter of the 

thesis. The results of the Moran’s I test indicate the existence of spatial autocorrelation. 

The statistic I equals 0.928 and ZI equals 5.54, which provides evidence for the rejection 

of our hypothesis of no spatial autocorrelation (P-value less than 0.001).  

 

Spatial autocorrelation can also be tested through the use of the following auxiliary 

regression test: 

 

 u = Xb + kWu + ε       (4.2) 

 

where u and X are the residuals and the explanatory variables of equation (4.1), b and k 

are the estimated coefficients, W is the weight matrix and ε is the error term of equation 

(4.2). The null hypothesis is that H0: k = 0 against H1: k ≠ 0. The F-test for H0 provides 

evidence against the null hypothesis (F-statistic = 17.98, P-value less than 0.001). 

Consequently, both tests indicate the existence of spatial autocorrelation and that the 

model (4.1) is not well specified. 
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4.5 Conclusions 
 

This chapter seems to provide evidence in support of the first proposition of this 

dissertation, which states that there is spatial dependence in the value of land parcels in 

Roanoke County. Following current spatial econometric studies we tested the hypotheses 

of normality, heteroskedasticity and structural stability in the land value model of 

Roanoke County, and then two additional tests provided evidence of spatial 

autocorrelation. In the next chapter, we will attempt to “cure” spatial autocorrelation 

following existing econometric practices. However, the sixth chapter of the thesis will 

show that the observed spatial autocorrelation may be the result of other model 

misspecification.  

 

There is one more interesting observation regarding the results of this chapter. Using the 

statistical package Spacestat, we calculated that the diameter neighborhood in Roanoke 

County should be at least 2.8 km. However, such a large neighborhood would be clearly 

inappropriate to capture spatial effects in Roanoke County. In addition this neighborhood 

would not consider natural frontiers and other socioeconomic parameters essential to 

determine spatial relationships. Neighborhoods defined by the Planning Department of 

Roanoke County are built based on the geographical particularities of Roanoke County. 

Some of these neighborhoods have diameter smaller than 0.3 km, while others are big 

enough to include common types of residential development at the county borders. One 

should be very careful using neighborhoods defined numerically via Spacestat, Gauss or 

Matlab; it may well be that the implied specification of W is completely inappropriate for 

the data in question and, thus, the results obtained with this specification questionable. It 

is worth noticing that the overwhelming majority of existing spatial econometric studies 

use weight matrices calculated by the above statistical packages, while no discussion is 

included about the appropriateness of the weight matrix. 
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CHAPTER 5 

 
The Traditional Spatial Econometric Approach 

 

5.1 Introduction 
 

Given the existence of observed spatial autocorrelation in the land value model (4.1) for 

Roanoke County, this chapter attempts to account for the existence of spatial 

autocorrelation using the latest accepted practices. The third chapter of the thesis 

described the use of maximum likelihood techniques to account for error spatial 

autocorrelation. The existing spatial econometric literature argues that this methodology 

alleviates the problem of spatial autocorrelation and produces reliable estimates (Anselin, 

1988). During the last decade, maximum likelihood estimation for spatial autoregressive 

models has become common-place for empirical applications. The first studies utilizing 

this approach included public finance and socio-economic models of the behavior of 

different geographical regions and the spillover effects between them. This empirical 

work was characterized by a small numbers of observations and the spatial relationships 

were generally those of adjacent neighbors (i.e. counties with common borders). The 

development and increasing availability of GIS data sets, however, has changed the 

nature of spatial econometric applications. In the 1990’s studies of houses, firms and land 
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parcels dominated the spatial econometric literature. In contrast to the initial applications, 

these studies are characterized by large data sets and declining functions of distances are 

used to measure spatial relationships.  

 

While these changes may seem inconsequential, the size of sample has had an important 

impact on both the properties and the feasibility of the maximum likelihood estimator. 

Several studies (Pinkse and Slade, 1998; Kelejian and Prucha, 1999) have observed that 

maximum likelihood techniques become increasingly problematic as sample size grows. 

This is because the calculation of the eigenvalues of the spatial weight matrix may 

become infeasible as the size of the matrix increases. In addition, Kelejian and Prucha 

(1997) proved that eigenvalues of spatial weight matrices of dimension over 400 could 

not be calculated reliably. This means that even if we manage to derive the maximum 

likelihood estimates of a spatial autoregressive model, the solution may not be reliable.  

 

In recent papers, alternative estimation techniques of the spatial econometric model are 

proposed. These techniques can be categorized into parametric and non-parametric 

approaches. Parametric techniques focus on creating an alternative autoregressive model, 

which achieves estimators with optimal properties through the use of instrumental 

variables. The parametric techniques are characterized by simplicity, they require limited 

computing capacity and they are less mathematically complicated in comparison to non-

parametric techniques. The only disadvantage of the parametric techniques seems to be 

the arbitrary choice of the instrumental variables. Studies that use two or three stage least 

squares techniques (Land and Deane, 1992; Kelejian and Prucha, 1998) recognize that the 

efficiency of their instrumental variable estimator relies on the proper choice of the 

instruments. 

  

The success of non-parametric techniques is based on a "low cost" means of obtaining 

parameter estimates, which are close to the maximum likelihood estimates. In other 

words, estimates with values very close to the actual maximum likelihood estimates can 

be achieved faster and with limited computing capacity, while the calculation of the 
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actual maximum likelihood estimates requires calculating the eigenvalues (which are not 

always reliable and demand very high computing capacity) of very large matrices. The 

validity of the parametric and non-parametric approaches can be demonstrated by the 

similarity of the maximum likelihood estimates to the non-parametric estimates (Anselin, 

1999; Bockstael and Bell, 1998). Kelejian and Prucha (1998) provide Monte Carlo results 

for contiguity-type weight matrices and samples up to 400 observations, which suggest 

that non-parametric estimators, for these problems, are virtually as efficient as the 

maximum likelihood estimates. 

 

This chapter applies both parametric and non-parametric techniques to the land value 

model of Roanoke County in an attempt to capture the observed spatial autocorrelation. 

The results indicate that both techniques achieve higher fitting power (based on R2) than 

the initial model estimated in the last chapter. Higher fitting power implies that by using 

spatial lags, the model explains a larger portion of the variance of the dependent variable. 

However, the statistical validity of these models (as used in current spatial econometric 

studies) has not been tested, and the results rely on the assumption that the model is well 

specified. That is, we assume the models adequately capture the existing spatial 

autocorrelation and that no other specification problems exist. 

 

Before ending this chapter, we attempt to make sure that the parametric and non-

parametric models are well specified by conducting the misspecification tests applied in 

the existing spatial econometric literature. The results indicate that there is still spatial 

autocorrelation and in addition the assumption of homoskedasticity is now violated. 

Given these assumption violations, we can conclude that by applying the tools of current 

spatial econometric methodology we have not adequately modeled land values. Anselin 

(1988) argues that a failure of spatial econometric techniques to account for spatial 

autocorrelation can sometimes be attributed to the choice of an inappropriate weight 

matrix. He also suggests that the researcher should continue trying alternative weight 

matrices until the misspecification problem is solved. However, we saw in Chapter 4 that 

the weight matrix used in this chapter relies on detailed information provided by the 
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Planning Department of Roanoke County, and matrices based on distances among the 

parcel centers make no sense in our case study. Thus, instead of trying various ad hoc 

definitions of weight matrices, we will attempt modeling land values using an alternative 

approach; a more comprehensive set of misspecification tests which will guide our 

respecification efforts. 

 

5.2 Parametric Techniques 

 

Research (Land and Deane 1992, Kelejian and Robinson 1993 and Kelejian and Prucha 

1998) suggests that two stage least squares (2SLS) estimators of the following spatial 

autoregressive model are consistent and asymptotically normal4: 

 

Y = c W Y + X b + e      (5.1) 

 

and 

 

W Y = k W X b + u      (5.2) 

 

 

where W is the weight matrix, c is the spatially autoregressive coefficient, WY is the 

spatial lag of land prices, WX is the set of instruments and e is a vector of error terms. 

Anselin (1988) proves that the spatial lag term WY in (5.1) is always correlated with the 

error term e. Consequently, the spatial lag should be treated as an endogenous variable 

and estimation should account for this endogeneity (OLS estimators will be biased and 

inconsistent due to simultaneity error). Most spatial econometric studies (for literature 

review see Kelejian and Prucha 1999) agree that a theoretically sound choice of an 

instrument for WY would include the set of lagged independent variables WX. According 

                                                           
4 Notice that parametric techniques do not use a spatial error autoregressive model, but rather an 
autoregressive model of the dependent variable (Kelejian and Robinson, 1993), and thus model 
specification varies slightly from the spatial autoregressive model proposed in Chapter 3. 
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to Anselin (1999), the spatial two stage least square estimator based on this set up is 

consistent and asymptotically normal. 

 

Table 5.1 summarizes the spatial two stage least squares estimates for the land value 

model in Roanoke County. The signs and the values of almost all coefficients in this 

model are similar to the sign and values of coefficients of model (4.1) in the previous 

chapter. Larger undeveloped parcels with impermeable soil, located far from a shopping 

mall and close to town center are expected to have lower transaction prices per square 

meter. A major highway attached to the lot or high population density also reduces land 

values in Roanoke County. Transaction prices also increased in 1997 relative to the 

previous year. Finally, the positive sign of WPRICE (average value of other parcels in the 

“neighborhoods defined by the Roanoke County Planning Department) indicates the 

value of a parcel will increase as the land values of neighboring parcels increase. This 

parametric model captures spatial dependence among prices in Roanoke County and its 

fitting power exceeds 81%. 

 

However, a set of misspecification tests summarized in Table 5.2 implies serious 

violations of fundamental statistical assumption for the estimated parametric model. The 

White test indicates that the error terms of the model are not homoskedastic, despite the 

fact that the assumption of homoskedasticity was satisfied in the initial model. In 

addition, auxiliary regression test indicates that there is almost no support for the 

assumption of no spatial autocorrelation. Given that this model was constructed to deal 

with the appearance of spatial correlation in model (4.1) of the previous chapter, it 

obviously failed its mission. Table 5.2 implies that the parameter estimates described in 

Table 5.1 must be interpreted with caution.  
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Table 5.1 Spatial Two Stage Least Squares Estimates for the Spatial 

Autoregressive Land Value Model in Roanoke County 

Variable  Coefficient  Std. Dev.  t-ratio 

Constant  -14.025794  3.342787  4.201 

WPRICE   0.224864  0.021740   10.18 

Log(Size)  -0.358954       0.073127     4.943 

[Log(Size)]2   -0.040581       0.009814      4.214 

Log(Elevation)  0.186547  0.282630       0.663 

[Log(Elevation)]2 -0.048758       0.067642     0.842 

Soil1   -0.030005  0.023742  1.672 

Soil2   -0.066687  0.037231  1.830 

Population  -0.002354  0.004381  0.450  

(Population)2  -0.000186    0.000241  0.808 

Log(Mall)  0.835478      0.436488       1.894 

[Log(Mall)]2  -0.112562       0.060764      2.189 

Log(Town)  2.845821      0.621488       4.160 

Developed  0.135478  0.015608  8.157 

Road   -0.058667  0.022836  2.653 

Year   0.053485  0.009699  5.442 

LogX   3.316587   0.755211   4.393 

LogY   3.026457   0.716423   4.217 

(LogX)*(LogY) -0.655475  0.172219  4.278 

 

pseudo-R2     0.815 
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Table 5.2 Misspecification Tests for the Spatial Autoregressive Land Value 

Model in Roanoke County Using the Two Stage Least Squares Estimator 

Test    Null Hypothesis  Specification                    P-Value 

 
Jacque-Bera  Residuals are normally  JB = (N-k)(4S2+ (K-3)2)/24  0.000000 
(Normality)  distributed    S is the skewness, K is the Kurtosis, 
       and N-k are the degrees of freedom 
 
White Test   Homoskedasticity   u2 = c +bx2 + dy   0.000000 
(Heteroskedasticity)      u is the vector of residuals, c is a con-  
       stant, x is the vector of variables, y is  

the vector of cross-product variables 
 
Auxiliary Regression  No spatial autocorrelation  u = c + ax +bWu   0.000000 
(Spatial Autocorrelation) (ordering according to  u is the vector of residuals, c is a con- 

 neighborhoods)   stant, x is the vector of variables, W is 
       the weighting matrix 
 
Chow Test   Existence of structural change  F statistic based on the comparison of   0.697544 
(Structural Break)  (Breakpoint n = 600)   restricted and unrestricted sum of square 
 
*For analytical discussion of misspecification tests see Appendix 1. 
 
 

5.3 Non-Parametric Methods 
 

The Generalized Moments Estimator (GME) developed by Kelejian and Prucha (1998), 

should not be confused with the Generalized Methods of Moments (GMM) estimator 

developed by Hansen (1982). From the perspective of Kelejian and Prucha, the GME 

should be used in large samples when the traditional maximum likelihood estimator for a 

spatial autoregressive model is problematic. Theoretically, the generalized moments 

estimator achieves the optimal properties of the maximum likelihood estimator. It 

requires some matrix multiplication but it involves neither the calculation of the 

determinant nor the eigenvalues of the weight matrix, and so is accessible to most applied 

econometricians5. Bockstael and Bell (1988) argue that the generalized moments 

estimator has the additional advantage that it is consistent irrespective of whether the 

errors follow a normal distribution. The GME is based on the three moments of the error 

term, u, in the following error autoregressive model: 

 

                                                           
5 Most of the statistical packages can do the estimation in microcomputers of memory capacity. 
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Y = X b + e        (5.3) 

 

and  

 

e = c We + u        (5.4) 

 

Kelejian and Prucha (1998) derive the following moment conditions from assumptions 

underlying the model (5.3) and (5.4) and the fact that the diagonal elements of W are 

always set to zero: 

 

E [u’u / N] = σ2       (5.5) 

 

E [u’W’Wu] = σ2 N-1 Tr(W’W)     (5.6) 

 

 E [u’W’u / N] = 0       (5.7) 

 

Those moments can be rewritten as: 

 

E [e’(I – c W)’(I – c W) e / N] = σ2     (5.8) 

 

E [e’(I – c W)’W’W(I – c W) e / N]] = σ2 N-1 Tr(W’W)  (5.9) 

 

 E [e’(I – c W)’W’(I – c W) e / N]] = 0    (5.10) 

 

 

A three-equation system can then be specified in terms of predictors of e, denoted ê. For 

simplicity, we note ė = W ê and ë = WWê. The system is presented below: 
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2ê’ë/N   c  - ė’ė/N c2 +      σ2 – ê’ê/N +  v1 = 0   

2ë’e/N   c  - ë’ë/N c2 + tr(W’W)/N σ2 – ė’ė/N +  v2 = 0  (5.11) 

(ê’ë + e’ė)/N c  - ė’ė/N c2          – e’ė/N +  v3 = 0   

   

 

where c, c2, and σ2 are parameters to be estimated, v1,v2, and v3 are residual terms of the 

system and N are the sample observations. Using the OLS residuals as predictors of e, the 

system can be solved using non-linear least squares, imposing the necessary additional 

restriction between the parameters c and c2. Once the estimate for c is obtained, estimates 

for b (b) and σ2 (σ2) are derived using feasible generalized least squares. So, for example, 

 

b = (X*’X*)-1(X*’Y*)       (5.12) 

 

where  X* = (I – c W)X and Y* = (I – c W)Y. In case that c = 0, then the OLS estimator 

coincides with the GM estimator.  

 

This approach is more appealing to researchers because it does not depend on the 

normality of errors and the estimators are equivalent to the maximum likelihood estimator 

under normality6. In fact, the generalized moments estimator procedure results are similar 

to those attained from maximum likelihood estimation, but the two methods are based on 

different assumptions. The maximum likelihood is derived under the assumption of 

normally distributed errors, while the generalized moments method assumes that the three 

moments of the error term, e, of the classic autoregressive model (5.3) and (5.4) exist. 

Kelejian and Prucha (1998) underline the fact that the generalized moments method 

follows the “reverse” procedure from the maximum likelihood methodology to arrive at 

similar results. In other words, the generalized moments method estimates c by first 

calculating the terms in the system of equation (5.11), which depend on the elements of 

                                                           
6 Spanos (1986) argues that econometric methods which include the use of moments should be approached 
with caution. A first reason is that these moments may not exist, and secondly the derivation of equations 
(5.5) to (5.7) may rely on different distributional assumptions than equations (5.8) to (5.10).  
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the weight matrix W and the residuals from the OLS regression. In this case study, the 

weight matrix W was calculated by using neighborhoods indicated by the Roanoke 

County Planning Department. Then, the estimation of c is easy by using non-linear least 

squares procedures. In the case of maximum likelihood estimation, the estimate of c is 

obtained by first creating the likelihood function, and then searching for the c that 

maximizes its value.  

 

Table 5.3 summarizes the generalized moments estimates for the spatial autoregressive 

land value model in Roanoke County. This model explains about 88% of the variation in 

land value prices. The fitting power of this model is higher than the model estimated 

using two stage least squares however, the signs of almost all parameter coefficients 

remain the same. The only exception is that the results now indicate higher population 

density leads to higher land transaction prices, after evaluating linear and non-linear terms 

for the range of data in Roanoke County. This result is more compatible with empirical 

evidence from other land value studies and in this model the coefficients of population 

density are statistically significant (Xu F. et al., 1993). The value of parameter c, which 

could be interpreted crudely as a measure of autocorrelation, is around 0.78 and confirms 

the presence of spatial error autocorrelation in model (4.2)7. According to the traditional 

spatial econometric methodology (Kelejian and Robinson, 1999), the success of this 

model can be demonstrated by the fact that it captures existing spatial dependence 

(caused by omitted variables) and increases its fitting power.  

 

However, the set of misspecification tests summarized in Table 5.4 suggests that the 

above model is statistically inadequate and thus the parameter estimates should be treated 

with caution. This model was constructed to “cure” spatial autocorrelation, however the 

statistical tests indicate no improvement over the initial model (4.1). Given the violation 

of fundamental assumptions, the fitting power of the model should not be a criterion of 

model improvement (McGuirk and Driscoll 1995). 

                                                           
7 The value of c should be higher than zero and less than one. When c equals to zero there is no spatial 
autocorrelation, while c equal to one indicates the existence of a spatial unit root (Anselin 1988).  
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Table 5.3 Generalized Moments Estimates for the Spatial Autoregressive 

Land Value Model in Roanoke County 

Variable  Coefficient  Std. Dev.  t-ratio 

Constant  -8.587449  0.495045   7.398 

Log(Size)  -0.318225    0.057487     5.864 

[Log(Size)]2   -0.047040   0.008206      7.818 

Log(Elevation) 0.419223  0.108988       3.831 

[Log(Elevation)]2 -0.145284       0.022863     6.461 

Soil1   -0.059056  0.014836  3.981 

Soil2   -0.061578  0.030554  2.110 

Population  0.009975  0.003375  2.980  

(Population)2  -0.00090    0.000185     4.926 

Log(Mall)  1.772356       0.319612       5.585 

[Log(Mall)]2  -0.275935       0.044456      6.207 

Log(Town)  2.135478      0.473028       4.484 

Developed  0.047611  0.016766  2.920 

Road   -0.142565  0.026328  4.665 

Year   0.014578       0.015241       1.022 

LogX   4.129325  0.528205   7.818 

LogY   3.758745  0.496919   7.564 

(LogX)*(LogY) -0.925445      0.118783      7.781 

 

c    0.784251 

σ2    0.003854 

pseudo-R2   0.882 
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Table 5.4 Misspecification Tests for the Spatial Autoregressive Land Value 

Model in Roanoke County Using the Generalized Moments Estimates  

Test    Null Hypothesis  Specification                    P-Value 

 
Jacque-Bera  Residuals are normally  JB = (N-k)(4S2+ (K-3)2)/24  0.000000 
(Normality)  distributed    S is the skewness, K is the Kurtosis, 
       and N-k are the degrees of freedom 
 
White Test   Homoskedasticity   u2 = c +bx2 + dy   0.000000 
(Heteroskedasticity)      u is the vector of residuals, c is a con-  
       stant, x is the vector of variables, y is  

the vector of cross-product variables 
 
Auxiliary Regression  No spatial autocorrelation  u = c + ax +bWu   0.000000 
(Spatial Autocorrelation) (ordering according to  u is the vector of residuals, c is a con- 

 neighborhoods)   stant, x is the vector of variables, W is 
       the weighting matrix 
 
Chow Test   Existence of structural change  F statistic based on the comparison of   0.236569 
(Structural Break)  (Breakpoint n = 600)   restricted and unrestricted sum of squares 
 
*For analytical discussion of misspecification tests see Appendix 1 
 
 

5.4. Conclusions 
 

Using both parametric and non-parametric techniques, we attempted to correct for the 

problem of spatial autocorrelation in the land value model (4.1) for Roanoke County. The 

results indicate that these techniques did not manage to “cure” the problem of spatial 

autocorrelation. The next chapter uses an alternative approach, which looks more 

carefully into the sources of spatial autocorrelation.  
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CHAPTER 6 
 

 

An Alternative Approach for Land Value Modeling 
 

 

 

6.1 Introduction 
 

 

In the previous chapters, current spatial econometric techniques were used to model land 

values in Roanoke County. Violation of fundamental statistical assumptions indicates that 

the proposed modeling techniques have not captured the relevant systematic information 

in our data. In this chapter, we follow an alternative approach (proposed by Spanos 

(1986)) in an attempt to derive a statistically adequate model for land values in Roanoke 

County. This approach does not seek to “cure” the problem of spatial autocorrelation or 

any other individual assumption violation one at a time. Individual and joint 

misspecification tests are conducted to identify misspecification sources. Rejection of a 

hypothesis is not interpreted as an acceptance of the alternative, and more importantly the 
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results of misspecification tests are interpreted as a whole. In other words, we use 

misspecification tests as a rough guide towards identifying problems and particularities of 

the empirical information rather than trying to fix problems from misspecification 

assumptions one-by-one. Our first step in this chapter is to go back to model (4.1) 

specified in the fourth chapter and conduct a more comprehensive set of individual and 

joint misspecification tests. An iterative procedure of respecification and testing will lead 

us to the adoption of our final models. 

 

6.2 Land Value Model Revisited 
 

Table 6.1 summarizes the results of a set of individual and joint misspecification tests for 

the land value model (4.1). These tests examine all testable assumptions for the linear 

regression model defined in the section 3.6. In the fourth chapter, we saw that individual 

tests provided strong support for the assumptions of homoskedasticity and structural 

stability, while there was no evidence that the residual terms were spatially independent. 

Also, extreme observations were probably responsible for the low P-value of the Jacque-

Bera test for normality.  Table 6.1 contains two new tests for linearity, which indicate that 

non-linear (squared and cross-product) variables are not essential for the land value 

model. The Ramsey test also confirms that the functional form of the model is adequate 

for our data. The ARCH test provides no support for the null hypothesis that there is no 

second-order spatial dependence. Thus, the residual terms of the land value model seem 

to exhibit first (of the means) and second (of the variance) order spatial dependence. The 

joint tests in Table 6.1 confirm that the hypotheses of linearity, structural stability and no 

spatial dependence do not hold jointly. Similarly, the joint variance test indicates the 

hypotheses of homoskedasticity, structural stability and second order dependence are not 

supported by our data. The parcels are ordered by neighborhood and then by development 

status (vacant parcels and then developed parcels), while developed parcels are also 

ordered using the assessed value of the construction on the parcels. Both individual and 

joint misspecification tests (Auxiliary Regression, ARCH, First Joint Mean and Joint 

Variance test) indicate that there is no support for the existence of structural breaks in the 
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structure of the land value model (4.1). Despite the evidence of structural stability, 

parameters (b and σ2) may vary across neighborhoods. Table 6.1 includes the results of 

both individual and joint misspecification tests (Fixed Effects from Neighborhoods and 

Second Joint Mean Test) for the null hypothesis that parameters vary across 

neighborhoods.   

 
The results of the above misspecification tests indicate that spatial autocorrelation is 

probably the most serious problem in the land value model (4.1). In the joint mean test for 

the hypotheses of linearity, no spatial autocorrelation and structural stability, we notice 

that spatial autocorrelation has the lowest P-value in the joint test. Similarly, second order 

dependence seems to be the main reason for the rejection of the joint hypothesis in the 

joint variance test. At the same time the low P-values of the no neighborhood fixed 

effects hypothesis and the joint hypothesis of no spatial autocorrelation and no 

neighborhood fixed effects provide evidence against the hypothesis that parameters are 

stable across neighborhoods (Second Joint Mean Test). In the joint mean test of no spatial 

autocorrelation and no neighborhood fixed effects, we notice that both individual 

hypotheses probably lead to the violation of the joint hypothesis. Given that several 

spatial econometric studies (Anselin 1999) underline that missing neighborhood specific 

variables are often the source of spatial autocorrelation, it seems appropriate to add a set 

of neighborhood dummies in the land value model (4.1). After estimating the fixed 

effects land value model accounting for neighborhood effects we retest the model using 

the same set of misspecification tests.  
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Table 6.1. Misspecification Tests* for the Land Value Model (4.1) for 

Roanoke County  

Test    Null Hypothesis  Specification                    P-Value 

 
Jacque-Bera  Residuals are normally  JB = (N-k)(4S2+ (K-3)2)/24  0.000000 
(Normality)  distributed    S is the skewness, K is the Kurtosis, 
       and N-k are the degrees of freedom 
Linearity   Redundancy of non-linear  u = c + ax +bx2   0.863646  
(Squares)   (squared) variables   u is the vector of residuals, c is a con- 
       stant, x is the vector of variables 
Linearity   Redundancy of non-linear  u = c + ax +by   0.154613  
(Cross-Products)  (cross- product) variables  u , c, x as described above and y is  
       the vector of cross-product variables 
White Test   Homoskedasticity   u2 = c  +bx2 + dy   0.762358 
(Heteroskedasticity)      u, c, x, as described above and y is  

the vector of cross-product variables 
Auxiliary Regression  No spatial autocorrelation  u = c + ax +bWu   0.000000 
(Spatial Autocorrelation) (ordering according to  u , c, x as described above and W 

 neighborhoods)   is the weight matrix 
Ramsey RESET  Correct specified functional  u = c + ax +bm   0.932831 
(Incorrect Functional Form) form of the model   u, c, x as described above, and m is  

the vector of fitted values of x 
ARCH Test  No dependence in   u2

z = c + au2
z-1 +bu2

z-2 +du3
z-3  0.000000 

(Dependence in Variance) residual variance   u, c, x as described above and z is  
       the ordering factor 
Chow Test   Existence of structural change  F statistic based on the comparison of   > 0.2 
(Structural Break)  (break point n = 213, 715)  restricted and unrestricted sum of square 
       residuals 
Fixed Effects from  No neighborhood fixed  u = c + aus    0.000000 
Neighborhoods  effects    u, c defined as above, and us is the residual 
       average at a given neighborhood 
First Joint Mean Test  Linearity, no spatial autocorrelation u = c + ax + bx2 +dWu + kT  0.000000 
   and structural stability.  u, x, and W as described above and T is 
   (break point n = 213)   a binary variable with 0 before the break 
       point and 1 after 
- No Spatial   No spatial autocorrelation  u = c + ax + bx2 + kT   0.000000 
  Autocorrelation  (in the joint mean test)  u, x, W, and T as described above  
- Structural Stability  Existence of structural change  u = c + ax + bx2 +dWu  0.086541 
       u, x, and W as described above  
- Linearity   Redundancy of non-linear variables u = c + ax + dWu + kT  0.401531 
   (break point as above)   u, x, W, and T as described above 
Joint Variance Test  Homoskedasticity, no second order u2

z = c + ax + bx2 + du2
z-1 + kT  0.000000 

   dependence and structural  u, c,  x, W, z, and T as described above 
   stability (break point as above) 
- No Second Order  No dependence in residual variance u2

z = c + ax + bx2
 + kT  0.000000 

   Dependence  (in the joint variance test)  u, c,  x, W, z, and T as described above 
 
- Structural Stability  Existence of structural change  u2

z = c + ax + bx2 + du2
z-1   0.165318 

   (in the joint variance test)  u, c,  x, W, z, and T as described above 
 
- Homoskedasticity  Homoskedasticity   u2

z = c + ax + bx2 + du2
z-1 + kT  0.555664 

   (in the joint variance test)  u, c,  x, W, z, and T as described above 
Second Joint Mean Test No spatial autocorrelation, no  u = c + aus + bWu   0.000000 
   neighborhood fixed effects  u, c, us, and W defined as above 
- No Spatial   No spatial autocorrelation  u = c + aus    0.000000 
  Autocorrelation  (in the joint mean test)  u, x, W, and T as described above  
- Fixed Effects from  No neighborhood fixed effects  u = c + bWu   0.000000 
  Neighborhoods  (in the joint mean test)  u, c, us, and W defined as above 
 
*For analytical discussion of misspecification tests see Appendix 1. 
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The OLS estimates of the fixed effects model and the conclusions of the new set of 

misspecification tests are presented in Table 6.2 and Table 6.3, respectively. The fixed 

effects model accounts for neighborhood effects, based on neighborhoods indicated by 

the Planning Department in Roanoke County. The fixed effects model was created by 

deducting from all variables their average values within each neighborhood. In Table 6.3, 

we can see an improvement in the P-value (Auxiliary Regression and Joint Mean Test) of 

the hypothesis of no spatial autocorrelation. An improvement can also be noticed in the 

P-value of the ARCH test, however there is still significant evidence of second order 

dependence. The Chow tests using the same ordering (by development status, assessed 

value of constructions, and by neighborhood) now indicate the existence of structural 

breaks. In the joint mean test, we examine the joint hypothesis of linearity, no spatial 

autocorrelation and structural stability. The results indicate that there is no support for 

this joint hypothesis, while the low P-value of the structural stability hypothesis seems to 

be the reason for this rejection. Similarly, the low P-value of structural stability is 

probably again the reason for the low P-value in the joint variance test. Given the results 

of the joint tests, it seems that structural instability may be the major source of 

misspecification in the fixed effects model.  

 

In Table 6.3, we notice that in the fixed effects model there is strong evidence for a 

structural break between developed and vacant parcels (P-value of the Chow test for n = 

213 is close to zero). Several plots of recursive OLS estimates that appear in Figure 6.1 

also provide additional evidence for structural instability. In Figure 6.1, c(1), c(2),… 

represent the value of the coefficient estimates of the parameters as ordered in Table 6.2, 

and the value of a coefficient estimate at a specific point (i.e. n = 213) in the graph 

represents the value of the value of this coefficient estimate when we use the first n 

observations from our sample8. We can see in the graphs of several coefficients, 

substantial change in the magnitude of the coefficient estimates for several variables after 

the first 213 observations of the vacant parcels. 

                                                           
8 Specifically, the coefficient estimates shown are: C(1) – Log(Size), C(2) – [Log(Size)]2, C(5) - Log 
(Elevation), C(7) – Soil 2, C(8) – Log (Mall), C(9) – Log(Town), C(10) - Year, C(11) - Road, C(14) – 
LogY. 



 

 

55

  

The plots in Figure 6.1 also indicate the possibility of structural instability in the 

developed parcels when we order them according to the assessed value of their 

construction. Land parcels with expensive construction may follow a different stochastic  

 

 

Table 6.2 OLS Estimates for the Fixed Effects Land Value Model 

Variable  Coefficient  Std. Dev.  t-ratio 

Log(Size)  -0.782231  0.015734  49.7 

[Log(Size)]2   -0.007844  0.015939  0.49 

[Log(Size)]3   0.034182  0.014357  2.38 

Population   0.001238  0.002914  0.42 

Log(Elevation)  0.019486  0.062747  0.31 

Soil1    0.050458  0.030326  1.66 

Soil2   -0.059731  0.044928  1.32 

Log(Mall)  -0.052942  0.148750  0.35 

Log(Town)   0.201436  0.232659  0.86 

Year    0.050337  0.006757  7.44 

Road   -0.036436  0.018225  2.00 

Developed   0.172657  0.012719  13.6 

LogX    0.264301  0.036362  7.26 

LogY    0.016592  0.050194  0.33 

LogX*LogY   0.947712  0.966546  0.98 

 

R2        0.7303 

Adjusted R2    0.7282 
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Table 6.3 Misspecification Tests for the Fixed Effects Land Value Model  

Test    Null Hypothesis  Specification                    P-Value 

 
Jacque-Bera  Residuals are normally  JB = (N-k)(4S2+ (K-3)2)/24  0.000000 
(Normality)  distributed    S is the skewness, K is the Kurtosis, 
       and N-k are the degrees of freedom 
 
Linearity   Redundancy of non-linear  u = c + ax + bx2   0.831094  
(Squares)   (squared) variables   u is the vector of residuals, c is a con- 
       stant, x is the vector of variables 
 
Linearity   Redundancy of non-linear  u = c + ax +by   0.261101  
(Cross-Products)  (cross- product) variables  u , c, x as described above and y is  
       the vector of cross-product variables 
 
White Test   Homoskedasticity   u2 = c  +bx2 + dy   0.179652 
(Heteroskedasticity)      u, c, x, as described above and y is  

the vector of cross-product variables 
 
Auxiliary Regression  No Spatial Autocorrelation  u = c + ax +bWu   0.097708 
(Spatial Autocorrelation) (Ordering according to  u , c, x as described above and W 

 Neighborhoods)   is the weight matrix 
 
Ramsey RESET  Correct Specified Functional  u = c + ax +bm   0.865346 
(Incorrect Functional Form) Form of the Model   u, c, x as described above, and m is  

the vector of fitted values of x 
 
ARCH Test  No Dependence in   u2

z = c + au2
z-1 +bu2

z-2 +du3
z-3  0.029708 

(Dependence in Variance) Residual Variance   u, c, x as described above and z is  
       the ordering factor 
 
Chow Test   Existence of Structural Change  F statistic based on the comparison of   <0.001 
(Structural Break)  (Breakpoint n = 213, 750)  restricted and unrestricted sum of square 
       residuals 
 
Joint Mean Test  Linearity, no spatial autocorrelation u = c + ax + bx2 +dWu + kT  0.000000 
   and structural stability.  u, x, and W as described above and T is 
   (break point n = 213)   a binary variable with 0 before the break 
       point and 1 after 
- No Spatial   No spatial autocorrelation  u = c + ax + bx2 + kT   0.042568 
  Autocorrelation  (in the joint mean test)  u, x, W, and T as described above  
- Structural Stability  Existence of structural change  u = c + ax + bx2 +dWu  0.000000 
       u, x, and W as described above  
- Linearity   Redundancy of non-linear variables u = c + ax + dWu + kT  0.334561 
   (break point as above)   u, x, W, and T as described above 
Joint Variance Test  Homoskedasticity, no second order u2

z = c + ax + bx2 + du2
z-1 + kT  0.000000 

   dependence and structural  u, c,  x, W, z, and T as described above 
   stability. (break point as above) 
- No Second Order  No dependence in residual variance u2

z = c + ax + bx2
 + kT  0.006277 

   Dependence  (in the joint variance test)  u, c,  x, W, z, and T as described above 
 
- Structural Stability  Existence of structural change  u2

z = c + ax + bx2 + du2
z-1   0.000000 

   (in the joint variance test)  u, c,  x, W, z, and T as described above 
 
- Homoskedasticity  Homoskedasticity   u2

z = c + ax + bx2 + du2
z-1 + kT  0.294615 

 
Chow Forecast Test  Structural Stability   F statistic based on the comparison of 0.000000 
   (model estimated for observations residual sums of squares when the equation 
   214 to 750 and then the estimated is fitted to all sample observations with  
   model predicts land values for 751 to 1804 residual sum of squares for part of the sample 
*For analytical discussion of misspecification tests see Appendix 1 
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Figure 6.1 Recursive OLS Estimates for the Fixed Effects Model in Roanoke County
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process than parcels with inexpensive constructions. Despite the fact that we can not 

clearly distinguish structural breaks at specific points of the plots, it seems that almost all 

of these plots have some type of “jump” around the 750th observation, when the assessed 

value of the construction is about $60 per square foot. In addition, window OLS 

(estimating the value of coefficients for observations 214 until 750 and comparing them 

with the values of the same coefficients for observations 751 until 1803) do not support 

the hypothesis that the parameter estimates for developed parcels are the same before and 

after the 750th observation. This can be demonstrated by the low P-value of the Chow 

forecast test. The Chow forecast test estimates the fixed effects model for the subsample 

of the observations 214 until 750, and then examines the difference between actual and 

predicted land values for the observations 751 to 1804. Thus, in addition to dividing our 

sample into vacant and developed parcels, we also use two subgroups of developed 

parcels to deal with the problem of structural instability. The first group contains parcels 

with inexpensive constructions (an assessed value below $60 per square foot), while the 

second group has parcels with expensive constructions  (parcels with an assessed value of 

$60 per square foot or higher).  If the leading cause of misspecification in the estimated 

land value model is structural instability, it seems possible that dividing the data into 

more spatially homogeneous groups will improve the statistical validity of the model. 
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6.3 Land Values of Developed Parcels 

 

In this section, we estimate fixed effects models (used also in the previous section) for the 

group of developed parcels with expensive constructions and the group of developed 

parcels with non-expensive construction. Model (6.1) is estimated for the group of 

developed parcels with expensive constructions (greater than $60 per square foot), and 

model (6.2) is estimated for the developed parcels with non-expensive constructions9.  

 

Log(Price) = A1[Log(Size)] + A2[Log(Size)]2 +A3[Log(Size)]3 + A4[Log(Elevation)] + 

A5(Population) + A6(Soil1) + A7(Soil2) + A8[Log(Mall)] + A9[Log(Town)] + A10(Road) 

+ A11(Year) + A12[Log(X)] + A13[Log(Y)]  + A14[Log(X)][Log(Y)] + u     (6.1)  

     

Log(Price) = A1[Log(Size)] + A2[Log(Elevation)] + A3(Population) + A4(Soil1) + 

A5(Soil2) + A6[Log(Mall)] +A7[Log(Mall)] + A8[Log(Town)] + A9(Road) + A10(Year) + 

A11[Log(X)] + A12[Log(Y)]  + A13[Log(X)][Log(Y)] +  u        (6.2) 

 

Table 6.4 contains the results of misspecification tests for model (6.1), and Table 6.5 

contains the results of misspecification tests for model (6.2). A careful look at these two 

tables indicates a clear improvement in the P-values of assumptions with limited support 

in the previous models. In fact, the P-values of individual and joint misspecification tests 

in both tables indicate that there is adequate support for all the underlying model 

assumptions. Note that the number of misspecification tests reported in Table 6.4 and 

Table 6.5 are fewer than the misspecification tests reported in the previous sections. More 

misspecification tests were necessary in the previous sections to investigate violations of 

individual and joint assumptions, while in Table 6.4 and Table 6.5 we see no evidence of 

any assumption violation. 

 

                                                           
9 Note that although estimated as fixed effects models, for simplicity we do not explicitly report all the 
neighborhood effects. 
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Specifically, in Table 6.4 we see that the Jacque-Bera test provides adequate support for 

the assumption of normality. The assumption of linearity is also supported by the P-

values in Table 6.4, while the Ramsey RESET test provides additional evidence that our 

data supports the choice of the functional form. Both individual and joint tests provide 

evidence for the acceptance of the homoskedasticity assumption. Relatively high P-values 

confirm that the problem of spatial autocorrelation does not exist in this model, while the 

results also indicate that there is no second order dependence. In addition, various break 

point tests (n = 400 and n = 800) and the Joint Mean Test provide support for the 

structural stability of the model. Similarly, in Table 6.5 we can see even higher P-values 

for the Jacque-Bera and the linearity tests in comparison to the results in Table 6.4. There 

is also support for the assumption of homoskedasticity, coming from both individual 

(White test) and the Joint Variance tests. In Table 6.5, we can also see that individual and 

joint misspecification tests provide evidence that there is no first or second order 

dependence in the land value model.  
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Table 6.4 Misspecification Tests for the Fixed Effects Land Value Model 
for Observations in the Expensive Constructions Group 
Test    Null Hypothesis  Specification                    P-Value 

 
Jacque-Bera  Residuals are normally  JB = (N-k)(4S2+ (K-3)2)/24  0.377409 
(Normality)  distributed    S is the skewness, K is the Kurtosis, 
       and N-k are the degrees of freedom 
 
Linearity   Redundancy of non-linear  u = c + ax +bx2   0.548247  
(Squares)   (squared) variables   u is the vector of residuals, c is a con- 
       stant, x is the vector of variables 
 
Linearity   Redundancy of non-linear  u = c + ax +by   0.128269  
(Cross-Products)  (cross- product) variables  u is the vector of residuals, c is a con- 
       stant, y is the vector of cross-product  

variables 
 
White Test   Homoskedasticity   u2 = c + ax +bx2 + dy   0.092861 
(Heteroskedasticity)      u is the vector of residuals, c is a con-  
       stant, x is the vector of variables, y is  

the vector of cross-product variables 
 
Auxiliary Regression  No spatial autocorrelation  u = c + ax +bWu   0.176971 
(Spatial Autocorrelation) (ordering according to  u is the vector of residuals, c is a con- 

 neighborhoods)   stant, x is the vector of variables, W is 
       the weighting matrix 
 
Ramsey RESET  Correctly specified functional  u = c + ax +bz   0.483672 
(Incorrect Functional Form) form of the model   u is the vector of residuals, c is a con-  
       stant, x is the vector of variables, z is  

the vector of fitted values of x 
 
ARCH Test  No second order dependence  u2

z = c + au2
z-1 +bu2

z-2 +du2
z-3  0.084552 

(Second Order Dependence)     u is the vector of residuals, c is a con- 
       stant, x is the vector of variables, z is 
       the ordering factor 
Chow Test   Existence of structural change  F statistic based on the comparison of   >0.1 
(Structural Break)  (Breakpoint n = 400, 800)  restricted and unrestricted sum of square 
       residuals 
 
Joint Mean Test  Linearity, no spatial autocorrelation u = c + ax2 +bWu + dT  > 0.1 
   and structural stability.  u, x, and W as described above and T is 
   (Break point n = 400, 800)  a binary variable with 0 before the break 
       point and 1 after 
 
Joint Variance Test  Homoskedasticity, no second order u2

z = c + ax2 + bu2
z-1 + dT  >0.1 

   dependence and structural  u, c,  x, W, z, and T as described above 
   stability. (Break Points as above) 
Redundancy Test  Variables “Road” and “LogX*LogY” F-test comparing residual sums of squares 0.000000 
   are essential for the land value model for the land value model with and without 
       these variables 
*For analytical discussion of misspecification tests see Appendix 1. 
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Table 6.5 Misspecification Tests for the Fixed Effects Land Value Model 

for Observations in the Non-Expensive Constructions Group  

Test    Null Hypothesis  Specification                    P-Value 

 
Jacque-Bera  Residuals are normally  JB = (N-k)(4S2+ (K-3)2)/24  0.510699 
(Normality)  distributed    S is the skewness, K is the Kurtosis, 
       and N-k are the degrees of freedom 
 
Linearity   Redundancy of non-linear  u = c + ax +bx2   0.863646  
(Squares)   (squared) variables   u is the vector of residuals, c is a con- 
       stant, x is the vector of variables 
 
Linearity   Redundancy of non-linear  u = c + ax +by   0.154613  
(Cross-Products)  (cross- product) variables  u is the vector of residuals, c is a con- 
       stant, y is the vector of cross-product  

variables 
 
White Test   Homoskedasticity   u2 = c + ax +bx2 + dy   0.112854 
(Heteroskedasticity)      u is the vector of residuals, c is a con-  
       stant, x is the vector of variables, y is  

the vector of cross-product variables 
 
Auxiliary Regression  No spatial autocorrelation  u = c + ax +bWu   0.425345 
(Spatial Autocorrelation) (ordering according to  u is the vector of residuals, c is a con- 

 neighborhoods)   stant, x is the vector of variables, W is 
       the weighting matrix 
 
Ramsey RESET  Correctly specified functional  u = c + ax +bz   0.932831 
(Incorrect Functional Form) form of the model   u is the vector of residuals, c is a con-  
       stant, x is the vector of variables, z is  

the vector of fitted values of x 
 
ARCH Test  No second order dependence  u2

z = c + au2
z-1 +bu2

z-2 +du2
z-3  0.098172 

(Second Order Dependence)     u is the vector of residuals, c is a con- 
       stant, x is the vector of variables, z is 
       the ordering factor 
 
Chow Test   Existence of structural change  F statistic based on the comparison of   >0.1 
(Structural Break)  (break point n = 200, 400)  restricted and unrestricted sum of square 
       residuals 
 
Joint Mean Test  Linearity, no spatial autocorrelation u = c + ax2 +bWu + dT  > 0.1 
   and structural stability.  u, x, and W as described above and T is 
   (break point n = 200, 400)  a binary variable with 0 before the break 
       point and 1 after 
 
Joint Variance Test  Homoskedasticity, no dependence in  u2

z = c + ax2 + bu2
z-1 + dT  >0.05 

   residual variance and structural  u, c,  x, W, z, and T as described above 
   stability. (break points as above) 
 
Redundancy Test  Variables “Road” and “LogX*LogY” F-test comparing residual sums of squares 0.000001 
   are essential for the land value model for the land value model with and without 
       these variables 
*For analytical discussion of misspecification tests see Appendix 1. 
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The OLS estimates for models (6.1) and (6.2) are presented in Table 6.6 and Table 6.7, 

respectively. These results contain the coefficient estimates that are significantly different 

from zero for at least one of the two models. In other words, the estimated models do not 

contain the variables “Road” and “LogX*LogY”, because their coefficients are 

statistically equal to zero in both models. The F-tests reported in Table 6.4 and Table 6.5 

indicate the low contribution of these two variables to the land value models. The 

omission of these variables does not alter the conclusions of the misspecification tests. 

 

In Table 6.6, we can see that the fixed effects land value model for the group of parcels 

with expensive constructions explains about 73% of the variation in land transaction 

prices in this category. The results indicate that the size of the parcel is an important 

determinant of the land value in this group. Larger land parcels are associated with higher 

land values. There is strong evidence higher elevation is associated with higher land 

values, while weaker evidence indicates that impermeable soils are associated negatively 

with land values. Higher elevation and soil permeability are usually two proxies, which 

indicate lower flood risk. Roanoke County has experienced several floods in the last fifty 

years (Planning Report of Roanoke County, 1994). The model results indicate that lower 

flood risk areas have higher land values. Land parcels far from the two major malls are 

less expensive in this group of observations. Given that these large malls accommodate 

shopping facilities and entertainment amenities (theaters, restaurants, etc) the negative 

sign should be anticipated. The service industry of Roanoke County is also located close 

to these malls and not in the town center, and housing locations close to these malls is 

attractive to upper-middle class residents of Roanoke County. Finally, the average price 

of land parcels sold in 1997 was higher than those sold in 1996.  
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Table 6.6 OLS Estimates for the Fixed Effects Land Value Model for 

Observations in the Expensive Constructions Group 

Variable  Coefficient  Std. Dev.  t-ratio 

Log(Size)  -0.829923  0.021288  39.3 

[Log(Size)]2    0.056520  0.030224  1.37 

[Log(Size)]3   0.073669  0.040547  2.59 

Population  -0.002805  0.003200  0.87 

Log(Elevation)  0.288472  0.167098  1.82 

Soil1   -0.020531  0.034965  0.58 

Soil2   -0.086192  0.049628  1.74 

LogX   -0.109929  0.177109  0.62 

LogY    0.155010  0.128656  1.20 

Log(Mall)  -0.192311  0.010076  1.97 

Log(Town)   0.024088  0.251096  0.09 

Year    0.044958  0.007231  6.21 

 

R2        0.7316 

Adjusted R2    0.7286 

 

 

 

Table 6.7 summarizes the OLS estimates for the fixed effects land value model for 

observations in the non-expensive constructions group. This model explains about 65% 

of the variance in land transaction prices in this group. It is important to note that the 

significance of the variables differs between the two models for the developed land 

parcels. In the non-expensive construction group, larger parcels have lower land value per 

square meter. Lack of water permeability to soil (and consequently higher flood risk as 

indicated by the Soil1 and Soil2 dummies) is expected to affect negatively land prices. 

The sign of the elevation parameter is again positive but not statistically important. There 
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is weak evidence that population density may affect negatively the price of the lot in 

relatively inexpensive areas. The negative sign of population density may reflect the 

willingness of the residents in Roanoke County to live in less populated areas and enjoy 

open space amenities. The negative relationship of land values with distance from the 

nearest town reflects both distance to amenities and the potential of the neighborhood for 

faster residential and commercial development. The quadratic term of the distance to the 

nearest town indicates that the parcel value increases at a decreasing rate when a parcel is 

closer to the town center. The importance of location is also reflected by the statistical 

significance of the coordinate X. As already mentioned in Chapter 2, the direction of the 

X coordinate is from south-east to north-west of Roanoke County. The price of the lots 

sold in 1997 was higher than those sold during the previous year. 

 

Table 6.7 OLS Estimates for the Fixed Effects Land Value Model for 

Observations in the Non-Expensive Constructions Group 

Variable  Coefficient  Std. Dev.  t-ratio 

Log(Size)  -0.747182  0.027792  26.9 

Population   -0.004161  0.002680  1.56 

Log(Elevation)  0.054530  0.070985  0.77 

Soil1   -0.102809  0.045168  2.27 

Soil2   -0.153847  0.078481  1.97 

Log(Town)  -0.369564  0.183270  2.06   

[Log(Town)]2  -2.118983  0.855956  2.25 

Log(Mall)   0.019926  0.137524  0.14 

LogX    0.230214  0.035913  6.27 

LogY   -0.097929  0.113661  0.85 

Year    0.061557  0.012926  4.76 

 

R2        0.6556 

Adjusted R2    0.6497 
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6.4 Land Values of Undeveloped Parcels 
 

In this section, we apply the fixed effects model to the group of undeveloped parcels. As 

we saw in the previous section, the misspecification test results justified the application 

of the fixed effects model in the two groups of developed parcels. Model (6.3) was 

estimated for the undeveloped parcels and Table 6.8 contains the results of 

misspecification tests for this model. 

 

Log(Price) = A1[Log(Size)] + A2[Log(Size)]2 + A3[Log(Elevation)] + A4(Population) + 

A5(Soil1) + A6(Soil2) + A7[Log(Mall)] + A8[Log(Town)] + A9(Road) + A10(Year) + 

A11[Log(X)] + A12[Log(Y)]  + A13[Log(X)][Log(Y)] +  u       (6.3) 

 

In Table 6.8, we notice that individual and joint misspecification tests provide support for 

the assumptions of linearity, homoskedasticity and structural stability. The low P-value in 

the Jacque-Bera test suggests possible violation of the normality assumptions. However, 

the Jacque-Bera tests is sensitive to extreme observations and when we exclude some 

observations (less than 1%) from our sample the P-value of the Jacque-Bera tests exceeds 

0.1, and provides support for the assumption of normality. However, there is serious 

evidence (coming from the Auxiliary Regression test, the ARCH test and the Joint Mean 

and Variance tests) that the assumptions of no first and second order spatial dependence 

are violated. Both individual and joint misspecification tests for these two assumptions 

provide low P-values. Despite the fact that misspecification tests indicate that second 

order spatial dependence may be the main source of model misspecification (lower P-

values), it may well be the case that violations of both assumptions have the same source. 

This group of observations contains no information regarding whether a parcel is located 

in an area of expensive or non-expensive constructions, and this subgroup of parcels is 

probably less homogeneous than the two subgroups of developed parcels. 
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Table 6.8 Misspecification Tests for the Fixed Effects Land Value Model 

for the Group of Undeveloped Parcels 

Test    Null Hypothesis  Specification                    P-Value 

 
Jacque-Bera  Residuals are normally  JB = (N-k)(4S2+ (K-3)2)/24  0.000000 
(Normality)  distributed    S is the skewness, K is the Kurtosis, 
       and N-k are the degrees of freedom 
 
Linearity   Redundancy of non-linear  u = c + ax + bx2   0.495375  
(Squares)   (squared) variables   u is the vector of residuals, c is a con- 
       stant, x is the vector of variables 
 
Linearity   Redundancy of non-linear  u = c + ax +by   0.176429  
(Cross-Products)  (cross- product) variables  u , c, x as described above and y is  
       the vector of cross-product variables 
 
White Test   Homoskedasticity   u2 = c  +bx2 + dy   0.138545 
(Heteroskedasticity)      u, c, x, as described above and y is  

the vector of cross-product variables 
 
Auxiliary Regression  No Spatial Autocorrelation  u = c + ax +bWu   0.000964 
(Spatial Autocorrelation) (Ordering according to  u , c, x as described above and W 

 Neighborhoods)   is the weight matrix 
 
Ramsey RESET  Correct Specified Functional  u = c + ax +bm   0.766772 
(Incorrect Functional Form) Form of the Model   u, c, x as described above, and m is  

the vector of fitted values of x 
 
ARCH Test  No Dependence in   u2

z = c + au2
z-1 +bu2

z-2 +du3
z-3  0.000000 

(Dependence in Variance) Residual Variance   u, c, x as described above and z is  
       the ordering factor 
 
Chow Test   Existence of Structural Change  F statistic based on the comparison of  0.281194 
(Structural Break)  (Breakpoint n = 100)   restricted and unrestricted sum of square 
       residuals 
 
Joint Mean Test  Linearity, no spatial autocorrelation u = c + ax + bx2 +dWu + kT  0.035488 
   and structural stability.  u, x, and W as described above and T is 
   (break point n = 213)   a binary variable with 0 before the break 
       point and 1 after 
- No Spatial   No spatial autocorrelation  u = c + ax + bx2 + kT   0.000000 
  Autocorrelation  (in the joint mean test)  u, x, W, and T as described above  
- Structural Stability  Existence of structural change  u = c + ax + bx2 +dWu  0.686541 
       u, x, and W as described above  
- Linearity   Redundancy of non-linear variables u = c + ax + dWu + kT  0.561565 
   (break point as above)   u, x, W, and T as described above 
Joint Variance Test  Homoskedasticity, no second order u2

z = c + ax + bx2 + du2
z-1 + kT  0.000000 

   dependence and structural  u, c,  x, W, z, and T as described above 
   stability. (break point as above) 
- No Second Order  No dependence in residual variance u2

z = c + ax + bx2
 + kT  0.000000 

   Dependence  (in the joint variance test)  u, c,  x, W, z, and T as described above 
 
- Structural Stability  Existence of structural change  u2

z = c + ax + bx2 + du2
z-1   0.264588 

   (in the joint variance test)  u, c,  x, W, z, and T as described above 
 
- Homoskedasticity  Homoskedasticity   u2

z = c + ax + bx2 + du2
z-1 + kT  0.110168 

*For analytical discussion of misspecification tests see Appendix 1 
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In the previous chapters, we saw that the traditional “remedy” for the problem of 

autocorrelation in spatial econometric studies is the specification of an autoregressive 

error term model. However, the success of the error autoregressive model in Chapter 5 

was limited. Spanos (1986) also suggests that instead of modeling “invisible” variables by 

using lags of the error term, it is better to use spatial lags of the dependent and 

independent variables. Following the alternative approach, proposed by Spanos (1986), 

we estimate a fixed effects model for the vacant parcels, which also allows spatial lags of 

the dependent and independent variables, and we retest the validity of our results.  

 

Table 6.9 summarizes the results of these misspecification tests. Table 6.9 indicates that 

by adding spatial lags in model (6.3) there is an obvious improvement in the statistical 

validity of the model. There is still strong support for the assumptions of linearity, 

homoskedasticity and structural stability, while we also see higher P-values (Auxiliary 

Regression test and ARCH test) for the no spatial autocorrelation assumptions (both first 

and second order, respectively). However, there is still limited support for the hypothesis 

of no second order spatial dependence (ARCH test). The coefficients of some variables 

and their respective spatial lags are not statistically different from zero, and the joint F-

test recommends dropping these variables from our model (Year and LogX*LogY).  The 

final model estimated is (6.4). Table 6.10 contains the OLS estimates of model (6.4), 

while there is no change in the conclusions of the misspecification tests.  

 

Log(Price) = A1[Log(Size)] + A2[Log(Size)]2 + A3(Soil1) + A4(Soil2) + A5[Log(Mall)] + 

A6[Log(Town)] + A7(Year) + A8[Log(X)] + A9[Log(Y)] + A10(Road) + 

A11[WLog(Price)]  + A12[WLog(Size)]  + A13(WSoil1) + A14(WSoil2) + 

A15[WLog(Town)] + A16(WYear) + A17[WLog(X)] + A18[WLog(Y)] + A19(WRoad)    + 

u               (6.4) 

 
In Table 6.10, we can see that the size of the parcel is again a significant determinant of 

land prices, while there is some weak support for a quadratic relation between the size of 

the parcel and the land transaction price. The quadratic form indicates that the value of 
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the parcel per square meter decreases at a declining rate with increases in parcel size. The 

results also indicate that higher land values should be expected for land parcels which are 

closer to the shopping malls, but far from the town centers. The value of the land is also 

lower when the parcel is next to an interstate highway. The importance of the parcel 

location is also underlined by the statistical significance of the determinants X and Y. The 

“Year” variable again has a positive sign but its value is not statistically important. 

Finally, the autoregressive variables account for spatial effects in the model. It is 

important to note that this model explains about 95% of the variance in land transaction 

prices. The high R2 suggests that spatial lags are capable of capturing additional variation 

of the dependent variable in our case study. However, the high R2 value would have no 

meaning if the model were not well specified. 
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Table 6.9 Misspecification Tests for the Fixed Effects Land Value Model 

with Spatial Lags for the Group of Undeveloped Parcels. 

Test    Null Hypothesis  Specification                         P-Value 

 
Jacque-Bera  Residuals are normally  JB = (N-k)(4S2+ (K-3)2)/24  0.000000 
(Normality)  distributed    S is the skewness, K is the Kurtosis, 
       and N-k are the degrees of freedom 
 
Linearity   Redundancy of non-linear  u = c + ax +bx2   0.999761  
(Squares)   (squared) variables   u is the vector of residuals, c is a con- 
       stant, x is the vector of variables 
 
Linearity   Redundancy of non-linear  u = c + ax +by   0.646551  
(Cross-Products)  (cross- product) variables  u is the vector of residuals, c is a con- 
       stant, y is the vector of cross-product  

variables 
 
White Test   Homoskedasticity   u2 = c + ax +bx2 + dy   0.863646 
(Heteroskedasticity-      u is the vector of residuals, c is a con-  
Squares)       stant, x is the vector of variables, y is  

the vector of cross-product variables 
 

White Test   Homoskedasticity   u2 = c + ax +bx2 + dy   0.169623 
(Heteroskedasticity-      u is the vector of residuals, c is a con-  
Cross-Products)      stant, x is the vector of variables, y is  

the vector of cross-product variables 
 
Auxiliary Regression  No spatial autocorrelation  u = c + ax +bWu   0.425345 
(Spatial Autocorrelation) (ordering according to  u is the vector of residuals, c is a con- 

 neighborhoods)   stant, x is the vector of variables, W is 
       the weighting matrix 
 
Ramsey RESET  Correct specified functional  u = c + ax +bz   0.487500 
(Incorrect Functional Form) form of the model   u is the vector of residuals, c is a con-  
       stant, x is the vector of variables, z is  

the vector of fitted values of x 
 
ARCH Test  No second order dependence  u2

z = c + au2
z-1 +bu2

z-2 +du3
z-3  0.001703 

(Second Order Dependence)     u is the vector of residuals, c is a con- 
       stant, x is the vector of variables, z is 
       the ordering factor 
 
Chow Test   Existence of structural change  F statistic based on the comparison of  0.394885 
(Structural Break)  (break point n = 100)   restricted and unrestricted sum of square 
       residuals 
 
Joint Mean Test  Linearity, no spatial autocorrelation u = c + ax2 +bWu + dT  0.163581 
   and structural stability.  u, x, and W as described above and T is 
   (break point n = 100)   a binary variable with 0 before the break 
       point and 1 after 
 
Joint Variance Test  Homoskedasticity, no second order u2

z = c + ax2 + bu2
z-1 + dT  0.076762 

   dependence and structural  u, c,  x, W, z, and T as described above 
   stability. (break point as above) 
 
Redundancy Test  Variables which enter  model 6.3 and F-test comparing residual sums of squares 0.000000 
   not enter 6.4 are essential for  the model for the land value model with and without 
       these variables 
*For analytical discussion of misspecification tests see Appendix 1. 
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Table 6.10 OLS Estimates for the Fixed Effects Land Value Model for the 

Group of Undeveloped Parcels  

Variable  Coefficient  Std. Dev.  t-ratio 

Log(Size)  -0.695926  0.028389  24.5 

[Log(Size)]2   0.019661  0.012441  1.58 

Log(Mall)  -0.313128  0.106184  2.95 

Log(Town)   1.722006  0.376349  4.57 

Road   -0.210169  0.057640  3.64   

LogX    0.437769  0.139052  3.15   

LogY   -0.195595  0.099372  1.97 

Year    0.023158  0.020734  1.12 

WLog(Price)  -1.725382  0.075915  22.7 

WLog(Size)  -1.197150  0.069400  17.2 

WLog(Town)   3.371006  0.844649  3.99 

WRoad  -0.343883  0.085956  4.00 

WLogX  0.959943  0.423241  2.27 

WLogY  -0.555855  0.272661  2.04 

WYear    0.084640  0.047181  1.79 

 

R2        0.9516 

Adjusted R2    0.9482 
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6.6 Conclusions 

 

 

In this chapter, three models were created to explain the variation in land transaction 

prices in Roanoke County. Our initial step was to revisit the land value model estimated 

in the fourth chapter of the thesis and conduct a more comprehensive set of individual 

and joint misspecification tests. The misspecification test results indicate the possibility 

of spatial autocorrelation and that neighborhood dummies were needed in the land value 

model.  After deriving the OLS estimates for the fixed effects model (which accounts for 

neighborhoods) for Roanoke County, we retested the statistical validity of our model. In 

spite of more support for the hypothesis of no spatial autocorrelation, tests for structural 

instability as well as plots of recursive OLS estimates indicated the need for more 

homogeneous groups of observations. There was strong evidence that land values of 

vacant parcels might follow a different stochastic process than the land values of 

developed parcels. Some additional evidence indicated that separating parcels with 

expensive constructions from parcels with non-expensive constructions might also help 

deal with the problem of structural instability. 

 

Misspecification tests of the fixed effects land value models for the expensive and non-

expensive constructions, indicate that these models satisfy the underlying statistical 

assumptions. In the group of undeveloped land parcels, there is evidence that spatial 

autocorrelation is the most important source of model misspecification. By using spatial 

lags of dependent and independent variables instead of spatial lags of error terms 

proposed by the traditional spatial econometric approach, we improve the statistical 

validity of the model and explain approximately 95% of the land transaction price 

variation. Misspecification tests also provide support for the validity of the model.    
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The major finding of this chapter is that based on their development status prices of land 

parcels in Roanoke County may follow different stochastic processes. Changes in the 

values of hedonic variables have different implications for different groups of land 

parcels. For example, larger parcels are expected to have higher value per square meter 

when they accommodate non-expensive constructions, and lower value per square meter 

when they accommodate expensive constructions. The signs of most other hedonic 

characteristics are consistent in the different land value models, however we can notice 

that some variables seem to be more significant than others. For example, the elevation of 

the land parcel is significant for the group of parcels with expensive constructions, while 

it is not statistically different from zero in the group of parcels with non-expensive 

constructions. 
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CHAPTER 7 
 

Summary & Conclusions 
 

After more than two decades of applied spatial econometric studies, the possibility of 

spatial autocorrelation in a cross-sectional model is widely accepted. However, it is 

unclear whether current spatial econometric studies have really enhanced our ability to 

take into consideration the spatial structure in cross-sectional modeling and improve the 

validity of our estimates. Typically, current spatial econometric approaches examine the 

assumptions of normality, heteroskedasticity, and structural stability to make sure that 

spatial error autocorrelation is not observed due to misspecification problems other than 

omission of relevant spatial variables. According to this “traditional” approach the 

problem of true spatial autocorrelation can be corrected successfully by using a spatial 

error autoregressive model. However, a number of objections regarding the methods 

followed in those empirical studies have been raised. Current spatial econometric studies 

examine only a subset of the underlying model assumptions to determine the source of 

misspecification problems. Even if current spatial econometric studies assessed the 
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validity of all the assumptions underlying the statistical model, the approach of testing 

individual assumptions one-by-one and fixing problems when necessary is very unlikely 

to lead to a well-specified model. A battery of individual and joint tests is necessary to 

identify misspecifications sources and lead respecification efforts. Another objection to 

the methodology of current spatial econometric studies is that the success of their results 

is judged by the changes in the fitting power of the model. Finally, in the “traditional” 

approach to dealing with spatial autocorrelation, the specification of spatial structure in 

an econometric model is completely arbitrary. 

 

In the second chapter, we briefly review basic elements of existing empirical studies of 

land values. Location is probably the most important determinant of land values, while a 

number of empirical studies also suggest that hedonic attributes can explain variation in 

land prices. Chapter 2 also describes our empirical information, which is based on a 

number of geographical, morphological and socioeconomic characteristics of land parcels 

in Roanoke County.  

 

In the third chapter we introduce some basic tools that may be used in analyzing and 

testing patterns of spatial dependence. Fundamental to much of this material is the notion 

of a weight matrix, W, which captures the spatial relationship between a set of spatial 

units. A weight matrix has the role of averaging values at neighboring sampled data 

points. Several alternative definitions of a spatial weight matrix are also discussed. The 

researcher should use the type of weight matrix that is consistent with the available 

empirical information, but be aware of its ad hoc nature when interpreting her results.  

 

The fourth chapter investigates whether land values in Roanoke County are spatially 

correlated, demonstrating the possibility that an econometric model, which does not 

consider the spatial configuration of the data may lead to biased and inconsistent 

estimators. Following current spatial econometric techniques, we initially estimate a land 

value model for Roanoke County, and then we examine whether spatial autocorrelation is 

present. Prior to testing for spatial autocorrelation, the land value model for Roanoke 
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County is tested for the assumptions of normality, heteroskedasticity and structural 

stability. In this way, we attempt to verify that the observed autocorrelation is “true”, 

meaning due to omitted spatial variables and not due to violations of other assumptions. 

 

The fifth chapter applies both parametric and non-parametric techniques to the land value 

model of Roanoke County to deal with the problem of spatial autocorrelation. The results 

indicate that both techniques achieve higher fitting power (based on R2) than the initial 

model estimated in the fourth chapter. Higher fitting power implies that by using spatial 

lags, the model explains a larger portion of the variance of the dependent variable. 

However, results of misspecification tests indicate that both the parametric and non-

parametric models violate essential underlying statistical assumptions. Given these 

assumption violations, we conclude that by applying the tools of current spatial 

econometric methodology we have not adequately modeled land values. Anselin (1988) 

suggests that the researcher should continue trying alternative weight matrices until the 

misspecification problem is solved. However, we saw in Chapter 4 that the weight matrix 

used in this chapter relies on detailed information provided by the Planning Department 

of Roanoke County, and matrices based on distances among the parcel centers make no 

sense in our case study. Thus, instead of trying various ad hoc redefinitions of weight 

matrices, we attempt modeling land values using an alternative approach. 

 

In the sixth chapter, ultimately three models are estimated to explain the variation in land 

transaction prices in Roanoke County. We revisit the land value model estimated in the 

fourth chapter of the thesis and conduct a more comprehensive set of individual and joint 

misspecification tests. Following an iterative procedure of respecification and testing, we 

concluded that vacant parcels follow a different stochastic process than developed 

parcels. In addition, two subgroups of developed parcels were created to account for a 

lack of homogeneity across expensive and non-expensive construction land parcels. 

Misspecification tests provide evidence that the final models satisfy the underlying 

statistical assumptions, and thus, provide more statistically reliable estimates than the 

models derived earlier using current spatial econometric techniques. 
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The findings of this dissertation basically confirm the validity of the three propositions 

stated in the introductory chapter. The first proposition of the thesis is that there is spatial 

dependence in the values of land parcels in Roanoke County. Using current spatial 

econometric techniques, we initially evaluated this proposition by estimating a land value 

model, which did not violate normality, heteroskedasticity and structural stability, and 

then tested for the assumption of spatial autocorrelation. This procedure led us to the 

conclusion that there is indeed spatial dependence in the values of land parcels in 

Roanoke County. However, in the sixth chapter of the thesis, we applied a more 

comprehensive set of misspecification tests, which indicated that lack of structural 

stability among land parcels may be one of the sources of spatial autocorrelation. Using 

the assessed value of land parcel constructions, we classified developed land parcels in 

two more homogeneous groups. The estimated land value models presented no evidence 

of spatial autocorrelation. However, in the land value model of vacant parcels, there was 

persistent evidence of spatial autocorrelation and spatial lags of dependent and 

independent variables were used to solve this problem. In conclusion, the land value 

models of more homogeneous groups of observations (developed parcels classified based 

on the value of their construction) do not exhibit evidence of spatial autocorrelation, 

while spatial dependence does exist in the group of vacant parcels in Roanoke County. 

 

The second proposition of the thesis is that mechanical construction of neighborhood 

effects, or grouping of geographically nearby land parcels into neighborhoods, is not 

always the best way to capture spatial effects. Using the statistical package Spacestat, we 

calculated that the neighborhood diameter in Roanoke County should be at least 2.8 km. 

However, such a large neighborhood would be clearly inappropriate (much too large) to 

capture spatial effects in Roanoke County. In addition this neighborhood specification 

would not consider natural frontiers and other socioeconomic parameters essential to 

determine spatial relationships. Neighborhoods defined by the Planning Department of 

Roanoke County are built based on the geographical particularities of Roanoke County. 

Some of these neighborhoods have a diameter smaller than 0.3 km, while others are big 
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enough to include common types of residential development at the county borders. Thus, 

we reject the use of mechanically constructed neighborhood effects for our case study and 

instead we use neighborhoods based on the empirical information provided by local 

government agencies. 

 

The third and most important proposition of the thesis is related to the success of current 

spatial econometric practices in capturing the spatial aspects of land values. It states that 

by implementing a comprehensive set of individual and joint misspecification tests 

proposed by Spanos (1986) one can better identify misspecification error sources and thus 

establish a statistically adequate model, which is more reliable than models based on the 

existing spatial econometric practices.  In the fifth chapter of the thesis we saw violation 

of fundamental assumptions in the empirical results generated with current spatial 

econometric techniques. Parametric and non-parametric techniques did not solve the 

problem of spatial autocorrelation. In Chapter 6, we used a battery of individual and joint 

misspecification tests to derive statistically adequate models of land values. The results of 

this case study suggest that applied econometricians could be more assured of the validity 

of their results by following the alternative approach described in Chapter 6 rather than 

using current methods to deal with the problem of spatial autocorrelation. However, 

further studies are needed in order to generalize these findings. 

 

Finally, Table 7.1 summarizes the statistical estimates derived from the different models 

for land values in Roanoke County. A first conclusion from this table is that different 

hedonic attributes have different effects on land values depending on their development 

status. For example, while the first three models indicate that there is a quadratic 

relationship between parcel size and land value, the models derived in the sixth chapter 

indicate a linear relationship for the developed parcels with non-expensive constructions. 

Figure 7.1 presents the effects of parcel size on the land value per square meter for the 

different models. The vertical axis indicates the value of the parcel in US dollars per 

square meter, while the horizontal axis presents the size of the parcel in hectares. The 

graphs in Figure 7.1 assume mean values for all other variables except for parcel size.  
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Table 7.1 Model Estimates for Land Values in Roanoke County 

Variable OLSa 2SLSb GMEb 

OLSc-
Expensive 
Construction 

OLSc-Non 
Expensive 
Construction 

OLSc-
Vacant 
Parcels 

Constant -17.46850 -14.02579 -8.58745    
Log(Size) -0.48395 -0.35895 -0.31823 -0.82992 -0.74718 -0.69593 
[Log(Size)]2  -0.03062 -0.04058 -0.04704 0.05652  0.01966 
[Log(Size)]3    0.07367   
Log(Elevation) 0.33793 0.18655 0.41922 0.28847 -0.05453  
[Log(Elevation)]2 -0.10623 -0.04876 -0.14528    
Soil1 -0.05668 -0.03001 -0.05906 -0.02053 -0.10281  
Soil2 -0.09161 -0.06669 -0.06158 -0.08619 -0.15385  
Population 0.00485 -0.00235 0.00998 -0.00281 -0.00416  
(Population)2 -0.00006 -0.00019 -0.00090    
Log(Mall) 1.40294 0.83548 1.77236 -0.19231 0.01993 -0.31313 
[Log(Mall)]2 -0.22056 -0.11256 -0.27594    
Log(Town) 0.25035 2.84582 2.13548 0.02409 -0.36956 1.72201 
Log(Town)2     -2.11898  
Developed 0.09403 0.13548 0.04761    
Road -0.07093 -0.05867 -0.14257   -0.21017 
Year 0.05639 0.05349 0.01458 0.04496 0.06156 0.02316 
LogX 4.19009 3.31659 4.12933 -0.10993 0.23021 0.43777 
LogY 3.81113 3.02646 3.75875 0.15501 -0.09793 -0.19560 
(LogX)*(LogY) -0.93027 0.17222 0.11878    
WLog(Price)  0.22486    -1.72538 
WLog(Size)      -1.19715 
WLog(Town)      3.37101 
WRoad      -0.34388 
WLogX      0.95994 
WLogY      -0.55586 
WYear      0.08464 
       
R2 0.8090 0.8154 0.8821 0.7316 0.6556 0.9516 
 

a Estimated in Chapter 4 
b Estimated in Chapter 5 

c Estimated in Chapter 6 
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The results present clear evidence that the effect of parcel size differs depending on 

development status of the parcel; this finding highlights the importance of modeling these 

properties separately from a policy point of view. The need to separate these properties 

was only discovered by carefully examining the model assumptions using the approach 

proposed by Spanos. In the group of vacant parcels we can see that land value increases 

with the parcel size at a declining rate. Assuming average values for the other 

characteristics, irrespective of the parcel size the value of vacant parcels will be lower 

than parcels with some type of residential or commercial development. Smaller parcels 

have higher values in the group of developed parcels with non-expensive constructions, 

while the opposite relationship is indicated for the group of parcels with expensive 

constructions. Parcels with expensive constructions are relatively more expensive than 

those with non-expensive constructions. However, as shown by Figure 7.1 expensive 

construction values decrease with size while non-expensive values increase with size. The 

value differential between parcels with expensive and non-expensive constructions 

decreases with the size of the parcel. 

 

The first three models have relatively small differences in their estimated coefficients. 

However, we saw in the previous chapters that these models violated the underlying 

statistical assumptions and their implications should not be trusted. This means that the 

policymaker should use the correctly specified models estimated in the sixth chapter to 

derive land value indices for Roanoke County and study the effects of different hedonic 

variables on land values. Comparing the results of the first three models to those derived 

in the sixth chapter we can see that all models agree, however, that land value per square 

meter increases with parcel size but at a decreasing rate, except for the model estimated in 

Chapter 6 for the expensive constructions. Higher elevation and permeable soil are two 

proxies indicating lower flood risk in Roanoke County. Most of the models indicate that 

higher elevation increases the value of the parcel at a decreasing rate while impermeable 

soil qualities (Soil1 and Soil2) are related to lower land values. The results are mixed in 

terms of the effects of population density on land values. The correctly specified models 

for developed parcels indicate that population density is related to lower land values. In 
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other words, parcels which accommodate some type of construction are relatively more 

expensive in less populated areas. The 2SLS model agrees with the correctly specified 

models about the negative effect of higher population density on land values, while the 

initial (misspecified) OLS and GME models suggest that land values increase with higher 

population density but at a decreasing rate. The first three models in Table 7.1 suggested 

that land values increase with distance from town and mall, however the models 

estimated in the sixth chapter suggest this conclusion is not accurate. Longer distance 

from a mall is related to lower land values for parcels with expensive constructions and 

vacant parcels, while longer distance from the nearest town is related to lower land value 

in the group of non-expensive parcels.  

 

The first three models indicate that the presence of a highway next to a land parcel affects 

negatively its value. This is also the case for vacant parcels, according to the models 

estimated in the sixth chapter, while the presence of a road does not affect parcel values 

in the groups of developed parcels. However, all models agree that land transaction prices 

were higher in 1997 relative to the previous year. The location determinants of the parcels 

(X and Y) are significant in almost all models, indicating that location is a very important 

attribute of the parcel value even after accounting for neighborhood effects. Finally, 

spatial lags are used even after accounting for neighborhood effects to deal with the 

problem of spatial autocorrelation for vacant parcels. The size of the coefficients of 

spatial lags is higher than the coefficients of the respective explanatory variables. This 

implies that neighborhood hedonic characteristics may have stronger effects than 

individual parcel characteristics on its value. The signs of spatial lags are consistent with 

the signs of their respective explanatory values. For example, an increase in the size of a 

parcel and increases in the sizes of the parcels in a neighborhood affect in the same 

direction the price of the land parcel. The first three models yield relatively higher R2 

values than the estimated models for developed parcels estimated in Chapter 6. However, 

higher fitting power can be misleading if the model is not well-specified. In addition, the 

models for developed parcels were estimated using smaller more homogeneous samples 
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and thus, lower variability in the dependent variable is likely to cause a decline in the 

fitting power of the models.  

 

Davidson and Mackinnon (1993) conclude that the situation where a model is correctly 

specified except for a failure to account for error autocorrelation does not account for a 

very high proportion of the cases in which residuals from a regression model appear to be 

correlated. Future research may indicate that this is also the case in cross-sectional studies 

that present spatial autocorrelation. More work is also needed to corroborate whether 

following the approach to develop a statistically adequate model (Spanos 1986) will make 

unnecessary inclusion of arbitrary specified weight matrices to account for influence of 

surrounding parcels. In case that spatial lags are needed, more research would be also 

useful to examine how a simple linear distance performs as a spatial weight matrix 

relative to other neighborhood boundaries based on socioeconomic and morphological 

characteristics. Finally, it may be a good idea to re-examine existing spatial econometric 

studies, under the light of a more complete set of misspecification tests, to validate the 

choice of the weight matrix in those studies.  

 

From a policy point of view, our results have implications for urban expansion to rural 

areas in Roanoke County as well as the existing zoning policy of the local government. 

Specifically, we saw that the type of residential development (expensive versus non-

expensive constructions) affects the stochastic process of land values in Roanoke County. 

The recent planning policy of Roanoke County (Roanoke County Planning Department, 

1994) is restricted to the choice of area for development, and does not schedule the type 

of development in different areas. For example, our results indicate that the value of the 

land and consequently the revenue of the local government will increase not only by 

further construction in vacant parcels, but also with redevelopment with more expensive 

construction in already developed areas with non-expensive constructions. In addition, 

more research is necessary to examine how parcel size affects land value, an issue quite 

important to local governments who contemplate changes in their zoning policies. Our 

results indicate that changes in parcel size have different implications for land values 
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according to their development status. Smaller parcels may result in higher values (and 

tax income for the local government) in areas with expensive construction while larger 

parcels are slightly more expensive in areas with vacant parcels or non-expensive 

constructions.  
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Figure 7.1 Effects of Parcel Size to Land Values in Roanoke County 
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APPENDIX A: Description of Misspecification Tests 
 

 

 

Normality 

 

 

The Jacque-Bera test is based on the difference of the skewness and kurtosis of the series 

with those from the normal distribution. The statistic is computed as:  

 

JB = 4(N-k)(4S2 +(K-3)2)/6      (1) 

 

Where S is the skewness, K is the kurtosis, and k represents the number of estimated 

coefficients used to create the series. Under the null hypothesis of normal distribution, the 

Jacque-Bera statistic is distributed as chi-squared with 2 degrees of freedom. The reported 

P-value is the probability that a Jacque-Bera statistic exceeds (in absolute value) the 

observed value under the null – a small probability value leads to the rejection of the null 

hypothesis of a normal distribution. 

 

 

Functional Form 

 

 

Functional form tests include test for Linearity as well as the Ramsey RESET test. The 

Linearity tests are based on the significance of the parameter d, in the following 

regressions: 

 

u = c + ax +dx2        (2) 

 

and 
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u = c + ax +dz        (3) 

 

where u is the vector of residuals, c is a constant, x is the vector of variables, and z is the 

vector of cross-products of the explanatory variables. For the Ramsey test, z = [y2 y3], 

where y is the vector of fitted variables of y on x, and the superscripts indicate the powers 

to which these predictions are raised. The significance of b is examined by using the F-

statistics for the null hypothesis that d = 0.  

 

 

Heteroskedasticity 

 

 

The heteroskedasticity test is based on the significance of d and k in the auxiliary 

regression: 

 

u2 = c + dx2  + kz      (4) 

 

where u is the vector of residuals, c is a constant, x is the vector of variables, and z is the 

vector of cross-products of the explanatory variables. The significance of d and k is 

examined by using the F-statistics for the null hypothesis that d = 0 and k = 0. 

 

 

Spatial Autocorrelation 

 

 

The spatial autocorrelation test is based on the significance of d in the auxiliary 

regression: 

 

 u = xb + dWu + ε      (5) 



 

 

91

 

where u is the vector of residuals, x is the vector of explanatory variables, b is the vector 

of estimated coefficients, W is the weight matrix and ε is the error term of equation (5). 

The significance of d is examined by using the F-statistic for the null hypothesis that d = 

0. 

 

 

Second Degree Dependence 

 

 

The second-degree dependence test that we use is known as ARCH test, which is an 

auxiliary regression test for autoregressive conditional heteroskedasticity in the residuals. 

The test is based on the significance of a, d and k in the following auxiliary regression: 

 

 u2
z = c + au2

z-1 +du2
z-2 +ku2

z-3     (6) 

 

where u is the vector of residuals, c is a constant, and z is the ordering factor. The 

observations are ordered based on their development status (first vacant then developed 

parcels), on the assessed value of their constructions, and also ordered by neighborhood. 

The significance of a, d and k is examined by using the F-statistic for the null hypothesis 

that a = 0 and d = 0 and k=0. 

 

 

Structural Stability 

 

 

Two individual tests were used to evaluate structural stability. Both the Chow test and the 

Chow Forecast test are based on the same principals and their evaluation uses F-tests. The 

idea behind the Chow test is to fit the equation separately for each subsample and to see 

whether there are significant differences in the estimated equations. The F-statistic is 
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based on the comparison of the restricted and unrestricted sum of squared residuals and in 

the simplest case involving a single breakpoint, is computed as: 

 

F = [(u’u – u1’u1 – u2’u2) (T – 2k)] / [(u1’u1 + u2’u2) k]  (7) 

 

 

where u’u is the restricted sum of squared residuals, ui’ui is the sum of squared residuals 

from subsample I, T is the total number of observations, and k is the number of 

parameters in the equation.  

 

The Chow Forecast test estimates the model for a subsample comprised of the first T1 

observations. The estimated model is then used to predict the values of the dependent 

variable in the remaining T2 data points. A large difference between the actual and 

predicted values cast doubt on the stability of the estimated relation over the two 

subsamples. The F-statistic is computed as: 

 

F = [(u’u – u1’u1) (T1 – k)] / [u1’u1 T2]    (8) 

 

where u’u is the residual sum of squares when the equation is fitted to all T observations 

of the sample, u1’u1 is the residual sum of squares when the equation is fitted to T1 

observations, and k is the number of estimated coefficients.  

 

 

Joint Mean Test 

 

 

The joint mean test simultaneously checks the appropriateness of functional form, 

independence, and structural stability as each of these assumptions refers to aspects of 

conditional mean. The test is based on the auxiliary regression:  
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u = c + ax + dx2 +kWu + qT     (9) 

 

where u is the vector of residuals, x is the vector of explanatory variables, W is the weight 

matrix, and T is a binary variable with 0 before the break point and 1 after. The 

significance of a, d and k is examined by using the F-statistics for the null hypothesis that 

d = 0 and k = 0 and q=0. The most likely cause of rejection, if it results, can be 

investigated by assessing the significance of d, k, and q individually. 

 

 

Joint Variance Test 

 

 

The joint variance test simultaneously checks for first and second order spatial 

dependence as well as for structural stability. It is based on the auxiliary regression: 

 

u2
z = c + ax + dx2 + ku2

z-1 + qT    (10) 

 

where u is the vector of residuals, x is the vector of explanatory variables, T is a binary 

variable with 0 before the break point and 1 after, and z is the ordering factor. The 

significance of a, d and k is examined by using the F-statistic for the null hypothesis that 

d = 0 and k = 0 and q=0. The most likely cause of rejection, if it results, can be 

investigated by assessing the significance of d, k, and q individually. 

 

 

Redundancy Test 

 

 

The redundancy test checks whether the entrance of some explanatory variables in the 

model is necessary.  It is based on the regression: 
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y = c + ax +dz  + u      (11) 

 

where y is the vector of dependent variables, x, z are vectors of explanatory variables and 

u is the vector of residuals. Testing whether the vector z should enter the model, we 

examine the significance of coefficient d, by using the F-statistic for the null hypothesis 

that d = 0. 
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