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(ABSTRACT) 

This work is a numerical study of Burgers’ equation with Neumann boundary conditions. 

The goal is to determine the long term behavior of solutions. We develop and test two 

separate finite element and Galerkin schemes and then use those schemes to compute the 

response to various initial conditions and Reynolds numbers. 

It is known that for sufficiently small initial data, all steady state solutions of Burgers’ 

equation with Neumann boundary conditions are constant. The goal here is to investigate 

the case where initial data is large. Our numerical results indicate that for certain initial 

data the solution of Burgers’ equation can approach non-constant functions as time goes 

to infinity. In addition, the numerical results raise some interesting questions about steady 

state solutions of nonlinear systems.
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Burgers’ equation has been considered by a wide range of researchers to be a useful 

model for many physically interesting problems involving nonlinear wave propagation sub- 

ject to some sort of dissipation. In particular, Burgers’ equation serves as a model for fluid 

flow problems and closely related problems of shock flow, traffic flow, etc. Depending on 

the nature of the problem, the associated dissipation may be a result of viscosity, heat con- 

duction, thermal] radiation, chemical reaction, or other source. Burgers’ equation captures 

these and other important phenomena associated with problems of a fluid flow nature, yet 

it is simple enough to provide insight into more complex problems. For this reason, Burg- 

ers’ equation is often used as a first case study for testing and comparing computational 

techniques and controlling more complex nonlinear partial differential equations. 

Burgers’ equation 

ur(t, 2) + u(t, z)ug(t, 2) = euge(t, ce) + f(t, 2) (1.1.1) 

was first introduced by Burgers as a simple one-dimensional model for turbulent fluid 

flow [1, 2, 3]. Lighthill [11] later derived it as a second order approximation to the one- 

dimensional unsteady Navier-Stokes equation. In most practical applications, « > 0 is a 

viscosity coefficient and u(t, x) is a velocity-like dependent variable, where u; and u, indi- 

cate the first time and spatial derivatives, respectively. The equation itself is a quasi-linear 

parabolic partial differential equation which describes the evolution of u with respect to 

time.
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The difficulty of computing fluid dynamic probiems arises mainly from the inability to 

efficiently balance the nonlinear convective term, wuz, and the diffusive term, euz,. Fletcher 

[8] illustrates these effects by simplifying equation (1.1.1). If the nonlinear convective term 

is dropped from equation (1.1.1) the result is simply the linear, parabolic partial differential 

equation 

uzr(t, ©) = euge(t, x) (1.1.2) 

which is more commonly known as the heat equation. However, by dropping the diffusive 

term, equation (1.1.1) becomes 

ur(t, xz) + u(t, c)ug(t,c) = 0 (1.1.3) 

which is a hyperbolic partial differential equation modeling the convection of disturbances 

in inviscid flow. On a typical convecting wave, points with larger u are shown to convect 

faster than points on the wave with smaller u, causing u to take on more than one value at 

a future time t. In order to have a unique solution, it is necessary to postulate a shock at 

which wu is discontinuous. 

Fletcher also considers the processes of convection and diffusion together and illustrates 

the evolution of the solution. As time progresses, the maximum amplitude of u becomes 

smaller and the profile steepens. Since the euz, term becomes larger as the steepening 

occurs, this dissipative term does not allow a multivalued solution to develop. Omitting the 

uz term from equation (1.1.1), the result is 

u(t, v)ua(t, ©) = €uge(t, x) (1.1.4) 

which is an elliptic partial differential equation representing the convective/dissipative bal- 

ance in the steady-state sense. If u is finite at z = +oo and « = —ov, the solution is of the 

form in Figure 1.1 and changes discontinuously as « — 0. Based on these simplifications 

of equation (1.1.1), Burgers’ equation can be categorized, under various conditions, as an 

elliptic, hyperbolic, or parabolic partial differential equation, furnishing a simple nonlinear 

model for convection/ diffusion interactions.
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Figure 1.1: A typical solution of u(t, z)uz(t, 2) = euza(t, 2). 

Another noteworthy feature of Burgers’ equation is that exact solutions exist for many 

combinations of initial and boundary conditions. Hopf [10] and Cole [7| developed a trans- 

formation which reduces equation (1.1.1) to the linear heat equation and transforms initial 

conditions with little computation. Unfortunately, most of these exact solutions exist only 

for x in the interval (—oo, +00) and many computational difficulties arise when a boundary 

condition is applied for a finite x (see Fletcher [8]). For Neumann boundary conditions in 

particular, the Hopf-Cole transformation introduces quadratic nonlinearities at the bound- 

ary of the finite interval and presents a nonlinear term which undermines the ability to 

obtain apriori estimates from which the convergence of Galerkin approximations can be 

established. 

Burgers’ equation has provided a test case for several papers on the problem of active 

control of fuid flows. Burns and Kang [4, 5] first considered a feedback control problem 

for Burgers’ equation and later addressed a stabilization problem with unbounded input 

and output operators. Both problems involved applying boundary conditions to finite x 

locations. In the first paper, a finite dimensional nonlinear approximating system was
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formulated for Burgers’ equation, with Dirichlet boundary condition given by 

u(t, 0) = u(t,l) = 0 (1.1.5) 

on a finite interval [0,7]. In [5] however, the model was formulated for Burgers’ equation 

with boundary condition given by 

u(t, 0) = 0, u(t, 2) = v(t). (1.1.6) 

For [0, 2] divided into N + 1 equal subintervals, the two approximating systems developed 

in [4] and [5] were of dimensions N and N +1, respectively. Both nonlear ODE systems 

were solved using a 4th order Runge-Kutta method [13]. 

Another boundary control problem governed by Burgers’ equation was studied by Mar- 

rekchi [12]. In this problem, Marrekchi considered the Burgers’ equation with Neumann 

boundary condition given by 

uz(t, 0) = uz(t, 1) = 0. (1.1.7) 

The resulting nonlinear ODE system was of dimension N +2 and was solved using the 

ODE45 4th and 5th order Runge-Kutta method in MATLAB. This model is of particular 

interest because for 1 = 1 and Reynolds number Re = t = 60, the solution converged to a 

constant steady state when given the initial condition 

u(0, x) = — cos(rz) (1.1.8) 

but failed to do so for 

u(0,x) = cos(rz). (1.1.9) . 

In [6], Byrnes, Gilliam, and Shubov proved that for « > 0, there is a constant k such 

that if || ¢ ||z.< ke, then the solution to the homogeneous Burgers’ equation with Neumann 

boundary conditions must converge to a constant solution as t approaches infinity. They 

conjectured that this result would hold for any initial data as long as the steady state limit 

existed. The goal of this effort is to test the conjecture by numerical experimentation.
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In this paper we present two methods for approximating solutions to Burgers’ equation, 

with initial condition and Neumann boundary data given by 

u(0,x2) = o(2) (1.1.10) 

uz(t, 0) = 0, uz(t, 1) = 0. (1.1.11) 

Given some initial function ¢(x) each method (when applied to the homogeneous Burgers’ 

equation, i.e. f(t, 2) = 0) will yield a finite dimensional initial value problem of the form 

aw 

“oN (t) = AN a(t)’ — FN (a (2) (1.1.12) 

aN (0) = (MN]-0 (1.1.13) 

which we will solve using the ODE45 ordinary differential equation solver in MATLAB. 

(When either method is applied to the nonhomogeneous Burgers’ equation, equation (1.1.12) 

will have an f(t) term added to the right hand side.) We will use some polynomials and 

various multiples of sin{(zz) and cos(mz) for our initial data and compare our results to 

those previously obtained by other researchers. Moreover, for each initial condition we will 

usee= ay 730° 540 and explore the effect this viscosity coefficient has on the convergence of 

the two finite dimensional approximations of Burgers’ equation. Ultimately we will compare 

the two approximating systems on robustness, speed, and accuracy. 

1.2 Finite Dimensional Approximations 

In this section we introduce the two finite dimensional approximation schemes which will 

be formulated in the next chapter. The first is the conventional Finite Element /Galerkin 

Method which was applied to Burgers’ equation by Marrekchi (see [12]). The second (al- 

ternate) method entails applying the Galerkin method to the Burgers’ equation in its con- 

servation form 

us(t, 2) + (u(t 2))a = €une(t, 2) + F (t,x). (1.2.1)
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For both methods, the unit interval (0, 1] is divided iuto (N +1) subintervals (xi, Ti4]); each 

of length h = Wap where 7; = Wo for 7 = 0,1,...,N +1. For each 2, let AN (x) denote the 

linear basis function defined as follows: 

—(N+1)(2 — , for <a< 
rN (aya) NtV@— #1), forzose sey (1.2.2) 

0, otherwise 

(N +1)(@—<aj-1), for aj) <2 <2; 

nN (c)= 4 —(N41)(a@—cig1), for ai<2 <einy (1.2.3) 

0, otherwise 

for 1 <i < N and 

, (N+1)(c-—2n), forrzy <a < ani 
hN41(z) = (1.2.4) 

0, otherwise. 

The basis finctions clearly depend on the value of N, but the superscript will be left off 

when referring to the basis functions throughout this paper. 

The trial solution can be written 

N+1 

uN (t,x) = S> ai(t)hi(zx) (1.2.5) 
i=0 

where each q; is a nodal unknown and h;(z) is the i linear basis (or ’hat’) function defined 

on (0, 1). Application of standard Finite Element/Galerkin procedures (to the homogeneous 

problem) yields the following finite dimensional ODE system: 

MN) <a’ (t) + FN (aN (t)) = Ka (2) (1.2.6) 

where 

ag(t) 

oN (t) = oul . (1.2.7) 

an+41(t)
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—2(a(t))* + ao(t)ay(t) + (a4(t))? 

—(a9(t))? — ao(t)ar(t) + a1 (t)aa(t) + (aa(t))? 

Fp (a(t)) = ; (1.2.8) 

—(an_i(t))? — an_i(t)on(t) + an (t)anyi(t) + (an4i(t))? 

L —(an (t))? — an (t)anga(t) + 2(anw4i(t))? | 
and ; 

1 0 0 0 

1 4 #1 0 0 

01 4 1 0 

iw) = wat (1.2.9) 

0 1 4 1 

|e O41 2 | (N-+2)x(N +2) 

[11 0 0 0 | 

1 -2 1 0 0 

0 1 -—2 1 0 

[A™] = (N +1) re (1.2.10) 

0 1 -—2 1 

| 0 0 Tt -1) (N+2) x(N-+2)     
are the mass and stiffness matrices, respectively. The entries for F Nv (a(t)), [M N ], and [kK N | 

will be derived in the next chapter. 

The FY (a(t)) term which appears on the lefthand side of (1.2.6) is associated with the 

nonlinear term in equation (1.1.1) and can complicate the computational solution for large 

values of N. For this reason, we seek an alternative treatment of the nonlinear term which 

would lessen the amount of computation needed to approximate the solution. Such an 

alternative treatment is possible and is introduced in [9]. Here Burgers’ equation is written
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in its conservation form and a second trial solution is introduced for u(t, x): 

N+1 

[u Net, z))? = S> (a(t)? h;(a). (1.2.11) 
i=0 

When the Galerkin method is applied to equation (1.2.1) subject to f(t,2) = 0, (1.2.5), 

and (1.2.11), the resulting ODE system is given by 

IM] aN (t) + FD (aN (t)) = €[K Xa (t) (1.2.12) 

where [_M N | and [Kr N | are as before and 

(an4i(t))? — (an_i(t))? 

| (ansi(t))? — (an(t))? 

corresponds to the nonlinear term appearing in equation (1.2.1). (Note that the only dif- 

    
ference between (1.2.6) and (1.2.12) is the F’ (a(t)) term.) Based on our numerical experi- 

ments this alternative method, which we will refer to as the Galerkin/Conservation Method, 

is the faster and more accurate of the two. 

Since [M N ] is known to be invertible, we can multiply (from the left) both sides of 

fall “aN (t) + FN (aN (t)) = [Ka (t) (1.2.14) 

by [M N] —! to obtain 

CoN (t)4 F FN (aN (t)) = [A aN (2). (1.2.15) 

For a specified initial condition 

u(0, 2) = (x) (1.2.16) 

this procedure will yield the corresponding initial condition for (1.2.15): 

a (0) = [aN |—y (1.2.17)
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where vj =< ¢(a),hj(z) >= fo o(x)hj(x)dx for 7 = 0,1,...,N +1. Again, these computa- 

tions will be carried out in full detail in Chapter 2.



Chapter 2 

TWO APPROXIMATING SYSTEMS 

2.1 Piecewise Linear Finite Element Method 

Consider the homogeneous Burgers’ equation defined on the interval [0,1], with initial 

condition and Neumann boundary data given by 

ut(t,c) + u(t, z)ugz(t, z) = eure(t, x) (2.1.1) 

u(0, x2) = d(a) 

uz(t, 0) = 0, uz(t, 1) = 0 

where € > 0 is a viscosity coefficient. The approximate solution can be written 

N+1 

u (t,2) = S; a;(t)hi(x) (2.1.2) 
i=O 

where the a; are unknowns and the h, are the linear basis functions defined on (0, 1]. If 

u(t, x) solves the initial/boundary value problem given by (2.1.1), then 

ur(t, cz) + ult, r)ug(t, 2) — euvge(t, cz) = 0 (2.1.3) 

for all (t,x) € R?. Therefore, for j = 0,1,...,N +1, 

[ur(t, 2) + u(t, e)ug(t, 2) — evae(t, x)]h; (x) = 0 (2.1.4) 

and on (0,1) 

1 1 

[ fuelt,2) + ult,2)uatt,e)]hy(e) — f eUrn(t, c)h;(x)de = 0. (2.1.5) 

10
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Integrating by parts we obtain: 

1 1 

ce [uz(t, c) + u(t, c)uz(t, e)|hj(x)dex +/ eug(t, )hi(x)da = 0. (2.1.6) 
0 

We now substitute our approximate solution u (t,x) for u(t, x) to get 

1 

I {fut @, 2) + uN (, 2)utY (t, x))h gla ) +euN (t, x)Wi;() bda = 0. (2.1.7) 

Note that uN (¢,2) = TNS) a; (t)hi(z) and u(t, 2) = SNS) a; (t)ai (x). Hence, 

[ [Ssem) -(Saome) (aoe om a==0 

1 (N+1 

= -f (s oon) hi (x)da. (2.1.8) 
a0 

Rearranging terms then gives 

N+1 > a N4+1N41 
3 7 hi(a)hy (a jaa) ay ( uot { [rite yr le)ny (wae } aslt}an(e 
i=o \/0 i=0 k=0 

N+1 1 

=—e SS tf vee a;(t). (2.1.9) 
i=o \V0 

Let Nig = fo hi(ax)h;(a)dx and ky = — fo hi (x x)dz fori = 0, 1,...,.N + 1, j = 

0,1,...,.N +1. Then 

N+1 N+1N+4+1 N+1 

S> mig ay (t) + S- Ss; { [ hi(x)h,(x)hj (x Jas} as(t =e 2. kijou(t). (2.1.10) 
1=0 i=—0 k=0 

Written as a matrix equation, 

ap (t) ao(t) 

a (t a(t 
[ar] u{ + FN (a(t)) = [KN] at (2.1.11) 

an41 (t) an+1(t) 

where [1] = [mj], [KY] = (k,,], and 

11
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—2(a9(t))? + ao(t)ar(t) + (ar(t))? . 
~(ap(t))? — ao (t)aa(t) + a4(t)aa(t) + (a2(t))? 

—(ay—i(t))? — an—a(t)an(t) + on (thonsgi(t) + (angi (ty)? 

; —(an(t))? — an (t)anyi(t) + 2(angi(t))? |     
Since the mass matrix [M N ] is known to be nonsingular 

ag (t) ag(t) 

a) FN (a(t) = eA a(t (2.1.12) 

an4i (¢) an4i(t) 

ww 

where FN (a(t)) = [M%]—-1 FN (a(t)) and AN = [M4]-1KY]. 

We now give a similar treatment for the initial condition u% (0,2) = ¢(x). Multiplying 

both sides by h(x) and integrating on the interval [0, 1] yields 

1 ] 

I u (0, 2)hj(e)de = [ $(x)h,(x)da. (2.1.13) 
0 0 

Therefore, 
y (N41 j 

I S oOo) hj(z)da = [ b(x)hj(x)dz. (2.1.14) 
0 iO 0 

As before, we can rearrange the left hand side of equation (2.1.14) to obtain 

N+1 1 1 

3 / hsle)h, (2)aa| a,(0) = | 6(a)hy(x)de. (2.1.15) 
1=0 0 0 

But fo hi(x)hj(a)dx = mi as defined previously. Hence 

N+1 1 

i=0 

12
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or in matrix form 

a(0) < (x), ho(x) > 

iM] au _ < Hehe) > (2.1.17) 

an+1(0) < $(x), hn4i(a) > 

where < ¢(z),hj(x) > = fo o(x)h;(x)dx for 7 = 0,1,..., N+1. Again, since the mass matrix 

is known to be nonsingular, we can multiply (from the left) both sides of equation (2.1.17) 

by [N]-4 to obtain 

ag (0) < (x), ho(x) > 

o1(0) = [mM ]-! * #2) bala) mY (2.1.18) 

an 41(0) < $(x),hn41(a) > 

Note that 

< (x), ho(x) > 

< (x), hy(x) > 

< (x), hn+i(z) > 

is simply an (N +2) x 1 vector of scalars and therefore [M]—1v is as well. So the problem 

has reduced to solving the (N +2) dimensional initial value problem 

nw 

oN (t) = ANON (t)— FN (a(t) (2.1.19) 

a (0) = [MA ]—!o. (2.1.20) 

Note that if f(t, 2) # 0, then equation (2.1.19) is modified by adding
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to the right hand side. The above IVP was initially set up in MATLAB by Marrekchi 

(see [12]) and solved using the MATLAB ordinary differential equation solver ODE45. The 

solution was found to converge to zero for initial condition 

N — u (0,2) = —cos(rz) (2.1.21) 

but failed to reach a constant steady state for 

N — 9 u'' (0,2) = cos(rz). (2.1.22) 

To test the validity of these results, we completely regenerated the ODE system using 

newly coded MATLAB subroutines. We then solved the system subject to various initial 

conditions and Reynolds numbers using ODE45. The numerical results are given in Chapter 

3. 

2.2 Finite Element Method and Conservation Form of Burgers’ Equation 

Consider the conservation form of the homogeneous Burgers’ equation [9] given by 

1 
uz(t, 2) + 5 (u(t, x))y = €Ugg(t, x). (2.2.1) 

Then for 7 = 0,1,...,N +1, 

[ ust 2) + 

Integrating the term on the right by parts, we obtain 

[ fus(t + 

Suppose in addition to the trial solution 

1 

(u(4, o))a| h(a) = ff Unal(t, c)hj(x)de. (2.2.2) 

b
o
]
 

J 

(u(t, 2))s| hj(x) = -« f Ue(t, x) hi, (x)de. (2.2.3) 

bo
} 

=
 

N+1 

uN (t,a) = S> ai(t)hi(e) (2.2.4) 
i=0 

for u(t, z), we introduce the following trial solution for u?(t, «): 

N+1 

[uN (4, 2)? = So (ailt))?ri(e). (2.2.5) 
i=0 

14
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Substituting into equation (2.2.3) gives 

[ {ful (te) + sl(u 2) 70} hj(a) = -<[ uN (t,a)hi(a)dar. (2.2.6) 

Note that [(u% (t, 2))"]e = Mb) (ai(t))?h4(c) and as before ul (t,z) = Sh? az (t)hi(c) 

and u(t, c) = si oj(t)hi.(z). We make the appropriate substitutions to obtain 

N+1 1X2) 

[ 1d a, (t)hy(x) + = 7 dL aj(t))“h; °c) baled 

i=0 

1yN+1 

= — i(t)hi(a)h’,(a)dx. 2.2.7 f De aalt (apn (2) (2.2.7) 

If we rearrange terms as in section 2.1, we get 

N+1 1 1 N+1 1 

3 tf hs(a)hy(0)ae} ai (+5 0 tf ni(e)hj(e)ae } (a(t)? 
— (Jo 2 = Vo 

a i=0 

N+1 1 

= —e S> { [ ni(e)ns (eae b ast (2.2.8) 

1=0 

which can be written 

N+1 N+1 N41 
S> maz &% (t) + S— by(ault))? = —e SO kygai(t) (2.2.9) 
1=D 0) 1=0 

where bj; = 5 fo hi,(x)hj(a)dx and mij, ki; are as defined in section 2.1. In matrix form, 

a (t) | a(t)? co (t) 

Gy (t ay (t)? ay(t 
im) | Ody [BN] i Yl ey u (2.2.10) 

an+i (¢) | an+i(t)? an41(t) 

15
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where 

-1 1 0 90 0 | 

—-] 0 1 0 0 

0 -1 O 1 0 

[BN] = [bi] = ‘ Peete (2.2.11) 

0 -1 0 1 

0 0-11 (N-+2)x(N-+2)     
and [MJ], [KY] are as in section 1.2. Multiplying [B%](a‘ (t))? gives 

| (aa(t))? = (ao(t))? | 
(ca(t))? — (ao(t))? 

(a3(t))? — (ai(#))? 

a
l
 

FR (aN (t)) (2.2.12) 

(aw 41(t))? — (wn-1(t))? 

| (aw4i(t))? — (an (t))? 

which can be compared to the F(a‘ (t)) term in the previous section. Thus, equation 

(2.2.10) becomes 

    
ao (t) ao (t) 

| OO Ts pha ees] (2.2.13) 

an41 (t) an4i(t) 

Finally, since [M1] is invertible, we obtain 

a (t) = AN a (t)— FN (aN ()) (2.2.14) 
ow 

where A% is defined as before and FN (a (t)) = [M%]-!FA(a(t)). Again, if f(t,c) 4 0 

then f(t) (as defined in the previous section) must be added to the right hand side of 

equation (2.2.14). 

16



Chapter 3 

NUMERICAL EXPERIMENTS 

3.1 Setting Up the Problem 

We consider the nonhomogeneous Burgers’ equation 

ur(t, 2) + ult, cjug(t, 2) = euge(t, ce) + f(t, 2) (3.1.1) 

with initial condition 

u(0, x2) = g(a) (3.1.2) 

and Neumann boundary condition 

Ug (t, 0) = uz(t, 1) = 0. (3.1.3) 

We are interested in obtaining approximate solutions of equation (3.1.1) subject to (3.1.2) 

and (3.1.3) with f(t, z) = 0. The Galerkin model and the Galerkin/Conservation model are 

set up in MATLAB and solved using the ODE45 ordinary differential equation solver. 

In nearly all of the examples in this paper we employ the approximation routines using 

N=16 elements. This partitions the z-interval [0,1] into N+-1=17 subintervals of equal length 

using N+2=18 nodes. A typical solution of the above initial/boundary value problem (with 

f(t, x) = 0) is plotted in Figure 3.1 using N=4,8,16,32 elements. Here the initial function 

is given by (x) = 3c0s(72) and the value of the Reynolds number and final time are 

Re=60 and ty = 10, respectively. With t fixed at t = 10, it is evident that the numerical 

solution is approaching some limit as we increase the number of elements used. This is 

certainly consistent with the finite element theory found in (91. The important issue to note 

is that the solution obtained using N=16 elements is so ’close’ to that obtained using N=32 

17
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elements that it is more practical to use N=16 elements due to the increased amount of 

execution time incurred by the ODE solver when going from 16 to 32 elements. 

18
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  1 T | I I 4 TO [ y I 

0.8 B + N=4 _| 

0.6- *N=8 - 

      
  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 3.1: Numerical solutions of the homogeneous initial/boundary value problem using 

N=4,8,16,32 elements 
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3.2 A Comparison to Exact and Other Known Numerical Solutions 

To measure the numerical error introduced by the two approximation schemes, we com- 

pute the exact solution of the above initial/boundary value problem by choosing f(t, z) 

appropriately. The solution can be written 

u(t, x) = h(t)d(z) (3.2.1) 

where h(t) is some differentiable function with the property that h(0) = 1. Clearly u(0,z) = 

h(0)¢(x) = 6(a), satisfying the initial condition. The following are also observed: 

u(t, 2) = “a(t)o(a), | (3.2.2) 

ug(t, 2) = h(t)¢d’ (x), (3.2.3) 

and | 

Uge(t, z) = h(t)” (2). (3.2.4) 

Therefore 

ur(t, z) + u(t, z)uz(t, x) — eugge(t, ©) = “n(t)4(2) + h?(t)6(x)¢' (x) — eh(t)b” (x). (3.2.5) 

Letting ; OO! 
d ; 

f(t, 2) = h(t) d(x) + h?(t)$(x)¢" (x) — eh(t)$" (2), (3.2.6) 

u(t, z) as defined by equation (3.2.1) above furnishes the exact solution for equation (3.1.1). 

Example 3.2.1 

Let 

h(t) = et (3.2.7) 

and 
1 

d(x) = qoos (na). (3.2.8) 

Then 
2 

fi,zc)= — Je eos (na) — age 108(n2) sin( ne) + Pe “eos(ma) 

20
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1 
= — Ze “cos(na) e+ To “tsin(na) — en? (3.2.9) 

and the exact solution to equation (3.1.1) subject to (3.1.2) and (3.1.3) is given by 

u(t, c) = h(t)o(x) = —e “cos(rz). (3.2.10) 

Tables 3.1, 3.2, and 3.3 compare the exact solution to the Galerkin and Galerkin/Conservation 

approximations at final time t = 3. The finite dimensional models were set up using N=16 

elements and the equations were solved with Re=60,120,240. The numbers in the bottom 

row of these tables are the error norms |juc(t, x) — ue(t, <)|| and |lug/c(t, x) — ue(t, c)|| 

for the Galerkin and Galerkin/Conservation approximations, respectively. As the Reynolds 

number increases these error norms become larger, indicating reduction in accuracy. This 

is to be expected since «€ = x — 0 corresponds to decreasing viscosity. In all three cases, 

the Galerkin/Conservation method is the more accurate of the two approximations. This 

appears to be true in general as we shall see in further examples. 

Example 3.2.2 

Let 

(x) = 7005(n2) (3.2.11) 

as in Example 3.2.1 and let . 

h(t) = cos(t). (3.2.12) 

Then 

7 en? 
f(t,c)= — gsinlt)cos (rx) — 75 00% (t)eos(mz) sin (m2) + Tq cos(t)eos(re) 

= — 5cos(r2) [sin(e + 7008" (t)sin(we) — ex*eos(t) (3.2.13) | 

and the exact solution to equation (3.1.1) subject to (3.1.2) and (3.1.3) is given by 

1 
u(t,z) = qoos(t)cos(ma). (3.2.14) 

For N=16 and Re=60,120,240, Tables 3.4, 3.5, and 3.6 compare the exact solution to the 

Galerkin and Galerkin/Conservation approximations at final time t = x Note that the 
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Galerkin/Conservation method is once again the more accurate of the two approximations. 

The normal errors associated with the two approximation schemes are smaller than those 

obtained in Example 3.2.1 for Re=60,120,240. One would expect this trend to reverse itself 

for final time large enough since u(t,x) = ze *cos(ma) approaches zero exponentially in 

time and u(t, x) = }cos(t)cos(mx) is periodic in both t and z. 

Example 3.2.3 

In this example we compare our solutions to the homogeneous initial/boundary value 

problem to those obtained by Byrnes, Gilliam, and Shubov [6]. Here the initial function is 

o(x) = «?(1— 2)? and the Reynolds number is Re=10. We obtained (by both the Galerkin 

method and the Galerkin/Conservation method) the exact results found on page 44 in [6]. 

Our results are plotted in Figure 3.2 for comparison. 

Example 3.2.4 

For $(z) = cos(ra), f(t,z) = 0, and Re=60, Marrekchi’s solution converged to a non- 

constant steady state and is plotted in Figure 4.3.1 on page 76 in [12]. Changing only the 

sign of the initial function (i.e. ¢(2) = —cos(mxr)) caused the solution to evolve to a constant 

in less than 10 seconds, as shown in Figure 4.3.2 on page 77 in [12]. We observed the exact 

same phenomena using both the Galerkin and the Galerkin/Conservation methods. Our 

results are plotted in Figures 3.3 and 3.4. Note that our solutions are consistent with those 

obtained by Marrekchi. 
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Table 3.1: Solution of Burgers’ equation by Galerkin method, Galerkin/Conservation 

method (Re=60) 

  

x Galerkin G/C exact 

0 0.2505 0.2504 0.2479 

0.0588 0.2457 0.2456 0.2437 

0.1176 0.2326 0.2325 0.2312 

0.1765 0.2118 0.2116 0.2108 

0.2353 0.1839 0.1836 0.1832 

0.2941 0.1499 0.1496 0.1494 

0.3529 0.1108 0.1106 0.1105 

0.4118 0.068 0.0679 0.0678 

0.4706 0.0229 0.0229 0.0229 

0.5294 -0.0229 -0.0229 -0.0229 

0.5882 -0.068 -0.0679 -0.0678 

0.6471 -0.1108 -0.1106 -0.1105 

0.7059 -0.1499 -0.1496 -0.1494 

0.7647 -0.1839 -0.1836 -0.1832 

0.8235 -0.2118 -0.2116 0.2108 

0.8824 -0.2326 -0.2325 -0.2312 

0.9412 -0.2457 -0.2456 -0.2437 

1 -0.2505 -0.2504 -0.2479 

0.0053 0.0049 
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Table 3.2: Solution of Burgers’ equation by Galerkin method, Galerkin/Conservation 

method (Re=120) 

  

x Galerkin G/C exact 

0 0.2529 0.2528 0.249 

0.0588 0.2474 0.2474 0.2447 

0.1176 0.2338 0.2337 0.2321 

0.1765 0.2127 0.2125 0.2117 

  

  

  

  

  

  

  

  

  

  

  

  

  

0.2353 0.1846 0.1843 0.184 
0.2941 0.1504 0.1502 0.15 
0.3529 0.1113 0.111 0.111 
0.4118 0.0683 0.0681 0.0681 
0.4706 0.023 0.023 0.023 | 
0.5294 -0.023 -0.023 -0.023 
0.5882 -0.0683 -0.0681 -0.0681 
0.6471 -0.1113 -0.111 -0.111 
0.7059 | --0.1504 -0.1502 -0.15 
  

0.7647 -0.1846 -0.1843 -0.184 
0.8235 -0.2127 -0.2125 0.2117 
0.8824 -0.2338 -0.2337 -0.2321 
0.9412 -~0.2474 -0.2474 -0.2447 

1 -0.2529 -0.2528 -0.249 
0.0073 0.0071 
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Table 3.3: Solution of Burgers’ equation by Galerkin method, Galerkin/Conservation 

method (Re=240) 

  

  

  

  

  

x Galerkin G/C exact 

0 0.2556 0.2556 0.2495 

0.0588 0.249 0.2489 0.2452 

0.1176 0.2345 0.2344 0.2326 

0.1765 0.213 0.2128 0.2121 
  

0.2353 0.1849 0.1846 0.1844 
0.2941 0.1508 0.1504 0.1503 
0.3529 0.1115 0.1112 0.1112 
0.4118 0.0685 0.0683 0.0683 

  

  

  

  

  

  

  

0.4706 0.0231 0.023 0.023 
0.5294 -0.0231 -0.023 -0.023 
0.5882 -0.0685 -0.0683 -0.0683 
0.6471 -0.1115 -0.1112 -0.1112 
  

0.7059 -0.1508 -0.1504 -0.1503 
0.7647 -0.1849 -0.1846 -0.1844 
  

  

  

  

  

0.8235 -0.213 -0.2128 -0.2121 
0.8824 -0.2345 -0.2344 -0.2326 
0.9412 -0.249 -0.2489 -0.2452 

1 -0.2556 -0.2556 -0.2495 
  

0.0107 0.0105           
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Table 3.4: Comparison of Galerkin solution, Galerkin/Conservation solution, and exact 

solution u(t, 2) = jcos(t)cos(mx) (Re=60) 

  

x Galerkin G/Cc exact 

0 0.2217 0.2216 0.2194 

0.0588 0.2174 0.2173 0.2157 

0.1176 0.2059 0.2057 0.2046 

0.1765 0.1874 0.1872 0.1865 

0.2353 0.1627 0.1625 0.1621 

0.2941 0.1326 0.1324 0.1322 

0.3529 0.0981 0.0978 0.0978 

0.4118 0.0602 0.06 0.06 

0.4706 0.0203 0.0202 0.0202 

0.5294 -0.0203 -0.0202 -0.0202 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

0.5882 -0.0602 -0.06 -0.06 
0.6471 -0.0981 -0.0978 -0.0978 
0.7059 -0.1326 -0.1324 0.1322 
0.7647 -0.1627 -0.1625 -0.1621 
0.8235 -0.1874 -0.1872 -0.1865 
  

0.8824 -0.2059 -0.2057 -0.2046 
0.9412 0.2174 -0.2173 -0.2157 

1 0.2217 -0.2216 0.2194 
0.0047 0.0044 
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Table 3.5: Comparison of Galerkin solution, Galerkin/Conservation solution, and exact 

solution u(t, x) = jcos(t)cos(ma) (Re=120) 

  

  

  

  

x Galerkin G/C exact 

0 0.2228 0.2228 0.2194 

0.0588 0.2181 0.218 0.2157 

0.1176 0.2061 0.206 0.2046 
  

0.1765 0.1874 0.1872 0.1865 
0.2353 0.1627 0.1624 0.1621 
0.2941 0.1326 0.1323 0.1322 
0.3529 0.0981 0.0978 0.0978 
0.4118 0.0602 0.06 0.06 
0.4706 0.0203 0.0202 0.0202 
0.5294 -0.0203 -0.0202 -0.0202 
0.5882 -0.0602 -0.06 -0.06 
0.6471 -0.0981 -0.0978 -0.0978 
0.7059 -0.1326 -0.1323 -0.1322 
0.7647 -0.1627 -0.1624 -0.1621 
0.8235 -0.1874 -0.1872 -0.1865 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

0.8824 -0.2061 -0.206 -0.2046 
0.9412 -0.2184 -0.218 -0.2157 

1 -0.2228 -0.2228 -0.2194 
    0.0065 0.0063         
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Table 3.6: Comparison of Galerkin solution, Galerkin/Conservation solution, and exact 

solution u(t, x) = }eos(t)cos(mx) (Re=240) 

  

  

  

x Galerkin G/C exact 

0 0.2249 0.2248 0.2194 

0.0588 0.219 0.219 0.2157 
  

0.1176 0.2063 0.2062 0.2046 
0.1765 0.1873 0.1871 0.1865 
0.2353 0.1626 0.1623 0.1621 
0.2941 0.1326 0.1323 0.1322 
0.3529 0.0981 0.0978 0.0978 
0.4118 0.0602 0.06 0.06 
0.4706 0.0203 0.0202 0.0202 
0.5294 -0.0203 -0.0202 -0.0202 
0.5882 -0.0602 -0.06 -0.06 
0.6471 -0.0981 -0.0978 -0.0978 
0.7059 -0.1326 -0.1323 -0.1322 
0.7647 -0.1626 -0.1623 -0.1621 
0.8235 -0.1873 -0.1871 -0.1865 
0.8824 -0.2063 -0.2062 -0.2046 
0.9412 -0.219 -0.219 -0.2157 

1 -0.2249 -0.2248 -0.2194 
0.0095 0.0093 | 
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Figure 3.2: ¢(z) = 22(1—2)?, Re=10, a) Galerkin method, b) Galerkin/Conservation 
method 
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Figure 3.4: ¢(x) = —cos(mz), Re=60, a) Galerkin method, b) Galerkin/Conservation 
method 
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3.3 Comparison of the Galerkin and Galerkin/Conservation Results 

In this section we compare our results obtained by the two approximating systems devel- 

oped in the preceding chapter. For many combinations of initial conditions and Reynolds 

numbers, the Galerkin and Galerkin/Conservation methods produce nearly identical re 

sults. However, in several examples, the ODE45 ordinary differential equation solver in 

MATLAB appears to capture the numerical solution of the initial value problem resulting 

from the Galerkin/Conservation method but seems to break down numerically when solving 

the IVP associated with the conventional Galerkin method, producing solutions which grow 

exponentially in time. Moreover, we have seen that the Galerkin/Conservation method is 

(practically) more accurate than the standard Galerkin method. We will soon demonstrate 

that the Galerkin/Conservation method is generally faster and therefore yields a greater 

computational efficiency. 

Example 3.3.1 

Consider the initial condition given by 

(x) = Acos(xz) (3.3.1) 

where A is some constant. We implemented our Galerkin and Galerkin/ Conservation meth- 

ods for all combinations of A=4,2,1 and Re=60,120,240. Figures 3.5 and 3.6 are MATLAB 

plots of the results obtained by the Galerkin and Galerkin/Conservation methods, respec- 

tively, for initial condition ¢(z) = cos(mz) and Reynolds number Re=60. The corresponding 

equations were solved from t = 0 seconds to t = 20 seconds. It is apparent that, in this case, 

both methods produce the same results on the finite x-interval (0, 1]. However for Re=120 . 

and Re=240, the Galerkin solution grows exponentially in time, producing a plot very much 

different from that obtained by the Galerkin/Conservation method (see Figures 3.7, 3.8, 3.9, 

and 3.10.) One would expect, based on the results for Re=60 and the error estimates in the 

previous section, that the Galerkin/Conservation solutions (Figures 3.8 and 3.10) are more 

likely to represent the exact solutions for Re=120 and Re=240. For initial condition (3.3.1) 

with A = 2 and A = 4 we observed the same radical differences in the results of the two 
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approximating schemes. In these cases however, we were unable to obtain similar solutions 

for any Re=60,120,240. Our results (with Re=60,120) are plotted in Figures 3.11 and 3.12 

for A=2 and A = 4, respectively. 

It is not known whether the approximate solutions obtained by the Galerkin/Conservation 

method are indeed true representations of the exact solution, but there is more evidence 

to support this claim than there is for the case that the solution grows exponentially with 

time. Note that the Galerkin/Conservation solution evolves in time from its initial state to 

a shape which is not everywhere constant. This seems to be the case in general for A> 5 

as we Shall see in the next section. 

Example 3.3.2 

For this example, we selected eleven different initial functions (some differing only by 

a scalar) and recorded the execution time associated with solving (via ODE45) the result- 

ing Galerkin and Galerkin/Conservation models. We solved the ODE systems on short, 

medium, and long time intervals and used various Reynolds numbers. Our results are lo- 

cated in Table 3.7. Note that the Galerkin/Conservation method is computationally faster 

than the Galerkin Method in all of these scenarios except the one tabulated in the second 

row of data (highlighted.) Although these conditions were not chosen at random, they 

are constant multiples of every initial condition considered in this paper. Therefore, for all 

practical purposes, we conclude (without any sort of proof) that the Galerkin/Conservation 

method is generally faster than the conventional Galerkin method. This means that the 

computational efficiency (i.e. the achieved accuracy per unit execution time) associated with 

the Galerkin/Conservation method should be generally better than that of the conventional 

Galerkin method. 
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cos(rzx), Re=60, Galerkin method Figure 3.5: (zx) 
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Figure 3.6: ¢(c) = cos(mx), Re=60, Galerkin/Conservation method 
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Table 3.7: Comparison of Galerkin Elapsed Time and Galerkin/Conservation Elapsed Time 

in Seconds 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                

Initial Function; Re |Final Time Galerkin G/C Time 

Elapsed Time | Elapsed Time | Differential 

1 60 20 42.68 37.73 4.95 

1 120 20 15.49 18.34 -2.85 

2 60 200 543.05 479.5 63.55 

2 120 50 48.77 44.44 4.33 

3 120 500 669.71 590.94 78.77 

4 60 5 13.79 11.26 2.53 

4 120 5 9.4 7.53 1.87 

4 240 5 8.63 6.98 1.65 

5 60 2 16.14 12.68 3.46 

6 60 2 34.39 26.97 7.42 

7 60 3 12.25 9.78 2.47 

8 60 3 23.5 18.72 4.78 

9 60 20 44.6 37.96 6.64 

10 60 25 52.84 43.72 9.12 

11 60 25 53.06 44.33 8.73 
  

Initial functions by number: 

1. $(x) = }cos(ma) 

2. o(z) = 4c0s(ma) 

3. d(x) = fcos(ra) 

) 

) 

) 

5. o(x) = 100c?7(1— x)? 

x) = 1000x?(1— x)? 

) = 100c4*(1 — x)? 

8. o(x) = 1000z*(1 — x)? 

9. g(x) = fcos(raz) + zsin(ma) 

10. $(x) = 4cos(2na) 

(2) = 4
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3.4 Asymptotic Behavior of Finite Element Solutions 

In this section we examine the different types of behavior of solutions to the ini- 

tial/boundary value problem given various initial conditions and Reynolds numbers. AlI- 

though the Galerkin and Galerkin/Conservation methods give similar solutions in many 

cases, we have concluded that the Galerkin/Conservation method is more likely to capture 

the basic evolution of the solution and that this approximation is generally more accurate. 

We would like to be able to categorize which combinations of initial conditions and Reynolds 

numbers yield solutions which converge to a constant in finite time. To actually do this is 

beyond the scope of this paper and is the subject of ongoing scientific research. Instead, 

we present data which supports existing basic theoretical findings and offer our results as a 

reference material for future research. 

Example 3.4.1 

Consider initial conditon (3.3.1) with A = ie: For Reynolds numbers Re=60,120,240, 

we solved the initial/boundary value problem using both the Galerkin method and the 

Galerkin/Conservation method. The two methods produced virtually identical results (see 

Figures 3.13, 3.14, 3.15), indicating that the approximations are sufficient for representing 

the exact solution. Contrary to Example 3.3.1, the solution evolved from its initial state to 

a constant for each value of Re. Moreover, it is apparent that for larger Reynolds numbers 

the solution takes more time to reach this constant state. We observed the same phenomena 

for A= a0 

Examples 3.3.1 and 3.41 support the hypothesis that the solution will converge to a 

constant for (x) sufficiently small. This is consistent with findings that the ’size’ of ¢(x) is 

an important factor in categorizing initial conditions for which the solution will evolve to a 

constant (see [6]). The following example illustrates how the value of the Reynolds number 

is also a contributing factor for constant steady-state convergence. 

Example 3.4.2 

In this example we solve the homogeneous initial/boundary value problem with initial 
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condition (3.3.1) for the cases of A = 3, i, 4. We consider the three cases one at a time for 

convenience. 

Case 1: A= 5 

Figures 3.16, 3.17, and 3.18 illustrate the results obtained by the two methods for 

Re=60,120,240, respectively. Note that for Re=60 and Re=120 the two approximating 

schemes produce very similar results and the solution again goes to a state which is not 

everywhere constant. For Re=240, however, the Galerkin solution once again grows expo- 

nentially with time and the Galerkin/Conservation method produces a more likely solution, 

very similar to those for Re=60,120. 

Case 2: A= } 

In this case, both methods give the same results indicating that we have indeed obtained 

a close representation of the exact solution. For Re=60, the solution reached a constant 

state after about 100 seconds, as shown in Figure 3.19. This was not true for Re=120 

and Re=240. For these values of Re, the solution reached states similar to those we have 

observed in previous examples (see Figures 3.20 and 3.21.) 

Case 3: A= 3 

Here both methods again give the same results. This time the solution converges to a 

constant for Re=60 and Re=120 (see Figures 3.22 and 3.23) and fails to do so for Re=240 

(Figure 3.24). With Re=60, the solution reaches this constant state in less than 50 seconds. 

When the Reynolds number is increased to Re=120, the solution takes nearly 350 seconds 

to reach the constant state. This phenomena was also observed in Example 3.4.1. 

We have given examples which support Byrnes, Gilliam, and Shubov’s assertion that the 

solution will converge to a constant if the initial data is smaller in norm than some bound 

which depends on the value of the Reynolds number. It is worthwhile to note, however, 

that this condition is not a necessary one. That is, it is not necessary for the initial data 

to be ’small’ in order for the solution to converge to a constant. 

Example 3.4.3: 

In this example we fix the Reynolds number at Re=60 and solve the homogeneous ini- 
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tial/boundary value problem subject to initial conditions (7) = sin(rzx), d(x) = 10sin(rz), 

and ¢(z) = 50sin(wx). The results are plotted in Figures 3.25, 3.26, and 3.27 and scaled 

for comparison. Notice that the solutions obtained by the two approximating systems are 

virtually identical and both converge to a constant from all three initial states. Hence, it is 

clearly not necessary that the initial data be ’small’ in order for the solution to evolve to a 

constant. 

Example 3.4.4 

Recall Example 3.2.3 where we considered the Byrnes, Gilliam, and Shubov (BGS) 

initial function ¢(x) = 2?(1— x)?. We solved the initial/boundary value problem subject 

to this initial condition (with Re=10) and found the solution to converge to a constant in 

finite time. We also solved the IBVP subject to scalar multiples of the BGS function and 

plotted our results in Figure 3.28. Here the Reynolds number was Re=60 and the scalars 

used were 100 and 1000. Note that in both cases the solution evolved to a constant in finite 

time. 

Examples 3.4.3 and 3.4.4 demonstrate solutions of the IBVP which are fairly large and 

yet still converge to a constant. In both examples, however, the initial functions have 

the property that they are symmetric with respect to the perpendicular bisector of the 

z-interval (0, 1]. To check that this property has no direct correlation with constant steady- 

state convergence of solutions, we seek an initial function which behaves in a similar manner 

but is skewed about the z-interval. 

Example 3.4.5 | 

The sixth-order polynomial function ¢(a) = «4(1— «)? behaves much like the fourth- 

order polynomial BGS function but is somewhat skewed. We implemented both approx- 

imating procedures for the IBVP subject to the initial data (x) = 100z*(1— z)? and 

o(x) = 1000x*(1 — x)” with Reynolds number Re=60. Although neither initial function is 

symmetric, both solutions evolved to a constant in finite time. Our plots can be found in 

Figure 3.29. 

Example 3.4.6
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In this example, we consider several initial functions of the form ¢(z) = Acos(mx) + 

Bsin(zx) where A and B take on the values +> 3 and 1. For each run we fixed the Reynolds 

number at Re=60 and the two approximation methods gave virtually the same numerical 

solutions. Our results obtained by the Galerkin/Conservation procedure are plotted in 

Figures 3.30, 3.31, 3.32, and 3.33. The solutions converged to a constant for A = 5 and 

A = 1 but failed to do so for the (A,B) pairs (1,4) and (1,4). In the latter cases, it 

does not appear that the solutions will converge to a steady-state at all. We applied both 

approximation procedures and solved the IBVP from initial time to = 0 to final time t = 74 

for (A, B) = (1, 4) and (A, B) = (1, 3). Upon examination of the plots, it is quite evident 

that the mesh produced by the aproximating procedures becomes much more dense at t- 

values less than but near final time tz = 74. This phenomena most likely indicates that 

very rapid changes are occuring in the evolution of the solutions at these values of t and 

the ODE45 solver must use a smaller step-size in order to capture these changes. It is also 

apparent that, for both of these initial conditions, some sort of ’*blow-up’ occurs around 

t = 74, These ’blow-ups’ could be appropriate representations of the actual solutions or 

they could be the result of a ’break-down’ in the ordinary differential equation solver; we 

are unable to determine at this time. 

Example 3.4.7 

Consider initial functions of the form ¢(z) = Acos(C7x) where 0 < A < 1 is a real num- 

ber and C is a positive integer. For each combination of A = i 7. C=2,3, and Re=60,120, 

we approximated solutions to the corresponding initial/boundary value problem using both 

the Galerkin method and the Galerkin/Conservation method. Our Galerkin/Conservation 

results (which are nearly identical to the conventional Galerkin results) are plotted in Fig- 

ures 3.34, 3.35, 3.36, and 3.37. 
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Figure 3.25: (2) sin(rx) (Re=60): a)Galerkin method, b)G/C method 
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Figure 3.27: $(x) = 50sin(mz) (Re=60): a)Galerkin method, b)G/C method 
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1.5 1.5~ 4 

        
Figure 3.30: G/C approximations (Re=60): a)¢(x) = jcos(ma) + fsin(mx), b)g(x) = 

jcos (wx) + sin(rz) 
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Figure 3.32: G/C approximations (Re=60): ¢(x) = cos(xz) + ¢sin(r2) 
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Chapter 4 

CONCLUSIONS 

4.1 Overview of Results 

In this paper we used the Galerkin method and the Galerkin/Conservation method 

(outlined in Chapter 2) to approximate solutions to the homogeneous initial/boundary 

value problem 

ut(t, c) + ult, c)ug(t, c) = evar (t, c) (4.1.1) 

u(0,z) = ¢(z) (4.1.2) 

u,(t, 0) = uz(t, 1) = 0 (4.1.3) 

where « = x is the reciprocal of the Reynolds number. A solution to this IVBP, starting 

initially at u(0, x) = ¢(ax), describes the evolution of the function u(t, z) over time subject to 

Neumann boundary conditions (4.1.3) on the closed z-interval (0, 1]. Using for the most part 

=16 elements, we compared our results obtained from the two approximation methods on 

the bases of accuracy, speed (computational execution time), and behavior. We found that 

for many combinations of initial conditions and Reynolds numbers the two methods pro- 

duced virtually identical results. In particular, the results were identical in every case where 

both approximate solutions converged. In a few examples however, the Galerkin solution 

grew exponentially in time despite the convergent behavior of the Galerkin/Conservation 

solution. Together with our findings that the Galerkin/ Conservation method is generally 

‘faster’ (with respect to execution time) and more accurate, these observations indicate that 

the Galerkin/Conservation method is ’better’ in the sense that it is computationally more 

efficient and intuitively more believable. 
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The key problem is determining the form of the steady state solutions, i.e. the solutions 

Usg(x) such that u(t,x) — us{x) as t > 00 where u(t, x) solves the initial/boundary value 

problem. Byrnes, Gilliam, and Shubov [6] proved that for e > 0 there is a constant k such 

that uss(x) = C for some constant C as long as at ||¢(z)|| < ke. That is, for initial data 

*small’ enough, the steady state solution will be a constant. We have offered data in this 

paper which certainly supports this theory. Moreover, some of our numerical results (see 

Examples 3.2.4, 3.3.1, 3.4.2, 3.4.7) illustrate a phenomena where initial conditions which 

are not ’small’ evolve to steady state solutions which are not everywhere constant. We have 

even seen cases (see Examples 3.4.2, 3.4.7) where numerical solutions (corresponding to a 

given initial condition) converge to a constant for a certain value of « but converge to a 

A 
nonconstant steady state for some €< e. 

4.2 Conclusions 

The numerical results contained in this paper seem to imply the existence of nonconstant 

steady state solutions uss(x) for certain initial conditions and Reynolds numbers. The 

convergence of numerical solutions to states which are not everywhere constant can be the 

result of several things; unfortunately, it is not easy to determine the exact cause(s). First, 

the condition that a solution u(t, cz) converges to uss(z) in time may not be sufficient for 

Uss(z) to satisfy the steady state equation: 

Ug(x)u(x) — €Uge (x) = 0 (4.2.1) 

uz,(0) = uz(1) = 0. (4.2.2) 

That is, the steady state that the solutions reach may not be an equilibrium. Second, the 

numerical solution u (t,z) may not accurately reflect the steady state solution uss(x) as 

t — oo. We have seen inaccuracies in some of our examples which were substantial enough 

to cause our Galerkin and Galerkin/Conservation solutions to differ drastically. Clearly, 

based on uniqueness theorems of partial differential equation theory, at least one of the 
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numerical solutions has to be false since there exists one and only one exact solution for a 

given initial condition. At the same time, one might argue that nearly perfect similarities in 

the approximate solutions obtained by the two different numerical methods (which we have 

seen in many examples) is evidence to support that both approximations are representative 

of the exact solution. A final possible reason for the nonconstant steady state convergence 

could be that there really exist Ly functions uss(z) that satisfy a weak form of the steady 

state equation. The latter possibility is perhaps interesting enough to trigger more advanced 

research on this topic. 

4.3. Open Problems 

Although we have established no proven results from our observations, our numerical 

results give rise to several interesting questions. Hopefully, the data we have collected in 

this paper will serve as a motivator for research into the following unknowns: 

e Can one prove that, for large’ initial data, there exist non-constant weak solutions to 

the steady state equation? 

e If all steady state solutions are constant despite the size of the initial data, is it possible 

for u(t, x) to converge (in time) to u (x) where u (x) is not a steady state solution? 

e Can one prove (for either of our approximate solutions) that u(t, z) converges to 

u(x) in some topology? 
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