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Abstract The most frequently used measures of execu-

tive functioning are either sensitive to left frontal lobe

functioning or bilateral frontal functioning. Relatively little

is known about right frontal lobe contributions to executive

functioning given the paucity of measures sensitive to right

frontal functioning. The present investigation reports the

development and initial validation of a new measure

designed to be sensitive to right frontal lobe functioning,

the Figure Trail Making Test (FTMT). The FTMT, the

classic Trial Making Test, and the Ruff Figural Fluency

Test (RFFT) were administered to 42 right-handed men.

The results indicated a significant relationship between the

FTMT and both the TMT and the RFFT. Performance on

the FTMT was also related to high beta EEG over the right

frontal lobe. Thus, the FTMT appears to be an equivalent

measure of executive functioning that may be sensitive to

right frontal lobe functioning. Applications for use in

frontotemporal dementia, Alzheimer’s disease, and other

patient populations are discussed.

Keywords Frontal lobes � Executive functioning � Trail
making test � Sequencing � Behavioral speed � Designs �
Nonverbal � Neuropsychological assessment � Regulatory
control � Effortful control

A recent survey indicated that the vast majority of neu-

ropsychologists frequently assess executive functioning as

part of their neuropsychological evaluations [1]. Surveys of

neuropsychologists have indicated that the Trail Making

Test (TMT), Controlled Oral Word Association Test

(COWAT), Wisconsin Card Sorting Test (WCST), and the

Stroop Color-Word Test (SCWT) are among the most

commonly used instruments [1, 2]. Further, the Rabin et al.

[1] survey indicated that these same tests are among the

most frequently used by neuropsychologists when specifi-

cally assessing executive or frontal lobe functioning. The

frequent use of the TMT, WCST, and the SCWT, as well as

the assumption that they are measures of executive func-

tioning, led Demakis (2003–2004) to conduct a series of

meta-analyses to determine the sensitivity of these test to

detect frontal lobe dysfunction, particularly lateralized

frontal lobe dysfunction. The findings indicated that the

SCWT and Part A of the TMT [3], as well as the WCST

[4], were all sensitive to frontal lobe dysfunction. However,

only the SCWT differentiated between left and right frontal

lobe dysfunction, with the worst performance among those

with left frontal lobe dysfunction [3].

The finding of the Demakis [4] meta-analysis, that the

WCST was not sensitive to lateralized frontal lobe dys-

function, is not surprising given the equivocal findings that

have been reported. Whereas performance on the WCST is

sensitive to frontal lobe dysfunction [5, 6], demonstration

of lateralized frontal dysfunction has been quite problem-

atic. Unilateral left or right dorsolateral frontal dysfunction
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has been associated with impaired performance on the

WCST [6]. Fallgatter and Strik [7] found bilateral frontal

lobe activation during performance of the WCST. How-

ever, other imaging studies have found right lateralized

frontal lobe activation [8] and left lateralized frontal acti-

vation [9] in response to performance on the WCST. Fur-

ther, left frontal lobe alpha power is negatively correlated

with performance on the WCST [10]. Finally, patients with

left frontal lobe tumors exhibit more impaired performance

on the WCST than those with right frontal tumors [11].

Unlike the data for the WCST, more consistent findings

have been reported regarding lateralized frontal lobe

functioning for the other commonly used measures of

executive functioning. For instance, as with the Demakis

[3] study, many investigations have found the SCWT to be

sensitive to left frontal lobe functioning, although the

precise localization within the left frontal lobe has varied.

Impaired performance on the SCWT results from left

frontal lesions [12] and specifically from lesions localized

to the left dorsolateral frontal lobe [13, 14], though bilateral

frontal lesions have also yielded impaired performance [13,

14]. Further, studies using neuroimaging to investigate the

neural basis of performance on the SCWT have indicated

involvement of the left anterior cingulated cortex [15], left

lateral prefrontal cortex [16], left inferior precentral sulcus

[17], and the left dorsolateral frontal lobe [18].

Wide agreement exists among investigations of the

frontal lateralization of verbal or lexical fluency to con-

frontation. Specifically, patients with left frontal lobe

lesions are known to exhibit impaired performance on

lexical fluency to confrontation tasks, relative to either

patients with right frontal lesions [12, 19, 20] or controls

[21]. A recent meta-analysis also indicated that the largest

deficits in performance on measures of lexical fluency are

associated with left frontal lobe lesions [22]. Troster et al.

[23] found that, relative to patients with right pallidotomy,

patients with left pallidotomy exhibited more impaired

lexical fluency. Several neuroimaging investigations have

further supported the role of the left frontal lobe in lexical

fluency tasks [15, 24–27]. Performance on lexical fluency

tasks also varies as a function of lateral frontal lobe

asymmetry, as assessed by electroencephalography [28].

The Trail Making Test is certainly among the most

widely used tests [1] and perhaps the most widely resear-

ched. Various norms exist for the TMT (see [29]), with

Tombaugh [30] providing the most recent comprehensive

set of normative data. Different methods of analyzing and

interpreting the data have also been proposed and used,

including error analysis [13, 14, 31–33], subtraction scores

[13, 14, 34], and ratio scores [13, 14, 35].

Several different language versions of the test have been

developed and reported, including Arabic [36], Chinese

[37, 38], Greek [39], and Hebrew [40]. Numerous

alternative versions of the TMT have been developed to

address perceived shortcomings of the original TMT. For

instance, the Symbol Trail Making Test [41] was devel-

oped to reduce the cultural confounds associated with the

use of the Arabic numeral system and English alphabet in

the original TMT. The Color Trails Test (CTT; [42]) was

also developed to control for cultural confounds, although

mixed results have been reported regarding whether the

CTT is indeed analogous to the TMT [43–45]. A version of

the TMT for preschool children, the TRAILS-P, has also

been reported [46].

Additionally, the Comprehensive Trail Making Test [47]

was developed to control for perceived psychometric

shortcomings of the original TMT (for a review see [48]

and the Oral Trail Making Test (OTMT; [49]) was devel-

oped to reduce confounds associated with motor speed and

visual search abilities, with research supporting the OTMT

as an equivalent measure [50, 51]. Alternate forms of the

TMT have also been developed to permit successive

administrations [32, 52] and to assess the relative contri-

butions of the requisite cognitive skills [53].

Delis et al. [54] stated that the continued development of

new instrumentation for improving diagnosis and treatment

is a critical undertaking in all health-related fields. Further,

in their view, the field of neuropsychology has recognized

the importance of continually striving to develop new

clinical measures. Delis and colleagues developed the

extensive Delis-Kaplan Executive Functioning System

(D-KEFS; [55]) in the spirit of advancing the instrumen-

tation of neuropsychology. The D-KEFS includes a Trail

Making Test consisting of five separate conditions. The

Number-Letter Switching condition involves a sequencing

procedure similar to that of the classic TMT. The other four

conditions are designed to assess the component processes

involved in completing the Number-Letter Switching

condition so that a precise analysis of the nature of any

underlying dysfunction may be accomplished. Specifically,

these additional components include Visual Scanning,

Number Sequencing, Letter Sequencing, and Motor Speed.

Given that the TMT comprises numbers and letters and

is a measure of executive functioning, it may preferentially

involve the left frontal lobe. Although the literature is

somewhat controversial, neuropsychological and neu-

roimaging studies seem to provide support for the sensi-

tivity of the TMT to detect left frontal dysfunction [56].

Recent clinically oriented studies investigating frontal lobe

involvement of the TMT using transcranial magnetic

stimulation (TMS) and near-infrared spectroscopy (NIRS)

also support this localization [57]. Performance on Part B

of the TMT improved following repetitive TMS applied to

the left dorsolateral frontal lobe [57].

With 9–13-year-old boys performing TMT Part B,

Weber et al. [58] found a left lateralized increase in the
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prefrontal cortex in deoxygenated hemoglobin, an indicator

of increased oxygen consumption. Moll et al. [59]

demonstrated increased activation specific to the prefrontal

cortex, especially the left prefrontal region, in healthy

controls performing Part B of the TMT. Foster et al. [60]

found a significant positive correlation between perfor-

mance on Part A of the TMT and low beta (13–21 Hz)

magnitude (lV) at the left lateral frontal lobe, but not at the
right lateral frontal lobe. Finally, Stuss et al. [13, 14] found

that patients with left dorsolateral frontal dysfunction evi-

denced more errors than patients with lesions in other areas

of the frontal lobes and those patients with left frontal

lesions were the slowest to complete the test.

Taken together, the possibility exists that the afore-

mentioned tests are largely associated with left frontal lobe

activity and the TMT, in particular, provides information

concerning mental processing speed as well as cognitive

flexibility and set-shifting. While some studies have found

that deficits in visuomotor set-shifting are specific to the

frontal lobe damage [61], others investigators have repor-

ted such impairment in patients with posterior brain lesions

and widespread cerebral dysfunctions, including cerebellar

damage [62] and Alzheimer disease [63]. Thus, it remains

unclear whether impairments in visuomotor set-shifting are

specific to frontal lobe dysfunction or whether they are

non-specific and can result from more posterior or wide-

spread brain dysfunction.

Compared to the collective knowledge we have

regarding the cognitive roles of the left frontal lobe, rela-

tively little is known about right frontal lobe contributions

to executive functioning. This is likely a result of the dearth

of tests that are associated with right frontal activity. The

Ruff Figural Fluency Test (RFFT; [64]) is among the few

standardized tests of right frontal lobe functioning and was

listed as the 14th most commonly used instrument to assess

executive functioning in the Rabin et al. [1] survey. The

RFFT is known to be sensitive to right frontal lobe func-

tioning [65, 66]; see also [67] pp. 297–298), as is a measure

based on the RFFT [19].

The present investigation, with the same intent and spirit

as that reported by Delis et al. [54], sought to develop and

initially validate a measure of right frontal lobe functioning

in an effort to attain a greater understanding of right frontal

contributions to executive functioning and to advance the

instrumentation of neuropsychology. To meet this objec-

tive, a version of the Trail Making Test comprising figures,

as opposed to numbers and letters, was developed. The

TMT was used as a model for the new test, referred to as

the Figure Trail Making Test (FTMT), due to the high

frequency of use, the volume of research conducted, and

the ease of administration of the TMT. Given that the TMT

and the FTMT are both measuring executive functioning,

we felt that a moderate correlation would exist between

these two measures. Specifically, we hypothesized that

performance on the FTMT would be positively correlated

with performance on the TMT, in terms of the total time

required to complete each part of the tests, an additive and

subtractive score, and a ratio score. The total time required

to complete each part of the FTMT was also hypothesized

to be negatively correlated with the total number of unique

designs produced on the RFFT and positively correlated

with the number of perseverative errors committed on the

RFFT and the perseverative error ratio. We also sought to

determine whether the TMT and the FTMT were measur-

ing different constructs by conducting a factor analysis,

anticipating that the two tests would load on separate

factors.

Additionally, we sought to obtain neurophysiological

evidence that the FTMT is sensitive to right frontal lobe

functioning. Specifically, we used quantitative elec-

troencephalography (QEEG) to measure electrical activ-

ity over the left and right frontal lobes. A previous

investigation we conducted found that performance on

Part A of the TMT was related to left frontal lobe (F7)

low beta magnitude [60]. For the present investigation,

we predicted that significant negative correlations would

exist between performance on Parts A and B of the TMT

and both low and high beta magnitude at the F7 electrode

site. We further predicted that significant negative cor-

relations would exist between performance on Parts C

and D of the FTMT and both low and high beta magni-

tude at the F8 electrode site.

1 Methods

1.1 Participants

A total of 42 right-handed men, with an age range of

18–29 years (M = 20.00, SD = 2.10), participated in

exchange for extra credit in their undergraduate psychol-

ogy course. Handedness was assessed using the Coren,

Porac, and Duncan Laterality Questionnaire (CPD; [68]), a

13-item questionnaire that assesses lateral preference for

the hand, foot, eye, and ear. To be considered for including

the participants had to score at least ?5 on the CPD (range

of scores possible is from –13 to ?13, with positive scores

indicated increased right-handedness) and identify both

biological parents as being right-handed. Further inclusion

criteria included having no history of significant head

injury or brain dysfunction and no currently experienced

psychological problems, as assessed by administering a

questionnaire assessing history of head injury, stroke, sei-

zures, paralysis, medical illness, psychological or psychi-

atric problems, sensory impairments, prescription

medication use, and problems with pain or movement.
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1.2 Apparatus

1.2.1 Ruff Figural Fluency Test

The RFFT [64, 69] is a measure of nonverbal fluency

consisting of five individual parts, with each part consisting

of a different stimulus pattern. The participants are

instructed to draw as many unique designs as possible by

connecting at least two of the dots comprising a 5-dot

matrix. Nonverbal fluency is then considered the total

number of unique designs produced within a 1-min time

frame. Other indices of performance included the number

of perseverative errors, or the number of instances that any

one design is repeated in a single trial, and the persevera-

tive error ratio, or the number of perseverative errors

divided by the total number of unique designs.

1.2.2 Trail Making Test

The TMT consists of two parts. Part A comprises encircled

numbers, 1 through 25, spread in a pseudorandom order

across a page. The participant is instructed to draw lines

connecting the numbers in order as fast as possible and

without picking up the pencil. Part B comprises encircled

numbers, 1 through 13, and letters, A through L, spread

across a page in a pseudorandom order. The participant is

instructed to draw lines alternately connecting the numbers

and letters, each in order, as fast as possible and without

picking up the pencil. The primary index of performance is

typically the time required to complete the test. However,

other indices include a subtraction score based on sub-

tracting the time required to complete Part A from the time

required to complete Part B as well as a ratio score based

on dividing the time required for Part B by the time

required for Part A.

1.2.3 Figure Trail Making Test

The FTMT was developed with the intent of preserving the

basic principles and format of the TMT. A pseudorandom

arrangement of the figures was created by using a vertically

inverted mirror image of the original TMT, as has been

done with another alternative version of the test [53]. Each

part of the FTMT, referred to as parts C and D to help

distinguish them from Parts A and B of the TMT, consists

of the same number of stimuli as used in each respective

part of the TMT. To maintain consistency further between

the tests, the first 13 stimuli in Part C of the FTMT were

used in the subsequent Part D, just as the numbers 1

through 13 appear in both parts of the TMT. The primary

difference between the tests is the use of figural stimuli for

the FTMT in the place of numbers and letters as with the

TMT. The task involves connecting figure pairs that

contain a shared figure. The test begins by locating and

drawing a line from an initial single figure to the figure pair

that contains the initial figure paired with another new and

different figure, which then becomes the target stimulus for

the next figure pair. The participant then draws a line from

that figure pair to the next pair containing the target fig-

ure and another new and different figure. This process

continues until the test is completed. The figure that is

being sought or the target figure is always located to the left

of the figure pair and the new figure is always located to the

right of the figure pair. Thus, as with the original TMT, the

participant is always aware of the next expected stimulus in

the sequence. The set-shifting or switching of Part B of the

TMT is accomplished in Part D of the FTMT by having the

participant shift between figure pairs comprising angles

and figure pairs comprising curves. Each part of the FTMT

has an initial sample that the participant completes to

familiarize them with the task, just as with the TMT.

Figures 1 and 2 present the initial sample for Part C and D

of the FTMT, respectively.

1.2.4 Quantitative electroencephalography

QEEG was measured using a NeuroSearch-24 (Lexicor

Medical Technology, Inc., Boulder, CO, USA). Monopolar

QEEG recordings, with linked ear references, were

obtained using a lycra electrode cap (Electro-Cap Inter-

national, Inc., Eaton, OH, USA) containing 19 pure tin

electrodes filled with EC2 electrode gel. The electrodes

were arranged according to the International 10/20 System.

Silver–silver chloride electrodes filled with conductive

TRAIL MAKING

Part C

SAMPLE

Begin

End

Fig. 1 Sample item from FTMT Part C
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paste were used for ear references and for measuring

electro-oculography. A model 1089 mkII Checktrode

Electrode Tester (Lexicor Medical Technology, Inc.,

Boulder, CO, USA) was used to check the impedance

levels of the electrodes.

1.3 Procedure

The participants were initially screened for handedness and

history of medical, neurological, and psychological prob-

lems. During this initial screening session, the RFFT was

administered to groups of 2–8 participants using standard

procedures. Following the screening, all participants were

invited to participate in the second phase of the investi-

gation, which involved the collection of QEEG data. The

participants were given a brief overview of the procedure

and were given an opportunity to ask questions. The

electrode cap was then affixed to the participant’s scalp

using the appropriate anatomical landmarks, followed by

the ear references and electro-oculography electrodes.

Impedance levels for all of the QEEG electrodes were less

than 5 kX with most instances being under 3 kX. A sam-

pling rate of 256 Hz was used and frequencies below 2 Hz

were eliminated by using a high pass filter. The QEEG

bandwidth measured included low delta (13.0–21.0 Hz)

and high delta (21.0–32.0 Hz). QEEG was sampled for

45 s during an eyes-closed, baseline condition while the

participants sat in a sound attenuated chamber. The sam-

pling duration has been standard for this instrumentation,

partially due to the file sizes, statistical normality, and

precision of measurement with respect to the experimental

manipulation(s). Moreover, it has proved effective in prior

research from this laboratory. Following collection of

QEEG data, the participants were removed from the

chamber and the electrodes were removed. The TMT and

FTMT were then individually administered to participants.

The QEEG data were not recorded concurrent with test

administration due to the development of artifacts related

to bodily movements and complexity of the behavioral

tasks. Standard instructions were used for the TMT (see

[29]). The following instructions were used for the FTMT:

On this page (point) are some figures made up of

straight lines and angles. Your task is to draw a line

connecting the pairs of figures containing the same

element. For example, begin here where there is only

a single element (point) and draw a line from here to

the figure pair that also contains this element (point).

Next, draw a line from this figure pair to the fig-

ure pair that contains the new element on the right of

this figure pair (point). Now, draw a line from this

figure pair to the figure pair containing the new ele-

ment located on the right of the figure pair you are on

now (point). Draw another line from the figure pair

you are on to the figure pair containing the element

on the right (point). The element on the right of each

figure pair you are currently on will always be the left

element that you are searching for in the next fig-

ure pair. No element from any figure pair will be

presented more than twice. Keep going in this manner

until you reach the end (point). Draw the lines as fast

as you can. Ready? Begin!

Similar instructions were given for Part D, with the

exception that the participants were instructed to draw a

line from an angle figure pair to a curve figure pair and so

on. Mistakes made by the participants were corrected, as

with the TMT Parts A and B.

2 Results

2.1 Data reduction

The raw time required completing each part of the TMT

and the FTMT was used in the correlational analyses.

Additive, subtraction, and ratio scores were also used in the

correlational analyses. Additive scores were obtained by

summing the times required to complete the two separate

parts of the TMT and the FTMT. Subtraction scores were

obtained by subtracting the time required for Part A from

that of Part B from the TMT, and Part C from Part D from

the FTMT. A ratio score was calculated by dividing the

time required for Part B by Part A from the TMT, and Part

D by Part C from the FTMT. These alternative scoring

procedures were used for exploratory purposes in

TRAIL MAKING

Part D

SAMPLE

Begin

End

Fig. 2 Sample item from FTMT Part D
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completion of the statistical analyses based on previous

research [13, 14, 35].

2.2 Analyses

Means and standard deviations of performance on the

RFFT, TMT, and the FTMT may be found in Table 1.

Correlational analyses indicated significant positive corre-

lations between the time required to complete TMT Part A

and FTMT Part C (r = .50, p\ .001) as well as the time

required to complete TMT Part B and FTMT Part D

(r = .59, p\ .001; see Fig. 3). Positive correlations were

also found between the additive scores from the TMT and

the additive score from the FTMT (r = .67, p\ .001), as

well as between the subtraction scores from the TMT and

the subtraction scores from the FTMT (r = .36, p = .01;

see Fig. 4). The correlation between the ratio scores from

the TMT and the FTMT was not significant (r = .18,

p = .12).

Significant correlations between performance on the

FTMT and the RFFT were also found (see Table 2).

Specifically, significant negative correlations were found

between the total number of unique designs produced on

the RFFT and both the time required to complete Part C as

well as the time required for Part D (see Fig. 5). Significant

positive correlations were found between the perseverative

error ratio of the RFFT and Part C as well as Part D (see

Fig. 6). No significant correlations were found between the

number of perseverative errors on the RFFT and either Part

C or Part D.

Correlational analyses were also conducted between the

original TMT Parts A and B and the RFFT to determine

whether any significant relationships existed between these

measures. As may be seen in Table 3, a significant negative

correlation was found between the total number of unique

designs produced on the RFFT and the time required to

complete Part A of the TMT. However, no other correla-

tions between any two indices of performance on the TMT

and the RFFT were significant.

The total number of errors and the time to complete each

section of the TMT and the FTMT were entered into the

factor analysis. Also included in the analysis was the total

number of unique designs, number of perseverative errors,

and the perseverative error ratio of the RFFT. The results of

the factor analysis, with Equamax rotation and Principle

Component Analysis for extraction of factors, indicated a

five factor solution, collectively accounting for 83.786 % of

the variance. The times to complete the two sections of the

FTMT, the time to complete Part A of the TMT, and the total

Table 1 Descriptive statistics for performance on the RFFT, TMT,

and the FTMT

M SD

Ruff Figural Fluency Test

Total unique designs 92.76 21.34

Perseverative errors 3.60 2.53

Perseverative error ratio .039 .026

Trail Making Test

Part A 23.14 7.46

Part B 52.86 19.25

Additive score 76.00 23.83

Subtraction score 29.71 16.87

Ratio score 2.39 .97

Figure Trail Making Test

Part C 59.10 21.02

Part D 121.95 51.12

Additive score 181.05 67.97

Subtraction score 62.86 38.62

Ratio score 2.11 .56
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Fig. 3 The relationship between TMT Parts A and B and FTMT

Parts C and D. Correlational analyses indicated significant positive

correlations between the time required to complete TMT Part A and

FTMT Part C (r = .50, p\ .001) as well as the time required to

complete TMT Part B and FTMT Part D (r = .59, p\ .001)
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number of unique designs produced on the RFFT comprises

the first component, accounting for 28.875 % of the variance

(3.176 eigenvalue). The second component, accounting for

an additional 19.597 % of the variance (2.156 eigenvalue)

comprises the number of perseverative errors and the

perseverative error ratio of the RFFT. The number of errors

and the time to complete Part B of the TMT comprise a third

component, accounting for an additional 14.303 % of the

variance (1.573 eigenvalue). A fourth component, account-

ing for another 11.371 % of the variance (1.251 eigenvalue),

consists of the number of errors on both sections of the

FTMT.Finally, the fifth component consists of the number of

errors committed on Part A of the TMT and accounts for an

additional 9.640 % of the variance (1.06 eigenvalue). See

Table 4 for the component matrix.

The results from the correlational analyses indicated that

no significant correlations existed between low beta mag-

nitude and Parts A and B of the TMT or Parts C and D of

the FTMT. Additionally, Parts A and B of the TMT were

not significantly correlated with high beta magnitude.

However, a significant negative correlation was found

between F8 high beta magnitude and performance on Part

D of the FTMT. No other significant correlations were

found between high beta magnitude and performance on

either Part C or Part D of the FTMT (see Table 5).
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Fig. 4 The relationship between the additive and subtraction scores

from the TMT and the FTMT. Positive correlations were found

between the additive scores from the TMT and the additive score

from the FTMT (r = .67, p\ .001), as well as between the

subtraction scores from the TMT and the subtraction scores from

the FTMT (r = .36, p = .01)

Table 2 Correlation matrix for the Figure Trail Making Test (FTMT)

and the Ruff Figural Fluency Test (RFFT)

RFFT TUD RFFT PSV RFFT PER

FTMT Part C -.32 (.02) .20 (.10) .32 (.02)

FTMT Part D -.37 (.008) .23 (.07) .37 (.008)

FTMT Part C ? Part D -.38 (.007) .24 (.07) .38 (.007)

FTMT Part D - Part C -.32 (.02) .19 (.11) .32 (.02)

FTMT Part D/Part C -.10 (.26) -.02 (.46) .03 (.44)

Probability reported in parentheses

RFFT TUD total unique designs generated on the RFFT, RFFT PSV

total number of perseverative errors committed on the RFFT, RFFT

PER the perseverative error ratio for the RFFT
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Fig. 5 The relationship between FTMT Parts C and D and RFFT

total unique designs. Significant negative correlations were found

between the total numbers of unique designs produced on the RFFT

and both the time required to complete Part C as well as the time

required for Part D
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3 Discussion

The need for additional measures of executive functions

and especially instruments which may provide implications

relevant to cerebral laterality is clear. There remains

especially a void for neuropsychological instruments using

a TMT format, which may provide information pertaining

to the functional integrity of the right frontal region.

Consistent with the hypotheses forwarded, significant cor-

relations were found between performance on the TMT and

the FTMT, in terms of the raw time required to complete

each respective part of the tests as well as the additive and

subtraction scores. The fact that the ratio scores were not

significantly correlated is not surprising given that research

has generally indicated a lack of clinical utility for this

score [13, 14, 35]. Given the present findings, the TMT and

the FTMT appear to be equivalent measures of executive

functioning. Further, the present findings not only suggest

that the FTMT may be a measure of executive functioning

but also extend the realm of executive functioning to the

sequencing and set-shifting of nonverbal stimuli.

However, the finding of significant correlations between

the TMT and the FTMT represents somewhat of a caveat in

that the TMT has been found to be sensitive to left frontal

lobe functioning [13, 14, 57, 59]. This would seem to

suggest the possibility that the FTMT is also sensitive to

left frontal lobe functioning. The possibility that FTMT is

related to left frontal lobe functioning is tempered, though,

by the fact that the many of the hypothesized correlations

between performance on the RFFT and the FTMT were

also significant. Performance on the RFFT is related to

right frontal lobe functioning [65, 66]. Thus, the significant

correlations between the RFFT and the FTMT suggest that

the FTMT may also be sensitive to right frontal lobe

functioning. Additionally, it should also be noted that the

TMT was not significantly correlated with performance on

the RFFT, with the exception of the significant correlation

between performance on the TMT Part A and the total

number of unique designs produced on the RFFT. Taken

together, the results suggest that the FTMT may be a

measure of right frontal executive functioning.
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Fig. 6 The relationship between FTMT Parts C and D and RFFT

perseverative error ratio. Significant positive correlations were found

between the perseverative error ratios of the RFFT and Part C as well

as Part D

Table 3 Correlation matrix for the Trail Making Test (TMT) and the

Ruff Figural Fluency Test (RFFT)

RFFT TUD RFFT PSV RFFT PER

TMT Part A -.31 (.05) .04 (.80) .15 (.34)

TMT Part B -.05 (.78) .20 (.21) .23 (.14)

TMT Part A ? Part B -.13 (.40) .17 (.28) .24 (.13)

TMT Part B - Part A .09 (.59) .21 (.19) .20 (.21)

TMT Part B/Part A .24 (.12) .15 (.33) .10 (.52)

Probability reported in parentheses

RFFT TU total unique designs generated on the RFFT, RFFT PSV

total number of perseverative errors committed on the RFFT, RFFT

PER the perseverative error ratio for the RFFT

Table 4 Component matrix from factor analysis

Measure Component

1 2 3 4 5

RFFT TUD -.711 .295 .340 -.112 .220

RFFT PSV -.045 .980 .051 -.112 .075

RFFT PER .175 .954 -.017 -.106 .003

TMT Part A time .790 .017 .126 -.111 .208

TMT Part B time .476 .154 .810 -.026 .101

TMT Part A errors .073 .027 -.060 .043 .927

TMT Part B errors -.124 -.090 .942 .044 -.116

FTMT Part C time .752 .265 .160 .124 .216

FTMT Part D time .783 .314 .269 .306 -.048

FTMT Part C errors -.015 -.083 .059 .780 .330

FTMT Part D errors .087 -.108 -.035 .845 -.187

Significance level established at p\ .05 shown in bold script
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Additional support for the sensitivity of the FTMT to

right frontal lobe functioning is provided by the finding of a

significant negative correlation between performance on

Part D of the FTMT and high beta magnitude. We have

previously used QEEG to provide neurophysiological val-

idation of the RFFT [65] and the Rey Auditory Verbal

Learning Test [70] and the present findings provide further

support for the use of QEEG in validating neuropsycho-

logical tests. The lack of significant correlations between

the TMT and either low or high beta magnitude may be

related to a restricted range of scores on the TMT. As a

whole, performance on the FTMT was more variable than

performance on the TMT and this relatively restricted

range for the TMT may have impacted the obtained cor-

relations. Given the present findings, together with those of

the Foster et al. [65, 70] investigations, further support is

also provided for the use of EEG in establishing neuro-

physiological validation for neuropsychological tests.

The results from the factor analysis provide support for

the contention that the FMT may be a measure of right

frontal lobe activity and also provide initial discriminant

validity for the FTMT. Specifically, Parts C and D of the

FTMT were found to load on the same factor as the number

of designs generated on the RFFT, although the time

required to complete Part A of the TMT is also included.

Additionally, the number of errors committed on Parts C

and D of the FTMT comprises a single factor, separate

from either the TMT or the RFFT. Although these results

support the FTMT as a measure of nonverbal executive

functioning, it would be helpful to conduct an additional

factor analysis including additional measures of right

frontal functioning, and perhaps other measures of right

hemisphere functioning as marker variables.

We sought to develop a measure sensitive to right

frontal lobe functioning due to the paucity of such tests and

the potentially important uses that right frontal lobe tests

may have clinically. Tests of right frontal lobe functioning

may, for instance, be useful in identifying and distin-

guishing left versus right frontotemporal dementia (FTD).

Research has indicated that FTD is associated with cerebral

atrophy at the right dorsolateral frontal and left premotor

cortices [71]. Fukui and Kertesz [72] found right frontal

lobe volume reduction in FTD relative to Alzheimer’s

disease and progressive nonfluent aphasia. Some have

suggested that FTD should not be considered as a unitary

disorder and that neuropsychological testing may aid in

differentially diagnosing left versus right FTD [73].

Whereas right FTD has been associated with more errors

and perseverative responses on the Wisconsin Card Sorting

Test (WCST), left FTD has been associated with signifi-

cantly worse performance on the Boston Naming Test

(BNT) and the Stroop Color-Word test [73]. Razani et al.

[74] also distinguished between left and right FTD in

finding that left FTD performed worse on the BNT and the

right FTD patients performed worse on the WCST. How-

ever, as noted earlier, the WCST has been associated with

left frontal activity [9], right frontal activation [8], and

bilateral frontal activation [7]. Further, patients with left

frontal tumors perform worse than those with right frontal

tumors [11].

Patients with FTD that predominantly involves the right

frontotemporal region have behavioral and emotional

abnormalities and those with predominantly left fron-

totemporal region damage have a loss of lexical semantic

knowledge. Patients, in whom neural degeneration begins

on the left side, often present to the clinicians at an early

stage of the disease due to the presence of language

abnormalities, but maintain their emotion processing abil-

ities, being preserved the right anterior temporal lobe.

However, as this disease advances, the disease may pro-

gress to the right frontotemporal regions. Tests sensitive to

right frontal lobe functioning may be useful tools to iden-

tify in advance the course of the disease, providing

immediate and specific treatments and informing the

caregivers on the possible prospective frame of the disease.

A potentially more important use of tests sensitive to

right frontal lobe functioning, though, may be in predicting

dementia patients that will develop significant and disrup-

tive behavioral deficits. Research has found that approxi-

mately 92 % of right-sided FTD patients exhibit socially

undesirable behaviors as their initial symptom, as com-

pared to only 11 % of left-sided FTD patients [75].

Behavioral deficits in FTD are associated with gray matter

loss at the dorsomedial frontal region, particularly on the

right [76].

Alzheimer’s disease (AD) is also often associated with

significant behavioral disturbances. Even AD patients with

mild dementia are noted to exhibit behavioral deficits such

Table 5 Correlations between test performance and high beta magnitude

Trail Making Test Figure Trail Making Test

Part A Part B Part C Part D

Electrode site F7 -.08 (.31) -.17 (.14) -.15 (.17) -.17 (.15)

F8 -.12 (.24) -.19 (.12) -.24 (.07) -.30 (.03)

Probability values reported in parentheses
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as delusions, hallucinations, agitation, dysphoria, anxiety,

apathy, and irritability [77]. Indeed, Shimabukuro et al. [77]

found that regardless of dementia severity, over half of all

AD patients exhibited apathy, delusions, irritability, dys-

phoria, and anxiety. Delusions in AD patients are associated

with relative right frontal hypoperfusion as indicated by

SPECT imaging [78, 79]. Further, positron emission

tomography (PET) has indicated that AD patients exhibiting

delusions exhibit hypometabolism at the right superior

dorsolateral frontal and right inferior frontal pole [80].

Although research clearly implicates right frontal lobe

dysfunction in the expression of behavioral deficits, data

from neuropsychological testing are not as clear. Negative

symptoms in patients with AD and FTD have been related

to measures of nonverbal and verbal executive functioning

as well as verbal memory [81]. Positive symptoms, in

contrast, were related to constructional skills and attention.

However, Staff et al. [78] failed to dissociate patients with

delusions from those without delusions based on neu-

ropsychological test performance, despite significant dif-

ferences existing in right frontal and limbic functioning as

revealed by functional imaging. The inclusion of other

measures of right frontal lobe functioning may result in

improved neuropsychological differentiation of dementia

patients with and without significant behavioral distur-

bances. Further, it may be possible to predict early in the

disease process those patients that will ultimately develop

behavioral disturbances with improved measures of right

frontal functioning. Predicting those that may develop

behavioral problems will permit earlier treatment and will

provide the family with more time to prepare for the

potential emergence of such difficulties. Certainly, future

research needs to be conducted that incorporates measures

of right and left frontal lobe functioning in regression

analyses to determine the plausibility of such prediction.

Tests sensitive to right frontal lobe functioning may also

be useful in identifying more subtle right frontal lobe

dysfunction and the cognitive and behavioral changes that

follow. The right frontal lobe mediates language melody or

prosody and forms a cohesive discourse, interprets abstract

communication in spoken and written languages, and

interprets the inferred relationships involved in communi-

cations. Subtle difficulties in interpreting abstract meaning

in communication, comprehending metaphors, and even

understanding jokes that are often seen in right frontal lobe

stroke patients may not be detected by the family and may

also be under diagnosed by clinicians [82]. Further,

patients with right frontal lobe lesions are generally more

euphoric and unconcerned, often minimizing their symp-

toms [82] or denying the illness, which may delay referral

to a clinician and diagnosis.

Attention deficit hyperactivity disorder (ADHD) is a

neurological disease characterized by motor inhibition

deficit, problems with cognitive flexibility, social disrup-

tion, and emotional disinhibition [83, 84]. Functional MRI

studies reveal reduced right prefrontal activation during

‘‘frontal tasks,’’ such as go/no go [85], Stroop [86], and

attention task performance [87]. The right frontal lobe

deficit hypothesis is further supported by structural studies

[88, 89]. Tests of right frontal lobe functioning may be

useful in further characterizing the nature of this deficit and

in specifying the likely hemispheric locus of dysfunction.

To summarize, we feel that right frontal lobe function-

ing has been relatively neglected in neuropsychological

assessment and that many uses for such tests exist. Our

intent was to develop a test purportedly sensitive to right

frontal functioning that would be easy and quick to

administer in a clinical setting. However, we are certainly

not meaning to assert that our FTMT would be applicable

in all the aforementioned conditions. Additional research

should be conducted to determine the precise clinical utility

of the FTMT.

Further validation of the FTMT should also be under-

taken. Establishing convergent validation may involve

correlating tests measuring the same domain, such as

executive functioning. This was initially accomplished in

the present investigation through the significant correla-

tions between the TMT and the FTMT. Additionally,

convergent validation may also involve correlating tests

that purportedly measure the same region of the brain. This

was also initially accomplished in the present investigation

through the significant correlations between the FTMT and

the RFFT. However, additional convergent validation cer-

tainly needs to be obtained, as well as validation using

patient populations and neurophysiological validation.

We are currently collecting data that hopefully will pro-

vide neurophysiological validation of the FTMT. Certainly,

though, it is hoped that the present investigation will not

only stimulate further research seeking to validate the

FTMT and provide more comprehensive normative data, but

also stimulate research investigating whether the FTMT or

other measures of right frontal lobe functioning may be used

to predict patients that will develop behavioral disturbances.
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