

CS4624
Multimedia, Hypertext, and Information Access

Library Tweet Support: Team 7

Final Report
May 11, 2021

Daniel Imondo

Client: Bill Ingram
Instructor: Edward A. Fox
Assisted by Prashant Chandrasekar and Makanjuola Ogunleye

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

2

Abstract:

This project aims to create an easily browsable interface with a collection of NDJSON
formatted tweets from Twitter.

In the Fall of 2020, 4 teams in CS5604 built a system to manage 3 of the University’s
archive collections, of ETD’s, Webpages, and Tweets. This system included a webpage
front-end to serve these collections to users, as well as a feature for researchers and
curators to manage data using a KnowledgeGraph and Apache Airflow.

The one front-end team developing this website had a very large task and as such, they
were unable to fully flesh out all its features. Specifically, the tweets portion of this
website was lacking advanced searching functionality, as well as a clear interactive user
interface. My project focused on extending the tweets functionality of this website and
managed to accomplish this.

My project features a GUI where users can search through the tweets collection and will
have results displayed to them one at a time. In my implementation, I used React, CSS,
and ElasticSearch. However, the website it is contained in also uses Docker, Flask,
Kubernetes, and Python 3.6. The search fields are text, location, and a range search
between two dates. When a query is conducted results will be displayed to the user 5 at
a time. Each tweet result contains both the information contained within the tweet result
(i.e., username, display name, tweet text, date, favorites, replies, and retweets) as well
as data on the user who published the tweet (i.e., total favorites, total posts, total
followers, and a link to the source tweet). Also, if a tweet contains a hashtag, each of
these are linked to a search on Twitter for that hashtag.

This project can be used to browse an archive of tweets. It will be useful in querying
tweets for research, such as searching for all tweets made about a subject that were
posted from a certain location at a certain time.

3

Table of Contents

Introduction 4

Design/Implementation 5

Requirements 6-9

User Manual 10-12

Developer Manual 13-16

Lessons Learned 17-18

Future Work 19

Acknowledgements 20

References 21
Table of Figures

1: The previous tweets search page 4
2: Contents of elasticsearch.yml 6
3: Contents of settings.yaml 7
4: Contents of set_env.sh 7
5: CURL script to create an ElasticSearch
index

8

6: CURL script to import tweet data 9
7: CURL script to check if data was
imported

9

8: Tweets index 10
9: Search Fields 10
10: Page Navigation 11
11: Anatomy of a tweet search result 12
12: Table of Directories 13
13: Tweet JSON fields 14
14: Correct way to import 15

4

Introduction:

 This project aims to improve on the previously created tweet search page for the

Virginia Tech Libraries Archive Website, created last fall. An image of this previous

tweet search page is seen in Figure 1. As the project was received, there were 25

example tweets available in the repository and this is the data I used in my

implementation for testing.

It is important to note that all data displayed is only representative of the tweet

state at time of collection. In addition, I had no part in collecting or importing this

data at the time of publishing or anytime thereafter. My project solely focuses on

querying and formatting the display of this information.

Figure 1: The previous tweets search page

5

Design/Implementation:

My Design approach for the front-end seeks to style the tweets more accurately so they

appear as they do on the Twitter website or app and move away from the more general

design this page previously had.

One contributor to this general design was the previous implementation of this project’s

heavy reliance on the Bootstrap framework for styling tweets, which also leads to issues

in properly displaying data.

For example, when a tweet’s text had one very long word it would go outside of the

bound of the text box. I have remedied this using custom CSS rather than Bootstraps

injected CSS.

My custom styling has allowed the project to be portable on desktop devices of varying

screen sizes. This was achieved using the CSS Flexbox model. Flexbox allows for

HTML content to be resized and moved as necessary based on the current size of the

screen.

I have added more information to the displayed tweets, such as favorites, retweets, and

replies. However, due to the small size of the sample data collected, all tweets have

zero for each of the fields because this was the case for all data at the time of collection.

Also, user data has been added including number of followers, total tweets posted, and

total favorites this user has gained (all representative of the user’s state at time of data

collection). I feel the inclusion of this data will allow for researchers and curators to be

immediately informed on the level of this user’s activity on Twitter. The link to the source

tweet was initially contained within the tweet’s text in our data. I have moved this link to

a button in the user data section, titled “View Source”.

Any hashtag contained within the tweet has been hyperlinked to a search on Twitter’s

website. This will allow a user to see other tweets outside of our database related to the

hashtag.

New search features:

A location search has been added, searching both the user accounts listed location as

well as the location extracted at the time the tweet was made. This allows for narrowed

search results. It also adds new use cases of the page. Locations within our data will be

suggested as a user types, informing and guiding the user of available locations and

proper query formats.

6

Requirements:

I: Prerequisites

1. Python version 3.6 *MUST BE 3.6, LATER VERSIONS OF PYTHON WILL NOT RUN THE

CODE*

2. MySQL – Running on your Machine.

3. ElasticSearch version 7.3 - open on a terminal on your Machine.

a. You need to modify the contents of the ElasticSearch configuration file by

adding the fields in Figure 2. This file is found in

./elasticsearch/config/elasticsearch.yml

http.cors.enabled: true

http.cors.allow-credentials: true

http.cors.allow-origin: /https?:\/\/(localhost)?(127.0.0.1)?(0.0.0.0)?(:[0-

9]+)?/

http.cors.allow-headers: X-Requested-With, X-Auth-Token, Content-

Type, Content-Length, Authorization, Access-Control-Allow-Headers, Accept%
Figure 2: Contents of elasticsearch.yml

8. NodeJS, with the following packages installed as shown below.

b. npm i react-scripts

c. npm i react-dom react @appbaseio/reactivesearch

II: Clone the Repository.

To access the repository, you must have access to https://git.cs.vt.edu/cs-5604-fall-

2020/fe/team-fe-repo/-/tree/knowledgeGraph which is a private repository.

1. Once you have access, clone this repository onto your local machine.

2. Then create a config folder in the root of the repository, with a settings.yaml file in

it.

a. The route should look like: ./config/settings.yaml

3. And the contents of settings.yaml should look like Figure 3, password and

database reflect the values corresponding to your MySQL database.

4. Next you need to set the values in ./reactivesearch/set_env.sh on

FLASK_DB_STRING’s username and password fields to reflect your MySQL

database. See Figure 4.

https://git.cs.vt.edu/cs-5604-fall-2020/fe/team-fe-repo/-/tree/knowledgeGraph
https://git.cs.vt.edu/cs-5604-fall-2020/fe/team-fe-repo/-/tree/knowledgeGraph

7

Default:
 mysql:
 host: localhost
 user: root
 password: password
 database: database

 baseuri: http://localhost:3000
 elasticsearch: http://localhost:9200/

Figure 3: Contents of the settings.yaml file

export REACT_APP_BASE_URI=http://localhost:3000 && \
export REACT_APP_ELASTICSEARCH_URI=http://localhost:9200 &&
\
export FLASK_DB=mysql && \
export FLASK_DB_STRING=localhost\;\;username\;password\;fe &
& \
export REACT_APP_ES_MAIN_ETD=fe_etd_metadata && \
export REACT_APP_ES_MAIN_TWT=fe-twt && \
export REACT_APP_ES_MAIN_WP=fe-wp

Figure 4: Contents of set_env.sh

III: Install Dependencies

1. In the root directory of the repository there is a file requirements.txt you must use.

a. Run “pip install requirements.txt” to install all Python packages.

b. Also, it is recommended to run “pip install ‘dynaconf[all]’ ” to ensure this

package installed correctly.

2. Navigate to the ./reactivesearch folder.

a. Run “npm run build” to compile this folder.

IV: Initialize Databases

1. MySQL must have three Tables in the database you use for this project It is

recommended to name your database “fe” or you will need to change the value

of “fe” in FLASK_DB_STRING on ./reactivesearch/set_env.sh. Here is a listing of

each table with its name and fields.

a. user

i. user_type

ii. username

http://localhost:3000/
http://localhost:9200/

8

iii. email

iv. register_time

v. password

vi. vt

b. IndexTable

i. idIndextable

ii. Iid

iii. Raccess

c. PermissionTable

i. idPermissiontable

ii. Iid

iii. Uid

iv. Permission

2. Import the ElasticSearch data. For the purposes of testing my project, the only

data needed to import is the tweets found in ./data/twt_sample_indexed.json.

ElasticSearch uses NDJSON (Newline Delimited JSON), this means each JSON

entry must contained on one line, and each new entry is delimited by a newline.

See Figure 13 for a readable version of one tweet entry. NOTE: Most of these

scripts are adapted from the CS5604F2020FEreport[0].

a. Create an index in ElasticSearch for the NDJSON data to be contained

within, this can be done using the curl script shown in Figure 5. Be sure to

have ElasticSearch open on its own terminal while you do this.

b. Then import the NDJSON data into ElasticSearch, which can be done

using the script shown in Figure 6.

c. Lastly you can check that your data has been imported by using the script

in Figure 7.

curl -X PUT \

 http://localhost:9200/fe-twt\

 -H ‘Content-Type: application/json’\

 -d ‘{

 “settings” : {

 “index” : {

 “number_of_shards” : 3,

 “number_of_replicas” : 2

 }

 }

 }’

http://localhost:9200/fe-twt/

9

Figure 5: CURL script to create an ElasticSearch index.

curl -s -H "Content-Type: application/x-ndjson" \

-XPOST http://localhost:9200/fe-twt/_bulk \

--data-binary @twt_sample_indexed.json; echo
Figure 6: CURL script to import tweet data.

curl -s -H "Content-Type: application/x-ndjson" \

-XGET http://localhost:9200/twtr/_count?pretty -d \

'{

 "query": {

 "match_all": {}

 }

}'
Figure 7: CURL script to test if data has been imported.

V: Start the Application.

There are two ways to start this application.

1. Full application. This starts the entire application, with account authentication

required before viewing the collections.

a. Navigate to the root directory and run “Python app.py”

2. “Test Mode”. This starts the ReactiveSearch portion of the page and allows you

to view the collections without authenticating or creating an account.

a. Navigate to ./reactivesearch and run “npm start”

3. In either mode, the page will now be hosted at localhost.

10

User Manual:

This user manual only details updated functionality of the tweets section of the full site;

for more details on the other sections of the full site see the previous teams report. [0]

Figure 8: Tweets index

Figure 8 is the main page of the tweets section. There are three different fields that can

be used to search, all found on the left side of the page and shown in Figure 9.

Figure 9: Search Fields.

11

These fields are used to query the database of tweets, and when used in conjunction

will have the results filtered by each of their values. The first field “Search Content” will

search the entire text content of each tweet. It will display results that contain the text

entered in the box. If you wish to only search the hashtags of the tweets, search with “#”

prepended to your search text like “#covid”. Additionally, the results do not have to

exactly match the search text, so “#covid” would also display “#covid-19” or

“#covidVaccine”.

The next search box “Search Location” will query the results based on both the location

the users account is registered to, as well as the location the user published the tweet

at. Not all users will have this information available.

Lastly the “Start Date” and “End Date” fields will narrow the tweets based on when they

were published.

Figure 10: Page navigation

Only 5 tweets are set to display on each page and at the bottom of the Web Page you

can progress to the next page of tweet results shown in Figure 10. In Figure 11 you

can see the details displayed in each tweet result. Before I dissect a tweet result, it is

important to note that all information displayed is only indicative of the tweet and user at

the time the tweet was exported from Twitter. First, profile pictures are displayed in the

top right. A profile picture will only be displayed if the users profile picture at the time of

publishing the tweet remains on their profile. Otherwise, a default profile picture is

displayed. In the main tweet data, a user’s key information (i.e., display name,

username, and the date the tweet was published) is displayed at the top. Below is the

text contained in the tweet, with all hashtags hyperlinked. On click of a hashtag you will

be redirected in a new browser window to a search on Twitter of the hashtag. Below the

text is the tweet information: replies, retweets, and favorites.

On the right section there is user information displayed including: the username,

followers, total tweets made, and total favorites earned. Below this is a link to the source

tweet as hosted by Twitter.

12

Figure 11: Anatomy of a Tweet Result.

13

Developer Manual

This Section of the report aims to give

the prospective developer information

on importing new indexed data to the

collection. Furthermore, in Figure 12

you will see a Table of the Directories

and Files contained in this project. This

figure should help give developers an

idea of how to navigate the project.

Be sure to have read the Requirements

section of this report before you begin

reading this section.

Figure 12: Table of Directories

14

Importing new tweets:

To import a new set of tweets, first make certain that they follow the formatting of fields

in Figure 13. Note that when you create the dataset to be imported It will NOT follow

the format of Figure 13 but will be in NDJSON. This figure is only meant to show all the

fields of the current tweets in a human readable way.

In NDJSON, each tweet entry will be on its own line and will be prepended with an

index. An example of this format is shown in Figure 14 and can be further examined in

./data/twt_sample_indexed.json. You can then import this data by using the CURL

scripts shown in Figures 5-7 as described in the requirements section of this report.

{

 "quote_count": 0,

 "contributors": null,

 "truncated": true,

 "text": "The phoney quarantine is almost over. Bring on the real quarantine. #covid_19 #co

ronavirus #freebritneyu2026 https://t.co/BJTCp8fI6y",

 "is_quote_status": false,

 "in_reply_to_status_id": null,

 "reply_count": 0, "id": 1257271308062208000,

 "favorite_count": 0,

 "entities": {

 "user_mentions": [],

 "symbols": [],

 "hashtags":

 [{"indices": [68, 77], "text": "covid_19"},

 {"indices": [78, 90], "text": "coronavirus"},

 {"indices": [91, 103], "text": "freebritney"}],

 "urls":

 [{"url": "https://t.co/BJTCp8fI6y", "indices": [105, 128],

 "expanded_url": "https://twitter.com/i/web/status/1257271308062208000",

 "display_url": "twitter.com/i/web/status/1u2026"}]},

 "retweeted": false,

 "coordinates": {

 "type": "Point",

 "coordinates": [-80.25, 43.55]},

 "timestamp_ms": "1588591813470",

 "source": "Instagram",

 "in_reply_to_screen_name": null, "id_str": "1257271308062208000",

 "retweet_count": 0,

 "in_reply_to_user_id": null,

 "favorited": false,

 "user": {

15

 "follow_request_sent": null,

 "profile_use_background_image": true,

 "default_profile_image": false,

 "id": 1096083799534960640,

 "default_profile": true,

 "verified": false,

 "profile_image_url_https": "https://pbs.twimg.com/profile_images/1251785729518288897/c

sccyZlo_normal.jpg",

 "profile_sidebar_fill_color": "DDEEF6",

 "profile_text_color": "333333",

 "followers_count": 125,

 "profile_sidebar_border_color": "C0DEED",

 "id_str": "1096083799534960640",

 "profile_background_color": "F5F8FA",

 "listed_count": 0,

 "profile_background_image_url_https": "",

 "utc_offset": null,

 "statuses_count": 1828,

 "description": "The subject who is truly loyal to the Chief Magistrate will neither ad

vise nor submit tou00a0arbitrary measures.~~ Junius",

 "friends_count": 428,

 "location": "Dawn-Euphemia, Ontario",

 "profile_link_color": "1DA1F2",

 "profile_image_url": "http://pbs.twimg.com/profile_images/1251785729518288897/csccyZlo

_normal.jpg",

 "following": null, "geo_enabled": true,

 "profile_banner_url": "https://pbs.twimg.com/profile_banners/1096083799534960640/15872

83898",

 "profile_background_image_url": "",

 "name": "Mafun Ho",

 "lang": null,

 "profile_background_tile": false,

 "favourites_count": 15588,

 "screen_name": "Tumulus17",

 "notifications": null,

 "url": null,

 "created_at": "Thu Feb 14 16:28:36 +0000 2019",

 "contributors_enabled": false,

 "time_zone": null,

 "protected": false,

 "translator_type": "none",

 "is_translator": false},

 "geo": {

 "type": "Point",

 "coordinates": [43.55, -80.25]},

16

 "in_reply_to_user_id_str": null,

 "possibly_sensitive": false,

 "lang": "en",

 "extended_tweet": {

 "display_text_range": [0, 160],

 "entities": {

 "user_mentions": [],

 "symbols": [],

 "hashtags": [

 {"indices": [68, 77], "text": "covid_19"},

 {"indices": [78, 90], "text": "coronavirus"},

 {"indices": [91, 103], "text": "freebritney"},

 {"indices": [104, 118], "text": "wrayandnephew"}],

 "urls": [

 {"url": "https://t.co/PF3a1rtMMG", "indices": [137, 160],

 "expanded_url": "https://www.instagram.com/p/B_w6qFEnTYF/?igshid=1kb2euuf2

aszb",

 "display_url": "instagram.com/p/B_w6qFEnTYF/u2026"}]},

 "full_text": "The phoney quarantine is almos ...naephew @ Guelph, Ontario https://t.co

/PF3a1rtMMG"},

 "created_at": "Mon May 04 11:30:13 +0000 2020",

 "filter_level": "low",

 "in_reply_to_status_id_str": null,

 "place": {"full_name": "Guelph, Ontario",

 "url": "https://api.twitter.com/1.1/geo/id/2740624a2d391c5c.json",

 "country": "Canada", "place_type": "city",

 "bounding_box": {

 "type": "Polygon",

 "coordinates": [[[-80.326879, 43.473802], [-80.326879, 43.594596], [-

80.153377, 43.594596], [-80.153377, 43.473802]]]},

 "country_code": "CA",

 "attributes": {},

 "id": "2740624a2d391c5c",

 "name": "Guelph"}

}

Figure 13: Tweet JSON fields.

{ "index": { "_id": "0"}}

{"quote_count": 0, "contributors": null, … … … }
Figure 14: Correct format to import.

17

Lessons Learned:

Timeline/schedule:

The Initial Schedule:

Feb. 10-24: Dive into the existing codebase and have a thorough understanding
of the existing code.

Feb. 25 – Mar. 10: Begin Development and have all search UI and displayed
data formatted.

Mar. 11 – 27: Implement the new searching features and have them tested.

Mar. 27 – Apr. 7: Implement a remote API for the tweets, allowing for large
export of data.

Apr. 8 – 21: Work on final report and presentation.

What the Timeline Actually Looked Like:

 Feb. 10: I am given access to the repository, but I am unable to view any code.

 Mar. 16: I am finally able to clone the code to my local machine.

 Mar. 26: This is the day I was able to get the project running on my machine*

Mar. 26 – Apr. 7: Development of frontend UI and adding location search.

Apr. 9: Interim report

May. 5: Final Report Initial Submission

May. 11: Final Report Edited Submission

In addition to this schedule, I have been meeting with Bill Ingram bi-weekly since early
February.

Problems:

I ran into a litany of problems with this project. First was my issue in getting into the
repository. Once I had been granted access to the repository, I assumed all was well
and so rather than starting by looking at the code, I decided to research React and
ElasticSearch instead, to familiarize myself with the tech in use before I look at code
without knowing what it does.

18

This led me into trouble, as I did not realize for a while that I did not actually have
access to the code in the repository. Once I figured out this, I contacted Prashant
Chandrasekar to have my permissions fixed. Getting this issue fixed took two weeks,
due to spring break days and slow proceedings.

Then once I was finally able to get the project cloned on my machine, I ran into
numerous problems with getting the project running. I was trying to run the old project
by using the README found on github. This led to an issue as it is not as
comprehensive in its description of configuration.

[a] Firstly it is missing one of the major dependencies, called react-scripts. [b] After
installing this I was dumbfounded as to why I was getting a Python error. [c] Once the
Python error was resolved, I was able to get the project running on my local machine
although I could not log in. [d] Once I could log in, the tweet data was not showing up.

Solutions:

[a] npm install react-scripts

[b] The code uses a deprecated version of Python, and you must install and run the
code with Python 3.6, I then figured out I had to reinstall the dependencies with pip on
my new Python 3.6 environment.

[c] MySQL must be connected to the project by setting the environment variables in
./root/reactivesearch/set_env.sh, and these variables must be set locally on your
machine.

[d] The scripts to import data to reactivesearch import the data under a different
database name than the environment variables were set to search for.

These solutions may seem trivial, but the trial was truly in finding what was causing the
issues to happen. Remember Python, React, MySQL, and ElasticSearch are all either
entirely new to me, or I have little experience with them. Even while meeting with
Makanjuola Ogunleye, it took us nearly two weeks to get the code to run completely on
my machine, also contacting two other members that worked on this project for help.

In my Developer Manual I have made clear process to get this project running, with full
disclosure of all dependencies in order to try to remedy these problems.

19

Future Work

Possibly fix Flexbox model of the page for mobile devices, but this is not a huge priority

as no other page on this site is configured for mobile size screens.

Add sorting of results to the search, by fields such as retweets and favorites count.

Import a new, large collection of tweets to give this project value.

Addittional testing is required on a larger dataset, as my testing was limited to the small

dataset of 24 tweets.

Need to update the parts of the project that use depreciated Python code to allow for

use of the most updated version of Python and not the depreciated version of Python

3.6 it currently requires.

Move this project as well as the website it is contained within to a public website and

host the source data on a production version of ElasticSearch for this website.

20

Acknowledgements:

Bill Ingram: Client

Email: waingram@vt.edu

Makanjuola Ogunleye: Previous Developer

Email: mogunleye@vt.edu

Dr. Edward A. Fox: Professor

Email: fox@vt.edu

mailto:waingram@vt.edu
mailto:mogunleye@vt.edu
mailto:fox@vt.edu

21

References:

[0] Cao, Y., Mazloom, R., & Ogunleye, M. (2020, December 16). CS5604 (Information

Retrieval) Fall 2020 Front-end (FE) Team Project. Blacksburg, VA: Virginia Tech.

http://hdl.handle.net/10919/101526

[1] Damme, T. V., Merkenich, J., Coyier, C., Mejia, L., House, C., Seyedi, M., … Holt, B.

A Complete Guide to Flexbox: CSS-Tricks. (Accessed 2021, April 7). https://css-

tricks.com/snippets/css/a-guide-to-flexbox/

[2] ElasticSearch. (2021). ReactiveSearch Quickstart. Appbase.io Docs - Search stack

for Elasticsearch. (Accessed 2021, March 16).

https://docs.appbase.io/docs/reactivesearch/v3/overview/quickstart/

[3] Cao, Y., Mazloom, R., & Ogunleye, M. (2020). cs-5604-fall-2020. CS 5604 fall 2020
Front End Project. Blacksburg, VA: Virginia Tech. (Accessed 2021, February 10)
https://git.cs.vt.edu/cs-5604-fall-2020.

Note about [3]: This is the initial project that I made changes to; this is a private git

repository; for access, please contact one of the authors.

http://hdl.handle.net/10919/101526
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://docs.appbase.io/docs/reactivesearch/v3/overview/quickstart/
https://git.cs.vt.edu/cs-5604-fall-2020

