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Abstract

The effect of dietary copper (Cu) supplementation with Cu-Sulfate
(CuSOy4) or Cu-Lysine (CuLy) on Cu status and bovine monocyte function
was evaluated through a series of experiments. Initially, two in vitro
techniques, immunomagnetic (IM) and culture flask adherence (CF), were
compared for isolation of a viable, homogeneous monocyte population.
The CF technique for monocyte isolation resulted in both a greater number
of cells exhibiting phagocytic activity, as well as, an increased phagocytic
capacity compared to monocytes recovered by the IM technique. Culture
flask adherence appears to be an efficient technique for isolation of a
viable, homogeneous population of bovine monocytes.

Copper status and monocyte function were evaluated in beef calves
supplemented with Cu over a 2 year study period. Fifty-four weaned
calves were allotted to one of three Cu treatment groups in a 150 d feeding

trial. Plasma Cu concentration was increased in CuLy-supplemented calves



over controls and CuSQO,-supplemented calves on d 42, 84, and 126.
Calves supplemented with Cu had increased ceruloplasmin activity on d 84,
126, and 150 as compared to controls. Hepatic Cu measured on d 150 was
decreased in controls compared to Cu-supplemented calves. Monocyte cell
number and function from CuLy-supplemented calves showed increased
phagocytosis on d 84 and 126 and increased oxidative burst on d 42 and
126 compared to controls.

Dietary Cu supplementation was repeated using 45 calves in a 120 d
study. CuLy-supplemented heifers had increased major histocompatability
complex (MHC) class II expression on d 68, 82 and 110 compared to
CuSOy-supplemented and control group heifers. Heifers supplemented
with Cu had increased plasma Cu concentrations on d 82 and 110 compared
to controls.

The effect of vaccination on monocyte function was evaluated in Cu-
supplemented beef heifers. Vaccination with B. abortus Strain 19
increased monocyte oxidative burst, phagocytic activity, and MHC class II
expression in heifers. Copper supplementation and source of Cu
supplement influenced monocyte response to vaccination. Monocyte
response appeared to be higher in CuLy-supplemented heifers after

vaccination compared to CuSO,-supplemented and control heifers.
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Chapter 1

Introduction

Historically, infectious diseases have caused significant economic losses to the beef
producer. In recent years animal nutritionists and producers have begun to realize potential
benefits from dietary trace mineral supplementation. Although the mechanisms are not
completely understood, specific trace minerals have been shown to play an important role
in disease resistance and improved animal performance. Copper is a component of cells
and enzyme systems necessary to help protect against disease challenge, and therefore has
been targeted for its influence on the normal function of the immune system in animals
(Graham, 1991).

For centuries, the reddish-brown metallic element identified as copper (Cu) was
utilized by by various craftsman for everything from tools to coins. The identification of
Cu in plant and animal tissues was thought to be solely a consequence of soil
contamination. In the early 1900’s Hart and associates showed that Cu is a component in
living systems. Their discovery opened Pandora’ box, for the essential role of Cu in
growth and in the prevention of a multitude of clinical and pathological disorders which
have since been revealed. In 1931, the ruminants’ requirement for Cu was realized,
indirectly, by association of commonly seen conditions such as ovine enzootic ataxia
(swayback); bovine falling disease, hair and wool depigmentation and bone abnormalities
linked with inadequate dietary Cu intake (Becker et al., 1965; McDowell, 1992). After Cu
was proven essential for growth and hemoglobin formation (Hart et al., 1928), numerous
other Cu-dependent enzymes were identified. Ceruloplasmin and superoxide dismutase are
two Cu-containing enzymes specifically targeted for their role in immune function.

Altered immune cell function as a consequence of dietary Cu deficiency was first
reported in laboratory species. Prohaska and others have demonstrated suppressed T and
B cell function, impaired neutrophil oxidative metabolism and candidacidal activity, and
altered secretory capacity of leukocytes in Cu-deficient rats and mice (Prohaska &
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Lukasewycz, 1981, 1989; Prohaska et al., 1983; Lukasewycz & Prohaska, 1982, 1983,
1985; Vyas & Chandra, 1983; Davis et al., 1987, Failla et al., 1988; Flynn et al., 1984;
Flynn & Yen, 1981; Prohaska et al., 1988a ). Recently, Babu and Failla (1990) reported a
positive correlation between monocyte Cu concentration and cellular oxidative capacity and
killing ability.

Ruminant studies have focused mainly on induced Cu deficiencies in sheep and
cattle that resulted in impaired cell-mediated immunity and neutrophil dysfunction (Boyne
& Arthur, 1986; Jones & Suttle, 1981; Zin et al., 1991). The influence of dietary Cu
alterations on monocyte immunoresponsiveness has received little consideration. In light
of previous murine (Babu and Failla, 1990; Jain and Williams, 1988; Duwe et al., 1981;
Lawrence and Jenkinson, 1987) studies, it is likely that the bovine monocyte system would
be responsive to dietary Cu supplementation and that immunocompetence could be
enhanced in the growing ruminant.

Cattle production has advanced from the small backyard farm to corporate run
operations. Increased economic and environmental constraints require efficient cattle
production systems in order to meet market demands; optimal animal health is an essential
aspect of this type of production. Macro- and micronutrient deficiencies can result in
compromised immune function and, ultimately, production losses. Marginal Cu
deficiencies often go undetected but have been shown to affect cattle growth and
performance (Bremner & Mills, 1981; Herd et al., 1990; Clark et al., 1994).
Supplementation with Cu sources of high biological availability and monitoring
physiological parameters of Cu status that are sensitive to marginal Cu deficiencies are two
avenues by which to enhance optimal cattle health and production.

The present set of experiments were designed to address these aforementioned areas
of cattle production and optimal health by (i) determining the effects of various Cu
supplements on immune cell function and Cu status in growing beef calves; (ii)
characterizing the effects of vaccination stress and dietary Cu on immune response in beef
calves; and (iii) evaluating monocyte activity as an indicator of Cu status in the beef calf.
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Chapter 11
Literature Review
This review of the literature will begin with the animal’s copper requirement, briefly
discuss sources to meet those requirements, review the mechanism (s) by which those
sources are utilized by the animal, assess copper utilization by the animal and, indirectly,

re-evaluate Cu requirements.

Trace mineral requirements are not well characterized, particularly in regard to the
effect of nutrition on immune function. The National Research Council (NRC) and the
Agricultural Research Council (ARC) have established minimal requirements (Table 1) for
trace mineral nutriture. These recommendations have been formulated presumably for
healthy, disease-free animals. The complicated interactions of environmental (climate, soil,
plant) and physiological (growth, pregnancy, lactation, illness, production) stressors can
alter nutrient requirements. It has been proposed that during high milk production, rapid
growth, or stress, NRC and ARC recommendations are probably inadequate and should be
exceeded. Specific recommendations for increasing dietary Cu have not been established
for beef cattle but suggested levels range from 4 to 8 times current NRC recommendations,
DM basis (Larson et al., 1995; Herd, 1990).

Concentrations of Cu in crops and forages vary geographically and are dependent
on soil factors, rainfall and drainage patterns, pH, plant species management, and
harvesting techniques (Graham, 1991). Native pasture, the main nutrient source for beef
cattle, can be an inadequate source of many trace minerals including copper. Tall fescue
(Festuca arundinacea Schreb.) and various clovers (Trifolium species) are commonly
utilized forages in Virginia that have a reduced Cu availability in ruminants (Puls, 1988).

In a comprehensive review of bovine Cu status, Smart et al. (1992) summarized Cu
concentrations in feeds utilized in beef production systems. On a dry
3



T 1 ndation Di r for Beef

National Agricultural
Research Council Research Council
Copper 4 - 10 mg/kg DM
Growth e 8 - 15 mg/kg DM
Pregnancy @ = -------- 13 - 20 mg/kg DM
Lactation = -—----- 8 - 14 mg/kg DM

Adapted from Graham, 1991.



matter (DM) basis the average Cu concentration was below NRC recommendations beef
cattle of 8 to 10 mg Cu/kg DM, with grass hays ranging from 4.4 to 6.2 mg Cu/kg; legume
hays from 7.0 to 11.0 mg/kg; cereal silage 4.1 to 6.5 mg/kg; and corn silage 5.2 to 7.5
mg/kg. Oats, barley and corn were below 6.5 mg Cu/kg and pasture was approximately
2.7 mg Cu/kg. These types of feedstuffs also had a low (0.050) absorption coefficient for
copper (Suttle, 1986).

Several known dietary interactions predictably decrease Cu availability in feeds,
most notably the interaction between copper and molybdenum. Soil and plant Mo
concentrations markedly alter Cu bioavailability. Copper uptake in plants is optimal in
poorly drained, clay soils with an acid pH. Increasing soil pH reduces Cu concentrations
of plants but favors Mo uptake. Copper:Molybdenum ratios of less than 2:1 in feedstuffs
result in conditioned Cu deficiencies in beef cattle. Molybdenum, along with sulfur (S),
forms thiomolybdates in the rumen. These Mo-S complexes bind to available dietary Cu
and thereby decrease its absorption and utilization (McDowell, 1992).

Additional sources of Cu include parenteral and oral supplements. Copper
glycinate and Cu-edetate have been used in subcutaneous injection (Boila 1984a;1984b).
Oral supplements available in the United States include Cu boluses, Cu-oxide wires, and
inorganic or organic Cu salts (Graham, 1991). Parenteral administration of Cu has been
more problematic than oral supplementation with reports of irritation and abcessation at the
injection site, acute toxicosis and death. Oral toxicosis, however, has been reported more
commonly in young livestock (SMTA, 1980). Copper in the form of oxide, sulfate and
amino acid complexes were supplemented to beef cattle rations to determine bioavailability
of the three Cu sources (Clark et al., 1993a, Kegley & Spears, 1994). Bioavailability of
Cu was lower with the oxide form compared to the sulfate and amino acid complexed
forms of Cu supplement.

Metal amino acid chelates are thought to be more efficiently absorbed and
potentially more efficiently transported to target tissues (Kratzer & Vohar, 1981).
Enhanced bioavailability of the chelates over simple salts is dependent upon the stability of
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the chelates in the intestine and their solubility in water or lipids (Shah, 1981). Copper
complexed by amino acids, peptides and certain proteins increases Cu retention,
particularly Cu complexed with L-amino acids (Kirchgesner & Grassman, 1978). Copper
absorption and retention were increased in stressed beef calves that were supplemented
with Cu-Lysine (organic form) compared to calves supplemented with Cu-Sulfate
(inorganic form). Cu-Lysine supplemented calves also gained more weight during the
feeding trials than calves supplemented with Cu-Sulfate (Kincaid & Blauwiekel, 1986;
Wittenburg, 1991; Nockels et al., 1993). Concurrent studies indicated no difference in
bioavailability between the two Cu sources (Kegley & Spears, 1994, Clark et al, 1993b).

Ingested Cu is poorly absorbed especially by ruminant species. Mature ruminants
absorb only 1 to 3%, whereas younger animals absorb 15 to 30%. Suttle (1975) showed
the apparent availability of Cu in pre-weaned lambs was 47% compared to 10% after
weaning.

Copper is absorbed in all segments of the digestive tract, but the majority is
absorbed in the abomasum and small intestine either as free Cu or more likely as ligand-
bound copper. The exact nature of these ligands is not completely understood but it is
agreed that numerous factors affect ligand binding and thus Cu uptake from the gut. The
acidic environment of the stomach appears to enhance Cu solubility and transport across
gastric mucosa, at the same time though, these gastric secretions enhance solubility of other
dietary metals resulting in direct competition for gastric absorption (Cousins, 1985).

Copper that by-passes absorption in the stomach to reach the small intestine, is
influenced by a variety of dietary components, including fiber, phytate, ascorbic acid,
thiomolybdate, and amino acids. The extent of exchange of Cu with intestinal binding
ligands is not well known, but competition for various ligands could also be a factor that
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influences the extent of uptake. Copper absorption is enhanced when complexed with
amino acids as compared to inorganic complexes such as CuSO, (Kirchgesner &
Grassman, 1978; Kincaid & Blauwiekel, 1986; Wittenburg, 1991; Nockels et al., 1993)
The L-isomer form of amino acids has been shown to be more efficiently absorbed as Cu-
amino complexes than the D-isomer form (Kirchgesner & Grassman, 1978). Conversely,
absorption studies utilizing the amino acid histidine (Marceau et al., 1970; Gollan & Deller,
1973) did not show improved rates of copper absorption over inorganic Cu complexes. In
general, high protein diets enhance Cu uptake (Davis et al., 1962; Engel et al., 1967,
Greger & Snedeker, 1980; Lonnerdal et al., 1982, Turnland et al., 1982), but the
digestibility of dietary protein can have a marked effect on the formation of Cu-amino acid
and peptide complexes. Citrate, gluconate, and phosphate complexes can enhance Cu
absorption (Cousins, 1985). Likewise, Cu in the forms of Cu,CO;, Cu,(NOj3),, Cu-
oxalate and Cu-EDTA are more bioavailable sources of Cu than CuSO4(Chapman & Bell,
1963; Nichols et al., 1993). Dietary components such as phytate, fiber , fructose and
ascorbic acid (Cousins, 1985) when complexed with Cu, decrease Cu uptake. Copper
thiomolybdates (CuMoS; and CuMoS,) are known antagonists for Cu absorption in
ruminants. While stable complexes of Cu thiomolybdates are insoluble and impair ruminal
uptake, absorbed oxythiomolybdates are thought to be associated with infertility and
growth failure seen with secondary hypocuprosis (Bremner et al., 1987). Additionally,
dietary zinc (Zn) and iron (Fe) interfere with copper absorption (Graham, 1991). Other
endogenous substrates can also influence Cu absorption. For instance, bile (Gollan &
Deller, 1973) and pancreatic secretions (Cousins, 1985) have a negative influence on
resorption of secreted copper. Biliary secretion of Cu is promoted by glucocorticoids
(Benson, 1979; Henkin, 1974). The extent of control that endogenous secretions may
have on Cu metabolism during trauma and stress has not been established.

Once absorbed into the intestinal cell, Cu is compartmentalized and its fate in the
cell may, in part, be regulated by cellular concentrations of Zn and its influence on
metallothionein (Figure 1). Transfer of Cu out of the intestinal cell to the portal circulation
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Figure 1. Schematic representation of copper uptake at the brush border membrane and
transport through the intestinal cell. (A) Lumenal Cu of dietary and / or endogenous origin
is transported across brush border membrane surface. (B) Similar transport of zinc. (C)
Potential interaction between high lumenal concentrations of Cu and Zn for a common
transport system, endogenous binding factors, or receptors. Once in the intestinal cell,
nutrient metals interact with intracellular pools. (D) Copper and Zn within the enterocyte
are transferred to albumin for plasma transport. (E) High intracellular concentrations of Cu
or Zn activate metallothionein promoter gene. (F) Thionein polypeptides have high binding
affinity for Cu which can prevent Cu transport across the basolateral membrane to plasma,
thus reducing Cu absorption.

Adapted from Cousins, 1985.



is generally assumed to occur with albumin (Sarkar et al., 1978; Cousins, 1985), although
investigators (Evans, 1973; Weiner & Cousins, 1980) have shown that plasma Cu
accumulated in hepatic cells whether presented to the liver as amino acid complexes,
namely histidine, or albumin bound .

Copper is contained within two plasma pools in transport to the liver. Ninety-five
percent of the total Cu is tightly bound to ceruloplasmin. The remaining 5% is loosely
bound to albumin and amino acids and these two pools remain separate with no exchange
of Cu during transport to the liver (Cousins, 1985). Once in the hepatocyte, Cu is
transferred to metallothionein-like protein and other metalloenzymes. Liver is the central
organ of Cu metabolism and, therefore, closely reflects overall Cu status. Copper
concentration of hepatocytes is influenced by dietary Cu supply as well as by specific

disease factors, therefore a fuller understanding of hepatic metabolism is warranted.

Hepatic Metabolism of Copper

Copper uptake by the liver follows first-order kinetics (Cousins, 1985).
Investigators have suggested that the uptake mechanism at specific sites on or in the
hepatocyte cell wall is responsible for the accumulation-binding phenomenon observed in
kinetics studies. Investigators have also demonstrated, through liver cell culture studies,
that Cu uptake is regulated by factors such as culture media concentrations of amino acids
and temperature fluctuations. Surprisingly though, it was found that the presence of metals
such as zinc, nickel, magnesium, cobalt and iron did not influence hepatic uptake kinetics
of copper (Harris & Sass-Kortsak, 1967; Weiner & Cousins, 1980; Cousins, 1985). The
data collectively suggest that Cu uptake follows a passive carrier-mediated mechanism.

Regulation of Cu accumulation within the hepatocyte is thought to be under
hormonal control. Epinephrine and glucagon stimulate Cu accumulation, whereas
estradiol-178 and testosterone (Cousins, 1985) lower hepatic Cu accumulation (Figure 2).
Interestingly, the hormonal regulation of Cu metabolism has inputs that are similar to
mechanisms that influence amino acid transport (Kilberg et al., 1980), in which case,

9
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Figure 2. Schematic depicting hepatic metabolism of copper. Key components of
regulation including uptake, redistribution to intracellular copper pools, and ceruloplasmin
synthesis and secretion. (A) Copper uptake from portal circulation involves amino acid-
bound, albumin-bound, or free Cu; then Cu is distributed among compartments represented
as a Cu pool. Hormonal regulation includes: (B) Epinephrine, a major stimulus for
intracellular Cu accumulation; (C) Transcription of the ceruloplasmin gene is, regulated by
glucocorticoids, Cu and / or intracellular cAMP which is regulated by epinephrine and
glucagon; (D) Glucocorticoids increase biliary excretion of Cu and ceruloplasmin secretion;
(E) Estrogen and testosterone increase ceruloplasmin secretion; (F) Interleukin -1 increases
plasma ceruloplasmin directly or indirectly via hormones.

Adapted from Cousins, 1985.
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enhanced membrane transport of the amino acids that chelate Cu may result in increased
hepatic uptake of the mineral.

Copper is distributed throughout various subcellular compartments of liver cells.
The nuclear fraction contains approximately 27% of hepatic Cu, mitochondria 7%, rough
endoplasmic reticulum (ER) microsomes 7% and smooth ER microsomes 3%. The largest
proportion (54%) of hepatic Cu is found in the supernatant (cytosol) fraction (Smeyers-
Verbeke et al., 1977). Lysosomes also accumulate appreciable amounts of copper. In
Cousins’ review of murine radioisotope studies for Cu absorption, Cu is first associated
with lower molecular weight proteins (metallothionein) and, with time, is transferred to
higher molecular weight proteins such as superoxide dismutase (SOD) and cytochrome
oxidase, important cuproenzymes involved in immune function. These Cu-containing
enzymes and others will be discussed in relation to physiologic functions of copper.

Excretion of hepatic Cu depends on many factors, specifically intracellular factors
that favor retention of Cu, and the availability of circulating ligands that transfer Cu from
hepatocytes. Darwish and co-workers (1983) demonstrated a steady state between Cu
influx and efflux, with imbalances resulting mainly from an altered efflux or prolonged
hepatic retention. The etiology of these Cu accumulating disease states is not known, but
protein synthesis may be a central factor in regulating hepatic Cu, because mineral levels
increase during an inhibition of either protein transcription or translation. (Cousins, 1985;
Weiner & Cousins, 1980).

Hepatic secretion of Cu is principally in the form of ceruloplasmin and extrahepatic
uptake is presumably mediated by this metalloenzyme (Cousins, 1985; Graham, 1991).
Copper bound to low molecular weight moieties, however, can also be donated to tissues.
For example, bioflavonoids (DiSilvestro & Harris, 1983) and glycylhistidyllysine (Pickart
& Thaler, 1980) chelated to plasma Cu can donate Cu to tissues. Once transported to target
organs, Cu participates mainly as a cuproenzyme in numerous cell functions.

Fecal excretion accounts for the highest proportion of ingested Cu, most of which
is unabsorbed. Absorbed Cu is actively excreted via bile and to a lesser extent through
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