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(ABSTRACT) 

A detailed design was developed of an apparatus to measure moisture transfer 

in porous materials. The apparatus is to be used to collect data to aid in the 

development of mathematical models which accurately describe this phenomena. 

The apparatus consists of dual environmental chambers between which a specimen 

material is sealed. The temperature of each chamber is controlled separately 

allowing nonisothermal test conditions. The relative humidity is maintained without 

the use of saturated salt solutions. The moisture transfer rate is measured by 

periodically weighing a desiccant column used to absorb moisture as result of 

diffusion across the specimen. The apparatus was built and used to verify a heat 

transfer model written to predict its thermal characteristics. The chamber 

temperature capabilities are 5°C to 60°C with up to a 20°C temperature difference 

across the specimen. The relative humidity limits are based on the heat transfer into 

or out of the system. High relative humidities (75 to 85 percent) are possible at 

chamber temperatures close to ambient, but decrease sharply at the extremely high 

or low temperatures and during nonisothermal operation. The apparatus maintains 

a constant temperature within +0.4°C of the setpoint when subjected to varying



ambient temperatures. The spatial temperature variation close to the sample (within 

25 mm) is within approximately +1°C of the average chamber temperature. The 

relative humidity can be manually controlled to within +.7 percent RH. Automated 

control, complicated by a response lag, was within +1 percent RH.
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I. Introduction 

The scope of this research project was to develop an alternative apparatus for 

measuring moisture diffusion in porous materials preparatory to data collection. The 

apparatus includes dual environmental chambers between which a material specimen 

is sealed. Air is externally conditioned for temperature and moisture content and 

then circulated through each chamber, thus providing the means to maintain relative 

humidity as well as temperature differences on opposite sides of the specimen. 

1.1 Background and Literature Review 

Prior to World War II, building construction in the United States was typically 

built with less concern for structural tightness, allowing air to freely move from the 

exterior to the interior and vice versa with little resistance. However, during the 

energy crisis of the World War II era, energy conservation became a major concern 

(Douglas, 1991). Buildings by necessity were more tightly built, better insulated, and 

sealed from air flow to make them more energy efficient. 

The less energy conscious construction allowed air, and therefore air-borne 

moisture, to flow relatively freely into and out of buildings (Douglas, 1991). Though 

this was energy inefficient, it nevertheless prevented the danger of moisture buildup 

in the structural members and the walls. As construction was made tighter, air-borne 

moisture, driven by temperature and relative humidity differences between the inside 

and outside of the buildings, diffused through the building materials and accumulated 

inside the construction materials and insulation. This moisture buildup promoted the



unhealthy growth of molds and fungus, degradation of insulating properties of the 

insulation materials, and damage of the structural members through rot and frost 

(White, 1989). 

In an effort to control moisture buildup in structures, research has been done 

which shows that vapor retarders in the form of polymer films placed in the wall will 

minimize moisture diffusion. These retarders, however, are difficult to apply properly 

and small holes can cause tremendous moisture penetration (Douglas 1991). 

Sterling et al. (1985) points out that a moderate amount of moisture in air is 

actually beneficial. It has been shown that a relative humidity range between 40 and 

60 percent in living environments is optimum for health and comfort. Very high or 

very low relative humidities, however, tend to promote the growth and spread of 

biological organisms and pathogens. Low relative humidities also tend to dry the 

mucous membranes and the skin which can lead to chapping and irritation. High 

relative humidities can cause a lack of evaporation from the skin when exposed to 

high temperatures. This lack of evaporation can lead to heat exhaustion and heat 

stroke. The relationship between health and relative humidity is illustrated in Fig. 1. 

Therefore, rather than to eliminate moisture in living environments, the prime 

motivation for the study of moisture diffusion in buildings is to better understand and 

model the phenomena to develop methods to control the moisture buildup in 

structural members and insulation and predict when the recommended relative 

humidity for health exceeds the humidity tolerance of the building structure
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(Tenwolde, 1989). Better moisture control will thus help prevent mold formation and 

structural damage and help promote energy conservation. 

There has been a good deal of study concerning mathematical modeling of 

mass diffusion. An underlying problem in developing an accurate model is the lack 

of abundant, credible data with which to test and refine models. The testing methods 

used for data collection generally consist of some method of maintaining a relative 

humidity difference across a specimen material under a certain temperature 

condition and measuring the moisture diffusion through the specimen. These tests 

normally are carried out under isothermal conditions (in which the temperature on 

each side of the specimen is the same) and the relative humidities are varied. 

A considerable amount of data has been collected under isothermal conditions 

using the testing methods discussed in section 1.1.1. These data, however, have been 

called into question. 

There is a significant lack of data in which the temperature on each side of 

the specimen is different. 

1.2 Test Methods 

A standard test for measuring moisture transfer in porous materials is 

prescribed by the American Society of Testing and Materials (ASTM, 1988). Other 

test methods have been developed by individuals. Several of these testing methods 

will be discussed.



1.2.1 ASTM Standard Test 

The standard test method for testing moisture transfer properties of materials 

is ASTM 96-80. Two basic methods make up the standard: the Desiccant Method 

and the Water Method, also known as the dry cup and the wet cup methods, 

respectively. 

An example of such a test is represented in Fig. 2. In each test, there is a test 

chamber (1) into which a test dish (2) is placed. A specimen material (3) is sealed 

into the mouth of the test dish with wax. Inside the test dish is placed a desiccant 

or saturated salt solution (4) depending on the desired test conditions. Inside the 

test chamber, surrounding the test dish can be placed another saturated salt solution 

(5). The ASTM standard only mentions using distilled water and desiccant, however, 

saturated salt-in-water solutions are normally used to give a certain relative humidity 

in the test atmosphere. 

Saturated salt solutions yield a certain relative humidity by affecting the water 

vapor pressure over the solution. If a certain salt is maintained in solution such that 

a portion is in the solid state, then the solution is saturated and a constant vapor 

pressure, characteristic of the particular salt being used, will be maintained. As 

moisture diffuses into the test environment containing the saturated salt solution, the 

solid salt will dissolve proportionally to maintain the proper moisture content of the 

air. If moisture is lost from the testing environment in the vapor phase, then 

evaporation from the liquid takes place and a proportional amount of salt will
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precipitate out of solution. Depending on the salt that is used, many different 

relative humidities can be obtained (Fanney et al., 1991). 

To measure the moisture diffusion rate, the specimen dish is removed 

periodically and weighed. When the weight change of the dish and specimen remains 

constant in successive measurements, then steady state conditions have been reached 

and the steady state diffusion rate can be determined. 

The advantage of the cup method is its simplicity. The test can be carried out 

with a minimum of equipment and with little effort after the test is running. 

The disadvantages are the salt solutions used for humidity control, the 

necessity of removing the specimens for weight measurements, and the temperature 

effects of the evaporation and condensation of the water in the test chambers. These 

disadvantages are explained in the following paragraphs. 

When saturated salt solutions are used for humidity control, the salt in the 

vapor phase tends to migrate to the surface of the specimen. The salt is suspected 

to effect the diffusion characteristics of the specimen material and thus cause errors 

in the data acquired. 

When the specimen dish and specimen are removed from the controlled test 

environment for weight measurements, they will be exposed to a different set of 

environmental conditions which will affect the moisture content of the specimen and 

the test dish. Depending on the material being tested and the length of time of 

exposure, this exposure to the ambient could cause enough moisture gain or loss to



result in significant error in the data. 

Finally, in the cup method, it is assumed, because the chamber and the 

specimen cup are together in the same temperature environment, that the test is 

carried out under isothermal conditions. There is, however, doubt concerning the 

validity of this assumption. As the water vapor is absorbed into the specimen, there 

is heat of sorption released at the surface of the specimen which tends to elevate the 

temperature at the interface. On the other side of the specimen, the energy to 

evaporate the moisture diffusing through the specimen tends to depress the 

temperature at this surface. This phenomenon has the potential to void the 

isothermal assumption for the test. 

1.2.2 Other Methods 

Tveit (1966) outlined a method used for testing the moisture permeability of 

porous materials that in many ways resembled the ASTM standard test, but it had 

some notable differences. The testing apparatus, as shown in Fig. 3, consisted of an 

environmental chamber (1) in which air circulated over a heat exchanger (2) for 

temperature control and through a salt solution (3) for humidity control. The trays 

in which the specimens were sealed (4) were placed on an elevator (5) from which 

they could be removed periodically and weighed on a scale. The scale (6) was placed 

on top of the apparatus and had a hook which extended into the chamber through 

a hole. In this manner it was not necessary to remove the specimen cups from the 

controlled environment.
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The advantage of this method over the ASTM standard test was the ease of 

performing tests at different temperatures. It was also advantageous to be able to 

weigh the specimens without having to remove them from the chamber. 

The disadvantage was the use of salt solutions to maintain relative humidity. 

This usage brings up the same concerns as are discussed with the ASTM test. This 

test method is also restricted to isothermal tests. 

Another method of moisture diffusion measurement was developed by 

Douglas (1991) for nonisothermal as well as isothermal conditions. His apparatus, 

shown in Fig. 4, consisted mainly of two large pots (1) wrapped individually with 

copper cooling coils (2). Between the pots, a specimen (3) was sealed. Inside each 

pot (not shown) were a saturated salt solution on an electronic balance, a relative 

humidity sensor, and a fan. The relative humidity was maintained by the saturated 

salt solution on the balance. The relative humidity sensor was used to monitor the 

relative humidity within the chamber. The fan was used to create forced convection 

to facilitate mixing of the air and moisture in the chambers. Temperature was 

controlled by circulating cooling or heating solution through the copper coils which 

were wrapped around the chambers. The moisture diffusion measurement method 

was to measure the weight gain of the solution on the electronic balance over a 

period of time. 

The disadvantages of Douglas’ approach are the use of salt solutions for 

humidity control and locating the electronic balance within the test chamber. 
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�a�p�p�a�r�a�t�u�s� �w�e�r�e� �i�n�d�e�p�e�n�d�e�n�t�l�y� �v�a�r�i�a�b�l�e� �r�e�l�a�t�i�v�e� �h�u�m�i�d�i�t�y� �a�n�d� �t�e�m�p�e�r�a�t�u�r�e� �d�i�f�f�e�r�e�n�c�e�s� 

�o�n� �e�a�c�h� �s�i�d�e� �o�f� �a� �s�p�e�c�i�m�e�n� �m�a�t�e�r�i�a�l� �w�i�t�h�o�u�t� �t�h�e� �u�s�e� �o�f� �s�a�l�t� �s�o�l�u�t�i�o�n�s�.� 

�1�.�4� �T�a�r�g�e�t� �O�p�e�r�a�t�i�n�g� �L�i�m�i�t�s� 

�T�h�e� �t�a�r�g�e�t� �r�a�n�g�e�s� �o�f� �o�p�e�r�a�t�i�o�n� �w�e�r�e� �c�h�a�m�b�e�r� �t�e�m�p�e�r�a�t�u�r�e�s� �f�r�o�m� �5�°�C� �t�o� �6�0�°�C�,� 

�c�o�n�t�r�o�l�l�e�d� �t�o� �w�i�t�h�i�n� �+�1�°�C�,� �w�i�t�h� �t�h�e� �c�a�p�a�b�i�l�i�t�y� �o�f� �h�a�v�i�n�g� �a� �t�e�m�p�e�r�a�t�u�r�e� �d�i�f�f�e�r�e�n�c�e� 

�a�c�r�o�s�s� �t�h�e� �s�p�e�c�i�m�e�n� �o�f� �2�0�°�C� �o�v�e�r� �t�h�e� �t�e�m�p�e�r�a�t�u�r�e� �r�a�n�g�e�.� �T�h�e� �r�e�l�a�t�i�v�e� �h�u�m�i�d�i�t�y� 

�t�a�r�g�e�t� �l�i�m�i�t�s� �w�e�r�e� �1�0� �t�o� �9�0� �p�e�r�c�e�n�t�,� �c�o�n�t�r�o�l�l�e�d� �t�o� �w�i�t�h�i�n� �+�2� �p�e�r�c�e�n�t� �r�e�l�a�t�i�v�e� �h�u�m�i�d�i�t�y�.� 
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�I�I�.� �A�p�p�a�r�a�t�u�s� 

�T�h�e� �p�r�e�s�e�n�t� �o�b�j�e�c�t�i�v�e� �w�a�s� �t�o� �d�e�s�i�g�n� �t�h�e� �a�p�p�a�r�a�t�u�s�.� �I�n� �o�r�d�e�r� �t�o� �v�e�r�i�f�y� �t�h�e� 

�d�e�s�i�g�n�,� �t�h�e� �t�e�m�p�e�r�a�t�u�r�e� �a�n�d� �r�e�l�a�t�i�v�e� �h�u�m�i�d�i�t�y� �c�o�n�t�r�o�l� �s�y�s�t�e�m�s�,� �a�n�d� �t�h�e� �d�i�f�f�u�s�i�o�n� �r�a�t�e� 

�t�e�s�t� �s�y�s�t�e�m� �w�e�r�e� �b�u�i�l�t� �a�n�d� �t�e�s�t�e�d�.� �T�h�e� �a�i�r� �c�i�r�c�u�l�a�t�i�o�n� �s�y�s�t�e�m� �w�a�s� �a�l�s�o� �t�e�s�t�e�d� �a�n�d� 

�r�e�c�o�m�m�e�n�d�a�t�i�o�n�s� �a�r�e� �m�a�d�e� �c�o�n�c�e�r�n�i�n�g� �t�h�i�s� �p�a�r�t� �o�f� �t�h�e� �s�y�s�t�e�m�.� 

�T�h�i�s� �s�e�c�t�i�o�n� �g�i�v�e�s� �a�n� �o�v�e�r�v�i�e�w� �o�f� �t�h�e� �e�n�t�i�r�e� �s�y�s�t�e�m� �a�n�d� �i�t�s� �o�p�e�r�a�t�i�o�n�.� �D�e�t�a�i�l�e�d� 

�d�e�s�c�r�i�p�t�i�o�n�s� �o�f� �i�n�d�i�v�i�d�u�a�l� �c�o�m�p�o�n�e�n�t�s� �o�f� �t�h�e� �s�y�s�t�e�m� �a�r�e� �p�r�e�s�e�n�t�e�d� �l�a�t�e�r�.� 

�2�.�1� �O�v�e�r�v�i�e�w� 

�T�h�e� �e�x�p�e�r�i�m�e�n�t�a�l� �a�p�p�a�r�a�t�u�s�,� �i�l�l�u�s�t�r�a�t�e�d� �i�n� �F�i�g�.�5�,� �c�o�n�s�i�s�t�s� �o�f� �d�u�a�l� 

�e�n�v�i�r�o�n�m�e�n�t�a�l� �c�h�a�m�b�e�r�s�.� �T�h�e� �t�e�s�t� �s�p�e�c�i�m�e�n� �i�s� �s�e�a�l�e�d� �i�n� �a� �s�p�e�c�i�m�e�n� �h�o�l�d�e�r� �w�h�i�c�h� 

�f�i�t�s� �b�e�t�w�e�e�n� �t�h�e� �o�p�e�n� �e�n�d�s� �o�f� �t�h�e� �c�h�a�m�b�e�r�s�.� �A�i�r� �i�s� �c�o�n�d�i�t�i�o�n�e�d� �e�x�t�e�r�n�a�l� �t�o� �t�h�e� 

�c�h�a�m�b�e�r�s� �f�o�r� �t�e�m�p�e�r�a�t�u�r�e� �a�n�d� �m�o�i�s�t�u�r�e� �c�o�n�t�r�o�l�.� �T�h�e� �a�i�r� �i�s� �c�i�r�c�u�l�a�t�e�d� �t�h�r�o�u�g�h� �t�h�e� 

�c�h�a�m�b�e�r�s� �w�i�t�h� �a�n� �e�x�t�e�r�n�a�l� �p�u�m�p�i�n�g� �s�y�s�t�e�m�.� 

�T�h�e� �m�o�i�s�t�u�r�e� �c�o�n�t�e�n�t� �o�f� �t�h�e� �e�n�v�i�r�o�n�m�e�n�t� �i�s� �c�o�n�t�r�o�l�l�e�d� �b�y� �u�s�i�n�g� �d�e�s�i�c�c�a�n�t� �a�n�d� 

�w�a�t�e�r�-�f�i�l�l�e�d� �c�o�l�u�m�n�s�.� �T�h�e� �d�e�s�i�c�c�a�n�t� �c�o�l�u�m�n� �c�o�n�s�i�s�t�s� �o�f� �a� �t�u�b�e� �f�i�l�l�e�d� �w�i�t�h� �a� �d�r�y�i�n�g� 

�a�g�e�n�t� �t�h�r�o�u�g�h� �w�h�i�c�h� �a�i�r� �i�s� �p�a�s�s�e�d� �t�o� �r�e�m�o�v�e� �m�o�i�s�t�u�r�e�.� �T�h�e� �w�a�t�e�r�-�f�i�l�l�e�d� �c�o�l�u�m�n�,� 

�r�e�f�e�r�r�e�d� �t�o� �a�s� �a� �b�u�b�b�l�e� �c�o�l�u�m�n�,� �i�s� �a� �c�y�l�i�n�d�e�r�,� �p�a�r�t�i�a�l�l�y� �f�i�l�l�e�d� �w�i�t�h� �w�a�t�e�r�,� �t�h�r�o�u�g�h� 

�w�h�i�c�h� �t�h�e� �a�i�r� �i�s� �b�u�b�b�l�e�d� �f�o�r� �h�u�m�i�d�i�f�i�c�a�t�i�o�n�.� �T�h�e� �m�o�i�s�t�u�r�e� �w�h�i�c�h� �t�r�a�n�s�f�e�r�s� �t�h�r�o�u�g�h� 

�t�h�e� �s�p�e�c�i�m�e�n� �f�r�o�m� �o�n�e� �c�h�a�m�b�e�r� �t�o� �t�h�e� �o�t�h�e�r� �i�s� �a�b�s�o�r�b�e�d� �i�n� �a� �d�e�s�i�c�c�a�n�t� �c�o�l�u�m�n� �t�o� 

�m�a�i�n�t�a�i�n� �t�h�e� �d�e�s�i�r�e�d� �r�e�l�a�t�i�v�e� �h�u�m�i�d�i�t�y� �i�n� �t�h�e� �t�e�s�t� �e�n�v�i�r�o�n�m�e�n�t�.� �T�h�e� �b�u�b�b�l�e� �c�o�l�u�m�n� 

�i�s� �u�s�e�d� �t�o� �r�e�p�l�a�c�e� �t�h�e� �m�o�i�s�t�u�r�e� �t�o� �t�h�e� �t�e�s�t� �c�h�a�m�b�e�r� �w�h�i�c�h� �l�o�s�e�s� �m�o�i�s�t�u�r�e� �d�u�r�i�n�g� 

�1�3



� � 

�T�e�m�p�e�r�a�t�u�r�e� 

� � � � � � 

� � 

� � � � � � 

� � � � � � 

� � 

� � 

� � � � � � 

� � 

� � 

� � � � � � � � 

� � � � � � � � � � � � � � � � � � � � � � � � 

� � 

� � 

� � � � � � 

�B�a�t�h� 
�A�u�t�o�m�a�t�e�d� 
�R�e�s�i�s�t�a�n�c�e� 

�g� �H�e�a�t�e�r� 
�Q� �1�0� 

�w�a�p� �t� �1� 
�C�o�n�c�e�n�t�r�i�c� �P� �m� 
�H�e�a�t� �E�x�c�h�a�n�g�e�r� �|� 

�T�e�m�p�e�r�a�t�u�r�e� �w�b� 
�E� �C�o�n�t�r�o�l�i�e�r� 
 �� 

�§� �®� �S�e�t�u�p� 

�o�D� �I�a�|�6� �T�H�i�s� �i�d�e�n�t�i�c�a�l� 
�g� �2� �2� �f�o�r� �C�h�a�m�b�e�r� �2� 

�A�E� 
�S�t�e�p�p�e�r� �o�O� �O� 
�M�o�t�o�r� 

 ��I�,� �C�o�n�t�r�o�l� �|� 

�T�h�r�o�t�t�l�i�n�g� �i�n�t� 

�v�a�l�v�e�?� �X� �f�y�r�o�n�e�i�e�l�_�)� 
�&� 

 �� �L�J� 

�I� �.� �r�r� �<�}�-� �4� 

�4� 
�e� �s�p�e�c�i�m�e�n� 

�P�u�m�p� 

�S�S�S�  ��j� 

� � � � � � � � � � 

� � � � � � 

�F�i�g�.� �5� �O�v�e�r�v�i�e�w� �o�f� �t�h�e� �a�p�p�a�r�a�t�u�s� 

�1�4



�m�o�i�s�t�u�r�e� �t�r�a�n�s�f�e�r� �t�h�r�o�u�g�h� �t�h�e� �s�p�e�c�i�m�e�n�.� �T�h�e� �d�e�s�i�c�c�a�n�t� �a�n�d� �b�u�b�b�l�e� �c�o�l�u�m�n�s� �a�r�e� �a�l�s�o� 

�t�h�e� �m�e�c�h�a�n�i�s�m�s� �b�y� �w�h�i�c�h� �t�h�e� �m�o�i�s�t�u�r�e� �t�r�a�n�s�f�e�r� �r�a�t�e� �i�s� �d�e�t�e�r�m�i�n�e�d�.� �M�o�i�s�t�u�r�e� �t�r�a�n�s�f�e�r� 

�r�a�t�e�s� �a�r�e� �d�e�t�e�r�m�i�n�e�d� �b�y� �m�e�a�s�u�r�i�n�g� �t�h�e� �w�e�i�g�h�t� �c�h�a�n�g�e� �o�f� �t�h�e� �c�o�l�u�m�n�s� �o�v�e�r� �t�i�m�e�.� 

�T�h�e� �c�h�a�m�b�e�r� �a�i�r� �t�e�m�p�e�r�a�t�u�r�e� �i�s� �c�o�n�t�r�o�l�l�e�d� �w�i�t�h� �h�e�a�t� �e�x�c�h�a�n�g�e�r�s� �a�n�d� 

�a�u�t�o�m�a�t�i�c�a�l�l�y� �c�o�n�t�r�o�l�l�e�d� �e�l�e�c�t�r�i�c�a�l� �r�e�s�i�s�t�a�n�c�e� �h�e�a�t�e�r�s�.� 

�2�.�2� �O�p�e�r�a�t�i�o�n� 

�R�e�f�e�r�r�i�n�g� �t�o� �F�i�g�.� �5�,� �t�h�e� �s�y�s�t�e�m� �o�p�e�r�a�t�i�o�n� �i�s� �d�e�s�c�r�i�b�e�d� �s�t�a�r�t�i�n�g� �a�t� �t�h�e� �e�x�i�t� �p�o�i�n�t� 

�o�f� �t�h�e� �c�h�a�m�b�e�r�.� �A�i�r� �l�e�a�v�i�n�g� �t�h�e� �c�h�a�m�b�e�r� �(�1�)� �i�s� �i�m�m�e�d�i�a�t�e�l�y� �s�a�m�p�l�e�d� �t�o� �d�e�t�e�r�m�i�n�e� 

�i�t�s� �m�o�i�s�t�u�r�e� �c�o�n�t�e�n�t� �(�2�)�.� �T�h�e� �s�a�m�p�l�e� �l�i�n�e�s� �a�r�e� �t�w�o� �s�m�a�l�l� �t�u�b�e�s�,� �o�n�e� �l�e�a�d�i�n�g� �t�o� �a� 

�d�e�w�p�o�i�n�t� �h�y�g�r�o�m�e�t�e�r� �a�n�d� �o�n�e� �l�e�a�d�i�n�g� �b�a�c�k� �t�o� �t�h�e� �m�a�i�n� �f�l�o�w�.� �T�h�e� �d�e�w�p�o�i�n�t� 

�t�e�m�p�e�r�a�t�u�r�e� �i�s� �m�o�n�i�t�o�r�e�d� �t�o� �d�e�t�e�r�m�i�n�e� �i�f� �a�n�y� �a�d�j�u�s�t�m�e�n�t�s� �s�h�o�u�l�d� �b�e� �m�a�d�e� �t�o� �t�h�e� 

�m�o�i�s�t�u�r�e� �c�o�n�t�e�n�t� �o�f� �t�h�e� �a�i�r� �e�n�t�e�r�i�n�g� �t�h�e� �c�h�a�m�b�e�r�.� �A�i�r� �f�l�o�w�s� �t�h�r�o�u�g�h� �t�h�e� �p�u�m�p� �(�3�)� 

�t�o� �t�h�e� �b�y�p�a�s�s� �f�i�t�t�i�n�g� �(�4�)�.� �A�t� �t�h�i�s� �p�o�i�n�t�,� �a� �s�m�a�l�l� �a�m�o�u�n�t� �t�h�e� �a�i�r� �i�s� �r�o�u�t�e�d� �t�h�r�o�u�g�h� �t�h�e� 

�d�e�s�i�c�c�a�n�t� �(�5�)�,� �o�r� �t�h�e� �b�u�b�b�l�e� �c�o�l�u�m�n� �(�6�)�,� �d�e�p�e�n�d�i�n�g� �o�n� �w�h�e�t�h�e�r� �m�o�i�s�t�u�r�e� �n�e�e�d�s� �t�o� �b�e� 

�a�d�d�e�d� �o�r� �r�e�m�o�v�e�d�.� �T�h�e� �m�a�i�n� �f�l�o�w� �i�s� �b�y�p�a�s�s�e�d� �t�h�r�o�u�g�h� �(�7�)� �t�o� �(�8�)�.� �T�h�e� �a�i�r� �s�t�r�e�a�m�s� 

�a�r�e� �m�i�x�e�d� �a�t� �(�8�)�.� �A� �t�h�r�o�t�t�l�i�n�g� �v�a�l�v�e� �a�t� �(�7�)� �i�n�s�u�r�e�s� �t�h�a�t� �t�h�e�r�e� �w�i�l�l� �b�e� �e�n�o�u�g�h� �p�r�e�s�s�u�r�e� 

�t�o� �f�o�r�c�e� �t�h�e� �a�i�r� �t�h�r�o�u�g�h� �t�h�e� �d�e�s�i�c�c�a�n�t� �a�n�d� �b�u�b�b�l�e� �c�o�l�u�m�n�s�.� �|� 

�T�h�e� �a�i�r� �i�s� �n�e�x�t� �c�o�o�l�e�d� �o�r� �h�e�a�t�e�d� �b�y� �p�a�s�s�i�n�g� �t�h�r�o�u�g�h� �t�h�e� �w�a�t�e�r�-�t�o�-�a�i�r� �h�e�a�t� 

�e�x�c�h�a�n�g�e�r� �(�9�)� �a�n�d� �e�l�e�c�t�r�i�c�a�l� �r�e�s�i�s�t�a�n�c�e� �h�e�a�t�e�r� �(�1�0�)�.� �T�h�e� �h�e�a�t� �e�x�c�h�a�n�g�e�r� �h�e�a�t�s� �o�r� 

�c�o�o�l�s� �t�h�e� �a�i�r� �t�o� �a� �f�e�w� �d�e�g�r�e�e�s� �b�e�l�o�w� �t�h�e� �d�e�s�i�r�e�d� �t�e�m�p�e�r�a�t�u�r�e�.� �T�h�e� �r�e�s�i�s�t�a�n�c�e� �h�e�a�t�e�r�,� 

�p�l�a�c�e�d� �b�e�t�w�e�e�n� �t�h�e� �h�e�a�t� �e�x�c�h�a�n�g�e�r� �e�x�i�t� �a�n�d� �t�h�e� �c�h�a�m�b�e�r� �e�n�t�r�a�n�c�e�,� �a�u�t�o�m�a�t�i�c�a�l�l�y� 
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�c�o�n�t�r�o�l�s� �t�h�e� �t�e�m�p�e�r�a�t�u�r�e� �t�o� �t�h�e� �d�e�s�i�r�e�d� �t�e�m�p�e�r�a�t�u�r�e� �v�a�l�u�e� �o�f� �t�h�e� �c�h�a�m�b�e�r� �(�1�1�)�.� 

�T�h�e� �m�e�t�h�o�d� �f�o�r� �d�e�t�e�r�m�i�n�i�n�g� �t�h�e� �m�o�i�s�t�u�r�e� �d�i�f�f�u�s�i�o�n� �r�a�t�e� �i�s� �b�y� �m�e�a�s�u�r�i�n�g� �t�h�e� 

�w�e�i�g�h�t� �c�h�a�n�g�e� �o�f� �t�h�e� �d�e�s�i�c�c�a�n�t� �o�n� �t�h�e� �m�o�i�s�t�u�r�e� �g�a�i�n� �s�i�d�e� �o�v�e�r� �a� �g�i�v�e�n� �t�i�m�e� �i�n�t�e�r�v�a�l�.� 

�T�h�e� �w�a�t�e�r� �w�e�i�g�h�t� �l�o�s�s� �i�n� �t�h�e� �b�u�b�b�l�e� �c�o�l�u�m�n� �o�n� �t�h�e� �m�o�i�s�t�u�r�e� �l�o�s�s� �s�i�d�e� �c�a�n� �a�l�s�o� �b�e� 

�m�e�a�s�u�r�e�d� �a�s� �a� �c�h�e�c�k�.� �T�h�e� �d�e�s�i�c�c�a�n�t� �a�n�d� �b�u�b�b�l�e� �c�o�l�u�m�n�s� �a�r�e� �f�i�t�t�e�d� �w�i�t�h� �q�u�i�c�k�-� 

�d�i�s�c�o�n�n�e�c�t� �f�i�t�t�i�n�g�s� �t�o� �r�a�p�i�d�l�y� �r�e�m�o�v�e� �a�n�d� �i�n�s�t�a�l�l� �t�h�e� �c�o�l�u�m�n�s� �i�n� �l�i�n�e�.� �S�e�l�f�-�s�e�a�l�i�n�g� 

�f�i�t�t�i�n�g�s� �p�r�e�v�e�n�t� �l�e�a�k�i�n�g� �w�h�e�n� �t�h�e� �t�u�b�e� �i�s� �r�e�m�o�v�e�d�.� 

�2�.�3� �D�e�s�i�g�n� 

�2�.�3�.�1� �M�o�d�e�l�l�i�n�g� �t�h�e� �A�p�p�a�r�a�t�u�s� 

�A�f�t�e�r� �d�e�s�i�g�n� �c�o�n�c�e�p�t�i�o�n�,� �c�o�m�p�u�t�e�r� �m�o�d�e�l�s� �w�e�r�e� �d�e�v�e�l�o�p�e�d� �t�o� �h�e�l�p� �d�e�t�e�r�m�i�n�e� 

�d�e�s�i�g�n� �p�a�r�a�m�e�t�e�r�s�.� �T�h�e� �p�a�r�a�m�e�t�e�r�s� �w�e�r�e� �s�i�z�e� �o�f� �t�h�e� �c�h�a�m�b�e�r�,� �s�i�z�e� �o�f� �h�e�a�t� �e�x�c�h�a�n�g�e�r�,� 

�r�e�c�i�r�c�u�l�a�t�i�n�g� �a�i�r� �f�l�o�w� �r�a�t�e�,� �t�h�i�c�k�n�e�s�s� �o�f� �i�n�s�u�l�a�t�i�o�n�,� �a�n�d� �a�m�o�u�n�t� �o�f� �f�l�o�w� �t�h�r�o�u�g�h� �t�h�e� 

�d�e�s�i�c�c�a�n�t� �a�n�d� �b�u�b�b�l�e� �c�o�l�u�m�n�s�.� �I�n� �o�r�d�e�r� �f�o�r� �t�h�e�s�e� �p�a�r�a�m�e�t�e�r�s� �t�o� �b�e� �d�e�t�e�r�m�i�n�e�d�,� �i�t� 

�w�a�s� �n�e�c�e�s�s�a�r�y� �t�o� �e�S�t�i�m�a�t�e� �t�h�e� �h�e�a�t� �t�r�a�n�s�f�e�r� �l�o�a�d� �o�n� �t�h�e� �c�h�a�m�b�e�r� �a�n�d� �t�h�e� �d�i�f�f�u�s�i�o�n� 

�r�a�t�e� �t�h�r�o�u�g�h� �t�h�e� �s�p�e�c�i�m�e�n� �m�a�t�e�r�i�a�l�s�.� 

�O�n�e� �o�f� �t�h�e� �m�o�d�e�l�s� �w�a�s� �a�n� �i�s�o�t�h�e�r�m�a�l� �m�o�i�s�t�u�r�e� �d�i�f�f�u�s�i�o�n� �m�o�d�e�l� �f�o�r� �p�o�r�o�u�s� 

�m�a�t�e�r�i�a�l�s�.� �T�h�i�s� �m�o�d�e�l� �p�r�o�v�i�d�e�d� �t�h�e� �a�b�i�l�i�t�y� �t�o� �e�s�t�i�m�a�t�e� �t�h�e� �t�o�t�a�l� �m�o�i�s�t�u�r�e� �d�i�f�f�u�s�i�o�n� 

�t�h�r�o�u�g�h� �a� �s�p�e�c�i�m�e�n�.� �T�h�e� �t�w�o� �m�a�t�e�r�i�a�l�s� �c�h�o�s�e�n� �f�o�r� �c�o�m�p�a�r�i�s�o�n� �w�e�r�e� �g�y�p�s�u�m� �a�n�d� 

�w�h�i�t�e� �p�i�n�e�.� �T�h�e� �m�a�t�e�r�i�a�l�s� �w�e�r�e� �c�h�o�s�e�n� �b�e�c�a�u�s�e� �t�h�e�y� �r�e�p�r�e�s�e�n�t� �r�e�a�s�o�n�a�b�l�e� �l�i�m�i�t�s� �o�f� 

�m�o�i�s�t�u�r�e� �t�r�a�n�s�f�e�r� �r�a�t�e�s� �a�n�d� �t�h�e� �d�i�f�f�u�s�i�o�n� �c�o�e�f�f�i�c�i�e�n�t�s� �a�r�e� �r�e�a�d�i�l�y� �a�v�a�i�l�a�b�l�e�.� �G�y�p�s�u�m� 

�i�s� �a� �h�i�g�h�l�y� �p�o�r�o�u�s� �m�a�t�e�r�i�a�l� �w�h�i�l�e� �w�h�i�t�e� �p�i�n�e� �r�e�p�r�e�s�e�n�t�s� �a� �l�e�s�s� �p�o�r�o�u�s� �m�a�t�e�r�i�a�l�.� �H�i�g�h� 
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