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(ABSTRACT) 

The problem of developing a generalized impulse as a function of a set of parameters is 

investigated. The proposed generalized impulse alters an existing orbit by producing, over some 

period of time, a change in velocity, AV, as well as a change in position, Ar’. The generalized 

impulse is described by parameters associated with an instantaneous change in velocity as well 

as parameters associated with an atmospheric skip trajectory. Closed form solutions are 

obtained through several changes of independent variable, the use of modified Chapman 

variables and the consequent analytical integration of the uncoupled equations. The closed form 

solutions contain between two and six parameters depending on the complexity of the desired 

skip trajectory. Fuel optimal transfer orbits are obtained using the generalized impulse along 

with Keplerian arcs and instantaneous changes in velocity. Families of coplanar and 

noncoplanar transfers for circular orbit to circular orbit are numerically generated. The 

generated transfer trajectories involve the rendezvous of two vehicles. The orbits are not 

globally optimal but rather optimal for the specified number and type of velocity impulses 

specified. The optimal solution to the nonlinear problem is determined via sequential quadratic 

programming which satisfies the Kuhn-Tucker optimality conditions for constrained 

minimization. It is found that for transfer between coplanar and noncoplanar orbits, solutions 

using the generalized impulse compare favorably with solutions obtained by optimal control 

theory. Numerical solution to complex problems involving transfer from general orbit to general 

orbit were not obtained.
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Chapter 1: Introduction and Background 

The general problem of determining orbital transfer trajectories using minimum fuel requires 

characterization of the manner in which the transfer trajectory is produced. Since changes in an 

orbit are produced by some manner of propulsive action, the type of the propulsive burn 

determines the amount of fuel expended. Propulsive burns can be applied continuously over 

some period of time according to a control law which specifies their magnitude and direction or 

they can be approximated by an impulse which acts instantaneously in a defined direction. 

Determining the optimal control during thrusting arcs is difficult and requires complex 

numerical calculations and is not discussed in this paper. For a comprehensive discussion of 

optimal space maneuvers see [9]. This paper concentrates on determining a simple, yet accurate, 

approximation to a continuous thrusting arc in the form of a generalization of the impulse 

approximation mentioned previously. 

Determining transfer orbits is made easier by parameterizing the entire transfer trajectory with 

instantaneously applied propulsive burns commonly called delta-v’s, AV , separated by inst 

Keplerian coasting arcs through the angle, 7. In general, the AV... has components in three 
inst 

dimensional space and these three components become a set of three parameters to be used along 

as a     
with the coasting angle 7 to describe each subarc of the transfer orbit. Using the Jav, nst 

means to measure the propulsive burns, the total fuel expended is related to the cost fuction, J, 

by 

n _ 

J= » |(AVnee),| 

t= 1 
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where n is the number of instantaneous delta-v’s. Motion of the space vehicle during the 

Keplerian arcs is well known and is not discussed in detail in this paper. However, a thorough 

discussion of Keplerian motion is found in [1,2]. The combination of the parameters describing 

the Keplerian arc angle and the instantaneous changes in velocity is sufficient to parameterize 

the amount of fuel used in an orbit transfer problem. 

The pure impulsive approximation to a thrusting maneuver as described above is applied 

instantaneously while the position of the vehicle is assumed constant. This research proposes a 

generalized impulse which produces a change in velocity as well as a change in position that is 

not instantaneous but occurs over some finite period of time. The generalized impulse produces 

these changes in position and velocity as a function of a set of generalized impulse parameters, 

— 

Xg, as follows: 

Vt=V-+ AV(%,) 

tt = t- + At(xX,) 

where + indicates the state after application of the generalized impulse and — indicates the 

state prior to the application of the generalized impulse. 

This paper concentrates on the problem of representing an aeroassist maneuver as a generalized 

impulse and determining the changes in position and velocity as functions of the generalized 

impulse parameters, x, associated with this maneuver. This aeroassisted maneuver involves a 

space trajectory of which part dips into the atmosphere. It is well known that these types of 

Maneuvers can reduce the amount of fuel needed for certain orbit transfer problems. In 

particular, the types of orbit transfers that take advantage of atmospheric flight to reduce the 

amount of fuel used include orbital plane, orbital size and orbital energy change maneuvers. 
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Trajectories which use the combination of propulsive maneuvers in space along with 

aerodynamic maneuvers in the upper portion of the atmosphere to produce these orbital 

changes are classified under the title of synergistic space flight. 

The maneuver sequence is initiated by the application of an appropriate instantaneous AV inet 

to an existing exoatmospheric Keplerian orbit. As a result of this instantaneous delta-v, whose 

components are only part of the entire set of generalized impulse parameters, a new Keplerian 

orbit is generated. The new orbit generated is designated as the deboost orbit and as the vehicle 

moves along the deboost orbit, it is forced to enter the atmosphere. The space vehicle’s motion 

from atmospheric entry to atmospheric exit is mapped by the remaining parameters of the 

generalized impulse. These parameters are designated by the vector of atmospheric parameters, 

Xa and are determined from the atmospheric flight equations. Exit from the atmosphere 

terminates the changes described by the generalized impulse. 

Solution for the state and control variables related to the atmospheric flight using optimal 

control theory proves unsatisfactory because the solution method requires numerical integration 

of the coupled nonlinear system of flight equations. While the problem of determining optimal 

transfers involving the atmosphere has been widely investigated using optimal control theory, 

simplification of the problem to a parameter optimization problem has generally been ignored. 

References [3-7, 10-15, 17-19] provide discussion on atmospheric modeling, atmospheric flight 

and the optimal control laws used for several different types of optimal control problems related 

to aeroassisted transfers. 

Previous work in Hull [4] poses and solves via optimal control theory the problem which uses an 

aetoassisted maneuver for the transfer between two noncoplanar circular orbits of the same 

radius. In this reference, Hull proposes a transfer using instantaneous delta-v’s applied 

tangential to the flight path at three distinct points along the transfer orbit. The first 

instantaneous delta-v is a tangential retroburn applied to inject the vehicle into an elliptical 
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orbit that causes atmospheric entry. The second impulse is applied tangential to the flight path 

at the exit from the atmosphere to raise the exit orbit’s apogee to the radius corresponding to 

the initial circular orbit. The third instantaneous delta-v is applied tangentially at apogee to 

recircularize at the target radius. Because this research concentrates on two impulse maneuvers, 

only the atmospheric portion of the aforementioned transfer orbit is of interest to the current 

research. The results presented by Hull [4] show that atmospheric flight occurs at a nearly 

constant angle-of-attack corresponding to maximum Lift-to-Drag for all cases presented. The 

change in latitude is small and the entire pass through the atmosphere is made at small flight 

path angles. Hull [4] notes that for orbital plane changes exceeding twenty degrees, that the 

gravitational and apparent lift forces become important to the calculation of the state variables 

associated with atmospheric flight. As related to the current research, this suggests that 

exclusion of the gravitational and apparent lift forces produces valid answers for maneuvers 

which change the orbital plane inclination by less than twenty degrees. 

In the work of Vinh and Mease [14], minimum fuel usage transfer orbits between two coplanar 

circular orbits are determined by optimal control theory. However, the circular orbits are not of 

the same radius allowing for the use of two impulses rather than the three required by Hull [4], 

thus more closely paralleling the current research. Similar to Hull [4], the first instantaneous 

delta-v is a tangential retroburn applied to inject the vehicle from a high-Earth orbit (HEO) 

into an elliptical orbit that causes atmospheric entry. After the atmospheric pass, and 

subsequent exit from the atmosphere followed by a Keplerian coast, the second instantaneous 

delta-v is applied to circularize at the radius corresponding the low-Earth orbit (LEO) target 

orbit. The presented results show that the atmospheric pass occurs at small flight path angles 

and that when a heating rate constraint is added to their optimal control problem, flight also 

occurs at a constant lift coefficient. Because the orbit transfer in [14] and the present work is 

performed with two impulses, the atmospheric skip trajectories calculated in [14] and the current 

research are compared. Comparison between the time histories in [14] for heating rate, dynamic 
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pressure and normal g-load provide a measure of the validity between results obtained using the 

proposed generalized impulse and optimal control theory. 

As part of determining the generalized impulse and the associated parameters as an alternative 

to solution by optimal control theory, this research effort determines closed form solutions to the 

atmospheric state variables. These closed form solutions are then applied to the problem of 

finding minimum fuel rendezvous transfer orbits. In obtaining these closed form solutions, 

assumptions on the nature of flight through the atmosphere and the form of the vehicle control 

laws are made. Parameters which completely describe the skip trajectory are proposed. Using 

these parameters along with the parameters defining the rest of the generalized impulse and the 

set of parameters defining the Keplerian space flight, the constrained parameter optimization 

problem is formulated and solved. The solutions to the constrained parameter optimization 

problem provide a quick, yet accurate, method of producing answers to initial questions 

associated with designing transfer orbits using an aeroassisted trajectory or generating an intial 

guess for finding a solution to an optimal control problem. 

The following chapter reiterates the formulation of the generalized impulse as a function of a set 

of parameters. Closed form solutions involving parameters for the atmospheric portion of the 

aeroassisted transfer orbit are developed. Chapter 3 discusses the conversion of the scalar skip 

trajectory results to vector form which is used with existing Keplerian orbits to determine the 

exact position of the vehicle. Chapter 3 also discusses previously existing and added methods 

used in calculating parameterized transfer orbits. Chapter 4 presents the numerical results 

which validate the closed form solutions as well as presenting numerical solutions to several 

minimum fuel transfer orbit problems. Finally, Chapter 5 makes conclusions about the present 

research effort as well as giving some ideas for future research. Analytical evaluation for several 

of the partial derivatives used and evaluation of selected important integrals is presented in 

Appendix A. 
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Chapter 2: Problem Formulation 

2.1: Overview 

This chapter states the problem of forming an orbit transfer trajectory as a function of a set of 

parameters. As part of this formulation, a generalized impulse is presented which takes the 

form of an aeroassisted maneuver. The generalized impulse, which produces a change in 

velocity, AV, a change in position, Ar’, and a change in time, At, involves flight through space 

and the atmosphere. A review of the parameterization of the exoatmospheric equations as done 

in reference 8 is presented and will be used in developing the generalized impulse. Focus is on 

the formulation of the generalized impulse as a function of a set of parameters. 

The formulation of the generalized impulse requires the development of the atmospheric 

differential equations of motion, an atmospheric model, and finding the closed form solutions to 

the equations of motion. Once determined, the closed form solutions reveal the parameters 

needed for the generalized impulse. The newly formed generalized impulse can then be included 

as part of a parameter optimization problem. The optimization problem may be loosely stated 

as to find the set of parameters which describes a transfer orbit sequence so that an interceptor 

will rendezvous with a target and at the same time minimize fuel expenditure. 
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2.2: General Point-Mass Model 

As a basis for formulating the parameter optimization problem, a general point-mass model of 

the differential equations of motion governing the atmospheric flight portion is developed. The 

equations of motion governing space flight are already well known and are not presented here; 

however a complete discussion of the equations of motion for a vehicle under Keplerian motion 

is found in references [1,2]. The following sections give the equations of motion governing the 

atmospheric flight in thier most general form as derived from basic physical laws and then these 

equations are simplified for application to skip trajectories. 

2.2.1: Basic Vector Mechanics 

A coordinate system O,X,Y;Z, is fixed in inertial space, while another coordinate system oryz 

rotates relative to the fixed coordinate system with angular rate @. The arbitrary vector A is 

represented in the rotating system as A = Aci + Agj + Azk. In order to take the time 

derivative of A as observed from the fixed coordinate system, the time derivatives of the unit 

vectors fixed in the rotating system need to be evaluated. The following determines the rate of 

change of A, represented in the rotating system, as observed from the inertial system 

O,X;Y;Z;. 

dj dic dA _ dAg: 
+ Ay G + Az Ge 

dAy : dA: { di 

dt dt Cae tae Rt Ae at   

By definition a fixed vector t, which rotates with angular rate W has the following linear 

. o- ~_ + 4 a 
velocity V = or = W xt. By definingr = i + j + k, Poisson’s equations are obtained 

di _ oxi 

dj +: 
dt “x4J 
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» 

hk = Ox k 

—_—. 

Therefore, substituting the above relations into the equation for dé and grouping the 

appropriate terms 

  

  

—_ — 

dA _ 6A) 4G xa 
t t OLyZ 

rv — 

where oA denotes the rate of change of A as observed from the rotating system ozyz. 
OLyZz 

This principle is now applied to Newton’s Second Law for a rotating Earth relative to the 

inertial reference frame O;X,;Y,Z;. Setting the angular rotation rate of the Earth, We =W = 

—. 

constant and r = A. 

  

  

  

  

dy _é6r|, > ,7> 
dt 8tlosyr 

dV; d;dr 6(6T) 4 Satya ox ( OL ae = at at) = Bae LH Be HF) + Hex GLE we xP) 

dV I _ 6 —+>  6r — > dt = ae fl we x St Dt We xX (wexr) 

— 

= d 
where V, is the absolute inertial velocity vector. Using the expression for at in Newton’s 

Second Law we have 

dV, F 
mat 

3— + — 
m 2&5 =F — 2m( wo x %1]) — modx (ox) 

ét onyz dt oryz 

_— 

where F is the vector of external forces acting on the vehicle. 

Chapter 2: Problem Formulation 8



The rotating reference frame is designated as the Earth fixed coordinate system and has its 

origin at the center of the Earth. This system is defined with the Z, axis aligned with the 

rotation vector of the Earth. The X,Y, plane is in the plane of the equator and defines the Z, 

axis by the right hand rule. The Earth fixed system rotates with the Earth with angular 

velocity We about Z gE: Newton’s Second Law now becomes 

dV —_ _> — 
m— 2 = F — 2m( a x Vg) — mae x ( Gx’) ( 2.1) 

—> 

Defining V, as the velocity vector relative to the Earth fixed rotating reference frame and r as 

the position vector to the vehicle, then 

6r| 7 
dt NE 

( 2.2) 

ér “St? denotes the relative derivative of the position vector with respect to In the above definition, 

the Earth fixed coordinate system and henceforth will indicate the change in position relative to 

the Earth fixed reference frame. 

The position vector r is defined in the Earth fixed coordinate system by its magnitude, by the 

longitude angle 0, measured in the X,Y, plane positive from the Greenwich meridian about the 

Z, axis and by the latitude angle ¢, measured along a meridian positive northward from the 

equatorial plane as seen in Figure 1. Evaluation of the terms in equations 2.1 and 2.2 is made 

easier using the vector components along a rotating coordinate system whose origin is at the 

center of the Earth and whose X axis moves with the vehicle. Hence the Xp axis is coincident 

with the position vector to the vehicle. The Y7 axis is defined to be in the Earth fixed 

coordinate system’s X,Y, plane and orthogonal to the X, axis pointing in an easterly 

direction. The Zp axis is obtained from the right hand rule. Let y be the angle between the 

local horizontal plane, that is the plane passing through the vehicle located at the point M and 

—_- 

orthogonal to the position vector r, and the velocity vector V £ a8 shown in Figure 1. The angle 
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y is the flight path angle and is positive when the velocity vector Ve is above the local 

horizontal plane. The angle 7 is the heading angle and is the angle between the local parallel of 

the latitude and the projection of the velocity vector Ve on the local horizontal plane. The 

heading angle y is measured positive for a right handed rotation of the velocity vector Ve about 

the position vector rt. This coordinate system is designated as the vehicle tracking system. 

Figure 1 shows the relationship between the Earth fixed and the vehicle tracking coordinate 

systems. 

Defining i, i, and k as unit vectors along the vehicle tracking system axes, the position vector T 

and the velocity vector Vi are given by 

Y=ri ( 2.3) 

Ves = (Vsiny) i + (Vcosy cos) | + (Veosy siny) k ( 2.4) 

where the magnitude of Ve is denoted as V to simplify notation. The angular rate of the Earth 

fixed system written in the tracking system is 

— : : ~ 
We = (wesing) i + (wecosd) k 

—. 

Therefore, calculating the cross products for the Coriolis acceleration we x V 5 and the transport 

: = —_ 
acceleration We x ( We xT) we have 

wexVae = ( 2.5) 

—weV(cosycosycos¢) i + weV(cosdsiny — cosysinysing) j + weV(singcosycosy) k 

We X (We xT) = —(rw? cos’¢) i + (rw? sindcos¢) k ( 2.6) 

where equations 2.5 and 2.6 are for use in the right hand side of equation 2.1 

Chapter 2: Problem Formulation 10



2.2.2: Angular Motion   

dV p 
In order to write —~ and dr using the position and velocity vector components along the 

dt “dt 

tracking system, we need to relate the angular rate of the tracking system to Earth fixed 

coordinate system. Using the Earth fixed coordinates ¢ and 9, the angular rate of the tracking 

system is given by decomposing the angular rates dg and 28 dt dt to their components along the 

—_ 

tracking coordinate system. The angular rate of the tracking system, 2, written as components 

along the tracking coordinate system is given by 

= 
Q = (sing 4 di +4 (-¢ 2) 5 + (cos ¢ 4 a?) k 

From Poisson’s equations, the time derivatives of the tracking system unit vectors as observed 

from the Earth fixed coordinate system is 

di _Oxj— d¢ dt = Qxi = (cos a) j + aE k ( 2.7a) 

a = Qx j=(- cosp $f a9) j + (sing 4 d?) & ( 2.7b) 

k ~ + dd, : : 4 
dk =QOxk= (-§8) i — (sing a) 3 ( 2.7c) 

The change in the components of the position vector r represented in the tracking system as 

observed from the Earth fixed system are obtained using equations 2.2, 2.3 and 2.7. 

  

V.dr 
E~ dt 

> d(ri) 
Ve= dt 

V dr di 

Vag = (4) i + (rose 9 d6)5 + aS ) ke ( 2.8) 
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Matching components from equation 2.4 and 2.8, the kinematic expressions are 

a = Vsiny 
( 2.9) 

dg _ Vcosycosy 
dt —srrcos@ ( 2.10) 

d¢ _ Vcosysiny ( 2.11) 
dt r 

2.2.3: Acceleration Relative to Earth Fixed Axes 

Using the velocity vector Ve as defined in the tracking system from equation 2.4, the vehicle 

acceleration we is obtained as follows. The time derivative of equation 2.4 is calculated and 

equations 2.7 and 2.9 - 2.11 substituted to eliminate the time derivatives of the unit vectors. 

After collecting trigonometric terms and applying the appropriate trigonometric identities, the 

vehicle acceleration with respect to the Earth fixed axes system can be written out in component 

form along the tracking system as follows: 

dV 5 

2 5 
(siny GY + Veosy 5? — Vv" cos”) i+ 

2 5 
(cosycospY — Vsin-yeosy — Veossiny + Vv cosycosy)(siny — cosysin¢tan¢g)) j + 

2 - 
(cosysiny SY — Vsin sing + Veos cosy SY + Vv cosy(siny siny) + cosy cos*y tand¢)) k 

where equation 2.12 is used in the left hand side of equation 2.1 
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2.2.4: General Forces 

As a summary, all components of the vector equations 2.1 and 2.2, except the forces acting on 

the vehicle, have been written as components along the tracking coordinate system. Therefore, 

the forces acting on the vehicle need to be decomposed along the vehicle tracking system. In the 

most general case, the forces acting on the vehicle include aerodynamic, thrusting and 

gravitational forces. In determining the aerodynamic force components acting on the vehicle, 

the vertical plane of the vehicle is defined as containing the position vector r and the velocity 

vector Vee It is convenient to designate aerodynamic forces acting on the vehicle in a 

coordinate system with the Yy, axis aligned with the velocity vector and the X y axis in the 

vertical plane pointing radially outward and orthogonal to the Yy axis. The Zy axis 

completes the right handed system as shown in Figure 2. The XyYy2Zy system described is 

designated as the wind axes coordinate system as given in Vinh [17]. 

The aerodynamic forces acting on the vehicle are composed of a tangential and normal force. 

The tangential force is along the velocity vector Va and the normal force is perpendicular to the 

velocity vector Ve and in general directed at an angle o out of the vertical plane. The angle o 

is the bank angle and is positive for a rotation of the normal force vector about -V; (ie. left 

banking as observed from the rear of the vehicle). Written in the wind axes, these forces are 

given as 

— = — 
Faero = F, + Fr ( 2.13) 

= 5 a 
Fn = (Facosc) i+ (Fasing) k ( 2.14) 

“A 

F, = (Fi)3 ( 2.15) 

To resolve aerodynamic force components from the wind coordinate system to the vehicle 

tracking system, two coordinate system rotations are needed. First, a y rotation about the Zy 
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wind axes to align the Xy wind axis with the X7 tracking system axis. Secondly a —y 

rotation about the X7 axis aligns the wind and tracking system axes [17]. The following 

transformation matrix transforms a vector in the wind axes to the appropriate vector in the 

vehicle tracking system. 

tracking wind 
x cosy siny 0 x 

y = —sinycosy cosycosy —siny y ( 2.16) 

Z —sinysiny cosysiny cosy Z 

The gravity force acting on the vehicle is given by the following relation written in the vehicle 

tracking system as 

yr + 

where gravity is a function of the radial distance from the center of the Earth. 

Resolution of the aerodynamic and thrusting forces from the wind axes to the vehicle tracking 

coordinate system, accounting for the out-of-plane bank angle o, is done using equations 2.13 - 

2.16. Figure 2 shows the relationship between the wind axes, the vertical plane and the vehicle 

tracking system. The gravity force as given in equation 2.17 and the resolved aerodynamic 

forces using equation 2.16 determine the complete force vector acting on the vehicle. Written 

as components along the vehicle tracking axes, the force vector is 

—. 

F = 

(F,cosycoso + F,siny — mg) i — ( Fa(sinosiny + sinycoscoso) — F,cosycosy) j 

+ (Fn(sinccosy — sinysin¢cosa) + F,cosysiny) k ( 2.18) 

where equation 2.18 is used in the right hand side of equation 2.1. 

Chapter 2: Problem Formulation 14



2.2.5: General Equations of Motion for Atmospheric Flight 
  

From equations 2.5, 2.6, 2.12 and 2.18 the vector equation 2.1 can be written using components 

along the vehicle tracking axes as equations 2.19, 2.20 and 2.21. 

( 2.19) 

sinyY + Veosy 5? — Vc? = A (Facosycoso + F,siny — mg) + 

2weVcosycosycos¢ + rw? cos*¢ 

( 2.20) 

2 
cosycos ph — Vain yeosp — VeosysinvS® + V-cosycosy(siny — cosysin¢tang) = 

A(F; cosycosy — F,(sinosiny + sinycosy~cosc)) — 2weV(cosdsiny — cosysinysin¢g) 

( 2.21) 

cosysin yay — Vein-ysiny 2 dt + Vcosycosy—— ad + v" cosy(sinysinw + cosy cos tang) = 

2 (Fn(sinocosy — sinysinycosc) + F,cosysiny)) — 2weVsingcosycosy — rw? sindcosd 

To isolate Y equation 2.19 is multiplied by siny, equation 2.20 is multiplied by cosycosy and 

equation 2.21 is multiplied by cosysiny. The three equations are then added together 

component by component. In a similar manner, equation 2.19 is multiplied by —cosy, equation 

2.20 is multiplied by sin-ycosy and equation 2.21 is multiplied by sinysiny. The three equations 

are added together to isolate dy To isolate “, equation 2.20 is multiplied by —siny and 
dt” d 

equation 2.21 is multiplied by cosy. The two equations are then added together. By grouping 

appropriate trigonometric identities during the addition, the following relations for av a and 

dy de ate obtained. 

ae = iF, — gsiny + rw? cos¢(sinycos¢ — cosysinysing) ( 2.22) 
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vat x ( 2.23) 

2 
AF acoso — gcosy + ¥ cosy + 2weVcosycosd + rw? cos¢(cosycos¢ + sinysinysin¢) 

dy _ V ac = ( 2.24) 

. 2 2 

dt pee — ¥ cosycosytang + 2weV(tanysinycosd — sing) — cosy cosdsin dcosy   

dr __ vc 
dt = Vsiny 

Vcosycosy 

rcosd BI
S 

dé _ Vcosysiny 

dt r 

The force equations 2.22 - 2.24, along with the three kinematics equations restated above 

constitute the complete equations of motion over a spherical rotating Earth. From this general 

point-mass model, equations will be developed which satisfy requirements for the problem 

formulation. 

2.3: Problem Statement   

The overall problem is to determine a set of parameters which describes the rendezvous orbit 

transfer between two vehicles, initially in different orbits, with minimum fuel expenditure. A 

convenient choice of parameters is a combination of instantaneously applied changes in velocity, 

— 

AV ins and the angle along the Keplerian coasting arcs, 7. Inclusion of an aeroassisted 

maneuver using this model cannot be done, hence a generalized impulse is proposed which allows 

for the inclusion of the aeroassisted maneuver which changes the velocity as well as the position. 

Parameterization using the AV,.., and the Keplerian coasting arcs was done by Lutze and Cliff 
anst 

[8] and will be used in part together with the proposed generalized impulse described as 
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Vt=V- 4+ AV(%) 

yrt=y- + Ar (29) 

tt =t- + At( 7) 

where — indicates the state prior to the application of the generalized impulse and the + 

indicates the state after the application of the generalized impulse. The parameters used in the 

generalized impulse are given by the vector zg. The generalized impulse parameters, ty, are 

given as 

x) = {(AVe)insi (AVy)inst» (AV:)inaty Xa 

where (AVz)ingi1 (AVy)snses and (AVz),;,,,, are the components of the instantaneously applied 

change in velocity and the vector xq contains parameters related to the atmospheric portion of 

the trajectory. Determination of the vector of atmospheric parameters, Xa, is a sub-problem of 

the overall problem of determining the parameters 7’. 

Therefore, using the generalized impulse, the complete set of parameters used for orbit transfer 

calculation is 

T Vv Vv Vv T 
x = {na May sree On+1s (AV iinet? (AVo) inst» seeeee (AV ,-1)inst» X9 \ 

—_— 

where 7 denotes an angle along a Keplerian coasting arc and (AV),,,,, , which contains the three 

components (AVz);nsis (AVy)insy: and (AVz);,,;; denotes a pure instantaneous change in inst 

velocity and x, Tis the vector containing the generalized impulse parameters which includes one 

particular deboost delta-v. Using the parameters given above, a transfer trajectory consists of 

the first coasting arc followed by an impulse, a second coasting arc followed by an impulse and 

so on up to the number of allowed impulses. The last impulse is used by the interceptor to 

match velocities at the rendezvous point. The last impulse is not a parameter, as it does not 
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influence the trajectory, but it is included in calculating the amount of fuel needed to 

accomplish the transfer orbit. The performance index used to measure the amount of fuel 

expended is given as 

    

n _ 

J= y [ta Vinst)i 
= 

where n is the number of allowed impulses. The value of n is specified before each trajectory is 

calculated and does not appear as a parameter. Now that the performance index and the 

parameters have been defined the general minimization problem, using the proposed parameters, 

is stated in a formal manner as follows 

Minimize J (2) subject to 

g,( 2) = 0 a => 1...me 

9;( 7) > 0 j= Moyers m 

where the following boundary conditions apply 

— = — —= _— 
wherez ER", ty C randzt, C Ty 

and all functions are continuously differentiable. 

In the above statement, me is the number of equality constraints and m is the total number of 

: —- — : 
constraints and the vectors x, Xg and x, are as defined previously. 

2.4: Skip Trajectory Point-Mass Model 
  

In order to solve the general minimization problem and to solve for the elapsed time, the change 

in position and change in velocity that occur during the atmospheric portion of the generalized 

impulse need to be determined. Formally stated, this sub-problem is 
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Given the dynamical system of equations 2.9 - 2.11 and 2.22 - 2.24, determine a set 

of parameters, fa, which allows for the analytic solution of each state variable and 

the associated time of flight. 

As a first step in solving the sub-problem, the general point-mass model has to be simplified. 

This section develops a set of simplified atmospheric flight equations by making assumptions 

relative to the skip trajectory flight regime, the physical properties of the Earth, and the 

properties of the Earth’s atmosphere. The simplified flight equations can then integrated in 

closed form. These closed form solutions contain the required set of parameters. 

2.4.1: Aerodynamic Forces   

Since we are only concerned with unpowered skip trajectories through the atmosphere, the thrust 

forces are zero and the normal and tangential forces in the force equations 2.22 - 2.24 are 

composed of lift and drag given as 

Fn = L(r, Ves Cr) ( 2.25) 

F, = D(r, Ve» Re, Cr) ( 2.26) 

The drag force acts opposite to the velocity vector while the lift force acts orthogonal to the 

velocity vector in the direction defined for the normal force. Assuming that the atmosphere is 

at rest with respect to the Earth, then the Earth and its atmosphere rotate at the same constant 

angular rate We and there are no wind shear forces produced by a moving atmosphere. Figures 2 

and 3 show the relationship between the lift, drag and gravitational forces. A lateral force on 

the vehicle is generated when the normal force is rotated out of the vertical plane via such 

vehicle controls as the ailerons. Choosing the usual definitions for the drag and lift forces as 

D = hp(r)VgSCp(a, M, Re) ( 2.27) 
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L = 4p(t)V_SC,(a, M) ( 2.28) 

where p is the atmospheric density as a function of radial position, S is the vehicle reference 

planform area, Cp and C, are the drag and lift coefficients. The following general drag polar 

relation between lift and drag will be used 

n 
Cp = Cpg(M, Re) + K(M, Re) C;(a, M) ( 2.29) 

The zero lift drag coefficient, Cp, is the drag due to the profile and wave drag of the vehicle. 

The induced drag factor, K, results from the effects of lift. In general these two drag factors are 

a function of the flight regime, where M is the Mach number and Re is the Reynolds number. 

The exponent n can be set according to the appropriate flight regime. Since skip trajectories 

involve flight at high hypersonic velocities, Cp and K are assumed as constants. To ease 

future calculations, the lift coefficient, C;, is chosen as the control variable instead of the angle- 

of-attack, a. In order to form convenient ratios for use in the equations of motion 2.22 - 2.24, 

general expressions for the lift coefficient for maximum lift-to-drag, C7, the drag coefficient for 

maximum lift-to-drag, Cj, and the maximum Lift-to-Drag ratio, Eb”, are determined. The 

Lift-to-Drag ratio, E, is defined as 

= Cr — bh 2.30 co I 
F
e
 

For the maximum Lift-to-Drag ratio, E*, we need to minimize the expression given in equation 

2.30. Taking the partial derivative of E with respect to C, and using one dimensional 

minimization, calculus gives the lift coefficient for maximum lift-to-drag, C7, as 

OF _ 9 

oC, 

(Cyoo + K CB) - (C,)mkCE” »)= 0 
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cy = Lae 5l" ( 2.31) 

where n 4 1. Substituting equation 2.31 into the general drag polar equation 2.29 we obtain 

the drag coefficient for maximum lift-to-drag, Cj), which is given as 

  

. . Cpo 
Ch = Cog + K(CZ)" = Coo + Ga — 1) 

nC no + __ 2.32 Cp (n _ 1) ( 3 ) 

Combining C7and Cj, to form E* 

E*= Cr, 
Cp 

1 

E*¥= Cro (n ~~ iy" a 

Kin — 1)(nC po) 

78 (i—n (n—1 cfm — 1) | 
E*= | —20 2.33 

K on” ( ) 

Defining the scaled lift coefficient, A, as 

Cr \= ot ( 2.34) 

and substituting into the general drag polar equation 2.29 and using equations 2.31 and 2.32 

— C* 
Cp = (n 7 Yor, + «(ARI 

Cp _(n—1) 4+ 

Bl
e 

    

( 2.35) 

C 
The ratios a and on are useful in reducing the force equations of motion 2.22 - 2.24. 

L D 
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2.4.2: Atmospheric Model 
  

Because the lift, drag and gravitational forces are functions of altitude, a model of the density 

and gravity field needs to be determined. Newton’s inverse square law 

  

2 
g(t) = a ( 2.36) 

determines the gravity field, where go is the standard sea-level reference value for the 

acceleration due to gravity and ro is the mean radius of the Earth. Assuming an ideal gas law 

relation, the equation of state is 

where R is the gas constant for air. Using the fact that the atmospheric pressure at any point 

is proportional to the amount of atmosphere above that point, the following relation holds 

dp =—pgdr ( 2.38) 

From the equation of state 

and using equation 2.38 the differential equation of state is 

d g(r) dT(r) 
7 = -| R T(r) + 1 a je 

  

in the above relation the term in brackets is defined as the inverse scale height f(r) [3, 17, 18]. 

_ _8it) dT(r) 
6) = aI tT a 

Therefore, the differential equation of state is 
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GP = —p(ryar (2.39) 

Integration of equation 2.39 is possible under the assumption that the quantity fr is a constant. 

Reference [3] discusses in detail the properties of the constant @r atmospheric model. Other 

possible assumptions on the type of atmosphere are the strict exponential and the isothermal 

atmosphere [17, 18]. From equation 2.39 @ = @(r), however since AG) has a large average 

value, considering the inverse scale height, 8, as a constant introduces an error on the order of 

1 Br into equation 2.39. Since fr is a large value the introduced error is small compared to unity. 

Therefore, the Gr = constant atmosphere is retained while also holding @ constant. The choice 

of the Gr = constant atmosphere is convenient for simplification of the force and kinematic 

flight equations. Performing the integration of equation 2.39 yields 

d I I'p--n]* 
In(p) —In(po) = —fr[In(r) —In(r0) | 

_ (gy ( 2.40) 
To 

where po is the sea-level density of air. The value of k? = @r = 900 will be used as derived 

from reference [3] for flight in the Earth’s atmosphere. Figure 4 shows altitude versus density 

for the constant @r atmosphere. 

2.4.3: Skip Trajectory Equations of Motion 
  

Looking at the magnitudes of the terms from equation 2.1, the transport acceleration term has a 

maximum value when the vehicle is at the equator. The Coriolis acceleration has a maximum 

value when the vehicle is traveling in the equatorial plane. For the Earth, which has an angular 

rate of 7.292 x 107° radians per second, terms involving rw? are on the order of one percent of 

sea-level gravity when evaluated at the Earth’s surface. For near orbital flight speeds at an 
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altitude of 60 kilometers (200,000 ft), terms involving 2w-V are on the order of one tenth sea 

level gravity. Therefore, the rw? and 2weV terms will be neglected. Under this assumption the 

force equations of motion 2.22 - 2.24 reduce to 

dv = iF, — gsiny 

2 
Vv a = i. Fncoso — (g — v eos 

d F,sin 2 
Vv St = mse — ¥. cosycosptandg 

Next, the expressions for the normal and tangential forces from equations 2.25 - 2.28 are 

substituted into the above equations yielding the force equations of motion for a nonthrusting 

vehicle over a spherical nonrotating Earth. 

  

pV’SC 
wv = > — gsiny ( 2.41) 

v’2SC 2 
Vt = i cose — ( g — © ) cosy ( 2.42) 

V’SC, = 2 
Vv e = aa cosy v cosycos~tand ( 2.43)   

O° 

Equations 2.41 - 2.43 along with the previously derived kinematic equations 

at = Vsiny ( 2.44) 

dg _ Vcosycosy 
dt ~ _rcosd ( 2.45) 

d Veosysin fax Vooeysiny ( 2.46) 

are the set of six scalar equations necessary to completely describe the motion of the vehicle. 
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2.4.4: Skip Trajectory Dimensionless Equations of Motion 
  

In order to further simplify the six differential equations 2.41 - 2.46, Vinh [17] proposed several 

dimensionless variables. These dimensionless variables let the equations become decoupled and 

allow for solution by closed form integration. The first of the variables proposed by Vinh is the 

dimensionless arc length, s, which is defined as 

t 

s =/ Vv cosy dt ( 2.47) 

o 

where t is the time of flight. Using the above equation to change the independent variable from 

time to arc length, the kinematic equations 2.44 - 2.46 become 

  

a = rtany ( 2.48) 

dé _ cose 

ds ~ cos¢ 
( 2.49) 

Sf = siny ( 2.50) 

while the force equations 2.41 - 2.43 become 

    

    

pVv’SC 
ow = (-Smee2 — gtany v ( 2.51) 

dy _ pv'SC, cosa Vv? r 
a =( om ey — (8 -*) v? (2-62) 

dy pV’SC, gi Vv? = ( om cosy — + cosycosptang Veosy ( 2.53) 

As proposed by Vinh [17], the following modified nondimensional Chapman variables are 

defined as follows to further simplify the equations of motion. 
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B= rl ( 2.54) 

2 

v= a ( 2.55) 

where g and p are determined from 2.36 and 2.40 respectively. Equations 2.54 and 2.55 are 

used to replace r and V respectively in equations of motion, 2.48 - 2.53. In their most general 

form, since the Chapman variables Z = Z(p(r), 1, @(r)) and v = v(V, g(r), r) chain rule 

differentiation is used to rewrite the equations of motion using the dimensionless Chapman 

variables. The partial derivatives needed are found in Appendix A. For completeness, inclusion 

of @ = £(z) is presented in the process of rewriting the equations with the assumption of @ as a 

constant being used at the end of the rewriting process and in any following equations. Using 

the partial derivatives from Appendix A and forming the dimensionless variables the following 

transformation for the altitude related state variable Z, occurs 

az _ 02 Op Or , O2 Or , 92 OB or 
ds Op Or Os Or Os Of Or Os 

dZ _ Z zZ Op ds = (-s2 + a 7 Jaan) rtany 

dZ _ 1 1 08 ds — BrZ f — 26 + sper tany ( 2.56) 

for the constant {r= 900 atmosphere, the term in brackets from equation 2.56 is 

approximately unity [17, 18]. Therefore, equation 2.56 reduces to 

dZ_ _ 2 ds = k*Ztany ( 2.57) 

In a similar manner, with the subsitution for Cp, the transformation of the velocity state 

variable leads to 

dv _ dv OV , Ov 98 Gr, Ov Or 
ds ~~ 0V 0s _— Og Or Os Or Os 

Chapter 2: Problem Formulation 26



_ n 

dy = pavik [n= 14] (2 — vjtany (2.58)   

The other four state equations involve angles which are already dimensionless and only require 

that the dimensionless variables be formed. These four equations are as follows 

d ee _ ZAkcose 4 ( -$) ( 2.59) 

dg _ cos ot ( 2.60) 

“ = siny) ( 2.61) 

oe _ ZAksing — cosvtang ( 2.62) 
s cos” ¥ 

Further simplification of the kinematic and force equations is possible by making some 

assumptions on the properties of the vehicle’s trajectory. For atmospheric skip trajectories in 

the upper portion of the atmosphere, speeds are near orbital velocity. In equation 2.52, the 

gravitational acceleration nearly cancels the generated centrifugal relief term. Therefore, in 

equation 2.59 the term ( — 7) will be neglected. Since the skip trajectory occurs at small 

flight path angles, tany is small. Therefore, the component of gravity tangent to the flight path 

is small compared to the generated aerodynamic forces. With this assumption, the gravity term 

gr 
=7tany as given in equation 2.51 or the same term when transformed to (2 — v)tany as given in 
V 

equation 2.58 will be neglected. Using these two assumptions, the equations of motion become 

  

dZ_ _ 12 ds — — & 4tany ( 2.63) 

dy _ —2vZk|n —1 +0" 
ds — E*cosy n ( 2.64) 

d a _ ZAlkcose ( 2.65) 
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  d@ __ cosy 

ds ~ cos¢d (2.66) 

a = siny ( 2.67) 

dp _ ZAksi a= cos?) — cosytand ( 2.68) 

A third assumption is that the skip trajectory covers a small cross range. Using this 

assumption, a small angle approximation involving ¢ can be used. Therefore, in equation 2.66, 

cos¢é ~ 1. Also, the term cosytand will be neglected in equation 2.68. The reduced 

dimensionless equations of motion are now written as 

  

ae = — k?Ztany ( 2.69) 

dv _ —2vZk|n — 1 +2") 
ds ~ E*cosy n (2-70) 

a = cosy ( 2.71) 

ae = sing ( 2.72) 

dy _ ZAksineg 2.73 
ds ~~ cosy 

( . ) 

dy _2Z = Akcose ( 2.74) 

where the equation for the time of flight is given by 

ds _ ¥v cosy ( 2.75) 

2.5: Closed Form Solutions 

As a first step in solving the formulated general problem, the solutions to the equations of 

motion are reduced to closed form. The set of closed form solutions consist of an analytic 

equation for each state variable that depends only on the initial and final values of the 
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independent variable. Included in the closed form equations are parameters which influence the 

state variable. When the parameter’s value is changed, at any given time any state variable 

which depends on that parameter is also changed. The solutions also depend upon the physical 

characteristics of the vehicle. 

2.5.1: Method of Performing the Skip Trajectory 
  

The first step in determining the closed form solutions is to formulate how the skip will be 

performed. A general atmospheric skip trajectory is proposed which contains three flight 

subarcs. The first subarc begins with an initial velocity and flight path angle (Ve, ye) at the 

altitude defined as the boundary to the atmosphere. This subarc, called the descent arc, 

continues until the flight path angle equals zero. The second subarc is determined by holding 

constant altitude at a zero flight path angle for some specified amount of time. The third 

subarc, called the ascent arc, begins with zero flight path angle and exits the atmosphere with 

the final speed and flight path angle determined when the exit altitude equals the entrance 

altitude. The following sections present the boundary conditions and the set of closed form 

flight equations for each of the three arcs described above. 

2.5.2: Boundary Conditions for the Constant Altitude Subarc 
  

Solution to the differential flight equations along a constant altitude subarc requires the 

following boundary conditions 

Ve = Given by v, at the end of the descent subarc 

Ze = Given by Z, at the end of the descent subarc 

ye = 0 

we = 0 
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ge = 0 

6. — 0 

Se = 0 

Vv, = free 

Z, = Same as Ze 

1; = 0 

wy = free 

ob; = free 

0, = free 

Ss, = free 

2.5.3: Closed Form Solutions for Constant Altitude Subarc 

As proposed for the general skip trajectory, inclusion of a subarc at constant altitude is possible. 

This subarc is developed for cases where there is a minimum altitude constraint on the skip 

trajectory. The equation for the dimensionless arc length, 2.75 is also used to include time as a 

relevant variable. For constant altitude flight, two conditions must be satisfied. These two 

conditions being that the altitude does not change over time and that the flight path angle is 

constant. These conditions are given by the equations 

dZ_g—_}? ds = 0 = — k*Ztany ( 2.76) 

dy ZA GL = 0 = AAkeose ( 2.77) 

Equation 2.76 is satisfied for the condition 

y= 0 ( 2.78a) 
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Equation 2.77 is satisfied under either of the two conditions 

+=0 ( 2.78b) 

( 2.78c) 

wi
ly
 

The sign on the bank angle used along a constant altitude subarc is not a parameter but is 

chosen apriori to solving the orbit transfer problem. 

Using the condition 2.78a, solutions for the state variables are given by direct integration as 

in [] = = 2am = 1 4") s ( 2.79) 

b = ZAksino s ( 2.80) 

6 = aking sin [ ZAksino s | ( 2.81) 

$= gts Lt — cos ZAksino s]] ( 2.82) 

Equations 2.81 and 2.82 are obtained by substituting the expression from equation 2.80 in for 

the heading angle before integration. Substituting equation 2.79 into the expression for time, 

given by equation 2.75, yields 

_ _ n 
ds _ en =Beln — 1 +A") +A J | franw® 

dt ~ k3 
  

After separation of variables and integration, the expression for the arc length as a function of 

time is given as 

.- ate | In | n—1 ated + ] ( 2.83) 
k(n — 1 + n E*k® 
  

Chapter 2: Problem Formulation 31



Although we usually would like to use t = t(s), equation 2.83 is used because time has a more 

physical meaning and is easier to specify than the arc length. Equations 2.79 - 2.82 are the 

general closed form equations used for flight at constant altitude. The equation for time, 2.83, 

holds for either condition 2.78b or 2.78. When the condition given by ¢ = +5 applies, the 

parameterized flight equations are given as 

in ys] = Zn ( 2.84) 

b= +ZAks ( 2.85) 

6= OXE sin [ ZAK 8] ( 2.86) 

d= tot; Lt — cos[ Zdk 5] ( 2.87) 

where a positive or negative sign results from a positive or negative bank angle respectively. 

Equations 2.84 - 2.87 apply when a heading change is necessary along the constant altitude 

subarc. In order to produce the change in heading along the constant altitude subarc, A + 0. 

When the condition corresponding to 1 = 0 applies, the flight equations along a constant 

altitude subarc are given as 

In fe] = PA 1d, ( 2.88) 

b= 0 ( 2.89) 

O=s ( 2.90) 

= 0 ( 2.91) 

Since terms involving gravity have been assumed out of the problem, the results given by 

equations 2.84 - 2.91 describe two methods of flight along a constant altitude subarc neglecting 

gravitational effects. For the case where ¢ = +7, all lift is out of the vertical plane, thus the 

choice for the lift coefficient is arbitrary and the equations of motion are given by equations 2.84 

- 2.87. For 4 = 0, there is no generated lift force, thus the bank orientation of the vehicle is 
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irrelevant and no plane change can occur. The equations of motion corresponding to A = 0 are 

given by equations 2.88 - 2.91. 

2.5.4: Boundary Conditions for the Descent and Ascent Subarcs 
  

Solution to the differential flight equations along the descent and ascent subarcs require that 

each subarc have appropriate boundary conditions. The following boundary conditions are used 

for the descent subarc 

Ve = Specified by the Keplerian orbit at the entrance to the atmosphere 

Ze = Specified by the altitude for the outer edge of the atmosphere 

Ye = Specified by the Keplerian orbit at the entrance to the atmosphere 

ve = 0 

de = 0 

6. = 0 

te = 0 

v, = free 

Z; = free 

Y= 0 

vy = free 

b; = free 

0, = free 

t,; = free 

The following boundary conditions are used for the ascent subarc 

Ve = Specified by v, from the constant altitude subarc 
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Ze = Specified by the altitude of the constant altitude subarc 

Ye = 0 

ve = 0 

de = 0 

6. = 0 

te = 0 

v, = free 

Z; = Specified by the altitude for the outer edge of the atmosphere 

Vy; = Specified by Ze, Z f and ye needed to reach the outer edge of the atmosphere 

vy = free 

db; = free 

0, = free 

t, = free 

2.5.5: Closed Form Solutions for the Descent and Ascent Subarcs 

The proposed method of the skip trajectory indicates that an appropriate independent variable is 

the flight path angle y rather than the dimensionless arc length s as given in section 2.4. 

Therefore changing the independent variable to y by dividing equations 2.69 - 2.73 by equation 

2.74 the dimensionless equations of motion become 

  

  

dZ _ _ ksiny 
dy” _— Acoso ( 2.92) 

dv _ —2v E —1 +4") 
dy = E*cose D ( 2.93) 

dy T= eae ( 2.94) 
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d@ _ cos¢cosy 

dy — kZAcoso ( 2.95) 

dé __ sinycosy 
dy kZAcoso ( 2.96) 

In addition to the state variables, the time of flight also is calculated for later use in the 

transfer orbit calculations. From equation 2.75, and after forming the modified Chapman 

variables, the dimensionless differential equation for time is 

dt k? (2.97) 
dy AZcoso { B? pv 

where yp is the gravitational parameter for the Earth. The above equations can now be 

integrated in closed form if assumptions are made about the vehicle controls, 4 and o, as 

functions of the independent variable y. The following assumption is used to obtain the 

parameterized closed form solutions. 

Assume that the vehicle controls for lift (A) and bank (co) are held constant 

throughout each subarc of the skip trajectory. 

Using this assumption and performing direct integration on equations 2.92 - 2.94, the following 

equations for the descent and ascent arcs are obtained 

  Z=Ze — Ketes (eos — cosye) ( 2.98) 

—2(n — 1 + A*) vy] — | 
In| ¥| ~ E*nAcose (7 ve) ( 2.99) 

Y= tano| In(tan{ 3 + 5) — In( tan{ + ¥) ( 2.100) 

Because the expressions 2.95 and 2.96 contain Z and y, the results from 2.98 and 2.100 must be 

substituted into the equations before integration can be performed. However, since equations 
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2.98 and 2.100 contain y in a nonlinear form, a small angle approximation for + will be applied 

to equations 2.92 and 2.94 before they are integrated and substituted into equations 2.95 and 

2.96. Using the small angle approximation, equations for Z and y are 

  Z=Ze — (7? —72) ( 2.101) 
ates 

y = tano(y — Ye) ( 2.102) 

Substituting equations 2.101 and 2.102 into equation 2.95, the following differential equation for 

@ along the descent and ascent arcs is obtained 

do _ __cos(Je + tana(y — Ye)) ( 2.103) 
dy — kAcosa(Ze — (7? —72)) 

  

a 

Likewise, when equations 2.101 and 2.102 are substituted into equation 2.96, the following 

differential equation for ¢ along the descent and ascent arcs is obtained 

dg _ __sin(de + tano(y — Ye) ( 2.104) 
dy kAcoso(Ze — (7? —72)) 
  

  

Theos 

Also,.when equations 2.99 and 2.101 for v and Z are substituted into the differential equation for 

time, 2.97, the following equation is obtained 

  

2 

dt _ k ( 2.105) 
dy 

n kp ~ea = 1+ A, Acose| Ze Theosg(? > <2) *wveexp| = E*nAcoso (7 1) 
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Equations 2.103 - 2.105 are now functions only of the entrance conditions and the independent 

variable y and can be integrated under suitable assumptions. Details of the integration and the 

approximations used to obtain the following solutions are given in Appendix A, with the results 

  

  

  

  

given as 

¢= (2.106) 

Y 

C ¥° 3 2 
S| (tanto) — (30tan*o — Cotan®o)7, — (30C,tan*o — Cytan®o — 360tan?c)y 

Ye 

¥ 

4 Cy 720 — 360C,tan?o + 30C;tan‘e — C3tan®o in {Cy + ¥ 4 

a 2 {C2 C)- 7 
Ye 

7 
Cc +8 4 2 4? 

5040 (tan’o)-— — (42tan’o — Cotan’o) — (42C,tan®o — Cytan’o — e40tan?o)% | 

Ye 

Y 

C3 | 5040tano — 840C,tan?o + 42C;tan®o _ C5tan7o 2 
~ 5040 3 In(C2 — 7°) 

Ye 

i ( 2.107) 

Y 
C 5 3 2 

CA (tanto) — (30tan*o — Catan’) — (30C,tan*o — Cztan°o — 360tan?o)y 

Ye 

Y 

+ CG, | 720 — 360Cytan?o0 + 30C, tanto — Cotan®o In {C. + ¥ _ 

720 2 {CG io 
Ve 

Y 
6 4 

5 

a (tan? a) -_ (42tan°o - Cotan’o) — (42Ctan°o — Cotan7o — s101an2)); } 

Ye 

Y 

_ 3 2B | 7 
C3 | So4otane 840C,tan°o + 42C,tan°o — C,tan'o In(Cy — | 
  

+ 5040 3 
Ye 
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Y 

  

  

    

_ Ceexp(—C27) Cr +7 t= OO net + ( 2.108) 
Ve 

7 

C,gCyexp(C,C,) | exp(a,x,) In(x,) aX, . (a,X,)’ (a,x1)* Ceptcse) motasd a) — Bigs + + GE. eB) 
Ye 

  

CeCzexp(—C2Cz) explore Ines) _ ine 4 2% 4 (am)? (eon) || 
2C, ay 1! 2.2   

where the constants are defined in Appendix A. Equations 2.98 - 2.100 and 2.106 - 2.108 are the 

closed form solutions for Z, v, ¥, ¢, 8 and t along the descent and ascent arcs, with the flight 

path angle y as the independent variable. 

2.6: Skip Trajectory Parameters 
  

From the closed form solutions, the parameters describing an atmospheric skip trajectory can 

now be stated. In the most general case, as postulated in obtaining the closed form solutions, 

there are three subarcs of flight. Each subarc can be described by entry conditions and a group 

of parameters. Because the skip trajectory is being separated into three separate regions, the 

assumption that the vehicle controls can change instantaneously as as we go from one region to 

the next will be used. The parameters for the descent and ascent subarcs are the scaled lift 

coefficient, 4, and the bank angle o. For the constant altitude subarc, by choosing the scaled 

lift coefficient parameter as zero, the bank angle is arbitrary and is not a parameter; by 

choosing the scaled lift coefficient to be a nonzero parameter, the bank angle is forced to be 

either positive or negative ninety degrees and is not a parameter but is chosen apriori to solving 

for the optimal parameter values. Using these conditions regarding the scaled lift coefficient and 
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specifying the time to remain in flight at constant altitude gives the parameters for the constant 

altitude subarc. 

Therefore, by choosing various degrees of complexity for the skip trajectory, the flight through 

the atmosphere could have between two and six parameters. The six parameters are defined in 

the following manner 

oz - Descent subarc bank angle ( 2.109) 

Aq - Descent subarc scaled lift coefficient 

Ac - Constant altitude subarc scaled lift coefficient 

t. - Constant altitude subarc time of flight 

Oa - Ascent subarc bank angle 

Aa - Ascent subarc scaled lift coefficient 

Chapter 2: Problem Formulation 39



Chapter 3: Skip Trajectory Implementation 

3.1: Overview 

This chapter discusses the incorporation of the closed form skip trajectory flight equations into 

an existing computer algorithm. The capabilities of the previous computer algorithm are 

detailed and modifications required to accommodate development of the computer algorithm for 

the aeroassisted trajectory are presented. The cost function and constraints associated with the 

aeroassisted transfer trajectories are discussed for application to the proposed problem of 

generating minimum fuel rendezvous transfer orbits. 

3.2: Previous Orbit Calculation Procedure 

A basis for the present research effort is to add to the computer algorithm developed at Virginia 

Polytechnic Institute and State University, Blacksburg, Virginia [8]. Prior to this research, the 

algorithm was capable of determining optimal transfer orbits using the components of velocity 

impulses (AV,, st) a8 parameters. The algorithm is based on selecting a set of these parameters, 

calculating a cost function, a set of constraints and applying a nonlinear parameter optimization 

routine to update the parameters selected until all constraints are satisfied and the cost function 

is as small as possible. The present research replaces one of the velocity impulses, AV inst by 

the generalized impulse which includes an aeroassisted maneuver to change velocity and 

position. The parameters associated with the generalized impulse in combination with those 
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associated with pure velocity impulse delta-v’s and the angles associated with Keplerian coasting 

arcs are the parameters used to describe the transfer orbit. 

The generalized impulse must be incorporated in a compatible manner with the existing method 

of function and constraint evaluation. In particular, the current procedure determines the initial 

conditions of one Keplerian coasting arc based on the final conditions of the previous Keplerian 

coasting arc in the following manner 

3.3: Calculating the Generalized Impulse for an Aeroassisted Maneuver 
  

This section covers the incorporation of the scalar skip trajectory equations into the previously 

existing algorithm. The conversion of the Keplerian orbital elements at the edge of the 

atmosphere to useful entrance conditions for the skip trajectory is covered. After the skip 

trajectory is executed, discussion of the conversion performed to determine the new Keplerian 

orbit is presented. The result enables the generalized impulse to be calculated as 

rt =;r- + Ar 

Vt=V-+AV 

tt =t- + At 

3.3.1: Coordinate Systems   

During the calculation of the Keplerian orbits, an inertial coordinate system useful for 

calculation of orbital elements and the vehicle’s position in space needs to be defined. The 
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inertial coordinate system used is called the geocentric-equatorial coordinate system. This 

system has its origin at the Earth’s center. The X~Ygq plane is the Earth’s equatorial plane 

with the X¢q axis pointing to the vernal equinox. The Z, axis completes the right handed 

system and points to the north pole. As a note, since the developed atmospheric flight equations 

in Chapter 2 neglect the rotational effects of the Earth, the Earth fixed coordinate system and 

the geocentric-equatorial coordinate system are identical if the Greenwich meridian specified by 

X, is aligned with the vernal equinox. The reference X, axis is therefore chosen to coincide 

with the X, axis. To exactly locate the vehicle in space, two angles and the radial distance are 

used. The two angles are called the right ascension (@) and the declination (6). The right 

ascension is measured positive from the Xj axis about the Z, axis in the X~Yq plane to the 

projection of the position vector on the XGYq plane. The declination is measured positive 

northward from the X,Y q plane along a meridian to the position vector of the vehicle. Figure 

5 shows the geocentric-equatorial coordinate system. Figure 6 shows the definition of the right 

ascension and declination. 

3.3.2: Calculation of Entrance Conditions 

When an aeroassisted orbit is generated, the orbital properties of the vehicle at the entrance to 

the atmosphere are used to calculate the initial conditions for the skip trajectory equations. 

These are usually given as position and velocity vector components in the geocentric-equatorial 

coordinate system and are converted to the needed scalar quantities. Conversion to the scalar 

entrance velocity and initial flight path at the radius corresponding to the outer edge of the 

atmosphere is done as follows: 

  

  

    

    

— 

Ve = Ve ( 3.1) 

5» = 

ve = —cos~ ! li «VI ( 3.2) 

lel lV.     
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where the e subscript denotes conditions at entrance to the atmosphere. For execution of a skip 

trajectory to occur, the initial flight path angle is always negative. Given these two initial 

conditions and the set of parameters from equations 2.109 designating the type of skip 

trajectory, the entire aeroassisted portion of the transfer orbit is calculated and the resulting 

changes in position, velocity and time are determined. 

3.3.3: Changes in Position Due to the Aeroassisted Maneuver 
  

As stated in Chapter 2, the skip trajectory through the atmosphere is completely described by 

up to six parameters. In the general case of six parameters, the skip trajectory consists of three 

portions; the descent arc, the constant altitude subarc and the ascent subarc. Inclusion of the 

skip trajectory calculations in the general form dictates that the changes in the state variables be 

accounted for even if a simpler type of trajectory is chosen. Determining the changes in 

position due to the aeroassisted maneuver requires modified use of the tracking coordinate 

system described in section 2.2.1. 

The tracking system defined in section 2.2.1 was chosen because the definition of the Earth fixed 

axes relied on the rotation vector of the Earth. It was convenient to align the Earth fixed Z, 

axis with the rotation vector of the Earth which in turn influenced the choice of orientation for 

the vehicle tracking coordinate system. Since the Earth’s rotation has been assumed out of the 

problem, an arbitrary choice of the orientation of the vehicle tracking coordinate system relative 

to the Earth fixed coordinate system is more convenient. In particular, new reference planes can 

be defined which include the initial position and velocity at the beginning of each portion of the 

skip trajectory. It is convenient to think of each new reference plane that is defined as a new 

“equator” and its corresponding vehicle tracking coordinate system determining the changes in 

state variables relative to the new “equator”. In order to determine overall changes in 
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longitude, latitude and heading an original reference plane is defined and the relationship 

between the original reference and any subsequent reference planes must be established. 

As related to the proposed skip trajectory, the original reference plane is the Keplerian orbit at 

the point of entrance to the atmosphere. The changes in the state variables along the 

atmospheric descent subarc are measured relative to original reference plane using the boundary 

conditions pertaining to the descent subarc. At the beginning of the constant altitude subarc, a 

new reference plane is defined by the position vector, r, and the velocity vector, Vi at the 

point in the skip trajectory where the flight path angle is zero. The new reference plane is 

related to the initial reference plane by the changes in longitude, latitude and heading produced 

during the descent subarc. The changes in the state variables along the constant altitude subarc 

are measured relative to the newly defined reference plane using the boundary conditions 

pertaining to the constant altitude subarc. At the beginning of the ascent subarc, a new 

reference plane is defined by the position vector, r, and the velocity vector, Ves at the end of 

the constant altitude subarc. The ascent subarc reference plane is related to the constant 

altitude reference plane by the changes in longitude, latitude and heading produced during the 

constant altitude subarc. The changes in the state variables along the ascent subarc are 

measured relative to the third reference plane using the boundary conditions pertaining to the 

ascent subarc. Finally, a fourth reference plane is defined by the position vector, r, and the 

velocity vector, View at the exit from the atmosphere. This reference plane is the plane of the 

new Keplerian orbit after exiting the atmosphere. As before, this reference plane is related to 

the ascent reference plane by changes in longitude, latitude and heading produced during the 

ascent subarc. Figure 7 shows the general relationship between the original, descent, constant 

altitude, ascent and exit reference planes for an arbitrary atmospheric entry point. 

By storing the changes in longitude, latitude and heading that occur during each subarc, the 

position and velocity vectors represented in the vehicle tracking coordinate system aligned with 

Chapter 3: Skip Trajectory Implementation 44



the exit Keplerian orbit at atmospheric exit can be written as components in the vehicle tracking 

coordinate system aligned with the entry Keplerian orbit at atmospheric entry. Once this is 

done, and by using the orbital elements of the entry Keplerian orbit, the orbital elements of the 

new Keplerian orbit can be found and the position vector and velocity vector at the point of 

atmospheric exit can be written in geocentric-equatorial coordinates. Details of the required 

procedure follow. 

As a first step in calculating the position and velocity vector components in the geocentric- 

equatorial coordinate system, the total changes in longitude, latitude and heading produced 

during the atmospheric skip are determined. Transformation of a vector represented in the 

vehicle tracking coordinate system aligned with the Keplerian orbit at atmospheric entry to the 

same vector represented in the vehicle tracking coordinate system aligned with the Keplerian 

orbit at atmospheric exit is given by 

T = eva2][F¢oy][032][# Yoel [F b0y [002 )[# Vie] [F ¢15]012] ( 3.3) 

where the upper and lower row of signs indicate a rotation produced by a positive or negative 

bank angle respectively. The subscripts 1, 2 and 3 indicate the descent, constant altitude and 

ascent portions of the skip trajectory respectively. The z, y and z subscripts denote the vehicle 

tracking system axis of rotation for that transformation. An equivalent transformation to the 

one given in equation 3.3 is performed using the total changes in longitude, latitude and heading 

and is given by 

T’ = few ou ]ed ( 3.4) 

where the prime indicates the as yet to be determined total changes in longitude, latitude and 

heading and the subscripts and signs are as previously defined. The rotation matrices used in 

3.3 and 3.4 are given as 
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1 0 0 

[ve] = 0 cos? sing ( 3.5) 

0 —sinw cosy 

cos@ 0 -—sind 

[oy] = 0 1 0 ( 3.6) 

sing 0 cos¢ 

cos@ —sin@ 0 

[@.] =| —sin@ cos6 0 ( 3.7) 

0 0 1 

' 

Using the above rotation matrices, the transformation matrix T written out in component 

form is 

T’= ( 3.8) 

cos@’cos@’ sin@?’cos¢’ sing’ 

—sin@’cosy’—cos6’sing’siny’ —cos@’cosy’ —sin@’sind’siny’ cos¢’siny” 

sin@’siny’—cos@’s ing cosy’ —cosé’siny’—sin#’sing’cosy’ cos¢’cosy”’ 

Since the two rotation matrices, T and T’, produce the same transformation, solution for the 

unknown angles @’, ¢’ and yw’ is done by isolating components from the transformation matrix 

T’, given in equation 3.8. Designating Tre as elements of the transformation matrix given 

by 3.3, where r denotes the row and c denotes the column of the matrix. The solution for the 

unknown angles is given as 

I. ( 3.9) tan§#’? = 

11 

sing’ = Tis ( 3.10) 
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tany’ = Tes ( 3.11) 
33 

Equations 3.9 - 3.11 give the change in longitude, latitude and heading respectively as measured 

from the atmospheric entrance point in the reference plane aligned with the deboost Keplerian 

orbit which has the X axis coincident with the atmospheric entrance point. 

3.3.4: Exit Orbit Determination 

Upon exit from the atmosphere, the vehicle will have a new velocity and flight path angle and 

position as determined by the derived closed form flight equations and the chosen set of 

parameters. The new position and velocity vector must be converted to the geocentric- 

equatorial coordinate system for incorporation into the existing algorithm. Written as 

components along the reference plane coinciding with the Keplerian orbit plane at the exit from 

the atmosphere, vehicle tracking coordinate system, the position and velocity vectors are given 

as 

"f 
Fr =!| 0 ( 3.12) 

0 

V ;sin7 y 
— 

V =| Vycosy; ( 3.13) 

0 

where the subscript f denotes conditions at the exit from the atmosphere. In order to write the 

new position and velocity vectors of the vehicle in the geocentric-equatorial coordinate system, 

two steps are needed. First, using the inverse of T’ with the angles determined by equations 

3.9 - 3.11, the vectors given in 3.12 and 3.13 are written in the coordinate system aligned with 

the Keplerian orbit at the entrance to the atmosphere. Secondly, using the orbital elements of 
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the Keplerian entrance orbit, the vectors are written in the geocentric-equatorial coordinate 

system. 

Due to the properties of orthogonal coordinate system rotations, the inverse of such a matrix is 

its transpose. Therefore 

T’ wh T 

—1 

T’ = ( 3.14) 

cos@’cos¢’ —sin@’cosy’—cos@’sind’siny’  sin@’siny’—cos@’s ing ’cosy’ 

sin6’cos@’ cos6’cosy)’—siné’sing’siny’ —cos@’siny’—siné@’sing’cosy’ 

sing’ cos¢’siny’ cos¢’cosy’ 

The exit position vector and the exit velocity vector written in the coordinate system aligned 

— 

with the Keplerian entrance orbit are denoted as r’’ and V’ respectively. These vectors are 

obtained using equations 3.12 and 3.13 and the inverse matrix given in equation 3.14, as follows 

  

- n 

—1 
’ 

Pad 0 ( 3.15) 
0 

| ; V ,siny 5 

v=T’ V cosy + ( 3.16) 

0 

As the final step in converting the exit position and velocity vector to their components in the 

geocentric-equatorial coordinate system, the orbital elements of the Keplerian orbit at the 

entrance to the atmosphere are used. Using the classical orbital elements 

a - Semi-major axis 

e - Eccentricity 

2 - Inclination 
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Q - Longitude of the ascending node 

w - Argument of perigee 

y - True anomaly 

the position of the entrance point is uniquely determined. The orbital elements also uniquely 

determine the orientation of the corresponding orbital plane. By converting all angles to values 

between zero and 27, the following sequence of rotations transforms a vector written in the 

coordinate system aligned with the Keplerian entrance orbit whose X axis is aligned with the 

atmospheric entry point to a vector written in geocentric-equatorial coordinate system. Figure 8 

shows the relation between the orbital elements and the geocentric-equatorial coordinate system. 

The transformation of a vector represented in the vehicle tracking system aligned with Keplerian 

orbit at the point of atmospheric entry to a vector represented in the geocentric-equatorial 

coordinate system is given as 

Geo ’ 

=(-O,J-il-eJevs] ( 3.17) 

Where the prime denotes vectors written in the coordinate system aligned with the Keplerian 

entrance orbit and Geo denotes the same vector written in the geocentric-equatorial coordinate 

system. With the exit position and velocity of the vehicle now written in geocentric-equatorial 

coordinates as given by equations 3.12 - 3.17, the exit Keplerian orbital elements can be 

calculated. Also, the vehicle’s position can be represented in terms of right ascension and 

declination. For the general skip trajectory involving the use of bank, the orbital plane will 

change orientation. As seen in Figure 9, the use of bank angle to change the orbital plane 

inclination also produces a rotation of the line of nodes, 2. 
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3.4: The Generalized Impulse 
  

The results of the previous section can now be combined in the form of a generalized impulse. 

—_ 

As stated previously, a generalized impulse produces a change in velocity, AV, as well as a 

change in position, Ar , given by 

Vv v= Vv + AV ( (AVz) (AVy)inses (AVa2)insts oq» Ags Xe, te, Oa, Xa) (3 18) inst? 

r* = T+ Ar’ ( (AVa)inst (AVy)insts (AVz)inst? Od) ray rey te, Oa; Xa) 

tv =t- + At ( (AVz) (AVy)insts (AVe)insts Tar Ady Acs be, Tay Aa) inst? 

where (AV,);,5;, Corresponds to the components of an instantaneously applied change in 

velocity at the state indicated by the minus sign. The other parameters are those given by 

equations 2.109 and are associated with the atmospheric skip trajectory. 

The parameters of the generalized impulse result in the following the path for the vehicle. By 

applying the (AV-) (AVy)inge and (AV:z) from equation 3.18, the vehicle, which has inst? inst 

velocity, V -, and position, r~, at the end of a previous Keplerian coasting arc, a new orbit is 

generated. The vehicle travels this new orbit, also called the deboost orbit, until atmospheric 

penetration occurs. At the point of atmospheric entry, the parameters o 4, Aq, Ac, te, Ta and 

Aa describe a skip trajectory which moves the vehicle to a point where it exits the atmosphere. 

The vehicle’s position at the atmospheric exit, r*, and its velocity, V * | as determined from the 

procedure in section 3.3 terminates the path of the generalized impulse at which point a new 

Keplerian coast begins. A representative path followed by the interceptor as a result of the 

generalized impulse started as AV, is given in Figure 10. 

The difference between rtand TY is the change in position, Ar’(%q), produced by the 

: : . T+ ve. : : Vro 
generalized impulse and the difference between V “and V ~ is the change in velocity, AV ( zz), 

produced by the generalized impulse and the difference between t* and t- is the change in time, 

At (2), produced by the generalized impulse. 
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Chapter 4: Numerical Results 

4.1: Overview 

In this chapter, the validity of the developed closed form atmospheric flight equations is 

determined. By comparing the results of a skip trajectory calculated using the closed form 

solution with results obtained from the literature, the accuracy of the closed form solutions is 

demonstrated. Also presented in this chapter are several families of solutions to finding 

parameter optimized transfer orbits as posed in Chapter 2. These solutions include the use of 

the closed form atmospheric flight equations. All solutions presented are based on the following 

assumptions: 

e A stationary atmosphere with respect to a nonrotating Earth 

e Coriolis and transport accelerations are neglected 

e The component of the gravity force tangent to the flight path is small with respect to 

aerodynamic forces and is neglected 

e The centrifugal and the gravity force are nearly equal at the orbital velocities and are 

considered to cancel each other 

e A small cross range angle is covered and the related cross range terms are neglected in the 

heading equation 

e Flight occurs at small flight path angles 

e A Gr =constant atmosphere is used with the inverse scale height, @, also constant 

e K(M, Re) and Cpyo(M, Re) are constant due to the hypersonic flight Mach numbers 

e The exponent in the drag polar is three halves to closer approximate hypersonic flight 

e Controls change “instantaneously” with respect to the atmospheric flight time 

e Series expansions are used to approximate integrals involving longitude, latitude and time 

Chapter 4: Numerical Results 51



4.2: Validation of Closed Form Solutions 

As a first step in proving the usefulness of the developed closed form atmospheric flight 

equations, the accuracy of the calculated integrals given in equations 2.98 - 2.100 and 2.106 - 

2.108 was checked. A type of trajectory was formulated using the two parameters, A and oc, to 

describe the entire skip trajectory rather than the complete set of six parameters detailed in 

Chapter 2. This type of trajectory is designated as a two parameter skip. Given a set of initial 

conditions for entrance to the atmosphere [see Table 2] and choosing the value for the lift 

coefficient as that which yields the maximum lift to drag ratio, manual iteration on the value 

for the bank angle was performed until the desired final heading change was approximately 

achieved. Using the corresponding calculated aeroassisted values for the end states, the accuracy 

of the approximated integrals is checked against a solution obtained by numerical integration. 

The numerical integration of the state equations 2.92 - 2.97 was performed using the standard 

IMSL routine DIVPRK with an accuracy of 107° used for convergence. Cases were generated 

for changes in the heading angle, y, of 10°, 20°, 30° and 40°. Data for the skip vehicle used, 

atmospheric data and physical constants are given in Table 1. The physical data will be used in 

all skip trajectory calculations except where noted otherwise. A summary of the initial values 

for the state variables is given in Table 2. Table 3 gives the final values for the state variables 

generated using the closed form solutions. Final values for the state variables calculated by 

numerical integration are given in Table 4. Since the difference between the results of Table 3 

and Table 4, as given in Table 5 are negligible, the altitude histories presented in Figure 11 

represent the true trajectories, thus validating the accuracy of the state variable closed form 

solutions given by equations 2.98 - 2.100 and 2.106 - 2.108. 
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4.3: Validation of Skip Trajectory Implementation 
  

In order to check the validity of the implementation of the skip trajectory discussed in Chapter 

3, the following type of trajectory was proposed. At the minimum altitude of the skip 

trajectory, when the flight path angle is zero, the reference plane was reset using the boundary 

conditions described in Chapter 2. However, unlike the general skip trajectory discussed in 

Chapter 2, there is no constant altitude flight subarc. Rather, the final velocity and altitude at 

the end of the descent subarc are used immediately as the initial conditions for the ascent arc. 

The values for the parameters \ and o are kept the same for the descent and ascent flight 

subarcs. This type of skip trajectory is designated as a four parameter skip. The designation of 

a four parameter skip is used because even though the respective values for A and o are the 

same for the ascent and descent subarcs, there are four parameters being specified due to the 

resetting of the reference plane at y = 0. 

After using the procedure detailed in Chapter 3 for determining the location of the vehicle in the 

geocentric-equatorial coordinate system, the position of the vehicle resulting from the four 

parameter skip was calculated. This position and the total change in states were compared to 

the position and change in states calculated using the two parameter skip described in the 

section 4.2. Using the same initial conditions for a 10° change in heading given in Table 2, the 

trajectories were calculated. 

Comparison of the calculated end states and the resulting change in plane inclination shows that 

the two final positions and heading differ significantly. The final velocity, time of flight and 

exit flight path agree, indicating an error involving latitude, longitude or heading. Because the 

closed form solutions involve the assumption of a small cross range angle traveled, calculation of 

the coupled equations given by 2.63 - 2.68 gives a more accurate answer than the closed form 

solutions. Using DIVPRK, numerical integration was performed on the set of equations 2.63 - 

2.68. The flight path is used as the independent variable and the initial conditions are given in 
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Table 2 as before. The end states for the two parameter method, the four parameter method 

and the numerically integrated method are given in Table 6. 

A comparison of the results obtained by numerically integrating equations 2.63 - 2.68 and the 

results from the two and four parameter closed form solutions shows that the four parameter 

skip trajectory is a more accurate method of calculating the change in latitude, longitude and 

heading. By using the four parameter method versus the two parameter method the error in 

determining the final position and heading is reduced by 70%. 

As a final check on the accuracy of the derived closed form solution, a test case was evaluated 

against skip trajectory results obtained in Hull [4]. The optimal control used by Hull [4] to 

determine the skip trajectory state variables uses a parabolic drag polar. Therefore for the 

comparison test case the value of n in the expression for the atmospheric drag is set to 2.0. 

Initial conditions for the closed form equations were given to match the case for an optimally 

guided trajectory to achieve ~, = 10°, as presented in Hull [4]. As noted in Hull [4], the lift 

coefficient is nearly constant at the value for maximum Lift-to-Drag, therefore, we choose C; = 

7, corresponding to n = 2 as one parameter. The bank angle is manually iterated upon to 

achieve a final change in heading of 10°, and becomes our second parameter. The desired final 

change in heading is achieved when o = 87.595°. The trajectory is calculated using the same 

values of the two parameters for both the descent and ascent flight subarcs, with the reference 

plane being reset at ~ = 0 as described earlier. Comparison of the resulting trajectory with the 

results in Hull [4] show close agreement in all final values of the state variables. Table 7 

summarizes the comparison for relevant state variables. 
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4.4: Two Impulse Orbit Transfers 
  

Now that the generalized impulse has been validated and the results from the aeroassisted 

maneuver provide accurate changes in position and velocity, the generalized impulse is applied 

to the minimization problem stated in section 2.3 with the number of impulses, n = 2. The 

two impulse maneuver proposed, transfers an interceptor from one circular orbit to another and 

allows the interceptor to rendezvous with a target. The interceptor does all the maneuvering 

while the target remains in its original orbit. The interceptor initial circular orbit has a larger 

radius than the circular orbit of the target in order to take advantage of the generalized impulse. 

A transfer from an interceptor circular orbit of smaller radius than the target radius using the 

generalized impulse is not possible due to the loss of energy encountered during the aeroassisted 

maneuver. 

Given initial orbits and the location within each orbit for both the interceptor and the target, 

denoted as the epoch conditions, the two impulse maneuver is given as follows. A Keplerian 

coasting arc in the interceptor epoch circular orbit is terminated by the application of a 

generalized impulse. After the generalized impulse, described in section 3.4, the interceptor is at 

the boundary to the atmosphere and begins a second Keplerian coasting arc. This Keplerian 

coast arc intersects the target orbit and for the rendezvous to occur, the interceptor matches 

position and velocity with the target by applying an instantaneous delta-v. This instantaneous 

delta-v completes the orbit transfer. 

The generalized impulse to be used in the transfer utilizes the four parameter method of 

calculation described in section 4.3. The four parameter method calculates the skip trajectory 

using two subarcs, the descent and ascent subarc, using the parameters \,, 04, Aq and Ga. 

However, as described in section 4.3, A, = Aa and oa = G4, is used to improve accuracy. 
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4.4.1: Parameters and Constraints for the Two Impulse Transfer 
  

The parameters needed for the two impulse transfer are 

ny = Interceptor initial coasting arc 

(AVe)inst = X% component of the instantaneous delta-v used in the generalized impulse 

(AVy)inst == Y component of the instantaneous delta-v used in the generalized impulse 

(AV:z)inst = Z component of the instantaneous delta-v used in the generalized impulse 

A = Scaled lift coefficient used during the skip trajectory 

o = Bank angle used during the skip trajectory 

Ne = Interceptor second coasting arc 

3 = Target coasting arc 

All of the numerical results for the following aeroassisted maneuvers do not include a constant 

altitude subarc. The constant altitude subarc is developed for a skip trajectory in general form. 

The second impulse is applied at the end of the trajectory and is not a parameter of the 

optimization but is used to calculate the cost function, J. 

The equality constraints imposed on the orbit transfer problem are 

e X component of the final position for the interceptor and target must match 

e Y component of the final position for the interceptor and target must match 

e Z component of the final position for the interceptor and target must match 

e Total time of flight for the interceptor and the target must be equal 

Recall that a velocity match for rendezvous is satisfied by computing the required final delta-v 

and hence is not an explicit equality constraint. 

The inequality constraints imposed on the orbit transfer problem are 

e Time of flight for the target must be less than a specified maximum time of flight 

e Time of flight for the target must be greater than zero 

e Initial coasting arc for the interceptor must be greater than 1° 

e Magnitude of (AVins: 
— 

of (A 

) from the generalized impulse must be greater than the magnitude 

min) needed to cause atmospheric entry 

e Lift coefficient must be less than or equal to the maximum allowed lift coefficient 

e Lift coefficient must be greater than zero 
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e Bank angle must be less than 90° 

e Second interceptor coasting arc must be greater than 1° 

e Minimum radius of the second coasting arc must be greater than the radius of the Earth 

In order to ensure atmospheric entry, the following procedure was used. For a given interceptor 

— 
circular orbit, a la | was determined as the magnitude of the deboost impulse required to min 

perform a Hohmann transfer between the interceptor orbit and a circular orbit of radius b,j. 

Since the Hohmann transfer is the minimum fuel transfer method between two circular orbits, 

lav min   | is the lower bound for impulses to cause atmospheric entry. 

mint has been calculated and given an initial guess which causes atmospheric entry, After [AV 

the three components of AV, from the generalized impulse are retained. During the 
tnest 

optimization process, each iteration of the sequential quadratic programming algorithm produces 

= 
a complete new set of parameters. If the lav, inet of the generalized impulse calculated during 

— — 

the i’ iteration is greater than [av , the three components of AV, inst 4rom the generalized min 

‘th impulse determined during the 2” iteration replace the values of AV from the generalized tnst 

    impulse determined in the ( i**— 1) iteration. However, if the lav, of the generalized 
tnst 

— 

impulse calculated during the i” iteration is less than |av , the three components of min 

—_ 

AV inst from the generalized impulse determined in the ( i‘*— 1) iteration replace the values of 

— 

AV ;nsz from the generalized impulse determined during the i” iteration. Thus, by retaining 

the previous values of the generalized impulse AV ines which ensure atmospheric entry, the 

following iteration will also be ensured of atmospheric entry. With the newly modified 

parameter vector, a new cost function is evaluated and the process continues until convergence 

occurs. It is emphasiszed that all other parameters from iteration to iteration remain 

unaffected. 

The main consideration in using this technique is that the new parameter vector produced by 

the subsitution method described above alters the optimal parameter vector of the current 
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iteration thus affecting the search for the optimal solution. It should be noted however, that the 

—_ 

relative changes in the three components of AV,,,,, from the generalized impulse are small from inst 

one iteration to the next and that with a reasonable initial guess, the described method works 

well. It is again emphasized that the other parameters in the parameter vector are never altered 

using the described method. 

4.4.2: Minimum Fuel Two Impulse Coplanar Transfers 
  

Using the parameters listed in section 4.4.1 to minimize the fuel consumed during the transfer 

n = 

J = Me Vinst)il 

— 

subject to the constraints given in section 4.4.1, coplanar transfers between the orbits given in 

Table 8 were performed. To simplify notation, the ratio between the radius of the initial 

interceptor orbit to the radius of the target orbit is denoted as x. The chosen target circular 

orbit corresponds to a LEO of approximately 1000 km in altitude. Tables 9 and 10 give the 

epoch conditions of the target and interceptor respectively for the coplanar cases that are solved. 

Solution to the problems were obtained on a VAX mainframe using the IMSL routine DCONF, 

which is a sequential quadratic programming algorithm based on Schittkowski’s method [16]. 

Table 11 summarizes the overall results obtained for the seven coplanar transfer solutions, with 

the Total TOF column indicating the total time of flight required to perform the entire transfer 

and the TOF column denoting the time of flight elapsed during the generalized impulse. 

For all of the values of y investigated, key values pertaining to the atmospheric portion of the 

generalized impulse used in the coplanar transfers are presented in Table 12. The convective 

heating rate given is based on a 1 meter radius sphere under the condition of laminar flow. The 

heating rate is presented to show the trends resulting from the various trajectories rather than 

the actual heating rates experienced by the skip vehicle. The formula for the heating rate in 
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Watts/cm? is 

Queat = (3-08 x 10-*) Jp VE (4.1) 

where the atmospheric density, p, is given in kg/km? and the flight speed, V ge» is given in km/s. 

The dynamic pressure is given by 

2 
q = 4eV5 ( 4.2) 

where the atmospheric density, p, is given in kg/m? and the flight speed, V gz» is given in m/s. 

The normal g-load is measured in the Lift-Drag plane as defined in Figure 3 and is calculated as 

_ pVZSC, 
2mg 

( 4.3) 

Since the results obtained are similar for all of the seven coplanar cases investigated, only three 

are presented in detail, these three being the transfers corresponding to y = 5.75, y = 2.61 and 

x = 1.30. Time histories for x = 5.75, the transfer from GEO, are given in Figures 12 - 17. 

These figures are the time histories for altitude, normal g-load, convective heating rate, flight 

path angle, dynamic pressure and velocity respectively. Time histories for the same quantities 

corresponding to y = 2.61 are given in Figures 18 - 23 and the time histories for x = 1.30 are 

given in Figures 24 - 29. 

From Figures 12 - 29, the maximum values for the convective heating rate of 214.95 W/cm?, 

the dynamic pressure of 19.1 KN/m? and the maximum instantaneous normal g-load of 6.97 all 

occur during the aeroassisted maneuver of the transfer from geosychronous Earth orbit. This 

transfer also has the steepest entry flight path angle, —4.17°, and penetrates the deepest into the 

atmosphere to an altitude of 56.4 km. On the other hand, the orbital transfer corresponding to 

x = 1.30 has a maximum heating rate of 107.9 W/cm”, a dynamic pressure of 8.4 KN/m? and 

a Maximum instantaneous normal g-load of 3.1. The flight path angle for the y = 1.30 transfer 

is —Q.722° and only penetrates the atmosphere to an altitude of 60.77 km. 
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From the results presented above, there is a trend corresponding to the value of x, this trend 

being that as the value of x decreases, the corresponding maximum values presented in Table 12 

also decrease. Since the lift coefficient and bank angle are the same for all of the coplanar 

transfers the trends are related to the atmospheric entrance conditions. As the value of x 

decreases, the eccentricity of the deboost orbit decreases causing the values of ye and Ve to 

decrease resulting in shallower skip trajectories. These shallower skip trajectories therefore 

produce lower heating rates, dynamic pressures and normal g-loads. 

A comparison of the results in [14] and the results presented via Figures 12 - 29 show that the 

closed form solutions and the solutions obtained via optimal] control theory are similar. The 

trends relating to the time histories for altitude, normal-g load, dynamic pressure, convective 

heating rate and velocity are repeated in Figures 12 - 29 thus further validating the developed 

closed form solutions and the idea of the generalized impulse. 

As a means of comparing the results obtained using the generalized impulse to another two 

impulse transfer method, the same problem was solved for each value of x using the Hohmann 

transfer. The Hohmann transfer is known to be the two impulse method of orbit transfer to 

minimize fuel when there is no limit on the amount of time needed to transfer orbits. Figure 48 

shows the cost function, J, for the two methods. From Figure 48, for values of y > 1.3 the 

generalized impulse reduces the amount of fuel needed to transfer orbits. For a transfer from 

GEO to the target radius of 1.15 DU, the savings in fuel expended is 50% relative to the 

corresponding Hohmann transfer. The percentage of fuel saved decreases as the value of y 

decreases to approximately 1.3. It should be noted that the obtained solution for the coplanar 

transfers using the generalized impulse yielded instantaneously applied delta-v’s that were 

applied in a Hohmann-like manner, i.e. the delta-v’s were applied nearly tangent to the flight 

path and in the plane of the orbit. It should also be noted that the problem was solved with no 

limit on the maximum allowable time in which to complete the transfer. 
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From key values presented for the coplanar transfers, the calculated “optimal” fuel skip 

trajectories all occur at small flight path angles, thus satisfying one of the key assumptions used 

in obtaining the closed form solutions. The “optimal” skip trajectories all occur at normal g- 

loads well below human tolerances and the maximum values given are instantaneous rather than 

sustained values. With the maximum flight time for all of the presented skip trajectories being 

25 seconds, these rates of loading are acceptable. It is noted that the lift coefficient determined 

for all of the coplanar transfers was at the maximum allowable value of 1.5. Flight at the upper 

bound for the lift coefficient is necessary to slow the vehicle down sufficiently during its 

atmospheric pass in order to place the interceptor in the proper Keplerian orbit at exit from the 

atmosphere and to save fuel needed to produce the minimum instantaneous delta-v’s possible. 

4.4.3: Minimum Fuel Two Impulse Noncoplanar Transfers 
  

Similar to the coplanar transfers, the cost function to minimize the fuel consumed is given as 

J = le7..04 
— 

With the constraints given in section 4.4.1, noncoplanar transfers between the orbits given in 

Table 8 were performed with the difference in plane inclination being 5°. Tables 13 and 14 give 

the epoch conditions of the target and interceptor respectively for the noncoplanar cases that are 

solved. Table 15 summarizes the overall results obtained for the seven noncoplanar transfer 

solutions, with the Total TOF column indicating the total time of flight required to perform the 

entire transfer and the TOF column denoting the time of flight elapsed during the generalized 

impulse. 

For all of the values of x investigated, key values pertaining to the atmospheric portion of the 

generalized impulse used in the noncoplanar transfers are presented in Table 16. Similar to the 

results presented for the coplanar transfers, the convective heating rate given is based on a 1 
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meter radius sphere under the condition of laminar flow and is presented to show the trends 

resulting from the various trajectories rather than the actual heating rates experienced by the 

skip vehicle. The formula for the heating rate is given in equation 4.1. The dynamic pressure 

results for the atmospheric portion of the noncoplanar transfers are based on equation 4.2 and 

the normal g-load is given by equation 4.3. 

Since the obtained results are similar for all of the seven noncoplanar cases investigated, only 

three are presented in detail, these three being the transfers corresponding to x = 5.75, yx = 

2.61 and y = 1.30. Time histories for x = 5.75, the transfer from GEO, are given in Figures 

30 - 35. These figures are the time histories for altitude, normal g-load, convective heating rate, 

flight path angle, dynamic pressure and velocity respectively. Time histories for the quantities 

corresponding to y = 2.61 are given in Figures 36 - 41 and the time histories for y = 1.30 are 

given in Figures 42 - 47. 

From Figures 30 - 47 for the noncoplanar orbit transfer, the maximum values for the convective 

heating rate of 201.36 W/cm? and the maximum instantaneous normal g-load of 5.57 occur 

during the aeroassisted maneuver of the transfer from geosychronous Earth orbit. The steepest 

entry flight path angle, —2.33°, occurs during the yx = 4.35 orbit transfer. The deepest 

penetration into the atmosphere, 56.35 km, occurs during the y = 1.74 orbit transfer. The 

maximum dynamic pressure for the noncoplanar transfers, 16.54 KN/ m’, also occurs during the 

x = 1.74 transfer. The maximum flight time during the atmospheric pass, 109.3 seconds, 

occurs during the y = 1.3 transfer. The lowest maximum heating rate of, 132.14 W/cm?, the 

lowest maximum dynamic pressure of, 13.69 KN/m? and the lowest maximum normal g-load of, 

-O7 all occur during the y = 1.22 transfer. The shallowest entry flight path angle, —.941°, from 

the noncoplanar trajectories also occurs during the x = 1.22 orbit transfer. Due to the 

combined effect of the nonzero bank angle and the lower values for the lift coefficient, the trend 
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seen in the coplanar orbit transfers corresponding to the value of the ratio yx, is not repeated for 

the noncoplanar orbit transfers. 

As a means of comparing the results for noncoplanar orbit transfer obtained using the 

generalized impulse to results obtained with other two impulse transfer methods, the same 

problem was first solved for each value of x using a combination of the Hohmann transfer 

required to change the orbital size and the plane change maneuver required to change the orbital 

inclination. The first delta-v of this two impulse maneuver combines a plane change delta-v, 

which is applied during the interceptor’s orbit at the point when the interceptor crosses the 

target orbit’s line of nodes, with the deboost delta-v of a Hohmann transfer. The equation for 

performing an instantaneous plane change is 

AV = 2V sin(4!) ( 4.4) 

Since this delta-v is directly proportional to the existing circular velocity, the pure plane change 

maneuver is applied at the interceptor radius due to the lower circular velocity at the greater 

radius. Therefore, the first impulse has components in three dimensions, unlike the pure 

Hohmann transfer. The second impulse of the two impulse maneuver is the recircularization 

delta-v of the resulting Hohmann-like transfer and is applied at the radius of the LEO for the 

target. 

The second method of noncoplanar transfer that is compared to the generalized impulse method 

determines the optimal set of parameters needed to perform a two impulse transfer without a 

generalized impulse. The parameters of the two impulse maneuver without the generalized 

impulse are as described earlier with angles through Keplerian coast arcs terminated by an 

impulsive three dimensional delta-v. The optima] parameters associated with the required two 

impulse maneuver are determined using the same nonlinear sequential programming routine 

used to solve the problem when a generalized impulse is included as a set of parameters. 
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Figure 49 shows the cost function, J, for the three methods. From Figure 49, the aeroassisted 

maneuver reduces the amount of fuel needed to transfer orbits in all cases. For a transfer from 

GEO to the target radius of 1.15 DU, the savings in fuel expended is 55% of the fuel required for 

the corresponding “nonoptimal” two impulse maneuver described above and a 52% savings in 

fuel compared to the “optimal” nonaeroassisted two impulse maneuver. The percentage in fuel 

savings decreases as the value of y decreases. However, unlike the coplanar cases, the generalized 

impulse produces savings for all cases presented. Finally, Figure 50 compares the coplanar and 

noncoplanar cost functions that implement the generalized impulse method to solve the 

aeroassisted transfer. Figure 50 shows that for values of x > 1.74, small plane change transfers 

using an aeroassisted maneuver require less fuel than the corresponding coplanar orbit transfer 

that uses an aeroassisted maneuver. 

Similar to the key values presented for the coplanar transfers, the noncoplanar “optimal” fuel 

skip trajectories all occur at small flight path angles. However, unlike the coplanar skip 

trajectories, not all of the transfers occured at the maximum allowable value for the lift 

coefficient. Due to the need to achieve a required change in heading, as the entrance velocity 

decreases the lift coefficient also decreases to lower the velocity losses during the atmospheric 

pass. This reduction in the lift coefficient causes the skip trajectory to take longer to achieve the 

required change in heading. Also, the lower lift coefficient is the cause for the lower normal g- 

loads experienced by the vehicle. Since the change in orbital plane inclination was 5° for all of 

the noncoplanar cases, the noncoplanar maneuvers occur at nearly the same bank angle, with a 

minimum value of o = 47.85° and a maximum value of ¢= 55.31°. Even though the entrance 

flight path angles are generally lower than those for the corresponding coplanar transfers, the 

vehicle penetrates deeper into the atmosphere due to the lower lift coefficients and the loss of 

vertical lift due to the existence of a considerable out of plane bank angle. 

Chapter 4: Numerical Results 64



Table 1. Physical Data 
  

  

Symbol Physical Characteristic Numerical Value Units 

Re Radius of the Earth 6378.145 km 

haim Altitude of the Atmosphere 60.960 km 

B Inverse Scale Height 7.100 km? 

Be Gravitational Parameter 3.986 x 10° km3s~? 

Po Sea-Level Density 1.225 kgm? 

pr Atmospheric Constant 900 - 

m Vehicle Mass 4898.805 kg 

S Vehicle Reference Area 11.691 m? 

Cro Zero Lift Drag Coefficient 0.032 

K Induced Drag Factor 1.400 

n Exponent in Drag Polar 1.500 - 

Lmac Maximum Lift Coefficient 1.500 -     
  

Table 2. Initial Conditions for 10°, 20°, 30° and 40° Heading Changes 
  

  

by Ye o C, te Ve he be Oe 

(deg) (deg) (deg) (s) (km/s) (deg) (deg) (deg) 

10 ~ 1.0000 78.6 0.13 0.0 7.9107 0.0 0.0 0.0 

20 ~1.5000 81.5 0.13 0.0 7.9107 0.0 0.0 0.0 

30 — 1.8500 83.0 0.13 0.0 7.9107 0.0 0.0 0.0 

40 — 2.0875 84.0 0.13 0.0 7.9107 0.0 0.0 0.0       
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Table 3. Final Conditions Using Closed Form Solutions 
  

  

    
  

  

  

Vy ty Vs vy ey Oy 

(deg) (s) (km/s) (deg) (deg) (deg) 

1.0000 249.4159934 6.9229276 9.9193983 1.4323665 16.5065751 

1.5000 270.4335809 6.0537450 20.0757621 2.8980739 16.3743975 

1.8500 280.5880362 5.3016440 30.1393192 4.1205232 15.3063406 

2.0875 294.4709548 4.6726422 39.7312626 5.1721034 14.3180372 

Table 4. Final Conditions Using Numerical Integration 

Ys ty Vy vs Py Oy 

(deg) (s) (km/s) (deg) (deg) (deg) 

1.0000 249.4159984 6.9229276 9.9193983 1.4323665 16.5065751 

1.5000 270.4335425 6.0537450 20.0757621 2.8980735 16.3743952 

1.8500 280.5880024 5.3016440 30.1393192 4,1205227 15.3063388 

2.0875 294.4709231 4.6726422 39.7312626 5.1721028 14.3180358     
  

Table 5. Error Between Closed Form Solutions and Solustions Using Numerical Integration 
  

  

    
  

  

  

1 [A 4] [AV |A¥,| |49,| 6, 
(deg) (s) (km/s) (deg) (deg) (deg) 

1.0000 0.0000050 0.0000000 0.0000000 0.0000000 0.0000000 

1.5000 0.0000384 0.0000000 0.0000000 0.0000004 0.0000023 

1.8500 0.0000338 0.0000000 0.0000000 0.0000005 0.0000018 

2.0875 0.0000317 0.0000000 0.0000000 0.0000006 0.0000014 

Table 6. Final Conditions Using Various Methods to Calculate the Skip Trajectory 

Method ty vy oy Ai 

n=1.5, C;=.13 o=78.6" —(s) (km/s) (deg) (deg) (deg) (deg) 

2 Parameters 249.41599 6.9229276 9.919398 1.432366 16.50657 10.02125 

4 Parameters 249.41599 6.9229276 9.828217 1.427068 16.50828 9.930275 

DIVPRK 249.42061 6.9229277 9.793981 1.424145 16.50790 9.895982     
  

Chapter 4: Numerical Results 66



Table 7. Comparison to Optimally Guided Trajectory 
  

Method ty Vy vy b; hinin Ai 

n=2. C,;=.15 o=87.6° (s) (km/s) (deg) (deg) (km) (deg) 
  

Parameterized 401.949 7.3390353 = 9.727 2.371 57.92602 10.00091 

Optimally Guided 400.000 7.3063608 9.930 2.406 59.00928 10.21448       

Table 8. Initial Interceptor and Target Circular Radi 
  

  

x Target Radius Interceptor Radius 

5.75 1.15 6.6105 

4.35 1.15 5.0000 

3.48 1.15 4.0000 

2.61 1.15 3.0000 

1.74 1.15 2.0000 

1.30 1.15 1.5000 

1.22 1.15 1.4000       
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Table 9. Coplanar Epoch Conditions for the Target 
  

  

x a e 2 Q w V 

5.75 1.15 0.0 0.0 0.0 0.0 50.0 

4.35 1.15 0.0 0.0 0.0 0.0 60.0 

3.48 1.15 0.0 0.0 0.0 0.0 270.0 

2.61 1.15 0.0 0.0 0.0 0.0 90.0 

1.74 1.15 0.0 0.0 0.0 0.0 260.0 

1.30 1.15 0.0 0.0 0.0 0.0 335.0 

1.22 1.15 0.0 0.0 0.0 0.0 340.0     
  

Table 10. Coplanar Epoch Conditions for the Interceptor 
  

  

x a e a Q Ww v 

5.75 6.6105 0.0 0.0 0.0 0.0 350.0 

4.35 5.0000 0.0 0.0 0.0 0.0 350.0 

3.48 4.0000 0.0 0.0 0.0 0.0 350.0 

2.61 3.0000 0.0 0.0 0.0 0.0 350.0 

1.74 2.0000 0.0 0.0 0.0 0.0 350.0 

1.30 1.5000 0.0 0.0 0.0 0.0 350.0 

1.22 1.4000 0.0 0.0 0.0 0.0 350.0       
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Table 11. Cost Function and Changes Due to the Generalized Impulse (Coplanar) 
  

  

      

  

  

x J (SU) Total TOF (min) TOF(min) |AV,,,{(SU) lar’ lou) 

5.75 .23037740 382.00 312.42 3193 5.4605 

4.35 .22796746 276.30 218.38 2872 3.9904 

3.48 .22102576 216.75 165.88 2565 2.9904 

2.61 .20396414 166.68 118.42 .2099 1.9904 

1.74 .16121505 112.07 76.67 1305 0.9904 

1.30 .11568558 103.68 58.23 0654 0.4904 

1.22 .10277007 110.69 54.85 0489 0.3904 

Table 12. Max - Min Quantities for Coplanar Skip Trajectories 

TOF Ye Cr o Qmaz maz Smaz hinin 

x (s) (deg) (deg) (W/cm?) (KN/m*) (km) 

5.75 24.61  —4.170 1.5 0.0 214.95 19.1 6.97 56.414 

4.35 23.98 —3.801 1.5 0.0 198.01 17.2 6.27 57.007 

3.48 23.14 —3.439 1.5 0.0 183.00 15.5 5.67 57.579 

2.61 21.31 —2.872 1.5 0.0 162.18 13.3 4.85 58.444 

1.74 16.08 —1.853 1.5 0.0 132.70 10.3 3.77 59.800 

1.30 9.22 —0.959 1.5 0.0 112.70 8.7 3.19 60.630 

1.22 7.09 —0.722 1.5 0.0 107.90 8.4 3.08 60.770       
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Table 13. Noncoplanar Epoch Conditions for the Target 
  

  

    
  

  

  

x a e a Q w Vy 

5.75 1.15 0.0 5.0 170.0 0.0 228.0 

4.35 1.15 0.0 5.0 170.0 0.0 240.0 

3.48 1.15 0.0 5.0 170.0 0.0 95.0 

2.61 1.15 0.0 5.0 170.0 0.0 280.0 

1.74 1.15 0.0 5.0 170.0 0.0 90.0 

1.30 1.15 0.0 5.0 170.0 0.0 165.0 

1.22 1.15 0.0 5.0 170.0 0.0 165.0 

Table 14. Noncoplanar Epoch Conditions for the Interceptor 

xX a e 1 2D w v 

5.75 6.6105 0.0 0.0 0.0 0.0 350.0 

4.35 5.0000 0.0 0.0 0.0 0.0 350.0 

3.48 4.0000 0.0 0.0 0.0 0.0 350.0 

2.61 3.0000 0.0 0.0 0.0 0.0 350.0 

1.74 2.0000 0.0 0.0 0.0 0.0 350.0 

1.30 1.5000 0.0 0.0 0.0 0.0 350.0 

1.22 1.4000 0.0 0.0 0.0 0.0 350.0       
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Table 15. Cost Function and Changes Due to the Generalized Impulse (Noncoplanar) 
  

  

      

  

  

or Generalized Impulse ----- 

x J (SU) Total TOF (min) TOF(min) |AV,;,[(SU)  |ar'l(DU) 

5.75 .22461882 393.80 319.63 3204 5.4605 

4.35 .22414714 285.97 223.52 .2888 3.9904 

3.48 .21827484 224.13 169.59 .2602 2.9904 

2.61 .20358296 170.21 120.71 .2202 1.9904 

1.74 .16206055 122.34 78.03 1512 0.9904 

1.30 11823638 104.17 60.43 1387 0.4904 

1.22 .10911130 105.68 57.59 1233 0.3904 

Table 16. Max - Min Quantities for Noncoplanar Skip Trajectories 

TOF Ye Cr o Qmaz maz Emar Amin 

x (s) (deg) (deg) (W/cm?) (KN/m*) (km) 

5.75 28.31 —2.317 1.500 55.31 201.36 15.3 5.57 58.14 

4.35 26.64 —2.330 1.500 51.29 188.83 14.5 5.29 58.33 

3.48 27.21 —2.238 1.402 50.19 177.72 14.0 4.76 58.41 

2.61 35.08 —2.313 1.004 47.85 168.96 15.0 3.66 57.56 

1.74 56.69 —1.949 0.503 50.26 159.03 16.5 2.02 56.35 

1.30 109.30 —1.248 0.172 54.95 154.44 18.1 0.76 55.29 

1.22 100.74 —0.941 0.170 54.93 132.14 13.7 0.57 57.19       
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Chapter 5: Conclusion and Recommendation 

5.1 Conclusions 

A general set of aeroassisted maneuver parameters, Za, as part of the parameters needed for the 

generalized impulse was determined. The atmospheric parameters were determined as part of the 

process in obtaining closed form solutions to the atmospheric flight differential equations of 

motion. The minimization problem stated in Chapter 2 was solved using the generalized 

impulse and applied to coplanar and noncoplanar two impulse orbit transfers. 

For the atmospheric and gravitational models used, coplanar orbit transfers with and interceptor 

radius greater thatn 1.5 DU and a target radius of 1.15 DU, the cost functions using a two 

impulse maneuver involving an atmospheric assist are lower than the corresponding two impulse 

Hohmann transfer. For noncoplanar orbit transfers involving small changes of the orbital plane 

inclination with a target radius of 1.15 DU and x > 1.22, the cost functions using the two 

impulse maneuver involving an aeroassist are lower than the corresponding two impulse 

maneuver described in Chapter 4 that combines a pure plane change maneuver and a Hohmann 

transfer. 

Using an aeroassisted maneuver that involves an atmospheric pass reduces the fuel needed to 

perform noncoplanar and coplanar orbit transfers and is in agreement with the results from 

[4,14] for noncoplanar and coplanar transfers, respectively. The developed parameterization 

allows for quick, yet accurate, solutions to large numbers of minimum fuel orbit transfer 
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problems. Unlike solutions obtained through the use of optimal control theory and multi point 

boundary value problem numerical methods, obtaining solutions using parameter optimization is 

relatively easy and takes little time but does require a “feel” for what takes place during both 

Keplerian flight and atmospheric flight. 

5.2 Recommendations for Future Research 

Applying the current research ideas to developing a set of parameters which describe a finite 

burn in space poses and interesting and challenging extension to the present research. Similar to 

the present research, this finite burn in space changes position and velocity and occurs during an 

non-zero period of time, however the choice and implementation of the parameters needed to 

fully describe the finite burn poses the challenge of future research. Determination of the 

number of impulses which minimizes the fuel consumption for a given orbit transfer problem 

and choosing the corresponding impulse types also remains unanswered. Also, investigation into 

the full capabilities of the developed generalized impulse using all of the proposed six parameters 

provides an area for further research. Because of the difficulties in ensuring atmospheric entry 

due to deboost from Keplerian orbits other than circular orbits, application of the generalized 

impulse to elliptical and hyperbolic orbits also provides an opportunity to expand the 

generalized impulse idea. Finally, as a result of the search for the minimum, a set of parameters 

can be determined which does not force atmospheric entry, a method for calculating smooth 

transition between those trajectories which use atmospheric entry and those which do not and 

determining if atmospheric entry is even necessary to minimize fuel consumption poses a 

formidable challenge in extending the current research. 
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Appendix A: Partials Derivatives and Integrals 

Al: Partial Derivatives 

The change to the dimensionless variables Chapman variables Z and v in the differential state 

equations, involves chain rule differentiation and calculation of the following partial derivatives: 

A1.1: Z Chapman Variable 
  

Z4= Z( p(t), I, B(r)) 

_ pSCT 
4 =m VB 

—k? p= (8) 
k? = fr 

using the above relations for Z and p, the following partial derivatives are obtained: 

9 —(k?+1) ft) 
or = —£p (A.1) 

6z _ PSCL 1 {B 
Or 2m 28 2 

az __ PSCT 1 
Or 2m 272 
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A1.2: v Chapman Variable 
  

v = v(V, g(r), ©) 

  

_ Vv? 
=e 

2 
olo 

r 

using the above relations for v and g, the following partial derivatives are obtained: 

Ov _ 2V 
OV” gt 

dv _ _V?’ 
Og rg 

dv _ _V* 
Or ; gr 

Og __ gore 

Or 5 

Og _ _ 28 
Or ~=2—OCdrT 
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( A.2) 

( A.3) 

(A.4) 

( A.5) 

( A.6) 

(A.7) 
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A2: Integrals 
  

Integration of the expressions for latitude, longitude and time requires the use of trigonometric 

identities, long division and series approximations. 

A2.1: Latitude and Longitude 
  

The expressions for latitude and longitude are given as 

  

  

  

do _ cos(#e + tano(y — Ye)) 

dy _ _k 2.2 kAcoso(Ze Theosg i? 42) 

d¢ __sin(we + tano(y — Ye)) 
dy — _ _k 222 kAcoso(Ze Ticeoag? Ye) 

Using trigonometric identities for sin(a + ) and cos(a + () the above equations can be 

rewritten as 

dé _ 2[ cos(e — yetanc) cos(ytano) — sin(we — yetanc) sin(ytanc) | 
  

    

  

_ ‘ fe A.9 
dy K2 2kAZ-coso +(kye)” _ 2 

k? , 

dé _ 2A sin(ve — yetanc) cos(ytanc) + cos(Ye — yetana) sin(ytanc) | ( A.10) 
dy — ue] econ + Che) _ | | 

k? , 

Equations A.9 and A.10, have the same form but with different constants. These constants 

involve the entry states and the constant bank angle o. Defining the following constants for 
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equation A.9 

C, = 2 cos(we — yetanc) 

_ 2kAZecoso +(kye)? 
Cz 2 

C3 = 2 sin(we — yetanc) = 73 

while for equation A.10 the same constants are defined as 

C, = os sin(we — yetanc) 

__ 2kAZ cosa + (kye)” 
Cy 7% 

C3 = os cos(We — yetanc) 

Therefore, using these constants equations A.9 and A.10 are rewritten as 

_ C,cos(ytano) — C3sin(ytano) 

C2 — 7’ 

  

A
e
 

2
s
 

dé _ C,cos(ytano) + C3sin(ytanc) 

dy C2 - 7 

  

( A.11a) 

( A.11b) 

( A.11c) 

( A.11d) 

( A.11e) 

( A.11f) 

( A.12) 

( A.13) 

The equations A.12 and A.13 are now only functions of y and the constant bank angle co, but 

are not directly integrable. A very good approximation of the integral can be obtained if 

sin(ytano) and cos(ytanc) are expanded as the following high order polynomials 

(ytanc)? + (ytanc)* _ (ytanc)® 

2! A) 6! 
    cos(ytano) = 1 — 

(ytanc)? 1 (ytanc)? _ (ytano)? 
3! 5! 7! 
    sin(ytano) = ytano — 

( A.14) 

( A.15) 

Substituting equations A.14 and A.15 into the differential equations A.12 and A.13, the terms 
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on the right hand sides of equations A.12 and A.13 can be rewritten as 

  

Cycos(ytano) — Cy [ 720 — 360(7tano)* + 30(ytano)* — (ytano)® | 
( A.16) 

Cy — 7 720(C. —_ 7’) 

  

Cg3sin(ytano) _ Cs| 5040ytano — 840(ytano)? + 420(7tano)> — (ytano)" | 
A.17 

Cy —- 7 5040(C, —_ 7”) ( 

by performing long division on the right hand side terms of A.16 and A.17, the equations can be 

rewritten as 

  

C,cos(ytano) _ 
(AB) 

C,- 7° 

mhLr‘tan’o — (30t 4¢ — Catan’)? — (30C,tan*o — C3tan®o — 360tan7c) | + 720 Y an & 2 an a)y ( 2 ano 3 an oc ano 

ray — 360C,tan?o + 30C2tan*a — C3tan®e 

720 C,- 7 

C3sin(ytanc) _ 
(4.19) 

C,- 7 

eoiqLy*tan’ — (42tan°o — Cytan’o)y? — (42Catan®o — C}tan’o — 840tan°c) | + 

  

C3 | 5040tano — 840C,tan?o + 42C3tan°o — C3tan’o 
5040 C,- 7 

performing the integration of equations A.18 and A.19 for use in equation A.12 and A.13 gives 

C,cos(ytanc) _ 

[esse] cae) 
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5 3 
Col (tanto) — (30tan*o — Cotan®o)7, — (30C,tan*o — Cotan®o — se0ian?e)> | 

7 
C,| 720 — 360C,tan2o + 30C;tanto — Cotan®e In {C, +7 

2 {C, C, _ 7 

e€ 

Czsin(ytanc) | _ / a = ( A.21) 

Cz “8 4 2 2 

soil (tn a} — (42tan'o — Cotan’o)7- — (42Cotan'o — Catan’ — s40tan®o)>, | 

Y 

Cz | 5040tano — 840C,tan?o + 42C,tan®o - C5tan’e 2 
~ 5040 2 In(C2 — 1°)   

Ve 

Combining equations A.20 and A.21 to form the solution for the latitude and longitude gives 

  

  

¢—¢= ( A.22) 

| Y 

C 61 4 6 \> 4 2. 48 ay. 750 (tan o)-= — (30tan*o — C,tan o)-5 — (30C,tan*o — Cytan’o — 360tan*o)y 
4, 

x 

4, C1] 720 — 360C,tan?o + 30C;tan*o — Cotan®o {C. +7 
720 2 (C; "WG, 

é 

5 2 an? 3_\7" sais (tan” ar (42tan®o — Cytan’ ot — (42C,tan°o — C,tan’'o — 840tan Oo) 

C3 | 5040tanc — 840C,tan?o + 42C,tan®o _ Cotan’o 2 
~ 5040 D In(Ce       

Ye 
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6—-6.= ( A.23) 

  

  

7 

C r 6.\Y> 4 26 2 750 (tan°o) — (30tan*o — C,tan o)- — (30C,tan*o — C,tan°’o — 360tan‘o)y 

Ve 

Y 

4, Cr| 720 — 360Cztan?o + 30Cztanto ~ Cotan®e | [Co +7) J _ 
720 9 {C, {C, - + 

Ve 

7 
C 6 +4 2 4? 

3 (tana) — (42tan®o — Cotan’o)-7 — (42C,tan®o — Cytan’o — 840tan*o) 5 

Ye 

Y 

C; | 5040tano — 840C,tan%o + 42C,tan®o — C3tan’o 2 
5040 2 In(C2 — ¥)   

+ 

Ye 

Equations A.22 and A.23 are the solutions to the differential equations A.9 and A.10, where the 

constants are defined from equations A.11. 

A2.2: Time 

The differential equation for the time of flight along a sub arc is given by 

2 de _ k ( A.24) 

| Acose| Ze — _k (7? = yf eveene] 22+ 9, 5.)] 
2Acosce E*n Acoso 

  

  

The equation A.24 is now only functions of y, the entry states and the constant bank angle co. 

Several constants are defined by grouping terms as 
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Cc, = _“— ( A.25a) 
Acoso | 3? 

Cc, = —(n - 1+") ( A.25b) 
2 E*nAcose 

C3 = veexp(—2C27e) ( A.25c) 

ky 
C, =e + P\cose ( A.25d) 

Using the constants C, - C, the differential equation A.24 can be rewritten as 

dt _ Cy exp(—Co7) ( A.26) 

dy C 
[esc] et—9" 

In order to put equation A.24 in a form that is integrable, two further constants are defined 

  Cs = ao ( A.27a) 

C, = a ( A.27b) 

Using these two constants, equation A.26 is rewritten as 

dt. __ Ce exp(—C27) ( A.28) 
dy Ge - 7 

Performing the integration on equation A.28 by integration by parts, 

  

  

. of ¥ 

_ | exp(—Cay) , | Cr + 7 Cy Cr +7 t—t, =C, 30, In a — + IC, exp(—C,7) In C= dy 

Ye Ye 
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t—t, = ( A.29) 

  

  

Y Y 

Ceexp(—C27) , |C7 + C,Cyexp(C,C7) 
IG, In C,— 4 + — 3G, exp(—C,(C, + ¥)) In(C, + xy) dy — 

Ye Ye 

, 
CeCaexp(—O2Cr) ex(CCr - 9) (Cr = 1) a7 

Ye 

The integrals in equation A.29 are of the following form 

[ext In(x) dx = exp(ax) In(x) _ if exp(ax) dx 

where the integral on the right hand side is a series expansion. By using the series expansion to 

higher order terms, a close approximation of equation A.29 can be obtained. ‘The series 

expansion for the right hand side integral is as follows 

(ax)? | (ax)? | (ax)* | (ax)® , (ax)® , (ax)! 
po + 3.3 + gar t Ser t eer t 7-71 
    

[ee dx = In(x) + 7 4 

Using the above series expansion and defing new variables from equations A.24 as 

x, =C, +7 ( A.30a) 

Xy = Cy, —-—¥ ( A.30b) 

a,= —Cy ( A.30c) 

ag= Cy ( A.30d) 
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the equation for flight time along a sub arc is given by 

  

  

    

  

7 

_ Ceexp(—Coz7) Cr, +7 t—t, = Gy In C= 4 + ( A.31) 

Ye 

Y 

CeCoexp(CC7) | exp(a;x;) In(x,) 1 aX) (a;x,)" (a,x,)" 

IC, a; — a | Ga) + 4p + “grr te + a | + 
Ve 

Y 

  

C,Czexp(—C2C7) | exp(aax2) n(x.) = AoX (apx,)” (ayx5)" 
30; L “Bp | IMQa) + GP + og te ta   

where the constants are defined in equations A.25, A.27 and equations A.30. 
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Figure 1. Earth Fixed and Tracking Coordinate Systems 
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Figure 3. Lift, Drag and Gravitational Forces Acting on a Vehicle 
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Figure 9. Inclination Change Due to an Aeroassisted Maneuver 
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20 

98



  200 

bs
 

_ 
DO

 
oS 

oO 
S
 

©
 

S
 

©
 

i 
f 

it 
f 

I 
{ 

j 
[ 

I 
j 

j 
{ 

j
f
 

j
i
t
 

{ 
i 

{ 
j
j
 

H
e
a
t
i
n
g
 

Ra
te

 
(
W
/
c
m
~
2
)
 

On
 So       So TOT TC TT TOT TTT 

OD 10 15 20 
Time From Atmospheric Entry (sec) 

CS 

Figure 14. Convective Heating Rate vs. Time for x = 5.75 (Coplanar) 

20 

99



Fl
ig

ht
 

P
a
t
h
 

An
gl
e 

(d
eg

) 
| OD
O 

! 
! 

l 

  

XO
 

C
o
 

On
 

1 
I 

1 
I 

! 
] 

—
 

I 
l 

  

S
 

| 

| 
—
 I 

      

—5 POUT TT TTT TT TT TT 

0 OD 10 15 20 20 

Time From Atmospheric Entry (sec) 

Figure 15. Flight Path Angle vs. Time for x = 5.75 (Coplanar) 

100



  a0 

—
 

ON
 

j
t
 

i 

On
 

D
y
n
a
m
i
c
 

P
r
e
s
s
u
r
e
 
(
K
N
/
m
~
2
)
 

—
 = 

    
0 

I PoP EE TT Poo hE a ee ee | | | I 

Oo 10 15 20 

Time From Atmospheric Entry (sec) 

Figure 16. Dynamic Pressure vs. Time for x = 5.75 (Coplanar) 
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Figure 40. Dynamic Pressure vs. Time for x = 2.61 (Noncoplanar Ai = 5°) 
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Figure 46. Dynamic Pressure vs. Time for x = 1.30 (Noncoplanar Ai = 5°) 
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Figure 47. Velocity vs. Time for y = 1.30 (Noncoplanar Ai = 5°) 
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Figure 48. Cost Function vs. y for Coplanar Transfer Methods 

 



0.50   

      

  

0.45 - 

0.40 - 
_ 

“A 
4 0.35 - 

2 
3 0.30 - 

fry 
~ 0.25 5 
wn 

& 
0.20 - 

0.15 - 

0.10 | | | | ~T —f | 4 | | | 

0 1 2 3 4 5 6 

Ratio of Radi (Chi) 

—& Pure Plane/Hohmann —*- Aeroassisted —X- Non-Aeroassisted 
    
  

Figure 49. Cost Function vs. x for Noncoplanar Transfer Methods (Ai = 5°) 

134



  

Co
st
 

F
u
n
c
t
i
o
n
 

(S
U)
 

a)
 om 

= — ye
 L 

0.125     0.10 r   
2 3 4 
Ratio of Radii (Chi) 

4 
- 

oO 6 

  

—&- Coplanar —*— Noncoplanar 
    
  

Figure 50. Coplanar and Noncoplanar Aeroassisted Transfer Cost Functions vs. x 

135



Vita 

The author was born in Baltimore, Maryland on May twenty-third, nineteen hundred and sixty 

six. He received a Bachelor of Science degree in Aerospace Engineering from Virginia 

Polytechnic Institute and State University, Blacksburg, Virginia in May 1989. As well as 

attending the university at Blacksburg, the author also gained practical professional work 

experience working at Aberdeen Proving Grounds while enrolled in the university Co-Operative 

Education program. Upon completion of the Master of Science program, the author began his 

professional career at the Naval Surface Warfare Center in Dahlgren, Virginia. 

This work is part of the requirements towards the degree of Master of Science in Aerospace 

Engineering at Virginia Polytechnic Institute and State University. 

fj TM 

Vita 136


