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(ABSTRACT)

The problem of developing a generalized impulse as a function of a set of parameters is
investigated. The proposed generalized impulse alters an existing orbit by producing, over some
period of time, a change in velocity, AV, as well as a change in position, Ar. The generalized
impulse is described by parameters associated with an instantaneous change in velocity as well
as parameters associated with an atmospheric skip trajectory. Closed form solutions are
obtained through several changes of independent variable, the use of modified Chapman
variables and the consequent analytical integration of the uncoupled equations. The closed form
solutions contain between two and six parameters depending on the complexity of the desired
skip trajectory. Fuel optimal transfer orbits are obtained using the generalized impulse along
with Keplerian arcs and instantaneous changes in velocity. Families of coplanar and
noncoplanar transfers for circular orbit to circular orbit are numerically generated. The
generated transfer trajectories involve the rendezvous of two vehicles. The orbits are not
globally optimal but rather optimal for the specified number and type of velocity impulses
specified. The optimal solution to the nonlinear problem is determined via sequential quadratic
programming which satisfies the Kuhn-Tucker optimality conditions for constrained
minimization. It is found that for transfer between coplanar and noncoplanar orbits, solutions
using the generalized impulse compare favorably with solutions obtained by optimal control
theory. Numerical solution to complex problems involving transfer from general orbit to general

orbit were not obtained.
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Chapter 1: Introduction and Background

The general problem of determining orbital transfer trajectories using minimum fuel requires
characterization of the manner in which the transfer trajectory is produced. Since changes in an
orbit are produced by some manner of propulsive action, the type of the propulsive burn
determines the amount of fuel expended. Propulsive burns can be applied continuously over
some period of time according to a control law which specifies their magnitude and direction or
they can be approximated by an impulse which acts instantaneously in a defined direction.
Determining the optimal control during thrusting arcs is difficult and requires complex
numerical calculations and is not discussed in this paper. For a comprehensive discussion of
optimal space maneuvers see [9]. This paper concentrates on determining a simple, yet accurate,
approximation to a continuous thrusting arc in the form of a generalization of the impulse

approximation mentioned previously.

Determining transfer orbits is made easier by parameterizing the entire transfer trajectory with
—
instantaneously applied propulsive burns commonly called delta-v’s, AV, ,,, separated by

Keplerian coasting arcs through the angle, . In general, the AV- has components in three

inst

dimensional space and these three components become a set of three parameters to be used along

as a

with the coasting angle 7 to describe each subarc of the transfer orbit. Using the "AV

inst
means to measure the propulsive burns, the total fuel expended is related to the cost fuction, J,
by

n

J = Z “(Avinst)in

1=1
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where n is the number of instantaneous delta-v’s. Motion of the space vehicle during the
Keplerian arcs is well known and is not discussed in detail in this paper. However, a thorough
discussion of Keplerian motion is found in [1,2]. The combination of the parameters describing
the Keplerian arc angle and the instantaneous changes in velocity is sufficient to parameterize

the amount of fuel used in an orbit transfer problem.

The pure impulsive approximation to a thrusting maneuver as described above is applied
instantaneously while the position of the vehicle is assumed constant. This research proposes a
generalized impulse which produces a change in velocity as well as a change in position that is
not instantaneous but occurs over some finite period of time. The generalized impulse produces
these changes in position and velocity as a function of a set of generalized impulse parameters,

—
Xg, as follows:

tt =t + At(X)

where + indicates the state after application of the generalized impulse and — indicates the

state prior to the application of the generalized impulse.

This paper concentrates on the problem of representing an aeroassist maneuver as a generalized
impulse and determining the changes in position and velocity as functions of the generalized
impulse parameters, i_; associated with this maneuver. This aeroassisted maneuver involves a
space trajectory of which part dips into the atmosphere. It is well known that these types of
maneuvers can reduce the amount of fuel needed for certain orbit transfer problems. In
particular, the types of orbit transfers that take advantage of atmospheric flight to reduce the

amount of fuel used include orbital plane, orbital size and orbital energy change maneuvers.
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Trajectories which use the combination of propulsive maneuvers in space along with
aerodynamic maneuvers in the upper portion of the atmosphere to produce these orbital

changes are classified under the title of synergistic space flight.

The maneuver sequence is initiated by the applicatioh of an appropriate instantaneous A_\—’:-mt
to an existing exoatmospheric Keplerian orbit. As a result of this instantaneous delta-v, whose
components are only part of the entire set of generalized impulse parameters, a new Keplerian
orbit is generated. The new orbit generated is designated as the deboost orbit and as the vehicle
moves along the deboost orbit, it is forced to enter the atmosphere. The space vehicle’s motion
from atmospheric entry to atmospheric exit is mapped by the remaining parameters of the
generalized impulse. These parameters are designated by the vector of atmospheric parameters,
Xa and are determined from the atmospheric flight equations. Exit from the atmosphere

terminates the changes described by the generalized impulse.

Solution for the state and control variables related to the atmospheric flight using optimal
control theory proves unsatisfactory because the solution method requires numerical integration
of the coupled nonlinear system of flight equations. While the problem of determining optimal
transfers involving the atmosphere has been widely investigated using optimal control theory,
simplification of the problem to a parameter optimization problem has generally been ignored.
References [3-7, 10-15, 17-19] provide discussion on atmospheric modeling, atmospheric flight
and the optimal control laws used for several different types of optimal control problems related

to aeroassisted transfers.

Previous work in Hull [4] poses and solves via optimal control theory the problem which uses an
aeroassisted maneuver for the transfer between two noncoplanar circular orbits of the same
radius. In this reference, Hull proposes a transfer using instantaneous delta-v’s applied
tangential to the flight path at three distinct points along the transfer orbit. The first

instantaneous delta-v is a tangential retroburn applied to inject the vehicle into an elliptical
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orbit that causes atmospheric entry. The second impulse is applied tangential to the flight path
at the exit from the atmosphere to raise the exit orbit’s apogee to the radius corresponding to
the initial circular orbit. The third instantaneous delta-v is applied tangentially at apogee to
recircularize at the target radius. Because this research concentrates on two impulse maneuvers,
only the atmospheric portion of the aforementioned transfer orbit is of interest to the current
research. The results presented by Hull [4] show that atmospheric flight occurs at a nearly
constant angle-of-attack corresponding to maximum Lift-to-Drag for all cases presented. The
change in latitude is small and the entire pass through the atmosphere is made at small flight
path angles. Hull [4] notes that for orbital plane changes exceeding twenty degrees, that the
gravitational and apparent lift forces become important to the calculation of the state variables
associated with atmospheric flight. As related to the current research, this suggests that
exclusion of the gravitational and apparent lift forces produces valid answers for maneuvers

which change the orbital plane inclination by less than twenty degrees.

In the work of Vinh and Mease [14], minimum fuel usage transfer orbits between two coplanar
circular orbits are determined by optimal control theory. However, the circular orbits are not of
the same radius allowing for the use of two impulses rather than the three required by Hull [4],
thus more closely paralleling the current research. Similar to Hull [4], the first instantaneous
delta-v is a tangential retroburn applied to inject the vehicle from a high-Earth orbit (HEQ)
into an elliptical orbit that causes atmospheric entry. After the atmospheric pass, and
subsequent exit from the atmosphere followed by a Keplerian coast, the second instantaneous
delta-v is applied to circularize at the radius corresponding the low-Earth orbit (LEO) target
orbit. The presented results show that the atmospheric pass occurs at small flight path angles
and that when a heating rate constraint is added to their optimal control problem, flight also
occurs at a constant lift coefficient. Because the orbit transfer in [14] and the present work is
performed with two impulses, the atmospheric skip trajectories calculated in [14] and the current

research are compared. Comparison between the time histories in [14] for heating rate, dynamic
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pressure and normal g-load provide a measure of the validity between results obtained using the

proposed generalized impulse and optimal control theory.

As pért of determining the generalized impulse and the associated parameters as an alternative
to solution by optimal control theory, this research effort determines closed form solutions to the
atmospheric state variables. These closed form solutions are then applied to the problem of
finding minimum fuel rendezvous transfer orbits. In obtaining these closed form solutions,
assumptions on the nature of flight through the atmosphere and the form of the vehicle control
laws are made. Parameters which completely describe the skip trajectory are proposed. Using
these parameters along with the parameters defining the rest of the generalized impulse and the
set of parameters defining the Keplerian space flight, the constrained parameter optimization
problem is formulated and solved. The solutions to the constrained parameter optimization
problem provide a quick, yet accurate, method of producing answers to initial questions
associated with designing transfer orbits using an aeroassisted trajectory or generating an intial

guess for finding a solution to an optimal control problem.

The following chapter reiterates the formulation of the generalized impulse as a function of a set
of parameters. Closed form solutions involving parameters for the atmospheric portion of the
aeroassisted transfer orbit are developed. Chapter 3 discusses the conversion of the scalar skip
trajectory results to vector form which is used with existing Keplerian orbits to determine the
exact position of the vehicle. Chapter 3 also discusses previously existing and added methods
used in calculating parameterized transfer orbits. Chapter 4 presents the numerical results
which validate the closed form solutions as well as presenting numerical solutions to several
minimum fuel transfer orbit problems. Finally, Chapter 5 makes conclusions about the present
research effort as well as giving some ideas for future research. Analytical evaluation for several
of thg partial derivatives used and evaluation of selected important integrals is presented in

Appendix A.
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Chapter 2: Problem Formulation

2.1: Overview

This chapter states the problem of forming an orbit transfer trajectory as a function of a set of
parameters. As part of this formulation, a generalized impulse is presented which takes the
form of an aeroassisted maneuver. The generalized impulse, which produces a change in
velocity, AV, a change in position, AT, and a change in time, At, involves flight through space
and the atmosphere. A review of the parameterization of the exoatmospheric equations as done
in reference 8 is presented and will be used in developing the generalized impulse. Focus is on

the formulation of the generalized impulse as a function of a set of parameters.

The formulation of the generalized impulse requires the development of the atmospheric
differential equations of motion, an atmospheric model, and finding the closed form solutions to
the equations of motion. Once determined, the closed form solutions reveal the parameters
needed for the generalized impulse. The newly formed generalized impulse can then be included
as part of a parameter optimization problem. The optimization problem may be loosely stated
as to find the set of parameters which describes a transfer orbit sequence so that an interceptor

will rendezvous with a target and at the same time minimize fuel expenditure.
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2.2: General Point-Mass Model

As a basis for formulating the parameter optimization problem, a general point-mass model of
the differential equations of motion governing the atmospheric flight portion is developed. The
equations of motion governing space flight are already well known and are not presented here;
however a complete discussion of the equations of motion for a vehicle under Keplerian motion
is found in references [1,2]. The following sections give the equations of motion governing the
atmospheric flight in thier most general form as derived from basic physical laws and then these

equations are simplified for application to skip trajectories.

2.2.1: Basic Vector Mechanics

A coordinate system O;X;Y;Z; is fixed in inertial space, while another coordinate system ozyz
rotates relative to the fixed coordinate system with angular rate @. The arbitrary vector A s
represented in the rotating system as A= Azl + A + A.k. In order to take the time
derivative of X as observed from the fixed coordinate system, the time derivatives of the unit
vectors fixed in the rotating system need to be evaluated. The following determines the rate of

N
change of A, represented in the rotating system, as observed from the inertial system

0,X,Y;Z;.

— . < N
dA _ dA,:  dAy:  dA,; di dj dk
dt = @t t @it @ ktAg A gt A G

By definition a fixed vector T, which rotates with angular rate @ has the following linear

velocity V = 4T — T xT By definingT =i + } + k, Poisson’ i btained
yV="q =w xr. Bydefiningr=1i+j+ , Poisson’s equations are obtaine
(di—izwxi
dj _ —_ -
dat — “*J
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- .
q = X k
=
Therefore, substituting the above relations into the equation for d—d‘% and grouping the
appropriate terms
dA _ 6A N
N
dv = Gl h Y XA
| —
where % denotes the rate of change of A as observed from the rotating system ozyz.
oryz

This principle is now applied to Newton’s Second Law for a rotating Earth relative to the

inertial reference frame O;X;Y;Z;. Setting the angular rotation rate of the Earth, We=w =

—
constant and T = A.

dr oL 4 ZvxT

dt t oryz

di; -+ T —_ - — T
—(FI:(%(d_:)Z%(‘S_;‘o:-yzwexr)+wex(66—:o;+;jzc7;x—r’)
v, g

avr _ 6T o x 6T 3 x (5 xT

il o;i;f(caex 5t o)zy-t we X (weXxT)

o . o . . . dv;, .
where V; is the absolute inertial velocity vector. Using the expression for d—tI in Newton’s

Second Law we have

dv

I_—-)

m - =F
2 -

m&L =T - 2m( &l x &) - m&l x (@ xT)
6t oxyz t oryz

—
where F is the vector of external forces acting on the vehicle.
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The rotating reference frame is designated as the Earth fixed coordinate system and has its
origin at the center of the Earth. This system is defined with the Zp axis aligned with the
rotation vector of the Earth. The X ;Y plane is in the plane of the equator and defines the Z
axis by the right hand rule. The Earth fixed system rotates with the Earth with angular

velocity @e about Z g- Newton’s Second Law now becomes

dv .
m%:?—?m(@va)—mwex(wex7) (2.1)

—
Defining V as the velocity vector relative to the Earth fixed rotating reference frame and T as

the position vector to the vehicle, then

5T =V 2.2

6t o:lr_yz E ( )
6—)

In the above definition, T:—, denotes the relative derivative of the position vector with respect to

the Earth fixed coordinate system and henceforth will indicate the change in position relative to

the Earth fixed reference frame.

The position vector T is defined in the Earth fixed coordinate system by its magnitude, by the
longitude angle 6, measured in the X ;Y o plane positive from the Greenwich meridian about the
Zp axis and by the latitude angle ¢, measured along a meridian positive northward from the
equatorial plane as seen in Figure 1. Evaluation of the terms in equations 2.1 and 2.2 is made
easier using the vector components along a rotating coordinate system whose origin is at the
center of the Earth and whose X axis moves with the vehicle. Hence the X axis is coincident
with the position vector to the vehicle. The Y, axis is defined to be in the Earth fixed
coordinate system’s X Y, plane and orthogonal to the X, axis pointing in an easterly
direction. The Z; axis is obtained from the right hand rule. Let v be the angle between the
local horizontal plane, that is the plane passing through the vehicle located at the point M and

—
orthogonal to the position vector T, and the velocity vector V g as shown in Figure 1. The angle
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v is the flight path angle and is positive when the velocity vector VE is above the local
horizontal plane. The angle ¢ is the heading angle and is the angle between the local parallel of
the latitude and the projection of the velocity vector VE on the local horizontal plane. The
heading angle ¥ is measured positive for a right handed rotation of the velocity vector -\—;E about
the position vector T. This coordinate system is designated as the vehicle tracking system.
Figure 1 shows the relationship between the Earth fixed and the vehicle tracking coordinate

systems.

Defining i, j, and k as unit vectors along the vehicle tracking system axes, the position vector T

and the velocity vector VE are given by
T=ri (2.3)

VE = (Vsiny) i + (Vcosy cosw)j + (Vcosy siny) k (2.4)

where the magnitude of VE is denoted as V to simplify notation. The angular rate of the Earth

fixed system written in the tracking system is
— . 2 -
we = (wesing) 1 + (wecosd) k

—
Therefore, calculating the cross products for the Coriolis acceleration we x V g and the transport

. — —
acceleration w, x ( We XT) we have

o xVp = (2.5)

—weV(cosycosicosd) i + weV(cosgsiny — cosysinysing) j + weV(singcosycosy) k
We x (we xT) = —(rw? cos?¢) 1 + (rw? singcosd) k (2.6)

where equations 2.5 and 2.6 are for use in the right hand side of equation 2.1

Chapter 2: Problem Formulation 10



2.2.2: Angular Motion

dv .
In order to write T and ddi using the position and velocity vector components along the

tracking system, we need to relate the angular rate of the tracking system to Earth fixed
coordinate system. Using the Earth fixed coordinates ¢ and #, the angular rate of the tracking

system is given by decomposing the angular rates d¢ and ¢

at at to their components along the

—
tracking coordinate system. The angular rate of the tracking system, 2, written as components

along the tracking coordinate system is given by
Q-(smd) )1+ )J+(cos¢ )

From Poisson’s equations, the time derivatives of the tracking system unit vectors as observed

from the Earth fixed coordinate system is

(dl% Oxi= (cosqS )J + d—f k (2.7a)
g% Ox j=(- cos¢> )1 + (squ ) (2.7b)
dd% =Oxk = ——dg) i — (sing 2)3 (2.7¢)

The change in the components of the position vector T represented in the tracking system as

observed from the Earth fixed system are obtained using equations 2.2, 2.3 and 2.7.

V. —dr
E — "dt
= d(ri)
Ve = dt

Ve=@i+@ )

Vo =@)1 + (reoss )5 + (D) &k (28)
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Matching components from equation 2.4 and 2.8, the kinematic expressions are

(d%: = Vsiny (2.9
dg _ Vcosycosy

dt =  rcos¢ (2.10)
d \% i

E? _ cos;ysml/) (2.11)

2.2.3: Acceleration Relative to Earth Fixed Axes

Using the velocity vector VE as defined in the tracking system from equation 2.4, the vehicle

‘ dv
acceleration | tE is obtained as follows. The time derivative of equation 2.4 is calculated and

equations 2.7 and 2.9 - 2.11 substituted to eliminate the time derivatives of the unit vectors.
After collecting trigonometric terms and applying the appropriate trigonometric identities, the
vehicle acceleration with respect to the Earth fixed axes system can be written out in component

form along the tracking system as follows:

—
dvg
t

= (2.12)

2 s
(sin'y%\t£ + Vcos'y‘(ii——z — V—r—cosz')')i +

2 .
(cos’ycosz/)%,- — Vsinycosz/;dgg - Vcos')/sinzp%tté + Yf—cosqrcosd)(sin'y — cosysinytang)) j +

2 .
(cos'ysimﬁ‘(ii—\{ — Vsin‘ysinz/)%% + Vcos7cos¢(3i—tf + yl—.—cos'y(sin*y siny) + cosy cos’y tang)) k

where equation 2.12 is used in the left hand side of equation 2.1
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2.2.4: General Forces

As a summary, all components of the vector equations 2.1 and 2.2, except the forces acting on
the vehicle, have been written as components along the tracking coordinate system. Therefore,
the forces acting on the vehicle need to be decomposed along the vehicle tracking system. In the
most general case, the forces acting on the vehicle include aerodynamic, thrusting and
gravitational forces. In determining the aerodynamic force components acting on the vehicle,
the vertical plane of the vehicle is defined as containing the position vector T and the velocity
vector VE It is convenient to designate aerodynamic forces acting on the vehicle in a
coordinate system with the Y, axis aligned with the velocity vector and the X, axis in the
vertical plane pointing radially outward and orthogonal to the Y, axis. The Zy axis
completes the right handed system as shown in Figure 2. The X, Y ;,Zy, system described is

designated as the wind axes coordinate system as given in Vinh [17].

The aerodynamic forces acting on the vehicle are composed of a tangential and normal force.
The fangential force is along the velocity vector VE and the normal force is perpendicular to the
velocity vector VE and in general directed at an angle o out of the vertical plane. The angle o
is the bank angle and is positive for a rotation of the normal force vector about _VE (i.e. left
banking as observed from the rear of the vehicle). Written in the wind axes, these forces are

given as

— — —
Faero = F: + Fn ( 213)
Fn = (Fncosa) i+ (Fpsine) k (2.14)

F, = (F)] ( 2.15)

To resolve aerodynamic force components from the wind coordinate system to the vehicle

tracking system, two coordinate system rotations are needed. First, a v rotation about the Z
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wind axes to align the X, wind axis with the X, tracking system axis. Secondly a —v
rotation about the X, axis aligns the wind and tracking system axes [17]. The following
transformation matrix transforms a vector in the wind axes to the appropriate vector in the

vehicle tracking system.

tracking wind
X cosy siny 0 X
y = —sinycosy cosycosy —siny y (2.16)
z —sinysiny  cosysiny cost) z

The gravity force acting on the vehicle is given by the following relation written in the vehicle

tracking system as

Forav = (—mg(r)) T (2.17)

where gravity is a function of the radial distance from the center of the Earth.

Resolution of the aerodynamic and thrusting forces from the wind axes to the vehicle tracking
coordinate system, accounting for the out-of-plane bank angle o, is done using equations 2.13 -
2.16. Figure 2 shows the relationship between the wind axes, the vertical plane and the vehicle
tracking system. The gravity force as given in equation 2.17 and the resolved aerodynamic
forces using equation 2.16 determine the complete force vector acting on the vehicle. Written

as components along the vehicle tracking axes, the force vector is

—
F =
(Fncosycoso + Fsiny — mg) i — ( Fn(sinosing + sinycostcoss) — Fycosycosy) j

+ (Fn(sinocosp — sinysingcosa) + Fcosysing) k (2.18)

where equation 2.18 is used in the right hand side of equation 2.1.
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2.2.5: General Equations of Motion for Atmospheric Flight

From equations 2.5, 2.6, 2.12 and 2.18 the vector equation 2.1 can be written using components
along the vehicle tracking axes as equations 2.19, 2.20 and 2.21.

(2.19)
sin'y%\tl + Vcos'y?i—‘ty — yr—2cos27 = %(Fncos'ycoso' + Fsiny — mg) +

2w, Vcosycoscosd + rw? cos?é

(2.20)
2
cos'ycosy’)%% - Vsin‘ycosgb% - Vcos'ysinwi—if + l{.—cos7cosz/1(sin7 — cosvysinytang) =
%(Ft cosycosy) — Fu(sinosinyg + sinycosycoso)) — 2w.V(cosdsiny — cosysiniysing)
( 2.21)
2
cosysinqb%—\t/ — Vsin'ysim/)da’tZ + Vcos'ycoswt(ii—lb + VT cosy(sinysiny + cos?y cos?ytang) =
%(Fn(sinacoszp — sinysingycoso) + F,cosysing)) — 2weVsingcosycosy) — rw? singcosd
To isolate %—Y equation 2.19 is multiplied by siny, equation 2.20 is multiplied by cosycosy and

equation 2.21 is multiplied by cosysiny. The three equations are then added together
component by component. In a similar manner, equation 2.19 is multiplied by —cos¥y, equation

2.20 is multiplied by sinycosy and equation 2.21 is multiplied by sinysiniy. The three equations

are added together to isolate ?TZ To isolate %%, equation 2.20 is multiplied by —siny and
equation 2.21 is multiplied by cosy. The two equations are then added together. By grouping
appropriate trigonometric identities during the addition, the following relations for %\t—/, 3—% and
dy .
qc 2re obtained.

%—Y = %F, — gsiny + rw? cosé(sinycos¢ — cosysinising) (2.22)

Chapter 2: Problem Formulation 15



2
%F nCOSO — gcosy + l{.— cosy + 2w.Vcostcosd + rw? cosg(cosycosd + sinysinysing)

dy _
Vg = ( 2.24)

1Fnsing _ V2

2
M cosy — T cosycosytang + 2w.V(tanysingcos¢ — sing) — (fo%ycosqisind:cos«/)

o
-

= Vsiny

=W
o+

o
5~

_ Vcosycosy
T rcos¢

(

o
o+

d¢ _ Vcosysiny
dt — r

The force equations 2.22 - 2.24, along with the three kinematics equations restated above
constitute the complete equations of motion over a spherical rotating Earth. From this general
point-mass model, equations will be developed which satisfy requirements for the problem

formulation.

2.3: Problem Statement

The overall problem is to determine a set of parameters which describes the rendezvous orbit
transfer between two vehicles, initially in different orbits, with minimum fuel expenditure. A
convenient choice of parameters is a combination of instantaneously applied changes in velocity,

—
AV

insy» and the angle along the Keplerian coasting arcs, 7. Inclusion of an aeroassisted

maneuver using this model cannot be done, hence a generalized impulse is proposed which allows
for the inclusion of the aeroassisted maneuver which changes the velocity as well as the position.
Parameterization using the AV,."” and the Keplerian coasting arcs was done by Lutze and Cliff

[8] and will be used in part together with the proposed generalized impulse described as
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Vt=V- 4+ AV (T)
TH=T- + A7(T))

t* =t + At(Tp)

where — indicates the state prior to the application of the generalized impulse and the +
indicates the state after the application of the generalized impulse. The parameters used in the
generalized impulse are given by the vector z;. The generalized impulse parameters, Ty, are

given as
%o = {(AVins (AVi)iners (BV2)inen %

where (AVz);nsr (AVy)inse and (AV.;);,,, are the components of the instantaneously applied
change in velocity and the vector X, contains parameters related to the atmospheric portion of
the trajectory. Determination of the vector of atmospheric parameters, Xa, is a sub-problem of

the overall problem of determining the parameters z .

Therefore, using the generalized impulse, the complete set of parameters used for orbit transfer

calculation is

x = {’hv N2y ceeee Mntts (AV1)insts (AVa)inges coener (Avn-—l)inst’?g }

—
where 7 denotes an angle along a Keplerian coasting arc and (AV),,,,, , which contains the three
components (AVz);,,4 (AVy);,s and (AV:);,.,:, denotes a pure instantaneous change in

T

velocity and X, ' is the vector containing the generalized impulse parameters which includes one
particular deboost delta-v. Using the parameters given above, a transfer trajectory consists of
the first coasting arc followed by an impulse, a second coasting arc followed by an impulse and

so on up to the number of allowed impulses. The last impulse is used by the interceptor to

match velocities at the rendezvous point. The last impulse is not a parameter, as it does not
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influence the trajectory, but it is included in calculating the amount of fuel needed to
accomplish the transfer orbit. The performance index used to measure the amount of fuel

expended is given as

n —
=3 AV
1=

where n is the number of allowed impulses. The value of n is specified before each trajectory is
calculated and does not appear as a parameter. Now that the performance index and the
parameters have been defined the general minimization problem, using the proposed parameters,

is stated in a formal manner as follows

Minimize J (Z) subject to
9.(7) =0 i = l..me
9,(Z) >0 j=m .. m
where the following boundary conditions apply

— —_— — — —_—
wherez € R", 7, C T andz, C 74

and all functions are continuously differentiable.

In the above statement, m. is the number of equality constraints and m is the total number of

. — — — .
constraints and the vectors X, xg and X, are as defined previously.

2.4: Skip Trajectory Point-Mass Model

In order to solve the general minimization problem and to solve for the elapsed time, the change
in position and change in velocity that occur during the atmospheric portion of the generalized

impulse need to be determined. Formally stated, this sub-problem is
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Given the dynamical system of equations 2.9 - 2.11 and 2.22 - 2.24, determine a set
of parameters, Za, which allows for the analytic solution of each state variable and

the associated time of flight.

As a first step in solving the sub-problem, the general point-mass model has to be simplified.
This section develops a set of simplified atmospheric flight equations by making assumptions
relative to the skip trajectory flight regime, the physical properties of the Earth, and the
properties of the Earth’s atmosphere. The simplified flight equations can then integrated in

closed form. These closed form solutions contain the required set of parameters.

2.4.1: Aerodynamic Forces

Since we are only concerned with unpowered skip trajectories through the atmosphere, the thrust
forces are zero and the normal and tangential forces in the force equations 2.22 - 2.24 are

composed of lift and drag given as

Fﬂ = L(I‘, VE, CL) ( 2.25)

Ft = - D(I', VE, Re, CL) ( 2.26)

The drag force acts opposite to the velocity vector while the lift force acts orthogonal to the
velocity vector in the direction defined for the normal force. Assuming that the atmosphere is
at rest with respect to the Earth, then the Earth and its atmosphere rotate at the same constant
angular rate We and there are no wind shear forces produced by a moving atmosphere. Figures 2
and 3 show the relationship between the lift, drag and gravitational forces. A lateral force on
the vehicle is generated when the normal force is rotated out of the vertical plane via such

vehicle controls as the ailerons. Choosing the usual definitions for the drag and lift forces as

D = 1p(r)VESCp(a, M, Re) (2.27)
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2
L = %p(l‘)VESC (a, M) ( 2.28)

where p is the atmospheric density as a function of radial position, S is the vehicle reference
planform area, Cp, and C; are the drag and lift coefficients. The following general drag polar

relation between lift and drag will be used
Cp = Cpo(M, Re) + K(M, Re) C(a, M) ( 2.29)

The zero lift drag coefficient, C, ), is the drag due to the profile and wave drag of the vehicle.
The induced drag factor, K, results from the effects of lift. In general these two drag factors are
a fun.ction of the flight regime, where M is the Mach number and Re is the Reynolds number.
The exponent n can be set according to the appropriate flight regime. Since skip trajectories
involve flight at high hypersonic velocities, Cp, and K are assumed as constants. To ease
future calculations, the lift coefficient, C;, is chosen as the control variable instead of the angle-
of-attack, . In order to form convenient ratios for use in the equations of motion 2.22 - 2.24,
general expressions for the lift coefficient for maximum lift-to-drag, C7, the drag coefficient for
maximum lift-to-drag, C},, and the maximum Lift-to-Drag ratio, E*, are determined. 'The
Lift-to-Drag ratio, E, is defined as

Cp

S E— 2.30

e
I
e

For the maximum Lift-to-Drag ratio, E*, we need to minimize the expression given in equation
2.30. Taking the partial derivative of E with respect to C; and using one dimensional

minimization, calculus gives the lift coefficient for maximum lift-to-drag, C7 as

OE
oL _ 9

(Cpo + KCB) — (Cp)mKCT ™M)= 0
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(2.31)
where n # 1.

Substituting equation 2.31 into the general drag polar equation 2.29 we obtain

the drag coefficient for maximum lift-to-drag, C},, which is given as

Cp
Cp = Cpo + K(C)" = Cpp + o= 1)

. nCpop
D= m—-1)

(2.32)
Combining C7and C}, to form E*

Bt [ Cpo (-1
| K(n = D(nCpo)"

— 1
1—n n—1i)|n
e | Cha M = 1) )]
| K n®

(2.33)

Defining the scaled lift coefficient, A, as

C
/\z—f’
1937

(2.34)
and substituting into the general drag polar equation 2.29 and using equations 2.31 and 2.32

= Cpo + K(AC))"

lin
~1 Cpl®
cp =850 4 K(AL_I%] )

Cp _(n—1) +A"
e
D

(2.35)
C, Cp . . .
The ra.tlos —L and 6— are useful in reducing the force equations of motion 2.22 - 2.24
D
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2.4.2: Atmospheric Model

Because the lift, drag and gravitational forces are functions of altitude, a model of the density

and gravity field needs to be determined. Newton’s inverse square law

2
g(r) = g:;’ ( 2.36)

determines the gravity field, where g, is the standard sea-level reference value for the
acceleration due to gravity and r, is the mean radius of the Earth. Assuming an ideal gas law

relation, the equation of state is
p = pRT (2.37)

where R is the gas constant for air. Using the fact that the atmospheric pressure at any point

is proportional to the amount of atmosphere above that point, the following relation holds
dp =—pgdr (2.38)

From the equation of state

and using equation 2.38 the differential equation of state is

d (r) dT(r)
_P£ - —l: RgT(r) + T%r) dr :Idr

in the above relation the term in brackets is defined as the inverse scale height (r) [3, 17, 18].

1 dT(r)
T(r) dr

) = Rg’(If()r) +

Therefore, the differential equation of state is
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d
_pf_’ = —B(r)dr (2.39)

Integration of equation 2.39 is possible under the assumption that the quantity Ar is a constant.
Reference [3] discusses in detail the properties of the constant Sr atmospheric model. Other
possible assumptions on the type of atmosphere are the strict exponential and the isothermal
atmosphere [17, 18]. From equation 2.39 8 = S(r), however since ﬁr) has a large average
value, considering the inverse scale height, 3, as a constant introduces an error on the order of

1

Br into equation 2.39. Since fr is a large value the introduced error is small compared to unity.
Therefore, the fr = constant atmosphere is retained while also holding # constant. The choice

of the fBr = constant atmosphere is convenient for simplification of the force and kinematic

flight equations. Performing the integration of equation 2.39 yields

d T
Tp = —ﬁl’/ dT
In(p) —In(po) = —ArIn(r) —In(ro)]
L = (fr_o)_ﬁr ( 2.40)

where p, is the sea-level density of air. The value of k2 = Br = 900 will be used as derived
from reference [3] for flight in the Earth’s atmosphere. Figure 4 shows altitude versus density

for the constant @r atmosphere.

2.4.3: Skip Trajectory Equations of Motion

Looking at the magnitudes of the terms from equation 2.1, the transport acceleration term has a
maximum value when the vehicle is at the equator. The Coriolis acceleration has a maximum
value when the vehicle is traveling in the equatorial plane. For the Earth, which has an angular
rate of 7.292 x 10~° radians per second, terms involving rw? are on the order of one percent of

sea-level gravity when evaluated at the Earth’s surface. For near orbital flight speeds at an
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altitude of 60 kilometers (200,000 ft), terms involving 2wV are on the order of one tenth sea

level gravity. Therefore, the rw? and 2w,V terms will be neglected. Under this assumption the

force equations of motion 2.22 - 2.24 reduce to

%% = %F, — gsiny

2
A% T = %Fncosa - (g — % )cos'y

V dly[} 1 FnSiIlO' V2

df = mcosy T cosycosytang

Next, the expressions for the normal and tangential forces from equations 2.25 - 2.28 are

substituted into the above equations yielding the force equations of motion for a nonthrusting

vehicle over a spherical nonrotating Earth.

pVISC .
= g 2 — ssiny
dy pV?SC 2
Vd;yz 2m Lcosa-_(g—VT)cosv
d pV?SC; 2
v d@f — TL (S:IO_%U_Y-— VT cosycosytane

Equations 2.41 - 2.43 along with the previously derived kinematic equations

dt = Vsinvy

dg __ Vcosycosy
dt = rcoséd

d¢ _ Vcosysing
—

( 2.41)

( 2.42)

( 2.43)

(2.44)

( 2.45)

( 2.46)

are the set of six scalar equations necessary to completely describe the motion of the vehicle.
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2.4.4: Skip Trajectory Dimensionless Equations of Motion

In order to further simplify the six differential equations 2.41 - 2.46, Vinh [17] proposed several
dimensionless variables. These dimensionless variables let the equations become decoupled and
allow for solution by closed form integration. The first of the variables proposed by Vinh is the

dimensionless arc length, s, which is defined as

t
] _—.-/ ¥cos7 dt (2.47)
o

where t is the time of flight. Using the above equation to change the independent variable from

time to arc length, the kinematic equations 2.44 - 2.46 become

g—; = rtany (2.48)
dé _ cosy

ds ~ cos¢ (2.49)
9@ = siny ( 2.50)

while the force equations 2.41 - 2.43 become

. pV2SC
((ii_g = (_ 2mcos$ — gtany % (2.51)
dy _ PV?SCL cosa v? r
5—( 2m cosv*(g—T) V2 ( 2.52)
dy pV3ISC, 2
T = ( s L % — ‘L;- cosycosytang Vzcros'y (2.53)

As proposed by Vinh [17], the following modified nondimensional Chapman variables are

defined as follows to further simplify the equations of motion.
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7=t [E (2.54)
2
v = \gLr ( 2.55)

where g and p are determined from 2.36 and 2.40 respectively. Equations 2.54 and 2.55 are
used to replace r and V respectively in equations of motion, 2.48 - 2.53. In their most general
form, since the Chapman variables Z = Z(p(r), r, 8(r)) and v = v(V, g(r), r) chain rule
differentiation is used to rewrite the equations of motion using the dimensionless Chapman
variables. The partial derivatives needed are found in Appendix A. For completeness, inclusion
of B = B(r) is presented in the process of rewriting the equations with the assumption of 7 as a
constant being used at the end of the rewriting process and in any following equations. Using
the partial derivatives from Appendix A and forming the dimensionless variables the following

transformation for the altitude related state variable Z, occurs

dz _ 02 0p 0 | 020r | 92 9B or

ds Op Or 8s ~ Or s ' 88 Or Os

dzZ _ Z z 08

ds = (—ﬂZ +5; — iﬁﬁ) rtany

dZ _ _ _ 1 198

ds = — B2 |:1 36r + 2—525:' tany ( 2.56)

for the constant Fr = 900 atmosphere, the term in brackets from equation 2.56 is
approximately unity [17, 18]. Therefore, equation 2.56 reduces to

dZ _ _ 2
ds = k*Ztany ( 2.57)

In a similar manner, with the subsitution for C;, the transformation of the velocity state

variable leads to

dv _ 9v dV

dv OV L ovIgor | 9vor
ds — 90V 0s

togoras T or s

Chapter 2: Problem Formulation 26



_ n
%—‘S’ = E,?c‘;gl; n 111 +A ] — (2 — v)tany (2.58)

The other four state equations involve angles which are already dimensionless and only require

that the dimensionless variables be formed. These four equations are as follows

97 — Zdkeoss (1 _%) (2.59)
gg _ 2_2:%) ( 2.60)
% = siny (2.61)
(31—%) = % — cosytang (2.62)

Further simplification of the kinematic and force equations is possible by making some
assumptions on the properties of the vehicle’s trajectory. For atmospheric skip trajectories in
the upper portion of the atmosphere, speeds are near orbital velocity. In equation 2.52, the
gravitational acceleration nearly cancels the generated centrifugal relief term. Therefore, in
equation 2.59 the term (1 — %) will be neglected. Since the skip trajectory occurs at small
flight path angles, tany is small. Therefore, the component of gravity tangent to the flight path
is small compared to the generated aerodynamic forces. With this assumption, the gravity term
gr

vtan'y as given in equation 2.51 or the same term when transformed to (2 — v)tany as given in

equation 2.58 will be neglected.  Using these two assumptions, the equations of motion become

dZ = _ K?7tany ( 2.63)
dv _ —2vZk [n —1 +A“]

ds = E*cosy n (2.64)
dy

41 _ 2kconr (2.5
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dg __ cosy
ds = cosd ( 2.66)

d(_ig = siny (2.67)
d¢ _ Zlksing _ cosytang (2.68)
ds cos27

A third assumption is that the skip trajectory covers a small cross range. Using this
assumption, a small angle approximation involving ¢ can be used. Therefore, in equation 2.66,
cos¢ &~ 1. Also, the term cosytangd will be neglected in equation 2.68. The reduced

dimensionless equations of motion are now written as

%% = — k%Ztany (2.69)
& - ] (210
% = cost (2.71)
<(ii_<sﬁ = siny (2.72)
(_1_1.§11 _ Z?(l)(sszll’;d (2.73)
%g — Z/\clg)% (2.74)

where the equation for the time of flight is given by

%% = ¥ cosY (2.75)

2.5: Closed Form Solutions

As a first step in solving the formulated general problem, the solutions to the equations of
motion are reduced to closed form. The set of closed form solutions consist of an analytic

equation for each state variable that depends only on the initial and final values of the
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independent variable. Included in the closed form equations are parameters which influence the
state variable. When the parameter’s value is changed, at any given time any state variable
which depends on that parameter is also changed. The solutions also depend upon the physical

characteristics of the vehicle.

2.5.1: Method of Performing the Skip Trajectory

The first step in determining the closed form solutions is to formulate how the skip will be
performed. A general atmospheric skip trajectory is proposed which contains three flight
subarcs. The first subarc begins with an initial velocity and flight path angle (Ve, 7e) at the
altitude defined as the boundary to the atmosphere. This subarc, called the descent arc,
continues until the flight path angle equals zero. The second subarc is determined by holding
constant altitude at a zero flight path angle for some specified amount of time. The third
subarc, called the ascent arc, begins with zero flight path angle and exits the atmosphere with
the final speed and flight path angle determined when the exit altitude equals the entrance
altitude. The following sections present the boundary conditions and the set of closed form

flight equations for each of the three arcs described above.

2.5.2: Boundary Conditions for the Constant Altitude Subarc

Solution to the differential flight equations along a constant altitude subarc requires the

following boundary conditions

ve = Given by v, at the end of the descent subarc
Ze = Given by Z; at the end of the descent subarc
Ye =10

",be:O
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¢e =0

65 = 0
Se — 0
vy = free

Z; = Same as Z.

Yy = 0

Yy = free
¢f = free
§; = free
s; = free

2.5.3: Closed Form Solutions for Constant Altitude Subarc

As proposed for the general skip trajectory, inclusion of a subarc at constant altitude is possible.
This subarc is developed for cases where there is a minimum altitude constraint on the skip
trajectory. The equation for the dimensionless arc length, 2.75 is also used to include time as a
relevant variable. For constant altitude flight, two conditions must be satisfied. These two
conditions being that the altitude does not change over time and that the flight path angle is

constant. These conditions are given by the equations

%% = 0 = — k?Ztany (2.76)
dy A
T =0 = Likeoso (2.77)

Equation 2.76 is satisfied for the condition

¥ = 0 ( 2.78&)
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Equation 2.77 is satisfied under either of the two conditions

A=0 ( 2.78b)

( 2.78¢)

q
Il
H_

18]

The sign on the bank angle used along a constant altitude subarc is not a parameter but is

chosen apriori to solving the orbit transfer problem.

Using the condition 2.78a, solutions for the state variables are given by direct integration as

] = ——2Zk[nE:;1 1 +2"] . ( 2.79)
¢ = ZMksino s ( 2.80)
6 = ZATlsmTy sin [ Zksino 5] ( 2.81)
b= Z_,\k_iﬁ [1 — cos [ ZAksino s] ] ( 2.82)

Equations 2.81 and 2.82 are obtained by substituting the expression from equation 2.80 in for
the heading angle before integration. Substituting equation 2.79 into the expression for time,

given by equation 2.75, yields

. _ n
. expl: Zk[nE*nl ) ]S] P

dt k3

After separation of variables and integration, the expression for the arc length as a function of

time is given as

o [Z ' ]] N [[Zk [0 -1 +A“]W] ¢+ 1} ( 2.83)

Kn—1+A2 n E*k?
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Although we usually would like to use t = t(s), equation 2.83 is used because time has a more
physical meaning and is easier to specify than the arc length. Equations 2.79 - 2.82 are the
generél closed form equations used for flight at constant altitude. The equation for time, 2.83,
holds for either condition 2.78b or 2.78c. When the condition given by ¢ = :i:—27[ applies, the

parameterized flight equations are given as

vl _ —2Zk[n — 1 + %]
In [\,—e] = = s ( 2.84)
¥ = +ZXk s (2.85)
0 = Z/\k sin [ ZXk s] ( 2.86)
4z [1 — cos [ Z2k s]] (2.87)

where a positive or negative sign results from a positive or negative bank angle respectively.
Equations 2.84 - 2.87 apply when a heading change is necessary along the constant altitude
subarc. In order to produce the change in heading along the constant altitude subarc, A # 0.
When the condition corresponding to A = 0 applies, the flight equations along a constant

altitude subarc are given as

] = :211;1[“—‘13 ( 2.88)
¥ =0 ( 2.89)
6=s ( 2.90)
6=0 ( 2.91)

Since terms involving gravity have been assumed out of the problem, the results given by
equations 2.84 - 2.91 describe two methods of flight along a constant altitude subarc neglecting
gravitational effects. For the case where ¢ = :l:g, all lift is out of the vertical plane, thus the
choice for the lift coefficient is arbitrary and the equations of motion are given by equations 2.84

- 2.87. For A = 0, there is no generated lift force, thus the bank orientation of the vehicle is
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irrelevant and no plane change can occur. The equations of motion corresponding to A = 0 are

given by equations 2.88 - 2.91.

2.5.4: Boundary Conditions for the Descent and Ascent Subarcs

Solution to the differential flight equations along the descent and ascent subarcs require that
each subarc have appropriate boundary conditions. The following boundary conditions are used

for the descent subarc

ve = Specified by the Keplerian orbit at the entrance to the atmosphere
Z. = Specified by the altitude for the outer edge of the atmosphere

e = Specified by the Keplerian orbit at the entrance to the atmosphere

e = 0
$e =0
e =0
te =0
vy = free
Z; = free
75 =10
Y, = free
¢; = free
0; = free
t; = free

The following boundary conditions are used for the ascent subarc

ve = Specified by v from the constant altitude subarc
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Z. = Specified by the altitude of the constant altitude subarc

Ye =0
e = 0
¢e =0
e =10
te =0
vy = free

Z; = Specified by the altitude for the outer edge of the atmosphere

Yy = Specified by Z., Z s and 7. needed to reach the outer edge of the atmosphere

Yy = free
¢; = free
8; = free
t; = free

2.5.5:  Closed Form Solutions for the Descent and Ascent Subarcs

The proposed method of the skip trajectory indicates that an appropriate independent variable is
the flight path angle v rather than the dimensionless arc length s as given in section 2.4.
Therefore changing the independent variable to v by dividing equations 2.69 - 2.73 by equation

2.74 the dimensionless equations of motion become

dz _ _ ksiny

dy = Acoseo (2.92)
dv _ _—2 [n -1 +,\n]

dy © E*coso n (2.93)
dy

Iy = tang ( 2.94)
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df# __ cosycosy
dy ~ kZXcoso (12.95)
d¢ _ sinycosy
dy ~ kZXcoso (12.96)

In addition to the state variables, the time of flight also is calculated for later use in the
transfer orbit calculations. From equation 2.75, and after forming the modified Chapman

variables, the dimensionless differential equation for time is

K’ (2.97)

h /\Zcosa',l B3 pv

where p is the gravitational parameter for the Earth. The above equations can now be

feyl=3

integrated in closed form if assumptions are made about the vehicle controls, A and o, as
functions of the independent variable y. The following assumption is used to obtain the

parameterized closed form solutions.

Assume that the vehicle controls for lift (A) and bank (o) are held constant

throughout each subarc of the skip trajectory.

Using this assumption and performing direct integration on equations 2.92 - 2.94, the following

equations for the descent and ascent arcs are obtained

Z =27, — ﬁ(cosy — COSYe) (2.98)
—2(n — 1 + A™)
Y| = —
ln[ve] - E*n)coso (7 76) (2.99)

Y = tana[ln(tan{g + %}) — ln(tan{% + 12-5})] ( 2-100)

Because the expressions 2.95 and 2.96 contain Z and %, the results from 2.98 and 2.100 must be

substituted into the equations before integration can be performed. However, since equations

Chapter 2: Problem Formulation 35



2.98 and 2.100 contain v in a nonlinear form, a small angle approximation for ¥ will be applied
to equations 2.92 and 2.94 before they are integrated and substituted into equations 2.95 and

2.96. Using the small angle approximation, equations for Z and v are

Z =% — g5 (" —7d) ( 2.101)

P = tano(y — ve) (2.102)

Substituting equations 2.101 and 2.102 into equation 2.95, the following differential equation for

0 along the descent and ascent arcs is obtained

dg _ _ cos(¥e + tano(y — 7)) (2.103)
dy — __k 2 _ .2 .
kAcoso(Z. 2,\coso'(7 7¢))

Likewise, when equations 2.101 and 2.102 are substituted into equation 2.96, the following

differential equation for ¢ along the descent and ascent arcs is obtained

gﬁ = sin(z/)e + ta'no'(')’ - 78)) ( 2104)
dy kAcoso(Ze — 2)“}(050(72 —72)

Also, when equations 2.99 and 2.101 for v and Z are substituted into the differential equation for

time, 2.97, the following equation is obtained

dt k?
dy = - - = ( 2.105)
Acosa’|:Ze - L('yz —-73):|Jﬂ3uv2exp|:— n—1+ )(7—%)]

2Acoso E*n)coso
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Equations 2.103 - 2.105 are now functions only of the entrance conditions and the independent
variable v and can be integrated under suitable assumptions. Details of the integration and the

approximations used to obtain the following solutions are given in Appendix A, with the results

given as
¢ = (2.106)
Y
G (tan%)"5 (30tan*s — C,tan® T _ (30Ctan‘c — Cltan®c — 360tan?
720 - an“o — 2ana)—3——( stan*oc — Cytan®o — an‘e)y
Ye
y
C, | 720 — 360C,tan2e + 30C.tan%s — Cgtanﬁal Cs + 7
720 2 G, MG = T
2 2 Y
Ye
. v
4 2
5%—430[(‘33“7‘7)% — (42tan®c — C2tan7a)% — (42C,tan’c — Cztan7a - 840tan30)2/2—:l
Ye
v

C 5040tanoc — 840C,tan®c + 42C tan’o — Cstan7a'

~ 5040 [ 1 2 In(C; — 7%)
Ye

6 = (2.107)

y
Cy 6\ 4 6 11" 4 26 2
720 (tan 0)—5— — (30tan®0 — Cytan a)—3— — (30C,tan®0 — Cytan®o — 360tan®c)y

Ye

Y
C,| 720 — 360C,tans + 30Cstan’s — Cotan®s  [{Cz + 7
+ 730 In [ == -
2C, {C: — 7
Ye

Y
6 4 2
%lf—ol:(taﬂa)% — (42tan’o — Cztan7a)% — (42C,tan’o — Citan"a - 840tan30')7§-:|’
Ye

&

2 3 ]‘
t - 3 56 — 7
" 5%320 [5040 ano — 840C,tan 02+ 42C,tan0c — Cytan'o In(C, — 72)

Ye
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¥

Cgexp(—Cy7) C; + 7
t = Tom In C, =+ + ( 2.108)
Ye

v
CeCaexp(C,Cy) | exp(a;xy) In(x,) ax,  (a;x)? (a;x,)”
6220727 (1a11) 1 1 ln(x1)+11+ 2121’ + ...+ 7171' +

Ye

5

CeCaexp(—CyCy) | exp(ayx,y) In(x ayX 2)? (apx5)”
SCaoxpl 27)[ (a32g) In(x) _ [lan (o) (e

where the constants are defined in Appendix A. Equations 2.98 - 2.100 and 2.106 - 2.108 are the
closed form solutions for Z, v, 9, ¢, 6 and t along the descent and ascent arcs, with the flight

path angle v as the independent variable.

2.6: Skip Trajectory Parameters

From the closed form solutions, the parameters describing an atmospheric skip trajectory can
now be stated. In the most general case, as postulated in obtaining the closed form solutions,
there are three subarcs of flight. Each subarc can be described by entry conditions and a group
of parameters. Because the skip trajectory is being separated into three separate regions, the
assumption that the vehicle controls can change instantaneously as as we go from one region to
the next will be used. The parameters for the descent and ascent subarcs are the scaled lift
coefficient, A, and the bank angle . For the constant altitude subarc, by choosing the scaled
lift coefficient parameter as zero, the bank angle is arbitrary and is not a parameter; by
choosing the scaled lift coefficient to be a nonzero parameter, the bank angle is forced to be
either positive or negative ninety degrees and is not a parameter but is chosen apriori to solving

for the optimal parameter values. Using these conditions regarding the scaled lift coefficient and
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specifying the time to remain in flight at constant altitude gives the parameters for the constant

altitude subarc.

Therefore, by choosing various degrees of complexity for the skip trajectory, the flight through
the atmosphere could have between two and six parameters. The six parameters are defined in

the following manner

o4 - Descent subarc bank angle ( 2.109)
A4 - Descent subarc scaled lift coefficient

Ac - Constant altitude subarc scaled lift coefficient

tc - Constant altitude subarc time of flight

04 - Ascent subarc bank angle

Aa - Ascent subarc scaled lift coefficient
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Chapter 3: Skip Trajectory Implementation

3.1: Overview

This chapter discusses the incorporation of the closed form skip trajectory flight equations into
an existing computer algorithm. The capabilities of the previous computer algorithm are
detailed and modifications required to accommodate development of the computer algorithm for
the aeroassisted trajectory are presented. The cost function and constraints associated with the
aeroassisted transfer trajectories are discussed for application to the proposed problem of

generating minimum fuel rendezvous transfer orbits.

3.2: Previous Orbit Calculation Procedure

A basis for the present research effort is to add to the computer algorithm developed at Virginia
Polytechnic Institute and State University, Blacksburg, Virginia [8]. Prior to this research, the
algorithm was capable of determining optimal transfer orbits using the components of velocity
impulses (A—\-;,-m,) as parameters. The algorithm is based on selecting a set of these parameters,
calculating a cost function, a set of constraints and applying a nonlinear parameter optimization
routine to update the parameters selected until all constraints are satisfied and the cost function
is as small as possible. The present research replaces one of the velocity impulses, AV,.””, by
the generalized impulse which includes an aeroassisted maneuver to change velocity and

position. The parameters associated with the generalized impulse in combination with those
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associated with pure velocity impulse delta-v’s and the angles associated with Keplerian coasting

arcs are the parameters used to describe the transfer orbit.

The generalized impulse must be incorporated in a compatible manner with the existing method
of function and constraint evaluation. In particular, the current procedure determines the initial
conditions of one Keplerian coasting arc based on the final conditions of the previous Keplerian

coasting arc in the following manner

3.3: Calculating the Generalized Impulse for an Aeroassisted Maneuver

This section covers the incorporation of the scalar skip trajectory equations into the previously
existing algorithm. The conversion of the Keplerian orbital elements at the edge of the
atmosphere to useful entrance conditions for the skip trajectory is covered. After the skip
trajectory is executed, discussion of the conversion performed to determine the new Keplerian

orbit is presented. The result enables the generalized impulse to be calculated as

=1 + AT
Vvt = V- 4+ AV

tt =t + At

3.3.1: Coordinate Systems

During the calculation of the Keplerian orbits, an inertial coordinate system useful for

calculation of orbital elements and the vehicle’s position in space needs to be defined. The
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inertial coordinate system used is called the geocentric-equatorial coordinate system. This
system has its origin at the Earth’s center. The XY, plane is the Earth’s equatorial plane
with the X, axis pointing to the vernal equinox. The Z, axis completes the right handed
system and points to the north pole. As a note, since the developed atmospheric flight equations
in Chapter 2 neglect the rotational effects of the Earth, the Earth fixed coordinate system and
the geocentric-equatorial coordinate system are identical if the Greenwich meridian specified by
X is aligned with the vernal equinox. The reference X axis is therefore chosen to coincide
with the X, axis. To exactly locate the vehicle in space, two angles and the radial distance are
used. The two angles are called the right ascension (o) and the declination (6). The right
ascension is measured positive from the X, axis about the Z ; axis in the XY, plane to the
projection of the position vector on the XY, plane. The declination is measured positive
northward from the XY, plane along a meridian to the position vector of the vehicle. Figure
5 shows the geocentric-equatorial coordinate system. Figure 6 shows the definition of the right

ascension and declination.

3.3.2: Calculation of Entrance Conditions

When an aeroassisted orbit is generated, the orbital properties of the vehicle at the entrance to
the atmosphere are used to calculate the initial conditions for the skip trajectory equations.
These are usually given as position and velocity vector components in the geocentric-equatorial
coordinate system and are converted to the needed scalar quantities. Conversion to the scalar
entrance velocity and initial flight path at the radius corresponding to the outer edge of the

atmosphere is done as follows:

—
Ve = [[Ve (3.1)
e = —cos™ ! "1'—; xve" (3.2)

1=
Nl'e |l NVe"
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where the e subscript denotes conditions at entrance to the atmosphere. For execution of a skip
trajectory to occur, the initial flight path angle is always negative. Given these two initial
conditions and the set of parameters from equations 2.109 designating the type of skip
trajectory, the entire aeroassisted portion of the transfer orbit is calculated and the resulting

changes in position, velocity and time are determined.

3.3.3: Changes in Position Due to the Aeroassisted Maneuver

As stated in Chapter 2, the skip trajectory through the atmosphere is completely described by
up to six parameters. In the general case of six parameters, the skip trajectory consists of three
portions; the descent arc, the constant altitude subarc and the ascent subarc. Inclusion of the
skip trajectory calculations in the general form dictates that the changes in the state variables be
accounted for even if a simpler type of trajectory is chosen.  Determining the changes in
position due to the aeroassisted maneuver requires modified use of the tracking coordinate

system described in section 2.2.1.

The tracking system defined in section 2.2.1 was chosen because the definition of the Earth fixed
axes relied on the rotation vector of the Earth. It was convenient to align the Earth fixed Zp
axis with the rotation vector of the Earth which in turn influenced the choice of orientation for
the vehicle tracking coordinate system. Since the Earth’s rotation has been assumed out of the
problem, an arbitrary choice of the orientation of the vehicle tracking coordinate system relative
to the Earth fixed coordinate system is more convenient. In particular, new reference planes can
be defined which include the initial position and velocity at the beginning of each portion of the
skip trajectory. It is convenient to think of each new reference plane that is defined as a new
“equator” and its corresponding vehicle tracking coordinate system determining the changes in

state variables relative to the new “equator”. In order to determine overall changes in
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longitude, latitude and heading an original reference plane is defined and the relationship

between the original reference and any subsequent reference planes must be established.

As related to the proposed skip trajectory, the original reference plane is the Keplerian orbit at
the point of entrance to the atmosphere. The changes in the state variables along the
atmospheric descent subarc are measured relative to original reference plane using the boundary
conditions pertaining to the descent subarc. At the beginning of the constant altitude subarc, a
new reference plane is defined by the position vector, T, and the velocity vector, VE’ at the
point in the skip trajectory where the flight path angle is zero. The new reference plane is
related to the initial reference plane by the changes in longitude, latitude and heading produced
during the descent subarc. The changes in the state variables along the constant altitude subarc
are measured relative to the newly defined reference plane using the boundary conditions
pertaining to the constant altitude subarc. At the beginning of the ascent subarc, a new
reference plane is defined by the position vector, T, and the velocity vector, VE’ at the end of
the constant altitude subarc. The ascent subarc reference plane is related to the constant
altitude reference plane by the changes in longitude, latitude and heading produced during the
constant altitude subarc. The changes in the state variables along the ascent subarc are
measured relative to the third reference plane using the boundary conditions pertaining to the
ascent subarc. Finally, a fourth reference plane is defined by the position vector, T, and the
velocity vector, VE’ at the exit from the atmosphere. This reference plane is the plane of the
new Keplerian orbit after exiting the atmosphere. As before, this reference plane is related to
the ascent reference plane by changes in longitude, latitude and heading produced during the
ascen-t subarc. Figure 7 shows the general relationship between the original, descent, constant

altitude, ascent and exit reference planes for an arbitrary atmospheric entry point.

By storing the changes in longitude, latitude and heading that occur during each subarc, the

position and velocity vectors represented in the vehicle tracking coordinate system aligned with
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the exit Keplerian orbit at atmospheric exit can be written as components in the vehicle tracking
coordinate system aligned with the entry Keplerian orbit at atmospheric entry. Once this is
done, and by using the orbital elements of the entry Keplerian orbit, the orbital elements of the
new Keplerian orbit can be found and the position vector and velocity vector at the point of
atmospheric exit can be written in geocentric-equatorial coordinates. Details of the required

procedure follow.

As a first step in calculating the position and velocity vector components in the geocentric-
equatorial coordinate system, the total changes in longitude, latitude and heading produced
during the atmospheric skip are determined. Transformation of a vector represented in the
vehicle tracking coordinate system aligned with the Keplerian orbit at atmospheric entry to the
same vector represented in the vehicle tracking coordinate system aligned with the Keplerian

orbit at atmospheric exit is given by

T = [0, [Fba, 0] 0o ][F b2y [0 [ V1] [F b1, ][01.] (3.3)

where the upper and lower row of signs indicate a rotation produced by a positive or negative
bank angle respectively. The subscripts 1, 2 and 3 indicate the descent, constant altitude and
ascent portions of the skip trajectory respectively. The z, y and 2 subscripts denote the vehicle
tracking system axis of rotation for that transformation. An equivalent transformation to the
one given in equation 3.3 is performed using the total changes in longitude, latitude and heading

and is given by
T = vFe]e] (34)

where the prime indicates the as yet to be determined total changes in longitude, latitude and
heading and the subscripts and signs are as previously defined. The rotation matrices used in

3.3 and 3.4 are given as
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1 0 0
0 cosy siny (3.5)
0 —siny cosy

[¥2]

cos¢ 0 —sing

[¢y] = 0 1 0 (3.6)
sing 0 cos¢

cosf sinf 0
[#:] =| —sinf cosf 0 (3.7
0 0 1

' .
Using the above rotation matrices, the transformation matrix T written out in component

form is

T- (3.8)

cosf’cos¢’ sinf’cos¢’ sing’
—sinf#’cosyy’ —cosf’sing’siny’  cos#’cosy’ —sinf’sing’siny)’ cos@’siny)’
sinf’siny’ —cosf’s ing cosy’® —cosf#’siny’ —siné’sing’cosy)’ cos¢’cosyy’

Since the two rotation matrices, T and T’, produce the same transformation, solution for the
unknown angles 6°, ¢’ and ¢’ is done by isolating components from the transformation matrix
T', given in equation 3.8. Designating Trc as elements of the transformation matrix given
by 3.3, where r denotes the row and ¢ denotes the column of the matrix. The solution for the

unknown angles is given as

tanf’ = 12 (3.9)
Tu
sing’ = T (3.10)
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tany’ = % (3.11)
33

Equations 3.9 - 3.11 give the change in longitude, latitude and heading respectively as measured

from the atmospheric entrance point in the reference plane aligned with the deboost Keplerian

orbit which has the X axis coincident with the atmospheric entrance point.

3.3.4: Exit Orbit Determination

Upon exit from the atmosphere, the vehicle will have a new velocity and flight path angle and
position as determined by the derived closed form flight equations and the chosen set of
parameters. The new position and velocity vector must be converted to the geocentric-
equatorial coordinate system for incorporation into the existing algorithm.  Written as
components along the reference plane coinciding with the Keplerian orbit plane at the exit from

the atmosphere, vehicle tracking coordinate system, the position and velocity vectors are given

as
s

T=|0 (3.12)
0
Vsiny

—

V = Vjcosy; (3.13)

0

where the subscript f denotes conditions at the exit from the atmosphere. In order to write the
new position and velocity vectors of the vehicle in the geocentric-equatorial coordinate system,
two steps are needed. First, using the inverse of T' with the angles determined by equations
3.9 - 3.11, the vectors given in 3.12 and 3.13 are written in the coordinate system aligned with

the Keplerian orbit at the entrance to the atmosphere. Secondly, using the orbital elements of
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the Keplerian entrance orbit, the vectors are written in the geocentric-equatorial coordinate

system.

Due to the properties of orthogonal coordinate system rotations, the inverse of such a matrix is
its transpose. Therefore
Tv fl_ TlT

—1

T = ( 3.14)

cosf’cos¢’ —sinf’cosyy’ —cos#’sing’siny)’  sind’siny)’ —cosf’s ing ’cosy)’
sinf’cos¢’ cosf#’cosyy’ —sinf’sing’sinty’  —cos#’siny’ —sind’sing’cosy’
sing’ cos¢’siny)’ cos¢’cosy)’

The exit position vector and the exit velocity vector written in the coordinate system aligned
—
with the Keplerian entrance orbit are denoted as T’ and V’ respectively. These vectors are

obtained using equations 3.12 and 3.13 and the inverse matrix given in equation 3.14, as follows

—1 - s
T = T’ 0 (3.15)
0
1 Vsiny,
v=T Vcosy, ( 3.16)
0

As the final step in converting the exit position and velocity vector to their components in the
geocentric-equatorial coordinate system, the orbital elements of the Keplerian orbit at the

entrance to the atmosphere are used. Using the classical orbital elements

a - Semi-major axis
e - Eccentricity

1 - Inclination
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Q - Longitude of the ascending node
w - Argument of perigee

v - True anomaly

the position of the entrance point is uniquely determined. The orbital elements also uniquely
determine the orientation of the corresponding orbital plane. By converting all angles to values
between zero and 2w, the following sequence of rotations transforms a vector written in the
coordinate system aligned with the Keplerian entrance orbit whose X axis is aligned with the
atmospheric entry point to a vector written in geocentric-equatorial coordinate system. Figure 8
shows the relation between the orbital elements and the geocentric-equatorial coordinate system.
The transformation of a vector represented in the vehicle tracking system aligned with Keplerian
orbit at the point of atmospheric entry to a vector represented in the geocentric-equatorial

coordinate system is given as

Geo ’

=[-Q:][— ][~ w[—v] (3.17)

Where the prime denotes vectors written in the coordinate system aligned with the Keplerian
entrance orbit and Geo denotes the same vector written in the geocentric-equatorial coordinate
system. With the exit position and velocity of the vehicle now written in geocentric-equatorial
coordinates as given by equations 3.12 - 3.17, the exit Keplerian orbital elements can be
calculated. Also, the vehicle’s position can be represented in terms of right ascension and
declination. For the general skip trajectory involving the use of bank, the orbital plane will
change orientation. As seen in Figure 9, the use of bank angle to change the orbital plane

inclination also produces a rotation of the line of nodes, 2.
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3.4: The Generalized Impulse

The results of the previous section can now be combined in the form of a generalized impulse.
—
As stated previously, a generalized impulse produces a change in velocity, AV, as well as a

change in position, AT, given by

—

V* = Vb AV((AVa)ingr (AVy)ingts (AVa)ingss 04 Aas Aes ter Ta Aa) (3.18)
?+ = ?‘—f— A?( (AV-’L‘)inst’ (Avy)inst’ (Avi)imt’ Oa ’\d’ ’\C’ tC’ Oay ’\“)

t+ =t + At ( (Avf)inatv (AV!I)Huh (sz)irut? ) Ad’ AC’ te, Oay A")

where (AV,);.,;» corresponds to the components of an instantaneously applied change in
velocity at the state indicated by the minus sign. The other parameters are those given by

equations 2.109 and are associated with the atmospheric skip trajectory.

The parameters of the generalized impulse result in the following the path for the vehicle. By

applying the (AVz);,,s (AVy)in,, and (AV:);,,,, from equation 3.18, the vehicle, which has

ins
velocity, V =, and position, T ~, at the end of a previous Keplerian coasting arc, a new orbit is
generated. The vehicle travels this new orbit, also called the deboost orbit, until atmospheric
penetration occurs. At the point of atmospheric entry, the parameters o4, A, Ac, te, 04 and
Aq describe a skip trajectory which moves the vehicle to a point where it exits the atmosphere.
The vehicle’s position at the atmospheric exit, T ¥, and its velocity, v * as determined from the
procedure in section 3.3 terminates the path of the generalized impulse at which point a new

Keplerian coast begins. A representative path followed by the interceptor as a result of the

generalized impulse started as AV is given in Figure 10.

The difference between T *and T~ is the change in position, Ar'(z,), produced by the
. . . 7+ < - - . . T

generalized impulse and the difference between V "and V ~ is the change in velocity, AV ('zy),

produced by the generalized impulse and the difference between t* and t— is the change in time,

At (zy), produced by the generalized impulse.
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Chapter 4: Numerical Results

4.1: Overview

In this chapter, the validity of the developed closed form atmospheric flight equations is
determined. By comparing the results of a skip trajectory calculated using the closed form
solution with results obtained from the literature, the accuracy of the closed form solutions is
demonstrated. Also presented in this chapter are several families of solutions to finding
parameter optimized transfer orbits as posed in Chapter 2. These solutions include the use of
the closed form atmospheric flight equations. All solutions presented are based on the following

assumptions:

e A stationary atmosphere with respect to a nonrotating Earth

e Coriolis and transport accelerations are neglected

o The component of the gravity force tangent to the flight path is small with respect to
aerodynamic forces and is neglected

e The centrifugal and the gravity force are nearly equal at the orbital velocities and are
considered to cancel each other

e A small cross range angle is covered and the related cross range terms are neglected in the
heading equation

e Flight occurs at small flight path angles

e A [r = constant atmosphere is used with the inverse scale height, 3, also constant

e K(M, Re) and C,(M, Re) are constant due to the hypersonic flight Mach numbers

e The exponent in the drag polar is three halves to closer approximate hypersonic flight

e Controls change “instantaneously” with respect to the atmospheric flight time

o Series expansions are used to approximate integrals involving longitude, latitude and time
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4.2: Validation of Closed Form Solutions

As a first step in proving the usefulness of the developed closed form atmospheric flight
equations, the accuracy of the calculated integrals given in equations 2.98 - 2.100 and 2.106 -
2.108 was checked. A type of trajectory was formulated using the two parameters, A and o, to
describe the entire skip trajectory rather than the complete set of six parameters detailed in
Chapter 2. This type of trajectory is designated as a two parameter skip. Given a set of initial
conditions for entrance to the atmosphere [see Table 2] and choosing the value for the lift
coefficient as that which yields the maximum lift to drag ratio, manual iteration on the value
for the bank angle was performed until the desired final heading change was approximately
achieved. Using the corresponding calculated aeroassisted values for the end states, the accuracy
of the approximated integrals is checked against a solution obtained by numerical integration.
The numerical integration of the state equations 2.92 - 2.97 was performed using the standard
IMSL routine DIVPRK with an accuracy of 107'° used for convergence. Cases were generated
for changes in the heading angle, ¢, of 10°, 20°, 30° and 40°. Data for the skip vehicle used,
atmospheric data and physical constants are given in Table 1. The physical data will be used in
all skip trajectory calculations except where noted otherwise. A summary of the initial values
for the state variables is given in Table 2. Table 3 gives the final values for the state variables
generated using the closed form solutions. Final values for the state variables calculated by
numerical integration are given in Table 4. Since the difference between the results of Table 3
and Table 4, as given in Table 5 are negligible, the altitude histories presented in Figure 11
represent the true trajectories, thus validating the accuracy of the state variable closed form

solutions given by equations 2.98 - 2.100 and 2.106 - 2.108.
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4.3: Validation of Skip Trajectory Implementation

In order to check the validity of the implementation of the skip trajectory discussed in Chapter
3, the following type of trajectory was proposed. At the minimum altitude of the skip
trajectory, when the flight path angle is zero, the reference plane was reset using the boundary
conditions described in Chapter 2. However, unlike the general skip trajectory discussed in
Chapter 2, there is no constant altitude flight subarc. Rather, the final velocity and altitude at
the end of the descent subarc are used immediately as the initial conditions for the ascent arc.
The values for the parameters A and o are kept the same for the descent and ascent flight
subarcs. This type of skip trajectory is designated as a four parameter skip. The designation of
a four parameter skip is used because even though the respective values for A and o are the
same for the ascent and descent subarcs, there are four parameters being specified due to the

resetting of the reference plane at v = 0.

After using the procedure detailed in Chapter 3 for determining the location of the vehicle in the
geocentric-equatorial coordinate system, the position of the vehicle resulting from the four
parameter skip was calculated. This position and the total change in states were compared to
the position and change in states calculated using the two parameter skip described in the
section 4.2. Using the same initial conditions for a 10° change in heading given in Table 2, the

trajectories were calculated.

Comparison of the calculated end states and the resulting change in plane inclination shows that
the two final positions and heading differ significantly. The final velocity, time of flight and
exit flight path agree, indicating an error involving latitude, longitude or heading. Because the
closed form solutions involve the assumption of a small cross range angle traveled, calculation of
the coupled equations given by 2.63 - 2.68 gives a more accurate answer than the closed form
solutions. Using DIVPRK, numerical integration was performed on the set of equations 2.63 -

2.68. The flight path is used as the independent variable and the initial conditions are given in
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Table 2 as before. The end states for the two parameter method, the four parameter method

and the numerically integrated method are given in Table 6.

A comparison of the results obtained by numerically integrating equations 2.63 - 2.68 and the
results from the two and four parameter closed form solutions shows that the four parameter
skip trajectory is a more accurate method of calculating the change in latitude, longitude and
heading. By using the four parameter method versus the two parameter method the error in

determining the final position and heading is reduced by 70%.

As a final check on the accuracy of the derived closed form solution, a test case was evaluated
against skip trajectory results obtained in Hull [4]. The optimal control used by Hull [4] to
determine the skip trajectory state variables uses a parabolic drag polar. Therefore for the
comparison test case the value of n in the expression for the atmospheric drag is set to 2.0.
Initial conditions for the closed form equations were given to match the case for an optimally
guided trajectory to achieve 1, = 10°, as presented in Hull [4]. As noted in Hull [4], the lift
coefficient is nearly constant at the value for maximum Lift-to-Drag, therefore, we choose C; =

7 corresponding to n = 2 as one parameter. The bank angle is manually iterated upon to
achieve a final change in heading of 10°, and becomes our second parameter. The desired final
change in heading is achieved when ¢ = 87.595°. The trajectory is calculated using the same
values of the two parameters for both the descent and ascent flight subarcs, with the reference
plane being reset at ¥ = 0 as described earlier. Comparison of the resulting trajectory with the
results in Hull [4] show close agreement in all final values of the state variables. Table 7

summarizes the comparison for relevant state variables.
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4.4: Two Impulse Orbit Transfers

Now that the generalized impulse has been validated and the results from the aeroassisted
maneuver provide accurate changes in position and velocity, the generalized impulse is applied
to the minimization problem stated in section 2.3 with the number of impulses, n = 2. The
two impulse maneuver proposed, transfers an interceptor from one circular orbit to another and
allows the interceptor to rendezvous with a target. The interceptor does all the maneuvering
while the target remains in its original orbit. The interceptor initial circular orbit has a larger
radius than the circular orbit of the target in order to take advantage of the generalized impulse.
A transfer from an interceptor circular orbit of smaller radius than the target radius using the
generalized impulse is not possible due to the loss of energy encountered during the aeroassisted

maneuver.

Given initial orbits and the location within each orbit for both the interceptor and the target,
denoted as the epoch conditions, the two impulse maneuver is given as follows. A Keplerian
coasting arc in the interceptor epoch circular orbit is terminated by the application of a
generalized impulse. After the generalized impulse, described in section 3.4, the interceptor is at
the boundary to the atmosphere and begins a second Keplerian coasting arc. This Keplerian
coast arc intersects the target orbit and for the rendezvous to occur, the interceptor matches
position and velocity with the target by applying an instantaneous delta-v. This instantaneous

delta-v completes the orbit transfer.

The generalized impulse to be used in the transfer utilizes the four parameter method of
calculation described in section 4.3. The four parameter method calculates the skip trajectory
using two subarcs, the descent and ascent subarc, using the parameters Ay, o4, As and oa.

However, as described in section 4.3, A; = A; and ¢4 = o, is used to improve accuracy.
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4.4.1: Parameters and Constraints for the Two Impulse Transfer

The parameters needed for the two impulse transfer are

N = Interceptor initial coasting arc

(AVz);nss = X component of the instantaneous delta-v used in the generalized impulse
(AVy)inst: = Y component of the instantaneous delta-v used in the generalized impulse
(AV:);nst = Z component of the instantaneous delta-v used in the generalized impulse
A = Scaled lift coefficient used during the skip trajectory

o = Bank angle used during the skip trajectory

9 = Interceptor second coasting arc

73 = Target coasting arc

All of the numerical results for the following aeroassisted maneuvers do not include a constant
altitude subarc. The constant altitude subarc is developed for a skip trajectory in general form.
The second impulse is applied at the end of the trajectory and is not a parameter of the

optimization but is used to calculate the cost function, J.

The equality constraints imposed on the orbit transfer problem are

e X component of the final position for the interceptor and target must match
e Y component of the final position for the interceptor and target must match
e 7 component of the final position for the interceptor and target must match

o Total time of flight for the interceptor and the target must be equal

Recall that a velocity match for rendezvous is satisfied by computing the required final delta-v

and hence is not an explicit equality constraint.

The inequality constraints imposed on the orbit transfer problem are

e Time of flight for the target must be less than a specified maximum time of flight
e Time of flight for the target must be greater than zero
o Initial coasting arc for the interceptor must be greater than 1°

e Magnitude of (AV,-M,) from the generalized impulse must be greater than the magnitude
—

of (A

o Lift coefficient must be less than or equal to the maximum allowed lift coefficient

min) Deeded to cause atmospheric entry

o Lift coefficient must be greater than zero
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e Bank angle must be less than 90°
e Second interceptor coasting arc must be greater than 1°

e Minimum radius of the second coasting arc must be greater than the radius of the Earth

In order to ensure atmospheric entry, the following procedure was used. For a given interceptor

—

circular orbit, a IIA H was determined as the magnitude of the deboost impulse required to

min
perform a Hohmann transfer between the interceptor orbit and a circular orbit of radius A,;,,.

Since the Hohmann transfer is the minimum fuel transfer method between two circular orbits,

—

|av

ms‘nl is the lower bound for impulses to cause atmospheric entry.

After’ uAV I has been calculated and given an initial guess which causes atmospheric entry,

min

the three components of AV, from the generalized impulse are retained. During the

inst

optimization process, each iteration of the sequential quadratic programming algorithm produces

a complete new set of parameters. If the "AV‘ﬂ ”'I of the generalized impulse calculated during

—

—
the i'® iteration is greater than IIA ﬂ, the three components of AV,

inst from the generalized

min

impulse determined during the i** iteration replace the values of AV,.,m from the generalized

of the generalized

—_
impulse determined in the ( #*"— 1) iteration. However, if the HAV,-M
—
impulse calculated during the #*® iteration is less than uAVm,.n", the three components of

A_\_/),-n ,; from the generalized impulse determined in the ( i!* — 1) iteration replace the values of
AT/’,.,,,, from the generalized impulse determined during the i** iteration. Thus, by retaining
the previous values of the generalized impulse AV,-M, which ensure atmospheric entry, the
following iteration will also be ensured of atmospheric entry. With the newly modified
parameter vector, a new cost function is evaluated and the process continues until convergence

occurs. It is emphasiszed that all other parameters from iteration to iteration remain

unaffected.

The main consideration in using this technique is that the new parameter vector produced by

the subsitution method described above alters the optimal parameter vector of the current
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iteration thus affecting the search for the optimal solution. It should be noted however, that the

relative changes in the three components of AV,,,, from the generalized impulse are small from

inst
one iteration to the next and that with a reasonable initial guess, the described method works

well. It is again emphasized that the other parameters in the parameter vector are never altered

using the described method.

4.4.2: Minimum Fuel Two Impulse Coplanar Transfers

Using the parameters listed in section 4.4.1 to minimize the fuel consumed during the transfer

J =‘ zn:IH(AI_/:nat):“
1 =

subject to the constraints given in section 4.4.1, coplanar transfers between the orbits given in
Table 8 were performed. To simplify notation, the ratio between the radius of the initial
interceptor orbit to the radius of the target orbit is denoted as x. The chosen target circular
orbit corresponds to a LEO of approximately 1000 km in altitude. Tables 9 and 10 give the
epoch conditions of the target and interceptor respectively for the coplanar cases that are solved.
Solution to the problems were obtained on a VAX mainframe using the IMSL routine DCONF,
which is a sequential quadratic programming algorithm based on Schittkowski’s method [16].
Table 11 summarizes the overall results obtained for the seven coplanar transfer solutions, with
the Total TOF column indicating the total time of flight required to perform the entire transfer

and the TOF column denoting the time of flight elapsed during the generalized impulse.

For all of the values of yx investigated, key values pertaining to the atmospheric portion of the
generalized impulse used in the coplanar transfers are presented in Table 12. The convective
heating rate given is based on a 1 meter radius sphere under the condition of laminar flow. The
heating rate is presented to show the trends resulting from the various trajectories rather than

the actual heating rates experienced by the skip vehicle. The formula for the heating rate in
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Watts/cm? is
QHeat = (3‘08 X 10_4) ‘Ja_o V%.OS (4.1)

where the atmospheric density, p, is given in kg/km3 and the flight speed, V, is given in km/s.

The dynamic pressure is given by
1 o2
a=3pVg (4.2)

where the atmospheric density, p, is given in kg/m3 and the flight speed, V, is given in m/s.

The normal g-load is measured in the Lift-Drag plane as defined in Figure 3 and is calculated as

_ pVESC,

o (4.3)

Since the results obtained are similar for all of the seven coplanar cases investigated, only three
are presented in detail, these three being the transfers corresponding to x = 5.75, x = 2.61 and
x = 1.30. Time histories for x = 5.75, the transfer from GEQ, are given in Figures 12 - 17.
These figures are the time histories for altitude, normal g-load, convective heating rate, flight
path angle, dynamic pressure and velocity respectively. Time histories for the same quantities
corresponding to x = 2.61 are given in Figures 18 - 23 and the time histories for x = 1.30 are

given in Figures 24 - 29.

From Figures 12 - 29, the maximum values for the convective heating rate of 214.95 W/cm?,
the dynamic pressure of 19.1 KN/m? and the maximum instantaneous normal g-load of 6.97 all
occur during the aeroassisted maneuver of the transfer from geosychronous Earth orbit. This
transfer also has the steepest entry flight path angle, —4.17°, and penetrates the deepest into the
atmosphere to an altitude of 56.4 km. On the other hand, the orbital transfer corresponding to
x = 1.30 has a maximum heating rate of 107.9 W/cm?, a dynamic pressure of 8.4 KN/m2 and
a maximum instantaneous normal g-load of 3.1. The flight path angle for the x = 1.30 transfer

is —0.722° and only penetrates the atmosphere to an altitude of 60.77 km.
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From the results presented above, there is a trend corresponding to the value of yx, this trend
being that as the value of x decreases, the corresponding maximum values presented in Table 12
also decrease. Since the lift coefficient and bank angle are the same for all of the coplanar
transfers the trends are related to the atmospheric entrance conditions. As the value of x
decreases, the eccentricity of the deboost orbit decreases causing the values of 7. and V. to
decrease resulting in shallower skip trajectories. These shallower skip trajectories therefore

produce lower heating rates, dynamic pressures and normal g-loads.

A comparison of the results in [14] and the results presented via Figures 12 - 29 show that the
closed form solutions and the solutions obtained via optimal control theory are similar. The
trendé relating to the time histories for altitude, normal-g load, dynamic pressure, convective
heating rate and velocity are repeated in Figures 12 - 29 thus further validating the developed

closed form solutions and the idea of the generalized impulse.

As a means of comparing the results obtained using the generalized impulse to another two
impulse transfer method, the same problem was solved for each value of x using the Hohmann
transfer. The Hohmann transfer is known to be the two impulse method of orbit transfer to
minimize fuel when there is no limit on the amount of time needed to transfer orbits. Figure 48
shows the cost function, J, for the two methods. From Figure 48, for values of x > 1.3 the
generalized impulse reduces the amount of fuel needed to transfer orbits. For a transfer from
GEO to the target radius of 1.15 DU, the savings in fuel expended is 50% relative to the
corresponding Hohmann transfer. The percentage of fuel saved decreases as the value of x
decreases to approximately 1.3. It should be noted that the obtained solution for the coplanar
transfers using the generalized impulse yielded instantaneously applied delta-v’s that were
applied in a Hohmann-like manner, i.e. the delta-v’s were applied nearly tangent to the flight
path and in the plane of the orbit. It should also be noted that the problem was solved with no

limit on the maximum allowable time in which to complete the transfer.
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From key values presented for the coplanar transfers, the calculated “optimal” fuel skip
trajectories all occur at small flight path angles, thus satisfying one of the key assumptions used
in obtaining the closed form solutions. The “optimal” skip trajectories all occur at normal g-
loads well below human tolerances and the maximum values given are instantaneous rather than
sustained values. With the maximum flight time for all of the presented skip trajectories being
25 seconds, these rates of loading are acceptable. It is noted that the lift coefficient determined
for all of the coplanar transfers was at the maximum allowable value of 1.5. Flight at the upper
bound for the lift coefficient is necessary to slow the vehicle down sufficiently during its
atmospheric pass in order to place the interceptor in the proper Keplerian orbit at exit from the

atmosphere and to save fuel needed to produce the minimum instantaneous delta-v’s possible.

4.4.3: Minimum Fuel Two Impulse Noncoplanar Transfers

Similar to the coplanar transfers, the cost function to minimize the fuel consumed is given as

J :' iIH(AT/:nst)zﬂ
1=

With the constraints given in section 4.4.1, noncoplanar transfers between the orbits given in
Table 8 were performed with the difference in plane inclination being 5°. Tables 13 and 14 give
the epoch conditions of the target and interceptor respectively for the noncoplanar cases that are
solved. Table 15 summarizes the overall results obtained for the seven noncoplanar transfer
solutions, with the Total TOF column indicating the total time of flight required to perform the
entire transfer and the TOF column denoting the time of flight elapsed during the generalized

impulse.

For all of the values of x investigated, key values pertaining to the atmospheric portion of the
generalized impulse used in the noncoplanar transfers are presented in Table 16. Similar to the

results presented for the coplanar transfers, the convective heating rate given is based on a 1
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meter radius sphere under the condition of laminar flow and is presented to show the trends
resulting from the various trajectories rather than the actual heating rates experienced by the
skip vehicle. The formula for the heating rate is given in equation 4.1. The dynamic pressure
results for the atmospheric portion of the noncoplanar transfers are based on equation 4.2 and

the normal g-load is given by equation 4.3.

Since the obtained results are similar for all of the seven noncoplanar cases investigated, only
three are presented in detail, these three being the transfers corresponding to x = 5.75, x =
2.61 and x = 1.30. Time histories for x = 5.75, the transfer from GEQ, are given in Figures
30 - 35. These figures are the time histories for altitude, normal g-load, convective heating rate,
flight path angle, dynamic pressure and velocity respectively. Time histories for the quantities
corresponding to x = 2.61 are given in Figures 36 - 41 and the time histories for x = 1.30 are

given in Figures 42 - 47.

From Figures 30 - 47 for the noncoplanar orbit transfer, the maximum values for the convective
heating rate of 201.36 W/cm?® and the maximum instantaneous normal g-load of 5.57 occur
during the aeroassisted maneuver of the transfer from geosychronous Earth orbit. The steepest
entry flight path angle, —2.33°, occurs during the x = 4.35 orbit transfer. The deepest
penetration into the atmosphere, 56.35 km, occurs during the x = 1.74 orbit transfer. The
mmiﬁum dynamic pressure for the noncoplanar transfers, 16.54 KN/ m?, also occurs during the
x = 1.74 transfer. The maximum flight time during the atmospheric pass, 109.3 seconds,
occurs during the x = 1.3 transfer. The lowest maximum heating rate of, 132.14 W/cm?, the
lowest maximum dynamic pressure of, 13.69 KN/m? and the lowest maximum normal g-load of,
.57 all occur during the x = 1.22 transfer. The shallowest entry flight path angle, —.941°, from
the noncoplanar trajectories also occurs during the x = 1.22 orbit transfer. Due to the

combined effect of the nonzero bank angle and the lower values for the lift coefficient, the trend
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seen in the coplanar orbit transfers corresponding to the value of the ratio x, is not repeated for

the noncoplanar orbit transfers.

As a means of comparing the results for noncoplanar orbit transfer obtained using the
generalized impulse to results obtained with other two impulse transfer methods, the same
problem was first solved for each value of x using a combination of the Hohmann transfer
required to change the orbital size and the plane change maneuver required to change the orbital
inclination. The first delta-v of this two impulse maneuver combines a plane change delta-v,
which is applied during the interceptor’s orbit at the point when the interceptor crosses the
target orbit’s line of nodes, with the deboost delta-v of a Hohmann transfer. The equation for

performing an instantaneous plane change is
AV = 2V sin(%) (4.49)

Since this delta-v is directly proportional to the existing circular velocity, the pure plane change
maneuver is applied at the interceptor radius due to the lower circular velocity at the greater
radius. Therefore, the first impulse has components in three dimensions, unlike the pure
Hohmann transfer. The second impulse of the two impulse maneuver is the recircularization
delta-v of the resulting Hohmann-like transfer and is applied at the radius of the LEO for the

target.

The second method of noncoplanar transfer that is compared to the generalized impulse method
determines the optimal set of parameters needed to perform a two impulse transfer without a
generalized impulse. The parameters of the two impulse maneuver without the generalized
impulse are as described earlier with angles through Keplerian coast arcs terminated by an
impulsive three dimensional delta-v. The optimal parameters associated with the required two
impulse maneuver are determined using the same nonlinear sequential programming routine

used to solve the problem when a generalized impulse is included as a set of parameters.
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Figure 49 shows the cost function, J, for the three methods. From Figure 49, the aeroassisted
maneuver reduces the amount of fuel needed to transfer orbits in all cases. For a transfer from
GEO to the target radius of 1.15 DU, the savings in fuel expended is 55% of the fuel required for
the corresponding “nonoptimal” two impulse maneuver described above and a 52% savings in
fuel compared to the “optimal” nonaeroassisted two impulse maneuver. The percentage in fuel
savings decreases as the value of x decreases. However, unlike the coplanar cases, the generalized
impulse produces savings for all cases presented. Finally, Figure 50 compares the coplanar and
noncoplanar cost functions that implement the generalized impulse method to solve the
aeroassisted transfer. Figure 50 shows that for values of x > 1.74, small plane change transfers
using an aeroassisted maneuver require less fuel than the corresponding coplanar orbit transfer

that uses an aeroassisted maneuver.

Similar to the key values presented for the coplanar transfers, the noncoplanar “optimal” fuel
skip trajectories all occur at small flight path angles. However, unlike the coplanar skip
trajectories, not all of the transfers occured at the maximum allowable value for the lift
coefficient. Due to the need to achieve a required change in heading, as the entrance velocity
decreéses the lift coefficient also decreases to lower the velocity losses during the atmospheric
pass. This reduction in the lift coefficient causes the skip trajectory to take longer to achieve the
required change in heading. Also, the lower lift coefficient is the cause for the lower normal g-
loads experienced by the vehicle. Since the change in orbital plane inclination was 5° for all of
the noncoplanar cases, the noncoplanar maneuvers occur at nearly the same bank angle, with a
minimum value of o = 47.85" and a maximum value of &= 55.31°. Even though the entrance
flight path angles are generally lower than those for the corresponding coplanar transfers, the
vehicle penetrates deeper into the atmosphere due to the lower lift coefficients and the loss of

vertical lift due to the existence of a considerable out of plane bank angle.

Chapter 4: Numerical Results 64



Table 1. Physical Data

Symbol Physical Characteristic Numerical Value  Units
R. Radius of the Earth 6378.145 km
hatm Altitude of the Atmosphere 60.960 km
B Inverse Scale Height 7.100 km ~?
H Gravitational Parameter 3.986 x 10° km3s 2
Po Sea-Level Density 1.225 kg m 3
Br Atmospheric Constant 900 -
m Vehicle Mass 4898.805 kg
S Vehicle Reference Area 11.691 m?
Cpo Zero Lift Drag Coefficient 0.032 -
K Induced Drag Factor 1.400 -
n Exponent in Drag Polar 1.500 -
Limaz Maximum Lift Coefficient 1.500 -
Table 2. Initial Conditions for 10°, 20°, 30° and 40° Heading Changes
¥y Ye o C, te Ve Ye be fe
(deg) | (deg) (deg) (s) (km/s) (deg)  (deg) (deg)
10 —1.0000 78.6 0.13 0.0 7.9107 0.0 0.0 0.0
20 —1.5000 81.5 0.13 0.0 7.9107 0.0 0.0 0.0
30 —1.8500 83.0 0.13 0.0 7.9107 0.0 0.0 0.0
40 —2.0875 84.0 0.13 0.0 7.9107 0.0 0.0 0.0
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Table 3. Final Conditions Using Closed Form Solutions

vy 4 \f; vy ¢y o,
(deg) (s) (km/s) (deg) (deg) (deg)
1.0000  249.4159934 6.9229276 9.9193983  1.4323665 16.5065751
1.5000  270.4335809 6.0537450 20.0757621 2.8980739 16.3743975
1.8500 280.5880362 5.3016440 30.1393192 4.1205232 15.3063406
2.0875  294.4709548 4.6726422 39.7312626 5.1721034 14.3180372
Table 4. Final Conditions Using Numerical Integration
s Y vy Yy ¢y 0;
(deg) (s) (km/s) (deg) (deg) (deg)
1.0000  249.4159984 6.9229276 9.9193983  1.4323665 16.5065751
1.5000  270.4335425 6.0537450 20.0757621 2.8980735 16.3743952
1.8500 280.5880024 5.3016440 30.1393192 4.1205227 15.3063388
2.0875  294.4709231 4.6726422 39.7312626 5.1721028 14.3180358

Table 5. Error Between Closed Form Solutions and Solustions Using Numerical Integration

7 |2 41 [2V A |29 |2¢4] |26

(deg) (s) (km/s) (deg) (deg) (deg)
1.0000 0.0000050 0.0000000 0.0000000 0.0000000 0.0000000
1.5000 0.0000384 0.0000000 0.0000000 0.0000004 0.0000023
1.8500 0.0000338 0.0000000 0.0000000 0.0000005 0.0000018
2.0875 0.0000317 0.0000000 0.0000000 0.0000006 0.0000014

Table 6. Final Conditions Using Various Methods to Calculate the Skip Trajectory

Method t ¥y é; A

n=1.5, C;=.13 0=78.6"° (s) (km/s)  (deg) (deg) (deg) (deg)
2 Parameters 249.41599 6.9229276 9.919398 1.432366 16.50657  10.02125
4 Parameters 249.41599 6.9229276 9.828217 1.427068 16.50828  9.930275
DIVPRK 249.42061 6.9229277 9.793981 1.424145 16.50790  9.895982
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Table 7. Comparison to Optimally Guided Trajectory

Method t V; Yy ¢, Rin Al
n=2. C;=.15 0=87.6" (s) (km/s)  (deg)  (deg) (km) (deg)
Parameterized 401.949 7.3390353  9.727  2.371 57.92602  10.00091
Optimally Guided 400.000 7.3063608  9.930  2.406 59.00928  10.21448
Table 8. Initial Interceptor and Target Circular Radi
X ; Target Radius Interceptor Radius
5.75 1.15 6.6105
4.35 1.15 5.0000
3.48 1.15 4.0000
2.61 1.15 3.0000
1.74 1.15 2.0000
1.30 1.15 1.5000
1.22 1.15 1.4000
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Table 9. Coplanar Epoch Conditions for the Target

X a e 1 Q w v
5.75 1.15 0.0 0.0 0.0 0.0 50.0
4.35 1.15 0.0 0.0 0.0 0.0 60.0
3.48 1.15 0.0 0.0 0.0 0.0 270.0
2.61 1.15 0.0 0.0 0.0 0.0 90.0
1.74 1.15 0.0 0.0 0.0 0.0 260.0
1.30 1.15 0.0 0.0 0.0 0.0 335.0
1.22 1.15 0.0 0.0 0.0 0.0 340.0

Table 10. Coplanar Epoch Conditions for the Interceptor

X a e ] Q w v
5.75 6.6105 0.0 0.0 0.0 0.0 350.0
4.35 5.0000 0.0 0.0 0.0 0.0 350.0
3.48 4.0000 0.0 0.0 0.0 0.0 350.0
2.61 3.0000 0.0 0.0 0.0 0.0 350.0
1.74 2.0000 0.0 0.0 0.0 0.0 350.0
1.30 1.5000 0.0 0.0 0.0 0.0 350.0
1.22 1.4000 0.0 0.0 0.0 0.0 350.0
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Table 11. Cost Function and Changes Due to the Generalized Impulse (Coplanar)

————— Generalized Impulse -----

X J(SU) Total TOF (min) TOF(min) |AV...|SU)  laTlDu)
5.75 23037740 382.00 312.42 3193 5.4605
4.35 22796746 276.30 218.38 .2872 3.9904
3.48 .22102576 216.75 165.88 .2565 2.9904
2.61 .20396414 166.68 118.42 .2099 1.9904
1.74 16121505 112.07 76.67 .1305 0.9904
1.30 .11568558 103.68 58.23 .0654 0.4904
1.22 10277007 110.69 54.85 .0489 0.3904

Table 12. Max - Min Quantities for Coplanar Skip Trajectories
TOF Ye C, o Qmaz  Qmar  Emas hpin

X (s) (deg) (deg) (W/em?)(KN/m?) (km)
5.75 24.61 —4.170 1.5 0.0 214.95 19.1 6.97 56.414
4.35 23.98 —3.801 1.5 0.0 198.01 17.2 6.27 57.007
3.48 23.14 —3.439 1.5 0.0 183.00 15.5 5.67 57.579
2.61 21.31 —2.872 1.5 0.0 162.18 13.3 4.85 58.444
1.74 16.08 —1.853 1.5 0.0 132.70 10.3 3.77 59.800
1.30 9.22 —0.959 1.5 0.0 112.70 8.7 3.19 60.630
1.22 7.09 —0.722 1.5 0.0 107.90 8.4 3.08 60.770
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Table 13. Noncoplanar Epoch Conditions for the Target

X a e i Q w v
5.75 1.15 0.0 5.0 170.0 0.0 228.0
4.35 1.15 0.0 5.0 170.0 0.0 240.0
3.48 1.15 0.0 5.0 170.0 0.0 95.0
2.61 1.15 0.0 5.0 170.0 0.0 280.0
1.74 1.15 0.0 5.0 170.0 0.0 90.0
1.30 1.15 0.0 5.0 170.0 0.0 165.0
1.22 1.15 0.0 5.0 170.0 0.0 165.0

Table 14. Noncoplanar Epoch Conditions for the Interceptor

X a e t Q w v
5.75 6.6105 0.0 0.0 0.0 0.0 350.0
4.35 5.0000 0.0 0.0 0.0 0.0 350.0
3.48 4.0000 0.0 0.0 0.0 0.0 350.0
2.61 3.0000 0.0 0.0 0.0 0.0 350.0
1.74 2.0000 0.0 0.0 0.0 0.0 350.0
1.30 1.5000 0.0 0.0 0.0 0.0 350.0
1.22 1.4000 0.0 0.0 0.0 0.0 350.0
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Table 15. Cost Function and Changes Due to the Generalized Impulse (Noncoplanar)

----- Generalized Impulse -----

X 7 (SU) Total TOF (min) TOF(min) |AV,..|SU)  larlou)
5.75 .22461882 393.80 319.63 .3204 5.4605
4.35 .22414714 285.97 223.52 .2888 3.9904
3.48 .21827484 224.13 169.59 .2602 2.9904
2.61 .20358296 170.21 120.71 .2202 1.9904
1.74 .16206055 122.34 78.03 1512 0.9904
1.30 .11823638 104.17 60.43 .1387 0.4904
1.22 .10911130 105.68 57.59 1233 0.3904

Table 16. Max - Min Quantities for Noncoplanar Skip Trajectories
TOF Ye Cp o Qmaz  Qmas gmaz hrin

X (s) (deg) (deg) (W/em®)(KN/m?) (km)
5.75 28.31 —2317 1.500 55.31 201.36 15.3 5.57 58.14
4.35 26.64 —2.330 1500 51.29 188.83 14.5 5.29 58.33
3.48 27.21 -—2.238 1.402 50.19 177.72 14.0 4.76 58.41
2.61 35.08 —2.313 1.004 47.85 168.96 15.0 3.66 57.56
1.74 56.69 —1.949 0.503 50.26 159.03 16.5 2.02 56.35
1.30 109.30 —1.248 0.172 54.95 154.44 18.1 0.76 55.29
1.22 100.74 —0.941 0.170 54.93 132.14 13.7 0.57 57.19
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Chapter 5: Conclusion and Recommendation

5.1 Conclusions

A general set of aeroassisted maneuver parameters, z4, as part of the parameters needed for the
generalized impulse was determined. The atmospheric parameters were determined as part of the
process in obtaining closed form solutions to the atmospheric flight differential equations of
motion. The minimization problem stated in Chapter 2 was solved using the generalized

impulse and applied to coplanar and noncoplanar two impulse orbit transfers.

For the atmospheric and gravitational models used, coplanar orbit transfers with and interceptor
radius greater thatn 1.5 DU and a target radius of 1.15 DU, the cost functions using a two
impulse maneuver involving an atmospheric assist are lower than the corresponding two impulse
Hohmann transfer. For noncoplanar orbit transfers involving small changes of the orbital plane
inclin.ation with a target radius of 1.15 DU and x > 1.22, the cost functions using the two
impulse maneuver involving an aeroassist are lower than the corresponding two impulse
maneuver described in Chapter 4 that combines a pure plane change maneuver and a Hohmann

transfer.

Using an aeroassisted maneuver that involves an atmospheric pass reduces the fuel needed to
perform noncoplanar and coplanar orbit transfers and is in agreement with the results from
[4,14] for noncoplanar and coplanar transfers, respectively. The developed parameterization

allows for quick, yet accurate, solutions to large numbers of minimum fuel orbit transfer

Chapter 5: Conclusion and Recommendation 72



problems. Unlike solutions obtained through the use of optimal control theory and multi point
boundary value problem numerical methods, obtaining solutions using parameter optimization is
relatively easy and takes little time but does require a “feel” for what takes place during both

Keplerian flight and atmospheric flight.

5.2 Recommendations for Future Research

Applying the current research ideas to developing a set of parameters which describe a finite
burn in space poses and interesting and challenging extension to the present research. Similar to
the present research, this finite burn in space changes position and velocity and occurs during an
non-zero period of time, however the choice and implementation of the parameters needed to
fully describe the finite burn poses the challenge of future research. Determination of the
number of impulses which minimizes the fuel consumption for a given orbit transfer problem
and choosing the corresponding impulse types also remains unanswered. Also, investigation into
the full capabilities of the developed generalized impulse using all of the proposed six parameters
provides an area for further research. Because of the difficulties in ensuring atmospheric entry
due to deboost from Keplerian orbits other than circular orbits, application of the generalized
impulse to elliptical and hyperbolic orbits also provides an opportunity to expand the
generalized impulse idea. Finally, as a result of the search for the minimum, a set of parameters
can be determined which does not force atmospheric entry, a method for calculating smooth
transition between those trajectories which use atmospheric entry and those which do not and
determining if atmospheric entry is even necessary to minimize fuel consumption poses a

formidable challenge in extending the current research.
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Appendix A: Partials Derivatives and Integrals

Al: Partial Derivatives

The change to the dimensionless variables Chapman variables Z and v in the differential state

equations, involves chain rule differentiation and calculation of the following partial derivatives:

Al.1: Z Chapman Variable

Z = Z( p(x), 1, B(r))

7 = pSC7, T
2m S
—k2
= olt)
k? = gr

using the above relations for Z and p, the following partial derivatives are obtained:

5 —(k%+1)
- onfe))

d

% =—8r (A1)
oz _ PSCy 1 |8

dr ~ 2m 253 \J—;

a7z _ PSCL 1 3

Or — 2m 2r+\p
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Al.2: v Chapman Variable

v = v(V, g(r), 1)

_V?
V=ogr
gzgo;o

using the above relations for v and g, the following partial derivatives are obtained:

ov _ 2V
ov — g1

ov _ _V?
g g’
ov _ _V?
or . gr
g _ _ 28015
or — 3
og _ _28
o T
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A2: Integrals

Integration of the expressions for latitude, longitude and time requires the use of trigonometric

identities, long division and series approximations.

A2.1: Latitude and Longitude

The expressions for latitude and longitude are given as

dg _  cos(Ye + tano(y — 7e))
dy — " 2 2
kicosa (Ze 2,\coscr(7 7e)
dg¢ _ _ sin(ye + tano(y — 7e))
dy kAcosa(Z. — 2/\(3(050'(72 —3)

Using trigonometric identities for sin(ae + 3) and cos(a + () the above equations can be

rewritten as

do _ 2[cos(¢e — vetano) cos(ytang) — sin(pe — yctano) sin(‘ytana)j

A9
dy k2[2kAZecosa+(k7e)2 _ 2:| ( )
k? !
d¢ 2[sin(¢e — 7etano) cos(ytano) + cos(¢e — yetano) sin('ytana)___l ( A.10)
dy — k2|:2k/\Zecosa+(k7e)2 _ 2:| -
k? !

Equations A.9 and A.10, have the same form but with different constants. These constants

involve the entry states and the constant bank angle ¢. Defining the following constants for
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equation A.9

C, = kzz cos(pe — vyetano) ( A.11a)
2

C, = zk’\zec°z’2+(k7°) ( A.11b)

Cz = kl sin(ye — vetano) (A.llc)

while for equation A.10 the same constants are defined as

C, = k% sin(ye — vetano) (A.11d)
2

C, = Qk’\zec°1"2+(k7e) (A.lle)

Cy = 55 cos(Pe — 7yetaneo) ( A.11f)

Therefore, using these constants equations A.9 and A.10 are rewritten as

% _ C;cos(ytano) — Cgsm('ytana) ( A.12)
Y Cy — v
d¢ _ C,cos(ytano) + Cgsin(ytano) ( A.13)

dy Cy, — 72

The equations A.12 and A.13 are now only functions of 4 and the constant bank angle o, but
are not directly integrable. A very good approximation of the integral can be obtained if

sin(ytanco) and cos(ytanag) are expanded as the following high order polynomials

_ (ytano)? + (ytano)? _ (ytano)®

o 71 3 (A.19)

cos(ytans) = 1

(ytanc)?® + (ytano)® _ (ytang)?

30 5 T (A.15)

sin(ytanos) = ytano —

Substituting equations A.14 and A.15 into the differential equations A.12 and A.13, the terms
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on the right hand sides of equations A.12 and A.13 can be rewritten as

Cjcos(ytans)  C; [720 — 360(ytanc)? + 30(ytano)* — (7tan0')6:|

A.16
C; — ¥ 720(Cy — 72) ( )

Cgsin(ytano) C3|:50407tana — 840(ytanc)® + 420(vtano)® — (7tan0')7]
C,—7v* 5040(C; — 7°)

( A.17)

by performing long division on the right hand side terms of A.16 and A.17, the equations can be

rewritten as

Cicos(ytano) _ ( A.18)
Cy — 7°

&['%a,n%—(s,m o — Cytan®s)y? — (30C,tan*s — Cltan®s — 360tan’s) |

7207 an“o stan®o)y (30C,tan”eo stan®o an“s) | +

C,| 720 — 360C,tan?s + 30Citan*sc — C3tan®e

720 C, — 7

Cgsin(ytano)

s S Wil S A.19
o (A.19)

5—520[75tan7a' — (42tan®c — Cztan70')73 - (4202tan50' — C%tan7a - 840tan30):| +

Cs [—5040tana' — 840C,tan’s + 42C2tan’c — Cgtan70']
5040|_ Cy — 72

performing the integration of equations A.18 and A.19 for use in equation A.12 and A.13 gives

C,cos(ytaneo) _
[l - (420

Appendix A: Partials Derivatives and Integrals 78



3
,{.—ll:(tan a') — (30tan’c — Cztanﬁa)% — (30C,tan*o — C;ta,nsa' - 360tan20')7:|’

y
C, | 720 — 360C,tan’c + 30Cstan’s — Chtan®s  ({Cz + 7
+ 730 In | ==
2 ‘1_2 NC2 — 7
Ye
/ Casin(*ftar;f) _ ( A.21)
(Cy — 79)

C ")/4 2 72
tan’ o — (42tan®c — C,tan’o)L- — (42C,tan®c — C,tan’o — 840tan3c)4-
5040 2 4 2 2 2

¥
2 3
C, | 5040tanc — 840C,tan30 + 42C,tan’c — C,tan’o
i [ : 2207 = 28 % n(C, — 77)

~ 5040 2
Ye

Combining equations A.20 and A.21 to form the solution for the latitude and longitude gives

¢ — e = (A.22)

5
—(—;lo|:(tanﬁa)‘7 — (30tan*s — C,tan® 0') — (30C,tan*s — CZtanGJ — 360tan20)7‘“

Y
. Ci| 720 — 360C,tan’s + 30Catan®o — Cgtanso' IC: +7
720 2 {C, o o

Ye

: 2
5040[(ta.n U) — (42tan’c — C2tan70')7? — (42Cytan®c — Catan’o — 840tan30')77_:||

C; | 5040tanc — 840C,tan’c + 420§tan5a - Cgtan7a 2
~ 5040 2 In(C,

Ye
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0 — 0. = ( A.23)

v
3
720[(tan 0)7 — (30tan*c — Cztanea)% — (30C,tane — Cgtansv — 36Otan20)7:“
Ye
Y
+ C, | 720 — 360C,tan’c + 3002tan o — Cztan T 1n NCs + 7
720 2C, {C =7
Te
s (tan” )"—6 (42tan®ec — C,tan” 7 (42C,tan%c — Cotan’o — 3401;an3or)7—2
Epag| (tan' )& — an”o 2ana')4 otan’o otan )

C; | 5040tanc — 840C,tan’c + 42C§tan50' — Cztan7a' 2
5040 2 In(Cy = 77)

Equations A.22 and A.23 are the solutions to the differential equations A.9 and A.10, where the

constants are defined from equations A.11.

A2.2: Time

The differential equation for the time of flight along a sub arc is given by

dt ( A.24)

2n — 1 4+ A"
,\cosa'|:Ze - 2,\cosa(7 —72):| uveexp E*n)cosc )(7—76)]

The equation A.24 is now only functions of ¥, the entry states and the constant bank angle o

Several constants are defined by grouping terms as
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c,=—X_ _ ( A.25a)

Acosa B3 u
—(n — 142
_ 25b
Ca E*nAcoseo ( A-25b)
C3 = veexp(—2Cy7e) ( A.25¢c)
Cy =Ze + X1 ( A.25d)
4 7% T 2)cosa )

C5 = m ( A.25e)
Using the constants C; - C; the differential equation A.24 can be rewritten as
dt _ C, exp(=C,7) ( A.26)

dy C
e -]

In order to put equation A.24 in a form that is integrable, two further constants are defined
(A.27a)
C, = = ( A.27b)

Using these two constants, equation A.26 is rewritten as

ﬂ —_ CG exp(_c27) A 28
d‘)’ - Cg _ 72 ( . )

Performing the integration on equation A.28 by integration by parts,

¢ —t, = Cg exp(—Cy7) In I:C7 + "r’i» + _9_2_ exp(—C,7) In I:gL"-_:l dy

2C, Cr — 2C; 77
Ye Ye
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t—t, = ( A.29)

Y Y
Cgexp(—C C, + C¢C,exp(C,C
5 1;(07 27) ]nI:C: — ;:u + =82 2([j)£ 2C1) exp(—Cy(C7 + 7)) In(C; + 7) dy —
Ye Te

,
CeCrCoC0) [exp(Ca(Cr = 1) In(C; = ) dy
Ye

The integrals in equation A.29 are of the following form
/exp(ax) In(x) dx = w - %/ %(ax) dx

where the integral on the right hand side is a series expansion. By using the series expansion to
higher order terms, a close approximation of equation A.29 can be obtained. The series
expansion for the right hand side integral is as follows

(ax)? | (ax)® | (a)* | (ax)° | (ax)® | (ax)”
gor Y33t Y T sar el T

/%@x)dlen(x)—{—%+

Using the above series expansion and defing new variables from equations A.24 as

x, = Cq + 7 ( A.30a)
X, = Cp — 7 ( A.30b)
a;= —C, ( A.30c)
a,= C, ( A.30d)
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the equation for flight time along a sub arc is given by

v
_ Ceexp(—Cy7) C; + 7
t —t, = 2C, In c, — + ( A.31)
Te
Y
CeCaexp(CyCr) | exp(a;xy) In(x,) 1 a1Xy ("3‘1’(1)2 (31X1)7:|
3, ) it RV it v R il || B
Ye
Y
CgCaexp(—C,Cy) | exp(asxy) In(x,) 1 aX (32X2)2 (32X2)7
2C; 3 — gy |I000) + 57 + S e+ ST
Ye
where the constants are defined in equations A.25, A.27 and equations A.30.
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Figure 1. Earth Fixed and Tracking Coordinate Systems
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Figure 3. Lift, Drag and Gravitational Forces Acting on a Vehicle
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Figure 4. Altitude vs. Atmospheric Density
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Figure 16. Dynamic Pressure vs. Time for x = 5.75 (Coplanar)

)

101



10

Velocity (Km/s)

11

0

I I T T 1 | L L L I [ I L I

5) 10 15 20
Time From Atmospheric Entry (sec)

Figure 17. Velocity vs. Time for x = 5.75 (Coplanar)
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Figure 18. Altitude vs. Time for x = 2.61 (Coplanar)
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Figure 19. Normal G-Load vs. Time for x = 2.61 (Coplanar)
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Figure 20. Convective Heating Rate vs. Time for x = 2.61 (Coplanar)
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Figure 21. Flight Path Angle vs. Time for y = 2.61 (Coplanar)
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Figure 22. Dynamic Pressure vs. Time for x = 2.61 (Coplanar)
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Figure 23. Velocity vs. Time for x = 2.61 (Coplanar)
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Figure 24. Altitude vs. Time for y = 1.30 (Coplanar)
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Figure 25. Normal G-Load vs. Time for x = 1.30 (Coplanar)
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Figure 26. Convective Heating Rate vs. Time for x = 1.30 (Coplanar)
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Figure 27. Flight Path Angle vs. Time for x = 1.30 (Coplanar)
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Figure 28. Dynamic Pressure vs. Time for x = 1.30 (Coplanar)
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Figure 29. Velocity vs. Time for x = 1.30 (Coplanar)
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Figure 30. Altitude vs. Time for x = 5.75 (Noncoplanar Ai = 5°)
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Figure 31. Normal G-Load vs. Time for x = 5.75 (Noncoplanar Ai = 5°)
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Figure 32. Convective Heating Rate vs. Time for x = 5.75 (Noncoplanar Ai = 5°)
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Figure 33. Flight Path Angle vs. Time for x = 5.75 (Noncoplanar Ai = 5)
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Figure 34. Dynamic Pressure vs. Time for x = 5.75 (Noncoplanar Ai = 5°)
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Figure 35. Velocity vs. Time for x = 5.75 (Noncoplanar Ai = 5°)
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Figure 36. Altitude vs. Time for x = 2.61 (Noncoplanar Ai = 5°)
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Figure 37. Normal G-Load vs. Time for x = 2.61 (Noncoplanar Ai = 5°)
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Figure 38. Convective Heating Rate vs. Time for x = 2.61 (Noncoplanar Ai = 5°)
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Figure 39. Flight Path Angle vs. Time for x = 2.61 (Noncoplanar Ai = 5°)
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Figure 40. Dynamic Pressure vs. Time for x = 2.61 (Noncoplanar Ai = 5°)

125



10

Velocity (Km/s)

0

rrrr1r1rrrrrrrrrrrrrrrrrrrrrrrrr1rrrrrTrTrTrd

5) 10 15 20 25 30 35 40
Time From Atmospheric Entry (sec)

Figure 41. Velocity vs. Time for x = 2.61 (Noncoplanar Ai = 5°)
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Figure 42. Altitude vs. Time for y = 1.30 (Noncoplanar Ai = 57)
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Figure 43. Normal G-Load vs. Time for y = 1.30 (Noncoplanar Ai = 5°)
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Figure 44. Convective Heating Rate vs. Time for x = 1.30 (Noncoplanar Ai = 5%)
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Figure 45. Flight Path Angle vs. Time for y = 1.30 (Noncoplanar Ai = 5°)
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Figure 46. Dynamic Pressure vs. Time for x = 1.30 (Noncoplanar Ai = 5°)
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Figure 47. Velocity vs. Time for x = 1.30 (Noncoplanar Ai = 5°)
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Figure 48. Cost Function vs. x for Coplanar Transfer Methods
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Figure 49. Cost Function vs. x for Noncoplanar Transfer Methods (Ai = 5°)
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Figure 50. Coplanar and Noncoplanar Aeroassisted Transfer Cost Functions vs. x
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