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Chapter 1   INTRODUCTION 

1.1 Motivation 

 

An increasing demand for high data rates in wireless communications has made it 

essential to investigate methods of achieving high spectral efficiency which would take 

into account the wireless channel. Adaptive modulation is one such scheme proposed by 

Hanzo and Torrance [1] which helps to maximize the data rates that can be transmitted 

over wireless channels. The technique accomplishes this by adapting to the changing 

channel conditions and by making use of spectrally efficient modulation schemes like 

Quadrature Amplitude Modulation (QAM) [2]. As compared to QAM, adaptive 

modulation achieves similar spectral efficiency with better energy efficiency. When 

channel conditions are poor, energy efficient schemes such as BPSK or QPSK are used. 

As channel quality improves, 16-QAM or 64-QAM are used.  Adaptive modulation tends 

to work more effectively in slow fading channels, since channel quality doesn’t change 

drastically from frame to frame and the frame rate is the rate of adaptation. 

  

Adaptive modulation finds its application in wireless data systems which unlike voice 

systems, don’t necessarily require a constant data rate.  This allows the data rate to 

increase during good channel conditions and overall higher throughputs can be achieved. 

Recently, adaptive modulation has been proposed for the third generation packet data 

standard titled cdma2000 1xEV-DO1. This is also branded as “High Data Rate” or HDR.  

In order to optimize the throughput and make the best use of the  available bandwidth, the 

proposed HDR system sends and receives at different data rates. The data rate 

continuously changes as the channel conditions change. Thus, it employs adaptive 

modulation to achieve high throughput by adapting the modulation based on the channel 

variations.  

                                                 
1 The 1x  prefix is to represent the fact that the chip rate 1 times the 1.2288 Mega chips per second chip rate 
of a standard IS-95 CDMA channel. ‘EV’ stands for “Evolution” since it is an evolution of second 
generation CDMA. DO represents “Data-only” to emphasize the fact that it is optimized for data and not 
voice. 
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1.2 Significance of this thesis 

 

The main objective of this thesis is to provide an investigation of two practical issues 

impacting adaptive modulation for wireless communications. Adaptive modulation is a 

promising way to achieve high data rates. It utilizes modulation such that it can provide 

better spectral efficiency (for a given energy efficiency) by adapting to higher modulation 

schemes like QAM based upon the channel conditions.   QAM is sensitive to channel 

estimation since it requires an estimation of the amplitude variations in the channel in 

addition to knowledge of the phase variations.  As a result, adaptive modulation is also 

sensitive to the accuracy of such knowledge.  In this thesis we investigate several channel 

estimation techniques and their impact on the performance on adaptive modulation.  This 

is the first major contribution of this thesis.  In order to accurately adapt the modulation 

scheme, the channel quality must be known at the transmitter.  This requires the channel 

quality to be estimated by the receiver and fed back to the transmitter.  The second 

contribution of this thesis is the investigation of channel quality estimation (specifically 

SNR estimation) on the performance (including both error performance and spectral 

efficiency) of adaptive modulation. 

 

1.3 Overview of thesis 

 

This thesis is organized as follows. In Chapter 2, we discuss different channel 

equalization2 techniques and evaluate the factors which affect the channel estimators. 

Chapter 3 presents an overview of adaptive modulation and investigates the impact of 

feedback delays, Doppler frequency and channel estimation on its performance. In 

Chapter 4, we investigate SNR estimation.   Specifically, we investigate two short-term 

                                                 
2 Note that we use the term ‘equalization’ in a manner that is slightly different from traditional usage.  
Traditionally, ‘equalization’ refers to frequency domain equalization which is necessary in frequency 
selective channels.  Here, we refer to time domain equalization which is necessary for amplitude 
modulation in flat (or frequency selective) fading. 
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SNR estimation techniques and their impact on the performance of adaptive modulation 

in various channel conditions.  Secondly, we investigate long-term SNR estimation and 

its use in adaptive modulation.  The two general techniques are compared in terms of 

their overall performance and their degradation compared to ideal estimation.  The key 

factors considered are Doppler frequency, feedback delays and the SNR estimation 

technique. Finally, Chapter 5 concludes the thesis and provides directions for further 

research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4 

 

Chapter 2  EQUALIZATION TECHNIQUES FOR QAM                       
 

2.1 Introduction  

 

The objective of this chapter is to discuss equalization techniques for QAM in the 

presence of the Rayleigh fading. By the term “equalization” we mean the removal of 

phase and amplitude distortion in the time domain introduced by the wireless channel. 

This is to be contrasted with the traditional use of term in the case of constant amplitude 

modulation schemes where “equalization” is used for frequency domain equalization in 

frequency selective channels.   

 

The rapid growth in the mobile communications has given rise to an increasing demand 

for channel capacity using limited bandwidth. Quadrature amplitude modulation (QAM) 

yields the high spectral efficiency owing to its use of amplitude as well as phase 

modulation and therefore is an effective technique for achieving high channel capacity. 

Application of QAM for land mobile communication in the presence of a rapidly fading 

channel is challenging because of the amplitude distortion introduced and thus requires 

high quality channel estimation and equalization. Many researchers [3], [4], [5], [6] have 

studied pilot symbol assisted modulation (PSAM) for compensating for the effects of 

fading at the receiver. We will investigate different equalization techniques and the effect 

of pilot symbol spacing and Doppler spread on the performance of PSAM using 16-QAM 

and 64-QAM in this chapter. 

 

2.2 Fundamentals of Pilot Symbol Assisted Modulation 

 

In PSAM, a known pilot symbol and information symbols are multiplexed in the time 

domain [i.e. time division multiplexing or TDM] at the transmitter [7].      



 5 

 

             

 

 

 

 

  

 

 

                                             Figure 2.1 Frame format for PSAM 

 

The pilot symbols are inserted periodically into the useful information sequence prior to 

pulse shaping. Applying the Nyquist sampling theorem, we have a required relationship 

between the Doppler frequency dF , symbol period sT  and the frame length N (also pilot 

symbol spacing since there is one pilot per frame):  

 
1

2d sF T
N

≤   (2.1) 

This equation shows that the pilot symbols should be inserted more frequently as the 

Doppler rate increases. A frame having N symbols consists of one pilot symbol followed 

by (N-1) information symbols. Figure 2.1 shows the frame format for PSAM. 

 

 

 

 

 

 

 

Information Symbols 

 

  TDM 

     (N -1) information symbols 
between any two pilot symbols 

N-1 data symbols 
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Table 2.1 Pilot symbols used in different modulation schemes 

 
Modulation Number of bits 

per   symbol 

Pilot Symbol 

BPSK 
1 1+j0 

QPSK 2 1+j 

16 QAM 4 3+j3 

64 QAM 6 7+j7 

 

Equation (2.1) tells us how frequently we must sample the channel based on the Nyquist 

sampling theorem. However, we must remember that at the receiver our samples are 

inherently noisy. Thus, the energy per pilot symbol is important since it will determine 

the signal-to-noise ratio (SNR) of the samples. In order to maximize the SNR of the 

channel samples without introducing excess gain, we choose the symbol with the largest 

energy in its symbol set as shown in Table 2.1. Figure 2.2 shows the signal constellation 

for 16-QAM and 64-QAM with dark dots representing possible pilot symbols with signal 

power 18and 98 respectively.  

                     
                      16 QAM                                        64 QAM 

 

                   Figure 2.2 Signal constellations of QAM indicating possible pilot symbol   
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After matched filtering, the receiver demultiplexes the pilot symbols and the information 

symbols. The extracted sequence of pilot symbols is then processed to remove the 

modulation and interpolated to give an estimation of the fading distortion for the 

information symbols. Thus, the amplitude and phase variation due to fading can be 

estimated for every data symbol. The estimates are used to equalize the information 

symbols prior to detection.  

2.3 Wireless channel model  

 

In mobile wireless communication systems, the channel is time varying because of the 

motion of either the transmitter or the receiver which results in propagation path changes. 

If the channel bandwidth is greater than the signal bandwidth, then the received signal 

will undergo flat fading. The main characteristics of flat fading channels are deep fades 

caused by multipath. If there is no line-of-sight component in the received signal, 

Rayleigh fading describes the statistical distribution of the received envelope of a flat 

fading signal.  

2.3.1 Rayleigh fading phenomenon 

 

The Rayleigh distribution has a probability density function (pdf) given by (Figures 2.3, 

2.4) [8]   

 
2

2 2( ) exp ....................(0 )
2

r r
p r r

σ σ
 −

= ≤ ≤ ∞ 
 

 

 0………..............(r <0) (2.2) 

where s is the rms value of the received voltage signal and s  2 is the time average power 

of the received signal. The  probability that the envelope of the received signal does not 

exceed a specific value R is given by the corresponding cumulative distribution function 

(CDF) 

                                  
2

2
0
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σ
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The power spectrum of the Rayleigh fading signal with a uniform angle-of-arrival 

distribution from 0 to 2p describes the time varying nature of the signal and is given 

by [8] 

 
2

1.5
( )

1 c
d

d

S f
f ff

f
π

=
 −−  
 

 (2.4) 

where fd is the maximum Doppler frequency and fc is the carrier frequency. Figures 

2.5 and 2.6 show the power spectral density and the corresponding temporal 

correlation due to the multipath fading.  
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Figure 2.3 A typical Rayleigh fading 

envelope as a function of time    

Figure 2.4 Rayleigh probability density 

function (pdf) 

  

Figure 2.5 Fading power spectrum density  Figure 2.6 Temporal correlation of the 

fading waveform 
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2.3.2 Jakes model for Rayleigh fading   

 
The classic Jakes model [9] is among the simplest of all the different types of methods for 

generating a flat Rayleigh fading channel. This model assumes that the transmitted signal 

is vertically polarized. Figure 2.7 shows a typical component wave incident on the 

mobile.  

 

 

              

 

    

 

Figure 2.7 Model for a component radio wave incident on the mobile  

 

Mobility introduces a Doppler shift fi in every wave, which is given by [9]  

 fi  = cos  ai  * Fd (2.5) 

       

where Fd is the maximum Doppler frequency and αi is the angle-of-arrival for the ith 

wave. The fading signal is then the summation of the field components over all the 

sinusoids as in equation 2.6 where a i is the angle of arrival and ? c is the carrier frequency.  

 
1

cos( )
N

c iZ O
i

tE E ω α
=

= +∑  (2.6) 

 The autocorrelation function of the channel power gain over time is given as [5] 

Y 
ith incoming wave  

a Angle of arrival   
  X 

Z
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2
0( ) (2 / )gA J vτ π τ λ=

 

where v is the mobile user’s velocity and λ is the wavelength of the carrier. Figure 2.6 

plots the temporal correlation of the channel.  Note that maximum Doppler frequency is 

related to the mobile velocity by 

                  /dF v λ=  

2.4 Transmitter and Receiver Models 

 
Figure 2.8 shows the configuration of the transmitter and receiver. The data is modulated 

using the desired modulation scheme using Gray coding.  After modulation, a known 

pilot symbol is inserted at the first position in the frame with (N-1) information data 

symbols following. The frame length is N symbols. The signal is then transmitted over a 

channel with flat Rayleigh fading and additive white Gaussian noise (AWGN). After 

matched filtering, the receiver extracts the pilot symbols, and interpolates them to form 

an estimate of the channel state fo r each data symbol time. The complex baseband model 

of the received signal r(t) is given by : 

    

 ( ) ( ) ( ) ( )r t s t c t n t= +  (2.7) 

 

where s(t) : transmitted baseband signal 

c(t) : fading distortion  

n(t) : additive white Gaussian noise  

 

and all quantities are complex due to the nature of the modulation schemes used. 

 

 

 

 

 

 



 12 

 

   

 

 

  

 

   
 

 

Figure 2.8 Configuration of the transmitter and receiver 

 

If the estimated channel coefficients are represented by ( )c t$ , then the transmitted signal 

can be estimated as 

                     ( )
( )
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where f{.}is an appropriate decision function. 
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2.5 Gaussian Interpolation 

 

Gaussian interpolation is one of the simpler interpolation schemes [6], [7]. The estimated 

fading variation at t = (k + m/N) TF using Gaussian interpolation is given by  

 
1

1

(( / ) ) ( ) (( ) )F k F
i

c k m N T Q m c k i T
=−

+ = +∑$  (2.10)        

Where TF = frame duration 

m = 0, 1, 2 ... (N-1) 

N = frame length 

 

and the weighting factors for second order Gaussian interpolation are expressed as 
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                                    (2.10c) 

 

In the case of zeroth-order interpolation, the weighting factors are given by  

         1 0
m

Q
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                                                            (2.11a) 

                                         0 1
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                  1 0
m

Q
N
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 

                   (2.11c) 

 

For first order interpolation, weighting factors are given by 
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                           1
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Q
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The fading distortion is estimated by using equation (2.9) at the fading distortion 

compensator as shown in Figure 2.9. 

 

Figure 2.9 Fading distortion compensator 

 

2.6 Wiener Interpolation 

 
 Let r(iN) be the K- length column vector, / 2 / 2K i K− ≤ ≤        which is formed from the  

received pilot symbols divided by the known pilot symbols. This gives us the estimated 

distortion in the pilot symbols at the receiver. To estimate the distortion coefficients for 

the data symbols, we calculate the coefficient vector h(k) which satisfies the Wiener-

Hopf equation [3].  

 
1,0( )kC t −
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,0( )kC t

∼   
1,0( )kC t +

∼
 

Q-1 (m/N) Q1 (m/N) 
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 Rh(k) = w(k) (2.13)  

where w(k) and R are the estimated autocorrelation of the received signal and the 

correlation between the received signal and the data and are calculated using equations 

(2.14) and (2.16): 

ik( ) ( 1) (( ) )
1

ci
q

w k n N R i k NT
q

 
= γ − − + δ + 

∼
                            (2.14) 

 

where q is the ratio of the pilot power to the data power, γ is the ratio of the energy per bit 

to the noise power and 

1 0 0

0 1 0
0 0 1

ik

 
 δ =  
  

       (2.15) 

 

The autocorrelation of the received signal is 

( 1)
( ) (( ) )

1
cik

N q
R n R i k NT

qb

−
= γ −

+

∼

∼                  (2.16) 

where ( )cR τ
∼

 is the normalized version of the autocorrelation function of the channel’s 

complex gain given by: 

                      0( ) exp( 2 ) (2 )c D DR j F J Fπ πτ = τ τ
∼

                                 (2.17) 

 

where the maximum Doppler frequency is given by Fd. The coefficient vector h is 

calculated to satisfy the Wiener–Hopf equation. As can be observed, the Wiener filter 

requires prior information of the Doppler frequency and signal-to-noise ratio to estimate 

of the fading channel.  
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2.7 FFT Interpolation 

 

An important application of the FFT algorithm is in FIR linear filtering of long data 

sequences. The FFT algorithm takes N points of input data and transforms the N points 

into the frequency domain by taking the fast version of the Discrete Fourier Transform 

(DFT) of the input data [5], [10]. The input data to the FFT channel estimator is the ratio 

of the received pilot symbols to the known pilot symbols. This factor gives a measure of 

the distortion that the pilot symbol has undergone due to the flat fading. Figure 2.10 

shows the general FFT algorithm. Both N and Np should be power of 2 in order to use 

FFT and IFFT. Note, that DFT can be used if a power of two is not possible, but the 

efficiency of the transform is sacrificed. G(n) is the output of the DFT. Provided equation 

(2.1) is satisfied G(n) has all the components of the fading channel, and near n = Np, G’ 

(n= 0). Therefore we can interpolate from 2Np symbols to 2NNp symbols with zero 

insertion. Interpolation is carried out as follows: 

                  2'( ) ( )..........................[0 ( 1)]PNG n NG n n= ≤ ≤ −    (2.18) 

'( ) 0.................................. 1
2 2

P PN N
G n n

  = ≤ ≤ −    

 '( ) [ ( 1)]................ (2 1) 1
2

P
P P

N
G n NG n N N N n N N = − − − ≤ ≤ −  

 

Where G’ (n) is considered to be periodic, that is  

      

             G’(m+2NNpr) = G’ (m)            (r = 0, ±1, ±2 …)               (2.19)  

 

This zero insertion in the frequency domain is equal to interpolation between the pilot 

symbols in the time domain. This scheme is simple because only the FFT and zero 

insertion are required [5].  
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Figure 2.10 General FFT algorithm 

 

The inverse FFT (equation (2.20)) of the sampled frequency data is performed in the last 

stage to get the time-domain data. 
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2.7.1 Edge effects due to FFT interpolation 

 

The FFT interpolation method estimates the channel distortion from the pilot symbols 

very efficiently but generates leakage due to the truncation required to obtain a finite 

length sampled data. When truncation is done the frequency data as calculated by taking 

the FFT of the distortion pilot samples is not truly equal to zero beyond the frequency 

range of the channel. Forcing these values to zero causes edge effects in the final channel 

estimate as shown in Figure 2.12. To avoid this edge effect, it is necessary that the time 

interval width of g is an integer multiple of 1/fd. However, it is difficult (if not 

impossible) to select the sampling frequency and the truncation time to satisfy this 

requirement. We therefore solve this problem by introducing extra frames in the 

beginning and in the end of the target frames (as shown in Figure 2.11) and then applying 

FFT interpolation. After obtaining the samples in the time domain, we consider only our 

target frames and discard extra frames that we introduced for channel estimation. This 

helps reduce the edge effect, although it does introduce additional delay. Figure 2.12 

illustrates the effect of the leakage on the BER curve for 16-QAM and 64-QAM. As can 

Phase rotation 

2Np points 
fading series 

 FFT 
 
    Zero Interpolation  IFFT 

Time domain 
         Frequency      domain  

Time domain 

 Truncation 

N Np estimated 
fading series 
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be observed there is an improvement of 5dB at an SNR of 25dB for 16-QAM and 64-

QAM when accounting for the edge effect.   

 

 

 

   

 

      Figure 2.11 Frame structure to reduce edging effect  

 

 

  
Figure 2.12 (a) BER performance with and 

without the edge effect for 16-QAM and 

Doppler frequency = 50Hz 

Figure 2.12 (b) BER performance with and 

without the edge effect for 64-QAM and Doppler 

frequency = 50Hz 

 extra frames                    Target frames  extra frames 
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Figure 2.12 ( c ) Illustration of the edge effects 

in the channel envelope 

Figure 2.12 (d) Shows enlarged portion of the   

edge effects in the channel envelope of Figure 2.9 

( c ) 

 

2.8 Simulation Results 

2.8.1 Effect of interpolation order on the Gaussian Interpolator 

            

We first examined the performance of QAM with Gaussian interpolation.  It was found 

that (not surprisingly) the BER performance of QAM improves as the interpolation order 

increases. Table 2.2 summarizes the various parameters used in the simulations for the 

zeroth, first and second order Gaussian interpolator.  

   

 

 

 

Edge 
Effects 
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   Table 2.2 Specifications for Gaussian interpolation 

 
Frame length  32 symbols 

No. of frames 32 

No. of pilots in each frame  1 

Doppler frequency  20 Hz 

Symbol rate  10 ksymbols/s 

Frame duration 3.2 ms 

Second order   (m = 31; N = 32) 

Q-1 0.5 *(((m-1)/N)^2 - (m-1)/N ) 

Q0 1-((m-1)/N)^2 

Q1 0.5 *(((m-1)/N)^2 + (m-1)/N ) 

First order     (m = 31; N = 32) 

Q-1 0 

Q0 1-(m-1)/N 

Q1 (m-1)/N 

Zeroth  order  

Q-1 0 

Q0 1 

Q1 0 

 

 

 

As can be seen from Figure 2.13 (a-b-c), the estimated fading envelope traced by the 

different interpolation orders of the Gaussian interpolator improves considerably as the 

order is increased from 0 to 1. Second and first order interpolation does a significantly 

better job than the zeroth order.   There is little difference between first and second order 

interpolation. First order interpolation doesn’t trace the true fading envelope as accurately 

as second order especially near deep fades where second order does better. Figure 2.13 

shows that as the interpolation order increases, the BER performance improves for 
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Gaussian interpolation as expected.  Further, there is a substantial improvement in 

performance in going from zeroth to first order interpolation, but little advantage in going 

to second order interpolation.  Thus, the BER results bear out the observations from the 

estimation plots.   
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Figure 2.13(a) The estimated fading 

envelope as traced by the zeroth order 

interpolation  

Figure 2.13(b) The estimated fading 

envelope as traced by the first order 

interpolation 

  

Figure 2.13 (c) The estimated fading 

envelope as traced by the second order 

interpolation 

Figure 2.13 BER performance of 16-QAM 

using different interpolation orders for 

Gaussian interpolator at Doppler 50Hz and 

BER target of 0.1% 
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2.8.2 Effect of the Doppler spread 

 
Doppler spread is defined as the range of frequencies over which the channel Doppler 

spectrum is non-zero. The amount of spectral broadening depends on Fd which is a 

function of the velocity of the mobile and the wavelength of the carrier. As shown in 

Figure 2.7, when the ith path arrives at an angle of a with respect to the motion of the 

mobile unit, its frequency is shifted by  

 Fi = Fd cos (?) (2.21) 

                                                            Fd = v/? (2.22) 

where ? is carrier wavelength and v is the velocity of the mobile.  

Figure 2.14 presents simulation results which highlight the impact of different Doppler 

spreads on the BER of 16-QAM when using Wiener and FFT channel estimators. Figure 

2.15 presents results for all three interpolation schemes.  It can be seen that BER 

performance degrades as the Doppler frequency increases [3], [11].  However, the FFT 

interpolation technique is nearly unaffected by Doppler frequency until Fd exceeds 

400Hz.  This is in stark contrast to the other two interpolation techniques which degrade 

consistently as Doppler increases. Note that at rates above 500Hz, the sampling 

frequency of the channel does not meet the Nyquist rate.   

  

 

  
Figure 2.14 (a) Impact of Doppler spread 

on FFT interpolation for 16-QAM 

Figure 2.14 (b) Impact of Doppler spread 

on Wiener interpolation for 16-QAM 
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                               Figure 2.15 Effect of Doppler frequency on 16-QAM performance 

  

2.8.3 Effect of pilot symbol spacing 

Insertion of pilot symbols results in wasting energy, so there is a tradeoff between 

wasting energy in unnecessary pilot symbols and not sampling the fading process often 

enough for good estimation. When the Doppler frequency is more than the theoretical 

limit, the channel estimator is not able to compensate for the distortion.  This can be 

verified from equation (2.1). For example (using equation (2.1)): If the frame length N = 

64 symbols and Fs = 16 kHz then any channel estimator works as long as  

 Fd < 125 Hz 

Figure 2.16 (a, b) show how the true fading envelope is traced by FFT interpolation at 

Doppler rates of 120 Hz and 130 Hz for the same pilot symbol spacing. As can be seen, 

for Doppler spread = 130 Hz, the envelope is not accurately traced unlike at 120 Hz. This 

can also be observed from the signal constellations which demonstrate how well the 

received data symbols are compensated when compared to the transmitted data symbols. 

From Figure 2.16(d-e), we have verified that when the Doppler (Fd) = 125Hz the channel 

estimator is unable to provide accurate compensation for the Rayleigh fading distortion. 
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Figure 2.16 (a) Fading envelope for Doppler 

frequency of 120 Hz 

Figure 2.16 (b) Fading envelope for 

Doppler frequency of 130 Hz 

 
 

Figure 2.16 ( c ) Signal constellation for 16-

QAM at Doppler frequency of 120 Hz 

Figure 2.16 (d) Signal constellation for 

16-QAM at Doppler frequency of 130 Hz 
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Figure 2.16  (e) BER performance of 16-QAM with Doppler of 120 Hz and 130 Hz 

 

This can also be seen by varying the pilot symbol spacing for a constant Doppler rate.  

Figure 2.17 shows the effect of pilot symbol spacing using different channel estimators 

on the performance of 16-QAM. As can be observed, for the case of FdT=0.04 and 

Eb/No=30dB, beyond a pilot symbol spacing of 16, the channel estimators are ineffective. 

Also, since FdT = 0.04, equation (2.1) is violated when N  > 12.  

  

 Figure 2.17 BER vs. Pilot symbol spacing for 16QAM 
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It should be noted that the power loss due to the insertion of the pilot symbols is given by  

 

 10log ( )
-1

N
Pl dB

N
 =  
 

 (2.23) 

Therefore, if a frame has 32 symbols, then it would result in 0.13 dB power loss due the 

pilot symbol. 

 

2.8.4. Effect of the Pilot SNR  

 

As mentioned in section 2.2, we choose the pilot symbol with the highest amplitude 

among the signal constellation. Since the data samples received at the receiver are very 

noisy, it is essential to have high pilot SNR. This is done by increasing the pilot 

amplitude so that it gets less distorted and helps in more accurate estimation of the 

distortion coefficients for the data. Thus, the higher the pilot amplitude, the higher the 

pilot SNR and thus the more accurate the estimation of the distortion at the receiver using 

these pilot samples will be.  

 

2.8.5. Comparison of channel estimators 

 

The FFT interpolator performs better than Wiener and Gaussian interpolators at moderate 

to high Dopplers. As the Doppler frequency (Figure 2.15) or the pilot symbol spacing 

(Figure 2.17) increase, the FFT estimator is able to compensate for the distortion more 

effectively than the other two estimators. Also, as the fading becomes more rapid, more 

accurate channel estimation is required. The FFT estimator translates the received pilot 

symbols in the frequency domain, inserts zero and then reconverts into the time domain. 

This method results in more accurate estimation in both slow and fast fading as discussed 

in section 2.7.2. Figure 2.18 shows how the received data symbols are compensated as 

compared to the transmitted data symbol using Wiener and FFT interpolation assuming 
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the parameters presented in Table 2.3. It is observed that when using Wiener 

interpolation, the compensation is inferior as compared to the compensation achieved 

using the FFT interpolator. Also, the Wiener estimator requires prior information 

regarding the Doppler frequency and signal-to-noise ratio to estimate the fading channel.  

Finally, the Gaussian estimator results in an error floor and is inferior to the other 

techniques.  

               Table 2.3 Specifications used for the simulation results of Figures 2.18 

Modulation  
64 QAM 

Pilot symbol spacing 16  

Doppler frequency 50Hz 

Frame length 16 symbols 

Symbol rate  10kHz 

Legends for Figures 2.18 red asterix: transmitted symbols 

black dot : compensated data symbols 

   

 

 

Figure 2.18 (a) Signal constellation of 64 

QAM using Wiener interpolation 

 

Figure 2.18 (b) Signal constellation of 64 

QAM using FFT interpolation 
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                                    Figure 2.19 Comparison of Mean squared error 

 

Figure 2.19 shows a comparison of the mean square error for all the channel estimators.  

 

   Table 2.4 Specifications used for the simulation results of Figures 2.19 

 

Modulation  
16 QAM 

Pilot symbol spacing 16  

Doppler frequency 20Hz 

Frame length 32 symbols 

Symbol rate  10kHz 

Frame rate 312Hz 

 

 

It is observed that at lower SNRs, the Wiener estimator performs the best and as the SNR 

increases, the performance of the FFT interpolator becomes the superior technique. Also, 

after an SNR of 20 dB, the Gaussian and Wiener interpolators result in an error floor 

whereas the FFT technique doesn’t suffer an error floor until approximately 35dB. Figure 

2.20 shows the spectrum for the estimated and true fading channels using all channel 
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three estimators. It can be observed that the spectrum of the estimated channel using the 

FFT estimator is a closer approximation of the true channel spectrum as compared to the 

Gaussian and Wiener estimators. 

 

  
 

Figure 2.20(a) Spectral plot of the channel 

using Gaussian interpolation 

Figure 2.20(b) Spectral plot of the channel 

using Wiener interpolation 

                                 

                                    
                          Figure 2.20(c) Spectral plot of the channel using FFT interpolation  
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2.8.6 Analysis of the Effect of Channel estimation error on M-QAM 

BER Performance in Rayleigh fading 

 

PSAM based channel estimation has been studied by several authors [3,4,8]. In all these 

studies, the only analytical result for comparison is a tight upper bound on the BER for 

M-QAM, which doesn’t consider different parameters of the various channel estimators. 

Here we calculate the theoretical BER of 16-QAM with general PSAM based channel 

estimation. Goldsmith discusses channel estimation error with only amplitude error and 

then with amplitude as well as phase errors in [12]. We shall also study these effects in 

the following sections using FFT interpolation. Table  2.5 summarizes the parameters that 

are used in the equations discussed in the following sections. 

  

         Table 2.5 summarizes the parameters that are used in the Equation  2.24 

a , ? Amplitude and phase of the true channel 

 ,α θ
∧ ∧

 
Amplitude and phase of the estimated channel 

O                   { }E 2α  

^
Ω                   

^
{ }E

2

α  

r ^

Ω
Ω  

? 
Correlation coefficient between a and α

∧
 

γ  

 

O *γ  

 

 

 

 

 



 32 

 

 

2.8.6.1 Amplitude estimation error only 

In this section, we compare our PSAM based simulation results with the theoretical BER 

of M-QAM with PSAM in flat Rayleigh fading channels. Initially, we assume that we 

know the phase information of the fading channel at the receiver (via a digital Costas 

loop or other method) and we estimate the amplitude of the channel coefficients using  

FFT interpolation.  Table 2.6 lists all the coefficients in the BER calculation (equation 

2.26) of 16-QAM.  

                                 Table 2.6 Coefficients in the BER of 16QAM  

i ? i ai bi 

   ¼ * 1
5  *  1

5 * 

1 1 3 0 

2 1 1 0 

3 1 3 -2 

4 -1 3 2 

5 1 -1 2 

6 1 1 2 

 

The theoretical BER of 16-QAM for a PSAM based channel estimator as calculated in 

[12] is given by:  

 
6

16
1

( ) ( , , , , )qam i i i
i

BER a b rγ ω γ ρ
=

= Ι∑  (2.24) 

where    
/ 2

2
2

0 / 2

(1 )
( , , , , ) (sin2 ( sin2 sin 1, (1 ) ( cos sin )))/( s in2 sin 1)i iI a b r J a rb

π

π

ρ
γ ρ θ ρ θ ρ γ θ θ ρ θ

π −

−
= Φ + − + Φ +∫ ∫  

  and  
3

2 2 3 / 22

1 3
( , )

2 4(2 )4 2

b b
J a b

a ba b
= − +

++
    (2.25) 
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We calculate r and ρ as defined in Table 2.5. Table 2.7 gives the values of r and ρ for 16-

QAM.  

      Table 2.7 gives the values of r and ρ for 16-QAM 

Eb/No (dB) r ρ  

0 1.0134 0.8468 

10 1.0317 0.9880 

20 1.0003 0.9981 

30 1.0002 0.9999 

40 1.0015 0.9999 

 

As seen from the Table 2.7, r is very close to 1 so we have approximated r to be 1 in our 

analysis whereas ρ increases towards 1 as the average SNR per bit increases.  This is 

expected because, as defined in Table 2.5, ρ is the correlation coefficient between the 

true and the estimated channel which becomes better with the average SNR per bit. 

Figure 2.21 shows the simulated and theoretical curves with only amplitude error.  We 

can see that the simulated curve follows theoretical curve very closely. As compared to 

perfect channel estimation, there is a degradation of 1dB with amplitude error only.  

 
Figure 2.21 Simulated and Analytical Performance of 16-QAM with only amplitude error 
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2.8.6.2 Amplitude and phase estimation error 

 
In this section, we estimate the theoretical BER for PSAM with no prior knowledge of 

amplitude or phase available at the receiver. Equation (2.26) defines the pdf of the phase 

estimate error [12] where phase estimation error is defined by ψ. 

 ψ θ θ
∧

= −  

 
2 1

32
2

1 ( cos )(1 )
( ) (2 )

4 1

q q q
p

q

πρ
ψ π ψ

π

− − + −−  = −
 − 

 (2.26) 

where cosq ρ ψ= . 

 

The BER of 16-QAM is given by 

 

     
12

16 1 2
1

( ) ( , , , , , )QAM i i i i
i

p w I a a b rγ γ ρ
=

= ∑  (2.27) 

where  

 

( ) ( )2 / 2 / 2 2 1 2

1 2 2
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             (2.28) 

and the coefficients w,a1,a2,b are listed in Table 2.8.  
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Table 2.8 Coefficients in the BER Calculation of 16-QAM with amplitude and phase 

error 

 

i wi a1i a2i bi 

 1/8 * 1/ 5 * 1/ 5 * 1/ 5 * 

1 1 3 1 0 

2 1 3 3 0 

3 1 1 1 0 

4 1 1 3 0 

5 1 3 1 -2 

6 1 3 3 -2 

7 -1 3 1 2 

8 -1 3 3 2 

9 1 -1 1 2 

10 1 -1 3 2 

11 1 1 1 2 

12 1 1 3 2 

 

  

 

 



 36 

 
Figure 2.22 Simulated and Analytical Performance of 16-QAM with amplitude and phase 

error 

 

Figure 2.22 shows the simulated and theoretical curves for 16-QAM with amplitude and 

phase error.  Again, we find that the simulated results follow the theoretical curve very 

closely. As compared to the case of perfect estimation, there is a degradation of 2 dB in 

performance with amplitude and phase error.  

 

2.9 Chapter summary 

 

In this chapter we have discussed PSAM-based channel estimators. Using pilot symbols, 

the receiver obtains amplitude and phase estimates by interpola ting the channel 

coefficients. Simulation results using different channel estimators along with the effect of 

pilot symbol spacing and Doppler frequency were discussed. We found that PSAM is 

relatively simple to implement and effectively compensates channe l distortion for QAM 

modulation schemes. We also compared our simulation results with theoretical amplitude 

and phase estimation error results for the BER of 16-QAM. Specifically, the analytical 

results were compared to simulated results with FFT interpola tion. In Chapter 3 we will 

discuss the impact that these estimators have on the performance of adaptive modulation. 
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Chapter 3  INTRODUCTION TO ADAPTIVE MODULATION 
 

3.1 Introduction  

 
Wireless channels vary over time due to fading and changing interference conditions. 

Adaptive modulation exploits these variations to maximize the data rate that can be 

transmitted over such channels in an energy efficient manner. This requires use of 

spectrally efficient modulation schemes such as Quadrature Amplitude Modulation 

(QAM). Multilevel QAM makes it possible to achieve high spectral efficiency while 

employing PSAM based channel estimators, which were discussed in Chapter 2. The 

objective of this chapter is to study modulation- level-controlled adaptive modulation 

proposed by Torrance and Hanzo [1] and to extend their work to examine the effect of 

channel estimation and equalization, feedback delay, and Doppler spread. In this chapter, 

we will initially assume perfect knowledge of the channel to examine the effect of delay 

and Doppler spread on adaptive modulation, and then examine the impact of channel 

estimation and equalization.  In the next chapter we will examine the impact of channel 

quality estimation. 

 

3.2 Motivation 

 
The main aim of adaptive modulation is to achieve high capacity (i.e., high spectral 

efficiency) in a power efficient manner.  One immediate question would be whether or 

not we should adapt power and modulation (i.e., rate). To answer this question, we shall 

discuss adaptive modulation from on information theory perspective.  Specifically we 

will examine the Shannon capacity of the fading channel with power and rate adaptation 

strategies [13].  
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Variable power and rate: 

 

If S(?) is the transmit power relative to an instantaneous channel SNR of ?, the Shannon 

capacity of a fading channel with bandwidth = B and average power SAV is given by : 

 

   2
( ): ( ) ( )

0

( )
max log (1 ) ( )

s S p d S AV

S
C B p d

Sγ γ γ γ

γ γ
γ γ

∞

=
= +

∫ ∫  (3.1) 

 

 
0

( ) ( )AVS S p dγ γ γ
∞

≥ ∫  (3.2) 

where p(γ) is the SNR distribution.  The power adaptation strategy that optimizes (3.1) 

can be shown to be: 

 

 0
0

0

1 1
, ;( )

0,AV

S
S

γ γγ
γ γ

γ γ


− ≥

= 
 <

 (3.3) 

where ?0 is the cut-off threshold for allocating power and is determined as in [9]. If  ? is 

less than the threshold value then no power is allocated. We can summarize the 

expression of equation (3.3) as follows.  When the power is good, we allocate power, but 

when the channel is bad we do not. The final expression for the channel capacity is 

obtained by substituting the 3.3 into 3.1.  The resulting spectral efficiency is given by: 

  

 
0

2
0

log ( ) ( )
C

p d
B γ

γ
γ γ

γ

∞

= ∫  (3.4) 

Constant power: 

 

In the case of constant transmit power, the transmitted power is same as the average 

power therefore the spectral efficiency is: 
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 2
0

log (1 ) ( )
C

p d
B

γ γ γ
∞

= +∫  (3.5) 

 

We observe from equations (3.4) and (3.5) (and their plots in Figure 3.1) that there is a 

very small difference in the spectral efficiency (C/B) between optimal power and rate 

allocation and rate adaptation with constant power.  

                           
                                Figure 3.1 Spectral efficiency of constant and variable power 

 This motivates us to examine rate (or modulation) adaptation schemes rather than power 

control schemes.  This is in contrast to traditional cellular systems that attempt to use 

power control with constant data rate.  In this chapter we shall assume constant power 

strategy while examining adaptive modulation. 
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3.3 Adaptive Modulation  

 

The main concept of adaptive modulation is to maintain a constant performance by 

varying transmitted power level, modulation scheme, coding rate or any combination of 

these schemes [13]. This allows us to vary the data rate without sacrificing BER 

performance.  Since in land mobile communication systems, the local mean value of the 

received signal level varies due to the fading channel, adaptive modulation is an effective 

way to achieve high data rates. Here we study the modulation level controlled adaptive 

modulation proposed by Hanzo and Torrance [1]. We focus our discussion on two 

significant performance metrics: BER and Spectral efficiency. Spectral efficiency can be 

defined as the expected value of log2M (number of bits per symbol), where M is the 

modulation level. The modulation schemes chosen for adaptation in this work are BPSK, 

QPSK, 16-QAM and 64-QAM offering 1,2,4 and 6 bits per symbol respectively. Also, 

we consider adaptation on a frame-by-frame basis. 

 

We will examine a threshold based adaptation scheme that switches between the different 

modulation schemes depending upon the estimated channel SNR during each frame. The 

channel SNR is estimated at the receiver and is reported to the transmitter through a 

feedback channel. Rate selection can be done at either the transmitter or receiver. If rate 

selection is done at the transmitter, more feedback information is required since the SNR 

must be quantized and transmitted.  This information is used to select a modulation 

scheme for the next transmission frame thereby maintaining the BER below a desired 

performance threshold. To have a constant estimated channel SNR for all the symbols in 

the frame we require a slow and flat fading channel [14].  This condition is necessary to 

insure that channel conditions do not change drastically in the course of a frame. In such 

a case, the modulation scheme based upon the estimated channel SNR would no longer 

be optimal for the active frame. We will examine the impact of violating this assumption 

later in this chapter and in the next chapter.  In this chapter we will examine the impact of 

fading rate on the performance of adaptive modulation directly, whereas in Chapter 4 we 

will examine the impact of fading rate on channel quality (i.e., SNR) estimation.  Figure 

3.2 gives an overview of the adaptive modulation. 
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       Figure 3.2 Basic flow diagram of adaptive modulation 

 

As mentioned earlier, modulation is adapted on the basis of the channel SNR estimated 

from the received signal. Three sets of switching levels for the modulation schemes were 

assumed and correspond to the SNR at which QPSK, 16-QAM and 64-QAM achieve 

0.1%, 1% and 10% BER in a Gaussian channel. The reason that we use AWGN 

performance to choose the thresholds is that during the frame we assume constant SNR, 

i.e., AWGN conditions.  The SNR ranges corresponding to the three different BER 

targets are described in Table 3.1. Figure 3.3 shows these BER levels with the theoretical 

curves for different modulation schemes in AWGN. 
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         Table 3.1 Summary of Switching Levels 

 

       Conditions on estimated 

SNR 

  Modulation adapted 

BER = 10% 

SNR<= 2dB BPSK 

2dB<SNR<=8dB QPSK 

8dB<SNR<=12dB 16QAM 

12dB<SNR<=40dB 64QAM 

BER = 1% 

SNR<= 8dB BPSK 

8dB<SNR<=14dB QPSK 

14dB<SNR<=20dB 16QAM 

20dB<SNR<=40dB 64QAM 

BER = 0.1% 

SNR<= 11dB BPSK 

11dB<SNR<=17dB QPSK 

17dB<SNR<=25dB 16QAM 

25dB<SNR<=40dB 64QAM 

The performance of adaptive modulation can then be calculated as  

 

2 4
3

2
3 4

1
16 64

0

( ) 1. ( ). ( ) 2. ( ). ( ) 4. ( ). ( ) 6. ( ). ( )
l l

l

bpsk qpsk qam qamBPSBER l
l l

P f d P f d P f d P f dp M γ γ γ γ γ γ γ γ
∞

−
Γ Γ Γ Γ

 
γ = γ + γ + γ + γ 

  
∫ ∫ ∫ ∫

        (3.6) 

 

where ( )f γΓ  is the distribution function of the instantaneous SNR which is assumed to be 

a Chi-Square distribution with two degrees of freedom (i.e., Rayleigh fading), MBPS  refers 

to the mean number of the bits per symbol, i.e.,  

2 4
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2
3 40

1. ( ) 2. ( ) 4. ( ) 6. ( )
l l

l

BPS l
l l
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  
∫ ∫ ∫ ∫ , 
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l1, l2, l3, l4 are the levels fixed for QPSK, 16-QAM and 64-QAM,  and Pbpsk(γ), Pqpsk(γ), 

P16qam (γ), P64qam (γ) are the probabilities of bit error of the respective modulation schemes 

in an AWGN channel with SNR γ. These are given by equations (3.7), (3.8), (3.9) and 

(3.10):                                               

 ( )2bpskp Q γ=  (3.7) 

 

 ( )qpskp Q γ=  (3.8)   

                                   16
1 1

3
4 5 5 2 5qamp Q Q Q

γ γ γ      
= + +                  
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             (3.10) 

 

Figures 3.4, 3.5, and 3.6 plot the theoretical BER performance of adaptive modulation for 

three different target error rates in the presence of Rayleigh fading as a function of 

average SNR. Additionally, each figure includes the performance of the individual 

modulation schemes for reference.  The spectral efficiency for each target error rate is 

plotted in Figure 3.7.   
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                                         Figure 3.3 Theoretical BER performance in AWGN 

 
Figure 3.4 Theoretical BER performance of 

adaptive modulation for BER target of 10 

% 

Figure 3.5 Theoretical BER performance of 

adaptive modulation for BER target of 1 % 

 
10 %   
 
1 % 
 
0.1 % 

  BER levels 
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Figure 3.6 Theoretical BER performance of 

adaptive modulation for BER target of 

0.1% 

Figure 3.7 Theoretical spectral efficiency 

of adaptive modulation for all the three 

BER targets 

 

The first thing to note about the BER performance and spectral efficiency of adaptive 

modulation, is that no non-adaptive scheme shown provides better performance while 

simultaneously providing better spectral efficiency.  In other words, adaptive modulation  

provides the best combination of energy and spectral efficiency of any of the modulation 

schemes.  This is to be expected.  While fixed schemes either achieve good spectral 

efficiency or good energy efficiency but not both, adaptive modulation increases spectral 

efficiency without sacrificing performance.   We should also note that choosing a BER 

target does not guarantee that we will achieve that performance.  This is due to the fact 

that there are a fixed number of modulation schemes.  As can be seen in Figure 3.3, at 

any target error rate there are significant gaps between the chosen modulation schemes.  

For example, at a target error rate of 1% QPSK requires 8dB of SNR.  When the channel 

SNR is at that value, adaptive modulation will achieve 1% BER.  However, for all values 

between 8dB and 14dB, adaptive modulation will use QPSK and achieve better than 1% 

BER.  Only when the channel reaches 14dB and the modulation scheme switches to 16-

QAM will the BER return to the target.  Thus, the performance will tend to be better than 

target as shown in the figures except when the SNR is below the value needed for BPSK 

to achieve the target. 
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The other thing to note is the impact of the target BER on spectral efficiency.  As we 

increase the target BER, we increase the spectral efficiency.  Thus, we can easily trade 

performance for spectral efficiency by changing the BER target and thus the switching 

levels.   

 

3.4 Simulation results 

 

In this section we provide simulation results for adaptive modulation.  We initially 

assume ideal conditions including no feedback delay or error, perfect channel estimation, 

and perfect channel quality estimation.  We will then relax the first two restrictions to 

examine their impact.  In the next chapter we will examine the impact of channel quality 

estimation. 

 

3.4.1 Ideal Performance  

 

In our initial simulation work we assumed ideal conditions.  Specifically, we simulated 

the performance of adaptive modulation in a Rayleigh fading channel for different BER 

targets (10%, 1% 0.1%) as described in section 3.3. Figures 3.8, 3.9, and 3.10 show the 

simulated and theoretical BER performance of the adaptive modulation under ideal 

conditions.  
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Figure 3.8(a) BER performance of adaptive 

modulation with perfect channel at BER = 10%  

Figure 3.8(b) Spectral Efficiency of adaptive 

modulation with perfect channel at BER=10%  

 
Figure 3.9(a) BER performance of adaptive 

modulation with perfect channel at BER = 1%  

Figure 3.9b) Spectral Efficiency of adaptive 

modulation with perfect channel at BER=1%  

 
Figure 3.10(a) BER performance of adaptive 

modulation with perfect channel at BER= 0.1%  

Figure 3.10(b) Spectral Efficiency of adaptive 

modulation with perfect channel at BER=0.1%  
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   Table 3.2 Specifications used for the simulation results of Figures 3.8-3.10 

 

Pilot symbol spacing 64  

Doppler frequency 10Hz 

Frame length 64 symbols 

Symbol rate  32kHz 

Frame duration  2ms 

 

We observe that as the SNR increases, spectral efficiency increases, without sacrificing 

BER performance. Clearly, the target BER cannot be achieved when the SNR is too low 

(i.e., lower the required SNR for BPSK). However, above that threshold, we achieve the 

target error rate and increase the spectral efficiency.  We also observe that the simulated 

performance matches the theoretical performance very well, with slight deviation at very 

low BER values.  This deviation is likely due to an inadequacy in the statistical sampling 

of the error process at extremely low error rates.  It’s worth noting that at high SNRs the 

spectral efficiency doesn’t achieve 6 bits per symbol for a target BER of 0.1% and 1% 

whereas for the 10% BER it achieves 6 bits per symbol from 26dB onwards. For higher 

target BER values, the transmitter selects 64QAM at lower SNRs since it can tolerate a 

10% error rate.  However, for the other two targets, the modulation schemes fluctuates 

from 64-QAM to 16-QAM, QPSK and BPSK even at high SNR, keeping the spectral 

efficiency less than 6 at high SNR values.   This can be understood by examining Table 

3.2.  Table 3.3 provides an overview of frequency of occurrence for each modulation 

scheme at an average SNR value of 30dB for different BER targets.  As can be seen, a 

higher target error rate corresponds to a higher utilization of 64-QAM and thus a higher 

spectral efficiency. 

 

 

 

 

  



 49 

Table 3.3 Frequency of Occurrence for different modulation schemes at 30dB average 

SNR 

 

                          

Figure 3.11 A segment of the variations in the fading channel at BER = 1% and 30dB 

 

As an illustration, we show in Figure 3.11 how different modulation schemes are adapted 

when the Rayleigh fading channel undergoes a deep fade. The figure shows the temporal 

fluctuation of the received signal envelope along with the corresponding modulation 

schemes used.  As expected the system tends to adapt to BPSK and QPSK in deep fade 

areas whereas for the good portion of the channel, the modulation is adapted to 64-QAM 

or 16-QAM. This means that when the channel is not in deep fade the spectral efficiency 

increases significantly thus providing higher overall data rate. 

BER 

Target  

BPSK 

(%) 

QPSK 

(%) 

16QAM 

(%) 

64QAM 

(%) 

Bits Per Symbol 

0.1% 4.54 3.57 21.18 70.69 5.2062 

1% 1.76 3.92 6.32 88.01 5.6075 

10% 3.45 0.54 1.04 94.95 5.7846 
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3.4.2 Effect of feedback delay 

 

As discussed earlier, in adaptive modulation SNR estimates are provided through a 

feedback channel. Clearly, in a practical system there is some delay between when the 

channel SNR is estimated and when the new modulation scheme is used.  We define this 

delay in terms of frames and examine the impact of one, two and three frame delays on 

the performance of adaptive modulation. Figures 3.12 and 3.13 show the simulated 

results for adaptive modulation with different values of feedback delay but perfect 

channel estimation and perfect channel quality estimation. 

 

BER  = 1%; Doppler frequency = 100Hz 

 
Figure 3.11 (a) BER performance of adaptive 

modulation in the presence of frame delays 

Figure 3.11 (b) Spectral efficiency of 

adaptive modulation in the presence of 

frame delays 
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Figure 3.12 (a) BER performance of 

adaptive modulation in the presence of 

frame delays 

Figure 3.12 (b) Spectral efficiency of 

adaptive modulation in the presence of 

frame delays 

 

As expected with an increase in the frame delay, the bit error rate degrades. This is 

because when there is delay in the system, the channel (and thus the SNR) will change 

prior to the implementation of the “optimal” modulation scheme.  This degrades the BER 

performance.  Note that the degradation with delay is highly dependent on the fading rate.  

At high Doppler rates the performance will be more sensitive to delay than at low 

Doppler rates.  This can be clearly seen by comparing Figure 3.11(a) which assumes 

100Hz and Figure 3.11(b) which assumes 50Hz.  We also see that there is degradation 

even at 0 delay for both Doppler rates.  This is in contrast to the simulated performance in 

Figures 3.8-3.10 which assumed 1Hz Doppler rate.  Even with zero delay, high Doppler 

rates will degrade the performance of adaptive modulation since the channel will change 

during a frame.  Of course the relevant measure here is the ratio of Doppler rate to frame 

rate.  If the Doppler rate is commensurate with the frame rate, performance will degrade 

from theory.  If it is significantly lower than the Doppler rate, it performance will be 

unaffected. 

 

In Figures 3.11(a) and 3.12(a) we also observe that at higher SNRs, the BER curves for 

different frame delays converge.  This is expected since the modulation scheme adapted 

at higher SNR’s is nearly always 64-QAM and thus the delay impact only affects rare, 



 52 

deep fades.  In the spectral efficiency curves, we observe that there is no change due to 

the different frame delays.  This is because the same modulation schemes are chosen 

regardless of when they are applied, since the distribution of SNRs does not change.  The 

delay in applying the new modulation scheme only impacts the error rate since the 

modulation scheme used is no longer appropriate for the channel conditions.  We have 

shown results for different Doppler’s 50Hz and 100Hz at BER target of 1% in Figures 

3.11 and 3.12.  

 

3.4.3 Effect of Doppler frequency 

 

As discussed in the previous section, we also investigated the effect of the maximum 

Doppler frequency on the performance of adaptive modulation. Doppler frequency is 

directly proportional to the mobile velocity, thus as mobile velocity increases, the 

maximum Doppler frequency increases and faster variations are introduced in the channel 

causing the performance of adaptive modulation to drop. Figures 3.13 and 3.14 show 

results for a BER target of 10% and 1% and Table 3.4 summarizes the simulation 

specifications. 

 

Table 3.4 Specifications used for the simulation results of Figures 3.13-3.14 

Pilot symbol spacing 64  

Frame length 64 symbols 

Symbol rate  32kHz 

Frame duration  2ms 

Channel conditions  Perfect channel and perfect channel 

SNR knowledge assumed 

 

 

It is observed that the bit error rate decreases with the increase in the Doppler frequency 

even for zero frame delay as discussed previously. 
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BER = 10% 

Figure 3.13 (a) BER performance of 

adaptive modulation with different Doppler 

frequency 

Figure 3.13 (b) Spectral efficiency of 

adaptive modulation with different Doppler 

frequency 

                                                                   BER = 1% 

Figure 3.14 (a) BER performance of 

adaptive modulation with different Doppler 

frequency 

Figure 3.14 (b) Spectral efficiency of 

adaptive modulation with different Doppler 

frequency 
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3.4.4 Impact of channel equalization 

 

We would now like to relax the restriction on perfect channel estimation and investigate 

the effect of the channel estimation and equalization3 techniques discussed in Chapter 2 

on the performance of adaptive modulation. In Chapter 2 we showed that for QAM 

modulation schemes, the FFT interpolator was superior to the Gaussian and Wiener 

interpolators.  We would like to see how that transfers to adaptive modulation.  In this 

section we specifically investigate the impact that the Gaussian and FFT interpolators 

have on the performance of adaptive modulation.  Figure 3.15 shows the performance of 

adaptive modulation when using second order Gaussian interpolation. Here we consider 

the case of 0.1% BER target. 

 

Table 3.5 Specifications used for the simulation results of Figures 3.15 

 

Pilot symbol spacing 64  

Doppler frequency 10Hz 

Frame length 64 symbols 

Symbol rate  32kHz 

Frame duration  2ms 

  

 

As discussed in Chapter 2 we expect an error floor in bit error rate performance when 

employing a Gaussian interpolator. Because of the error floor when employing Gaussian 

interpolation with QAM modulation, adaptive modulation suffers drastically at high 

values of SNR.  As a result, we cannot achieve the target BER of 0.1%.  Note that if a 

higher target were chosen, this error isn’t as big of an issue as can be seen in Figures 

3.15(c)-3.15(e).  The spectral efficiency of adaptive modulation when using the Gaussian 

                                                 
3 Note that by equalization we do not mean traditional equalization necessary in frequency selective 
channels where frequency equalization is performed.  Rather, we mean time domain equalization since with 
QAM modulation, we must remove the amplitude variation induced by the channel as well as the phase 
variation. 
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interpolator is identical to the case of perfect channel estimation regardless of the target 

error rate.  Again, this is expected since the spectral efficiency is only dependent on the 

channel statistics and the accuracy with which the channel quality is measured. 

 

We now investigate the effect of the FFT channel estimator on the performance of 

adaptive modulation. As discussed in Chapter 2, FFT interpolation performs better than 

the Gaussian interpolator and Wiener interpolator and is our interpolator of choice. 

Figures 3.16 (a) and (b) show the impact of the FFT channel estimation technique on the 

performance of adaptive modulation along with different frame delays. Table 3.6 

summarizes the parameters used in simulation results of Figures 3.16. 

 

Table 3.6 Specifications used for the simulation results of Figures 3.16 

 

Pilot symbol spacing 64  

Doppler frequency 10Hz 

Frame length 64 symbols 

Symbol rate  32kHz 

Frame duration  2ms 

 

 

 We note that without considering the impact of feedback delay, the FFT estimator 

introduces approximately 2-3dB of loss in the BER performance of adaptive modulation.  

The degradation increases for high values of average SNR (e.g., 5 dB at 25 dB average 

SNR), but the scheme still achieves the target BER value as the error floor is well 

beneath the target error rate. Since the target is achieved, the larger degradation at high 

SNRs may be irrelevant.  We also examine the effect of feedback delay with FFT 

interpolation. As the feedback delay increases, the point at which the performance curve 

begins to flatten is at higher error rates.  Thus, depending on the error rate target a lower 

delay value can be tolerated.  In general, we can say that the Gaussian interpolator is 
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insufficient due its poor performance for QAM at high SNR values.  The FFT approach 

however, is very promising and allows for good performance of adaptive modulation. 
 

 

 
Figure 3.15(a) BER performance for the 

adaptive modulation with the Gaussian 

interpolator at  BER = 0.1% 

Figure 3.15(b) Spectral efficiency of the 

adaptive modulation with the Gaussian 

interpolator  at BER = 0.1% 

 
 

Figure 3.15(c) BER performance for the 

adaptive modulation with the Gaussian 

interpolator at BER =1% 

Figure 3.15(d) Spectral efficiency of the 

adaptive modulation with the Gaussian 

interpolator at BER =1% 
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Figure 3.15(e) BER performance for the 

adaptive modulation with the Gaussian 

interpolator at BER =10% 

Figure 3.15(f) Spectral efficiency of the 

adaptive modulation with the Gaussian 

interpolator at BER =10% 

 

 

 

 

 

 

 

 

Figure 3.16 (a) BER performance of adaptive 

modulation with feedback delay for FFT 

interpolation at BER target = 0.1% 

Figure 3.16 (b) Spectral efficiency of 

adaptive modulation with feedback delay 

for FFT interpolation at BER target = 

0.1% 
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3.5 Chapter summary 

 

In this chapter we examined the performance of adaptive modulation as proposed by 

Hanzo and Torrance under non-ideal conditions. We extended their work to include the 

impact of feedback delay, fading rate, and channel estimation techniques. We observed 

that high Doppler rates degrade the performance of adaptive modulation, even under 

ideal conditions.  Further, when accounting for feedback delays, high Doppler rates were 

even more damaging.  In terms of channel estimation, FFT interpolation significantly 

outperformed Gaussian interpolation and provided sufficient performance for adaptive 

modulation. In the next chapter we will investigate the impact of channel quality 

estimation as well as investigate long-term adaptation. 
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Chapter 4   ANALYSIS OF CHANNEL QUALITY (SNR) 
ESTIMATION ON ADAPTIVE MODULATION 

4.1 Introduction  

 
In the previous chapter we introduced and investigated the performance of adaptive 

modulation. The performance results assumed that the instantaneous channel SNR was 

known perfectly.  In this chapter we investigate the impact of SNR or channel quality 

estimation on the performance of adaptive modulation.  The adaptive modulation 

technique uses an estimate of the SNR at the receiver (which is reported to the transmitter 

via feedback) to choose a modulation scheme to obtain a given performance target.  By 

adapting the modulation scheme, the link is able to improve the spectral efficiency as 

compared to static modulation. However, perfect knowledge of the SNR cannot be 

obtained, and thus there will be some error in the estimate.   

 

We discuss SNR estimation techniques and their impact on the performance of adaptive 

modulation.  Specifically, we examine two methods of estimating the channel SNR over 

a single frame.  We will show that in channels with high Doppler spread, SNR estimation 

can be problematic and thus we propose an improved technique.  Initially we shall 

assume perfect knowledge of the channel when such knowledge is required and then we 

will introduce channel estimation.   

 

In channels with high to moderate Doppler, feedback delay can cause performance to 

degrade compared to theory as seen in the last chapter.  This is especially true when 

channel estimation must be done as we will show.  Thus, in the second half of this 

chapter we investigate long term SNR estimation which is not sensitive to feedback 

delay.  We investigate the estimation accuracy and the performance of adaptive 

modulation when using long-term estimates to adapt the modulation scheme.   
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4.2 Channel Quality Estimation 

 

The transmitter constantly needs information from the receiver in order to adapt the 

modulation scheme for the next active frame (Figure 3.1). The information provided by 

the receiver can be either the channel quality (allowing the transmitter to make rate 

decisions) or a selected modulation scheme. In either case, the modulation scheme chosen 

depends on an estimate of the channel quality at the receiver.  Channel quality metrics 

include frame error rate, bit error rate, Viterbi decoder metrics, and SNR [14].  In this 

work we consider using SNR estimates as an indication of channel quality.  Thus, the 

receiver requires a good SNR estimation technique to provide a reliable evaluation of the 

channel quality at the receiver. Ideally, a good SNR estimation technique should have the 

following properties: 

 

• Independent of the Doppler frequency  

• Independent of the modulation schemes  

• Estimable using a small number of samples 

• Provides an accurate channel quality estimate in both noise and interference 

limited conditions 

 

However, we find that often we must sacrifice some of these properties for practical 

considerations.   Let us assume that we have a complex baseband representation of the 

received signal samples given by 

 

                                                          i i i ir c d n= +  (4.1) 

   

where ci is the received channel sample with variance 2 SNRσ =  where SNR is the 

channel signal-to-noise ratio, di is the data symbol (with unit average energy), and ni is 

additive white Gaussian noise.  Each signal is complex and the variance of the noise in 

the real and imaginary parts is 2 1
2

σ = .  Note that the total noise power is 2 1totalσ = [15], 

[16]. Let us represent the estimate of the received signal amplitude over a frame  by Z and 
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the estimate of the noise variance by T2.   When Z and T2 are calculated using the 

symbols of only one frame, we refer to this approach as “Short Term SNR estimation”.  

The maximum likelihood estimate of SNR when using BPSK or QPSK modulation, 

assuming a constant channel SNR is [16]  
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It can be shown that $γ  is the ratio of a non-central Chi-square random variable with ν1=1 

degree of freedom and a central Chi-square random variable with ν2=N-1 degrees of 

freedom [16].  Thus, it is well known that the random variable $1

2

ν
γ

ν
 is a non-central F-

distribution with ν1 and ν2 degrees of freedom and a non-centrality parameter λ=Nγ [16], 

[17].  Using this estimate, we can now define the probability of using modulation scheme 

k as the probability that the SNR estimate $γ  is between the levels associated with that 

scheme given that the true SNR is γ.  That is we define: 
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where $( )p γ γ  is the probability of the SNR estimate being $γ  given that the SNR is γ.   

For perfect SNR estimation $( ) $( )p γ γ δ γ γ= − .  However, when using the maximum 

likelihood estimate for SNR, the distribution is 
1

1, 1,
1

N
F x N Nγ

 − 
− 

 
 where 

( )1 2, ,F x ν ν λ  is the non-central F-distribution with ν1 and ν2 degrees of freedom and 

non-centrality parameter λ [16],  [17]: 
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where B(a,b) is the standard complete beta function [17].  Unfortunately, the above 

distribution is difficult to compute for large values of λ and i due to combined overflow 

and underflow problems.  Thus, for computation we shall rely on an approximation using 

the standard normal distribution.  It is given as [17]: 
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where P(x) is the standard normal distribution.  The probability of error in this case is 

given by  
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where Γ is the average SNR and ( )schemeP γ  is the probability of error for modulation 

technique scheme.   
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Figure 4.1 Performance of Static and Adaptive Modulation with Perfect and Estimated 

SNR (N = 32) 

 

Figure 4.1 presents the performance of adaptive modulation with perfect SNR estimation 

and maximum likelihood estimation with N=32 for a target error rate of 0.1%.  We can 

see that with 32 symbols to estimate the SNR, the estimation does not significantly 

impact the performance.  However, this assumed perfect knowledge of the symbols.  

With estimation or eliminating the modulation, the estimation may have more of an 

impact. 
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It can be shown that the above estimator for SNR is biased.  An unbiased estimate of 

SNR can be calculated as [18]: 

 $
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     (4.6) 

 

Additionally, the above estimator requires knowledge of the data symbols di.  Since we 

shall use BPSK/QPSK in low SNR conditions, we would like an estimator that does not 

depend on the estimate of the data symbol.  Thus, we shall use a modified form of the 

unbiased ML estimator: 
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Of course these estimators are to be applied to constant modulus modulation schemes.  

For QAM we use: 
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which will clearly require symbol estimates.  This is unavoidable since the modulation 

scheme introduces amplitude variations.  We shall use the term “conventional” to 

represent this short-term SNR estimation technique. Figures 3.3 through 3.6 show the 

theoretical results of the short term SNR with perfect SNR estimation and BER targets of 

0.1%, 1% and 10%.  The SNR ranges corresponding to the three different BER levels are 

described in Table 4.1. 
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4.3 Impact of Short term SNR estimation on adaptive modulation 

 

As discussed, the SNR estimate is fed to the transmitter, which is used to choose the 

modulation scheme for the next active frame. The main advantage of adaptive 

modulation is that it works well in slow fading channel, meaning that the channel 

variation over one frame is considered to be nearly constant. As a result, estimating the 

channel SNR from one frame’s worth of symbols should give us an accurate estimate of 

the SNR for the next frame.   

 

Table 4.1 Summarizes the conditions on the estimated SNR  

 

Conditions on estimated SNR Modulation adapted 

BER = 10% 

SNR<= 2dB BPSK 

2dB<SNR<=8dB QPSK 

8dB<SNR<=12dB 16QAM 

12dB<SNR<=40dB 64QAM 

BER = 1% 

SNR<= 8dB BPSK 

8dB<SNR<=14dB QPSK 

14dB<SNR<=20dB 16QAM 

20dB<SNR<=40dB 64QAM 

BER = 0.1% 

SNR<= 11dB BPSK 

11dB<SNR<=17dB QPSK 

17dB<SNR<=25dB 16QAM 

25dB<SNR<=40dB 64QAM 
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Figures 4.2 (a) and (b) provide a comparison of short-term adaptation at 5Hz with and 

without perfect knowledge of channel SNR. Table 4.2 summarizes the parameters used 

for the simulation results of Figures 4.2. 

 

Table 4.2 Specifications used for the simulation results of Figures 4.2 

 

Pilot symbol spacing 64  

Doppler frequency 5Hz 

Frame length 64 symbols 

Frame rate  500Hz 

Symbol rate  32kHz 

Frame duration  2ms 

 

As seen in Figure 4.2, at Dopplers as low as 5Hz, adaptive modulation using estimated 

channel SNR values performs nearly as well as in the case of the perfect knowledge of 

channel SNR. This is in agreement with our predicted performance results shown in 

Figure 4.1.  Thus, despite the fact that we have changed the estimator slightly, using the 

modified ML estimate rather than the ML estimate, the performance matches theory well.  

At 5Hz Doppler, a frame rate of 500Hz and with 64 symbols to estimate the SNR, we can 

achieve performance nearly identical to theoretical performance with perfect SNR 

knowledge. 
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The previous example considered a slow fading case.  In Figure 4.3, we examine the 

performance of adaptive modulation with short-term SNR estimation in the presence of 

higher Doppler spreads. We observe that at a Doppler frequency of 10Hz and up, there is 

a slight degradation in both BER performance and spectral efficiency. The reduction in 

spectral efficiency is directly related to the accuracy in the SNR estimate.  A plot of 

estimated vs. true SNR is shown in Figure 4.5 (a) for a Doppler rate of 50Hz. It can be 

seen that at high to moderate Doppler frequencies, there is significant deviation in the 

estimated SNR from the true SNR. This is because as the Doppler frequency increases, 

the channel changes more rapidly, and therefore the channel doesn’t remain constant over 

a frame. As a result, the variance estimate is impacted by the channel variation.  This puts 

a lower limit on the noise variance estimate and a resulting ceiling on the SNR estimate 

as seen in Figure 4.5 (a).  This results in an underestimation of the SNR in many cases.  

The reduced SNR estimate means that BPSK and QPSK will be used more often than 

desired and the resulting spectral efficiency will be significantly reduced.  The impact 

that Doppler spread has on the BER performance is slightly more complicated.  As seen 

in Chapter 3, an increase in Doppler spread degrades the performance of adaptive 

modulation with perfect SNR estimation.  This is because the channel changes during a 

Figure 4.2 (a) BER performance of 

Adaptive Modulation with short term 

SNR estimation at Doppler 5Hz with and 

without the perfect knowledge of channel 

SNR 

Figure 4.2 (b) Spectral efficiency  of 

Adaptive Modulation with short term 

SNR estimation at Doppler 5Hz with 

and without the perfect knowledge of 

channel SNR  
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frame and the chosen modulation scheme is no longer optimal.  With SNR estimation, 

using BPSK and QPSK more often then desired will actually improve BER perfromacne 

while hurting spectral efficiency.  The net result of these two effects is still a net 

reduction in the performance as compared to slow fading rates.  Table 4.3 summarizes the 

frame rate used in Figures 4.3 where Fd is the Doppler rate and Tf is the frame duration. 

 

Table 4.3 Relationship between Frame Rate and Doppler rate for Simulations in Figure 

4.3 

 

Dopplers  Frame Rate Fd*Tf 

5Hz 500 0.01 

10Hz 500 0.02 

50Hz 500 0.1 

100Hz 500 0.2 

 

Figure 4.3 (a) BER performance of 

Adaptive Modulation with short term SNR 

estimation at different Dopplers of at a 

BER target of 0.1% 

 

Figure 4.3 (b) Spectral efficiency of 

Adaptive Modulation with short term SNR 

estimation at different Dopplers at a BER 

target of 0.1% 
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Thus, in order to improve the performance of adaptive modulation in moderate to high 

Doppler spreads we must improve the estimate of the noise power.  In order to reduce the 

effect of channel variation on the noise power estimate, we propose the use of channel 

estimates in the noise power calculation instead of using the mean value of the channel.  

That is we use 
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for the noise power estimates for PSK and QAM respectively.  We term this technique 

“Improved short term SNR estimation”.  We use the improved scheme for the short term 

SNR estimation in order to compensate for the channel variation at high Doppler rates.  

 

Figure 4.5 (b) shows the SNR estimate with the improved short term SNR estimation at a 

Doppler spread of 50Hz. Note the improvement in SNR estimation at high SNR values 

seen in Figures 4.5(a) and 4.5(b). Figures 4.4 (b) and 4.6 (b) show how the spectral 

efficiency is affected by the SNR estimation technique at Doppler rates of 5Hz and 50Hz.  

We can see that at slow Doppler rates, there is no difference in BER performance or 

spectral efficiency when using the two estimation techniques.  However, at higher 

Doppler rates, we see that there is a significant improvement in spectral efficiency when 

using the improved SNR estimation technique.  As seen in Figure 4.5 the SNR estimate is 

drastically improved leading to a proper choice of modulation scheme and corresponding 

higher spectral efficiency.  Unfortunately, this actually degrades BER performance which 

is expected by examining the performance with perfect SNR knowledge.  At high 

Doppler rates, adaptive modulation suffers even with perfect SNR knowledge since 

adaptation is not sufficiently fast. 
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Figure 4.5 (a) Estimated vs. True SNR 

performance for the short term SNR 

estimation at Doppler 50Hz 

Figure 4.5 (b) Estimated vs. True SNR 

performance for the Improved short 

term SNR estimation at Doppler 50Hz 

 

                           Perfect Channel , BER level = 0.1%, Doppler = 5Hz 

   

Figure 4.4 (a) BER performance for the 

short term SNR estimation at low 

Doppler of 5Hz at BER target of 0.1% 

 

Figure 4.4 (b) Spectral efficiency for the 

short term SNR estimation at low 

Doppler of 5Hz 
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Figure 4.6 (a) BER performance for the 

short term SNR estimation at Doppler 

50Hz 

Figure 4.6 (b) Spectral efficiency for the 

short term SNR estimation at Doppler 

50Hz 

In adaptive modulation, our main goal is to achieve higher spectral efficiency without 

significantly affecting the bit error. The remainder of our simulation results of adaptive 

modulation will focus on a BER target of 0.1% with improved short term SNR estimation 

method.  

 

4.4 Impact of SNR Estimation on Adaptive Modulation with FFT 

channel estimation 

 

Up to this point we have assumed perfect channel estimation and equalization.  We now 

present results for adaptive modulation with both  short term SNR estimation and FFT 

channel interpolation Figure 4.7 presents results for adaptive modulation at a Doppler 

rate of 5Hz  and 50Hz for both SNR estimation techniques.  We observe that at a Doppler 

rate of 5Hz, performance of adaptive modulation with conventional and improved Short 

term SNR estimation remains almost same, however, at 50 Hz, when using FFT 

interpolation with improved short term SNR estimation spectral efficiency degrades and 

in comparison to the conventional method, there is no improvement in spectral efficiency 

of Improved method over the conventional short term SNR estimation technique.  This is 

directly due to the channel estimation.  



 72 

We recall from Chapter 2 that FFT interpolation causes edge effects which impact the 

channel estimation at the edge frames. The impact of this can be avoided in the 

demodulation process by introducing a delay in demodulation (i.e., demodulating the 

middle frame of the channel estimation region).  However, as we have seen, delays 

cannot be tolerated in adaptive modulation especially in high Doppler situations.  Thus, 

we must use the edge frame to estimate the SNR to avoid delays in SNR estimation.  

Thus, degradation in the performance is experienced because the edge effect causes 

variation in the channel estimate which again puts a floor on the noise power estimate.   

 

                               Short Term SNR estimation, FFT Interpolation 

 
 

Figure 4.7 (a) BER performance for the short 

term SNR estimation at Doppler 5Hz .  

Figure 4.7 (b) Spectral efficiency at 

Doppler 5Hz  

Figure 4.7 (c) BER performance for the short 

term SNR estimation at Doppler 50Hz.   

Figure 4.7 (d) Spectral efficiency at 

Doppler 50Hz   
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This leads us to propose in section 4.7, improved long term SNR estimation which is 

insensitive to delay, although it provides a less than optimal trade-off between energy and 

bandwidth efficiency than short term estimation and adaptation. 

 

4.5 Impact of symbol decisions on the Improved short-term SNR 

estimation 

 

Finally, in this section we shall examine the effect of the symbol estimation error on the 

performance of adaptive modulation. We observed in equation (4.7), we require an 

estimate of the transmitted symbol in order to estimate the channel SNR with QAM 

modulation schemes. We could either only use pilot symbols to estimate SNR or we can 

estimate all of the symbols.   Since there is only one pilot symbol per frame, the former 

technique is not practical.  Thus, we would like to determine the impact of symbol 

estimation error on the performance of adaptive modulation through SNR estimation.  In 

Figure 4.8 we present simulation results for 50Hz Doppler spread and a target BER of 

0.1% with FFT channel estimation.  We plot the performance of adaptive modulation 

with and without perfect knowledge of the symbols when estimating SNR for QAM 

modulation.  We can see that the symbol estimates required for SNR estimates (when 

QAM modulation is used) do not have a significant impact on performance. 
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Figure 4.8 (a) BER performance for the short term 

SNR estimation at Doppler 50Hz 

Figure 4.8 (b) Spectral efficiency for the 

short term SNR estimation at Doppler 50Hz 

 

 

4.6 Analysis of long term SNR estimation 

 

Up to this point we have discussed short term and improved short term SNR estimation. By 

introducing improved short term SNR estimation, we are able to solve the problem of SNR 

estimation in fast fading channels.   However, when using FFT interpolation, improved short 

term SNR estimation isn’t effective due to the edge effects and the intolerance of adaptive 

modulation to delay. 

  

As an alternative approach, we examine the calculation of channel SNR over a long period of 

time.  Such an approach would not provide as substantial an improvement in bandwidth 

efficiency, but it would be insensitive to delay. Such an approach would estimate average SNR 

over a longer window.  This average SNR value can then be used to adapt the modulation 

scheme.  Such an approach has the drawback that we can only adapt to long term changes in 

the channel SNR (e.g., changes to do shadowing or path loss).  However, this approach would 

be a more accurate estimate of SNR since it would use more data for the estimation. Further, 
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we will show that the approach is more resistant to Doppler spread and feedback delay. Thus 

we propose and examine the use of “Improved long term SNR estimation”.  

 

As shown, the performance of adaptive modulation depends how well the channel SNR has 

been estimated. The more accurate the estimation of the channel SNR is, the better the choice 

of modulation will be, and the better the ability to handle the variations in the channel will be. 

This leads us to propose improved long term SNR estimation where SNR is calculated by 

averaging signal power and noise power over several frames. Thus, unlike short term SNR 

estimation, we are using symbols of more frames to calculate the signal power and noise 

variance. Also, instead of trying to estimate instantaneous SNR we are estimating average 

SNR over a certain window.  For long-term estimation the SNR is calculated using the same 

equations as in the case of short term SNR estimation.  However we now use the following 

long term estimates of channel amplitude and noise power:   

 

                                        
2 2 2

( ) 0.99 ( 1) 0.01 ( )

( ) 0.99 ( 1) 0.01 ( )
long long

long long

Z n Z n Z n

T n T n T n

= − +

= − +
                                    (4.9) 

 

where Z(n) and T2(n) are calculated using the current frame consistent with the previously 

presented short term estimates.  The long term SNR estimate is then calculated as  
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                Table 4.4 Summary of Switching Levels 

 

Conditions on estimated SNR Modulation adapted 

BER = 10% 

SNR<= 5dB BPSK 

5dB<SNR<=10dB QPSK 

10dB<SNR<=15dB 16QAM 

15dB<SNR<=40dB 64QAM 

BER = 1% 

SNR<= 16dB BPSK 

16dB<SNR<=22dB QPSK 

22dB<SNR<=29dB 16QAM 

29dB<SNR<=40dB 64QAM 

BER = 0.1% 

SNR<= 27dB BPSK 

27dB<SNR<=32.5dB QPSK 

32.5dB<SNR<=37.5dB 16QAM 

37.5dB<SNR<=40dB 64QAM 

 

Note that since we are estimating the average SNR over a particular window, our choice 

of switching levels must account fo r the SNR variation.  Thus, instead of using AWGN 

performance to choose our switching levels, we must use Rayleigh fading curves to 

choose switching levels as shown in Figure 4.9 (a) and Table 4.4.  Figure 4.9s (b) through 

(e) provide the theoretical results of conventional long term SNR estimation for target 

error rates of 0.1%, 1% and 10% respectively using the switching levels given in Table 

4.4.. 
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    Figure 4.9(a) Theoretical BER performance of different modulation schemes in Rayleigh fading 

  
Figure 4.9(b) Theoretical BER performance of 

adaptive modulation with perfect long term SNR 

estimation for BER target of 0.1 % 

Figure 4.9(c) Theoretical BER performance of 

adaptive modulation with perfect long term SNR 

estimation for BER target of 1 % 

 

  

Figure 4.9(d) Theoretical BER performance of 

adaptive modulation with perfect long term SNR 

estimation for BER target 10 % 

Figure 4.9(e) Spectral efficiency of adaptive 

modulation with perfect long term SNR 

estimation for all BER targets 

10% 
 
1% 
 
0.1% 

BER levels 
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We first examine the performance of long term SNR estimation using the conventional 

short term estimates of channel amplitude and noise power as given previously.  Figure 

4.10 shows the bit error rate performance and spectral efficiency at frequencies as low as 

5Hz to as high as 50Hz. We notice that as the Doppler frequency increases, there is a 

degradation in the spectral efficiency which becomes more prominent at high frequency 

such as 50Hz. This is similar to the effect seen in short term estimation and stems from 

the same limitations in the noise power estimate. This can be seen in Figures 4.11(a) and 

4.11(c).  The long term SNR estimate is clearly limited at high SNRs due to the channel 

variation. 

 

 
Figure 4.10 (a) BER performance of 

conventional Long term SNR estimation for 

BER target of 1 %. 

Figure 4.10 (b) Spectral Efficiency of 

conventional Long term SNR estimation 

for BER target of 1 %. 
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Figure 4.11 (a) Conventional Long term SNR 

estimation at Fd = 10Hz for BER target of 1 

%. 

Figure 4.11 (b) Improved Long term 

SNR estimation at Fd = 10Hz for BER 

target of 1 %. 

Figure 4.11 (c) Conventional Long term SNR 

estimation at Fd = 50Hz for BER target of 1 

%. 

Figure 4.11 (d) Improved Long term 

SNR estimation at Fd = 50Hz for BER 

target of 1 %. 

 

Figures 4.11(a) and (c) show that as the Doppler frequency increases, the estimated SNR 

vs. the true SNR loses the desired linear relationship. This is due to the channel variation 

at high to moderate Doppler values which impacts the noise power estimate as discussed 

previously.  Again, to account for this variation, we propose an “improved” long term 

SNR estimation. This proposed method of long term SNR uses the channel estimates to 

estimate the noise power just as in the case of improved short term estimation.  We 
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simply replace the estimate of T2(n) in equation (4.9) with the improved variance estimate 

given in equation (4.8).  Figure 4.11 (b) and (d) shows that improved long term SNR 

estimation at Doppler frequencies provides significantly improved SNR estimation 

at10Hz and 50Hz respectively. 

 

Figure 4.12 shows the effect of conventional long term SNR estimation vs. improved 

long term SNR estimation with perfect channel assumption at a Doppler frequency of 

50Hz.   We can see that the improved SNR estimate provides better spectral efficiency as 

was the case in short term estimation.  

 

Figure 4.12 (a) BER performance of long 

term SNR estimation at BER target 1% with 

Doppler = 50Hz 

Figure 4.12 (b) Spectral efficiency of 

long term SNR estimation at BER target 

1 % with Doppler = 50Hz 

 

 

We observe that at 30dB, we get 4 bits per symbol from improved estimation whereas 

conventional is able to deliver only 2 bits per symbol.   
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4.7 Simulation results and discussion of long term SNR 

estimation  

 

4.7.1 Effect of feedback delays 

 

As discussed earlier, SNR estimates of the channel are provided through a feedback loop 

from the receiver to the transmitter. Necessarily, there will be some delay in transmitting 

this information back to the transmitter. We use the term feedback delay or frame delay 

to represent the number of frames between the time that SNR is estimated and the time 

that the modulation scheme is adapted based on that estimate.  Figures 4.13(a) – (d) show 

the effect of frame delay results of improved long term SNR estimation with perfect 

channel and FFT interpolation.  

 

Table 4.5 Specifications used for the simulation results of Figures 4.13 

 

Pilot symbol spacing 64  

Doppler frequency 10Hz 

Frame rate 500Hz 

Frame length 64 symbols 

Symbol rate  32kHz 

Frame duration  2ms 

 

In the presence of FFT interpolation, improved long-term adaptation performs nearly as 

well as with perfect channel estimation. Additionally, spectral efficiency and bit error rate 

are insensitive to feedback delay. This is in contrast to the performance of short term 

adaptation where BER degradation increases with increasing delay. In Figure 4.13(a), we 

find that by employing improved long term SNR estimation, the bit error rate 
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performance doesn’t degrade with feedback delays.  Therefore, improved long term SNR 

estimation is more resistant to feedback delays. 

 

       BER  = 1%; Perfect channel assumed, Improved Long Term SNR estimation 

Figure 4.13 (a) BER performance of long 

term adaptive modulation at Doppler = 

10Hz 

Figure 4.13 (b) Spectral efficiency of long 

term adaptive modulation  

 

           BER  = 1%; FFT interpolation, Improved Long Term SNR estimation 

 
Figure 4.13 (c) BER performance of long 

term adaptive modulation 

Figure 4.13(d) Spectral efficiency of long 

term adaptive modulation  
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Since there is a delay in implementing the estimated modulation for the right frame, we 

would expect degradation in the performance of adaptive modulation. However, 

improved long term SNR estimation does not attempt to keep up with short term changes. 

Therefore, improved long term SNR estimation is a practical technique when taking into 

account delay, Doppler spread and channel estimation. Since in reality, there would be 

significant delay in transmitting information of modulation from the receiver to the 

transmitter, using the proposed method of long-term channel SNR adaptation would help 

to implement adaptive modulation. Figure 4.13 shows the simulation results of improved 

long term SNR estimation with FFT and perfect channel assumption in the presence of 

BER target 1%. Table 4.5 summarizes the parameters used for the simulation results of 

Figures 4.13. 

 

4.7.2 Effect of Doppler frequency 

 

As discussed previously, Doppler frequency has a strong impact on the performance of 

shorter term SNR estimation and adaptation. Doppler frequency is directly related to how 

fast the vehicle is moving with respect to the transmitter. We would thus like to examine 

the explicit impact of Doppler frequency on the performance of long term estimation and 

adaptation. Figures 4.14 (a) and (b) show simulated results for various Doppler 

frequencies and Table 4.6 summarizes the parameters used for the simulation of Figures 

4.14.  
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           Table 4.6 Specifications used for the simulation results of Figures 4.14 

 

Pilot symbol spacing 64  

Doppler frequency 10Hz 

Frame rate 500Hz 

Frame length 64 symbols 

Symbol rate  32kHz 

Frame duration  2ms 

 

 

BER = 1%, Perfect channel assumed, Improved Long Term SNR estimation  

Figure 4.14 (a) BER performance of 

adaptive modulation with different 

Doppler frequency 

Figure 4.14 (b) Spectral efficiency of 

adaptive modulation with different Doppler 

frequency 

  

It should be noted that the short term adaptive modulation technique doesn’t perform well 

in case of the fast fading channel since the SNR estimation will no longer remain 

constant over the frame in a fast fading channel. However, with long term estimation we 
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do not see this same magnitude of degradation. Thus, overall performance of improved 

Long term SNR estimation is very promising at higher Dopplers or in fast fading channel.   

 

4.7.3 Effect of equalization techniques  

 

Finally, we would like to investigate the effect of channel equalization on the adaptive  

modulation using the improved long term SNR estimation. Figure 4.15 shows the 

performance of adaptive modulation at a target BER of 1% in the presence of FFT 

interpolation at a Doppler rate of 10Hz. We notice that the use of FFT interpolation does 

not impact the performance of long term estimation nearly as much as short term 

estimation. This is because in long term SNR estimation we are averaging the signal 

energy over a large period of time and is thus insensitive to delay. Therefore, we avoid 

the edge effects associated with FFT interpolation by using the middle frame for both 

demodulation and SNR estimation. 

 

BER = 1%, FFT interpolation, Improved Long Term adaptation 

 
Figure 4.15 (a) BER curve for the adaptive 

modulation with Doppler =10Hz 

Figure 4.15 (b) Spectral efficiency of 

the adaptive modulation with Doppler = 

10Hz  
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4.8 Chapter summary 

 

In this chapter we examined the effect of SNR estimation on the performance of adaptive 

modulation.  Specifically we showed that in slow fading channels, SNR estimation has virtually 

no effect on performance or spectral efficiency.  However, at high Doppler spreads, SNR 

estimation has a profound impact on both performance and spectral efficiency.  We further 

showed that using an improved SNR estimate that accounts for channel variation allows us to 

reduce the degradation in spectral efficiency, but we cannot eliminate the BER performance 

degradation.  This is because the degradation is not due to the SNR estimation but is simply due 

to the fact that adaptation is slower than the channel variation.  Further, we found that when 

using FFT interpolation the degradation in spectral efficiency cannot be avoided due to the edge 

effects.  The edge effects could be avoided if a delay in SNR estimation could be tolerated.  

However, this is not possible with short term estimation and adaptation.  

 

BER  1%, Doppler frequency = 50Hz, Improved Long Term SNR estimation, FFT  

Channel interpolation 

 
Figure 4.16 (a) BER performance of  

Improved Long Term Adaptive Modulation 

Figure 4.16 (b) Spectral efficiency of 

Improved Long Term Adaptive Modulation 
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BER  1%, Doppler frequency = 50Hz, Improved Short Term SNR estimation, FFT 
Channel interpolation 

 
Figure 4.16 (c) BER performance of  

Improved Short Term Adaptive Modulation 

Figure 4.16 (d) Spectral efficiency of 

Improved Short Term Adaptive Modulation 

 

This led us to consider long term estimation which attempts to estimate the long term or 

average SNR over some window.  This technique is insensitive to delay and thus we 

could use the improved SNR estimation technique in high Dopplers even when using 

FFT interpolation.  Thus, in Figure 4.16, long term estimation is shown to suffer less 

degradation in spectral efficiency and performance due to Doppler than short term 

estimation. However, the drawback to long term estimation is that it provides a slightly 

worse trade-off between energy efficiency and bandwidth efficiency than short term 

estimation.  This is because in short term estimation we attempt to always use the optimal 

modulation scheme.  In long term estimation we are using the modulation scheme that is 

optimal based on the average SNR.  However, long term estimation is still better than 

static modulation. 
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Chapter 5  CONCLUSIONS AND FUTURE WORK 

 
5.1 Conclusions 

 

In this thesis work, we have investigated the factors which influence the performance of 

adaptive modulation.  Of primary focus was the impact of channel estimation and channel 

quality (SNR) estimation.  The performance was measured in terms of both spectral 

efficiency and bit error rate. Various channel estimators were investigated in Chapter 2 

for use with QAM modulation in flat fading channels. We showed that the FFT based 

channel estimators provide more accurate interpolation as compared to Gaussian and 

Wiener interpolation. Adaptive modulation was introduced in Chapter 3. The basic idea 

of adaptive modulation is to improve combined spectral efficiency and energy efficiency 

by using BPSK and QPSK when the channel is very poor and QAM when the channel is  

good. Simulation results were provided for adaptive modulation in the presence of 

different channel estimators, feedback delays, and Doppler frequencies.  We investigated 

the impact of these factors on BER performance and spectral efficiency. In Chapter 4 we 

provided an analysis of adaptive modulation with SNR estimation.  We investigated a 

modified version of the maximum likelihood estimator as well as an improved short-term 

estimator for fast fading channels. We concluded Chapter 4 with an investigation of long 

term SNR estimation. With long term estimation, we adapt modulation only to the long 

term or average SNR.  We provided a comparison of the improved short and long term 

SNR adaptation techniques. We showed that long term SNR estimation has an advantage 

in fast fading since it is tolerant of feedback delay.  

 

5.2 Future work 

 

Our work provides insight into some of the practical issues associated with adaptive 

modulation. We summarize here a few potential future directions for this work.   

1) We assumed constant transmit power in use of adaptive modulation. It would be 

interesting to study adaptive modulation that also used variable transmit power 
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level. As shown earlier, from an information theory point of view, constant power 

adaptation provides nearly equivalent performance as variable power.  However, 

it would be of interest to examine the difference with specific modulation and 

coding schemes.   

2) Most data communication systems use coding technologies to reduce bit error. 

Convolutional coding is typically used for this purpose.  Therefore, studying 

adaptive modulation with adaptive coding is another possible area of investigation 

[18].  

3) All of the simulations in this work have assumed flat Rayleigh fading.  The effect 

of frequency selective fading on adaptive modulation would also be of interest. 

4) Analyzing the impact of feedback error in the adaptive modulation would be of 

interest.  

5) The implementation of adaptive modulation on a software radio platform. 

6) Improving the performance of adaptive modulation using channel prediction.    

 

These are but a few possible extensions to the current work that would make 

interesting investigations. 
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