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1 BACKGROUND 

Functioning as visual punch-lines embedded with humor and satire, memes have become a mainstay of online public 

discourse [18]. Memes function as “units of cultural transmission” [22] and can quickly spread or reinforce ideas across 

online communities [13,22]. Recent studies [4,18] have shown that people sometimes use memes to disseminate violent 

[12], hateful [6], and misogynistic messages disguised as humor [6,15]. The virality of such harmful memes over the recent 

years has encouraged deep learning (DL) research on hateful meme classification. These DL models however, are 

exclusively trained to classify memes based on synthetically generated data [1,7,21]. Synthetically generated meme data, 

such as the widely used Hateful Memes Challenge dataset from Meta AI was created by interchanging random texts with 

random images. Such artificially generated memes often exclude neologisms, insider- expressions, slangs and other 

linguistic nuances, which are prevalent across real memes that actually circulate online [19,22]. As a result, current state-

of-the-art classifiers perform poorly when tasked to predict real hateful memes [17]. Furthermore, such studies tend to 

focus solely on the prediction task rather than explaining the characteristics that make memes hateful– meaning, 

classification results typically lack any explanation as to why a meme is predicted as hateful [1,2,9,17]. We aim to address 

these gaps. First, we share a manually curated in-the-wild hateful meme dataset, RealMemes (3,142 memes) collected from 

Instagram, Reddit, and WhatsApp and Telegram groups. Unlike collecting textual data, compiling a meme dataset is 

particularly challenging as the overlaid text on a visual image makes searching through keywords difficult. Second, we make 

hateful meme classification results explainable by building an interpretable multimodal classification system that not only 

classifies hateful vs. non-hateful memes, but also identifies key words and visual descriptors associated with hateful vs. 

non-hateful memes.  

2 ANALYSIS 

Data Collection. In this study, we manually collected memes from various social media platforms, such as Reddit, 

Instagram, Facebook, and public WhatsApp and Telegram channels known to contain political satire or humorous memes 

(Table 1). We first defined what is hateful vs. non-hateful. A hateful meme contains a direct or indirect attack on people 

based on categorical characteristics, such as ethnicity, race, nationality, religion, caste, sex, gender, and sexual orientation. 

We define attack as violent or dehumanizing speech (e.g., comparing people to nonhuman entities, such as chattel), 

statements of inferiority, and calls for exclusion or segregation. Mocking hate crime was also considered hateful. For non-

hateful memes, we used the same categorical characteristics, but did not include direct or indirect attacks. Such non-hateful 

memes did not attack any individual or group. Two authors manually collected and analyzed hateful memes to ensure 

consistency in labeling. Only memes that were unanimously voted as hateful were considered for analysis. To preprocess 

our data, we manually cropped the image component and extracted texts using the Google Vision API [14] for all the memes 

in our dataset.  

 

Social Media Platform Hateful Memes Non-Hateful Memes 

Reddit 542 1216 

Instagram 456 300 

Telegram / WhatsApp 237 391 

Combined / Total 1235 1907 

Table 1: Breakdown of our real in-the-wild meme dataset by source 

Classification. We built a multimodal classifier one language and one vision DL model to extract features from text and 

images in the form of embeddings. For text embeddings, we used the BERT [5] to capture contextual word representations 

(step 1A) and used the pre-trained VGG-16 [3,8] Convolutional Neural Net (CNN) architecture to extract visual embeddings 



(step 1B). Given that multimodal architectures can capture more than one modality of information, they have several 

advantages, such as improved accuracy, increased robustness, and enhanced interpretability of results [11,20]. Hence, we 

combined the two models. We concatenated the textual and visual features (step 2) and added three dense layers with ReLu 

activation (step 3). We added a classification layer with a sigmoid activation function to predict memes as hateful or non-

hateful (step 4).  

  

Fig 1. Classification framework to identify hateful and non-hateful memes  

 Interpretation. We use Integrated Gradients (IG) [16] to identify tokens that are most attributable to hateful vs. non-

hateful memes. IG works by calculating the gradient of a model's prediction output to its input features, providing intuitive 

explanations for output decisions from transformer-based models like BERT [16]. We used the IG attribution scores - 

ranging from -1(predictive of non-hateful) to 1(predictive of hateful) - to identify tokens that were most predictive of the 

textual branch of the multimodal classification decision. To identify visual patterns most predictive of hateful memes, we 

used Gradient SHAP [10]. We calculated how much each individual pixel in the image component of the meme contributed 

to the classification decision as to whether a meme was hateful vs. non-hateful. The darker the density of the pixels 

highlighted in an image, the stronger its predictive contribution to the classification decision [10].  

3 RESULTS 

Our model achieved an accuracy of 90.9%, which was confirmed through 4 cross-fold validation, while bootstrap 

analysis revealed a 95% confidence interval of 90.1% to 91.2% based on 20% test data (label split: 50/50). Tokens 

Predictive of Hateful Memes. Our findings show that words and phrases most predictive of hateful memes tend to be 

associated with 1. derogatory references to minorities (katua1, Bulli2, Mulla3 and jihad4), 2. controversial issues (Ram5, 

Kashmir), religious identity (Hindu, Muslim, Islam), and abusive language (chutiya6). Visual Patterns Predictive of Hateful 

Memes. Our Grad SHAP interpretation results show that pixels most predictive of hateful memes tend to visually highlight 

violent imagery. For example, Fig 2a shows a meme of a Nazi soldier character beheading a cartoonized Muslim man 

(characterized by the skull cap). In the Grad SHAP rendition of this meme shown in Fig 2b, the darkest pixels highlight the 

act of beheading using a knife, indicating that these pixels are associated with features most predictive of what makes the 

meme hateful. 

       

            (a)                      (b)                  (c)                             (d) 

Fig 2. (a) and (c) are two original memes classified as hateful; their corresponding renditions using Grad-SHAP are shown in (b) and 

(d)  

  

 
1 Muslim Man 2Sexualizing Muslim Women 3Religious Muslim Man 4Holy War 5Hindu God 6Idiot 



 Similarly, in Fig 2d, Gradient- SHAP highlights the turban worn by the widely known Pepe the frog with darker pixels, 

indicating that the turban, which is typically associated with Islam or Sikhism is contributive to the model’s prediction of 

this meme as hateful. The identification of the turban in this instance provides insight into the ways in which visual cues 

can be used to propagate hate against certain minority groups. Through this work, we highlight the importance of 

addressing both textual and visual content in detecting and mitigating hateful online behavior. The classification of hateful 

memes based on identifiable visual and textual descriptors can equip content moderators with concrete justification in 

their decision-making to ensure a more effective and accurate identification and mitigation of hateful online behavior in 

memes. Identifying such elements also provides opportunities to enhance meme classifiers trained on synthetic data 

allowing them to better recognize and classify hateful memes in real-world situations. Finally, our "in-the-wild" dataset 

provides a valuable resource for studying hateful behavior online 
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