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(Abstract) 

The purpose of this research is to investigate finite element analysis results of 

two- and three- dimensional models of stepped structures and shouldered shafts with 

varying fillets and varying size ratios. Combined loading conditions were placed on the 

models to observe how the loading conditions effect the stress concentration factors. 

The results from the finite element analyses were compared to Peterson’s 

photoelastically determined stress concentration factors. The results were within five 

percent of Peterson’s results. 

For the two- dimensional case, axial and bending loads were applied separately 

and then superpositioned to evaluate the effect combined loading has on stepped 

structures. The finite element analysis results from the combined loading agrees to 

within four percent of the results obtained by calculating the maximum stress at the fillet 

using Peterson’s stress concentration factors applied to both axial and bending stresses.



For the three- dimensional case, bending and torsion loads were applied separately 

and then superpositioned to evaluate the effect combined loading would have on 

shouldered shafts. It was determined for pure bending and pure torsion the finite element 

analyses are comparable to within five percent of Peterson’s reported stress concentration 

factors. But under combined loading conditions, the finite element analysis reports a 

more accurate solution than using Peterson’s stress concentration factors, because 

Peterson doesn't take into account the hoop stress acting on the shaft.
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I. INTRODUCTION 

Stepped structures constantly appear in machine design and stress analysis. 

Shouldered components are engine crankshafts, turbine rotors, railway axles and many 

other components. The purpose of this research is to investigate finite element analysis 

results of two- and three- dimensional models of stepped structures and shouldered shafts 

with varying fillets and varying size ratios. 

Normally when a design engineer encounters a shoulder fillet, he or she consults 

Peterson’s Stress Concentration Factors[1] to find the factor of stress concentration for 

the component. Once the engineer has found the stress concentration factor he/she 

applies it in their analysis to predict the stress at the critical area. 

Peterson’s investigators based their curves on studies utilizing photoelastic “stress 

freezing” techniques. Photoelasticity is the science of measuring stress or strain in a 

stressed transparent model by use of polarized light. The photoelastic method uses 

transparent isotropic doubly refracting materials like Celluloid, Fosterite, and Araldite. 

When these materials are stressed and placed under direct polarized lighting, fringes 

appear in the structure as a result of double refraction. The fringe patterns make it 

possible to evaluate the stress intensities by use of a polariscope. A polariscope is an 

optical apparatus used to polarize and analyze light for the purpose of examining the 

optical properties of transparent materials. Peterson’s sources employed photoelastic



techniques to determine the factor of stress concentration of flat and round shouldered 

structures in pure bending, tension, and torsion. 

This writing reports a study of two- and three- dimensional analyses of stepped 

structures with varying fillets and varying size ratios. Finite element analysis was used to 

analyze the structure in order to determine the stress concentration factor (K,) at the fillet. 

Finite element analysis is a numerical tool which converts the underline differential 

equations representing engineering problems into algebraic equations which are solved to 

obtain the solution of the problem. Finite elements are subdivided within the domain of 

the structure and interconnected at points around each element called nodes. By 

subdividing the structure into elements and applying boundary conditions, each element 

can be numerically solved and combined to obtain the solution for the entire model. 

In the two- dimensional analyses, tensile and bending loads were applied to the 

finite element model separately, then combined to evaluate the effects of the combined 

loading on the structure. First, to determine the accuracy of the finite element analyses, 

the stress concentration factors from the bending and tensile cases were computed and 

compared to those reported in Peterson’s Stress Concentration Factors[1]. 

Finite element analysis methods should be able to calculate the stress 

concentration factors to within five percent of Peterson’s results. Larger errors were 

usually due to incorrect modeling of the problem, mesh refinement, boundary conditions 

or misinterpretation of results. The differences reported here were computed using:



(1.1) 
(Peterson's Result - Finite Element Result) 

Peterson's Result 
  Percent Difference = 

In the three- dimensional analyses, bending and torsional loads were applied to 

the finite element model separately, then combined these loads to evaluate the effects of 

the combined loading on the structure. To determine the accuracy of the finite element 

analyses, the stress concentration factors were computed for each single load case and 

compared to those reported in Peterson’s Stress Concentration Factors{[1]. 

This research used CAEDS Version 4 Release 2 to duplicate the experiments 

reported by Peterson to determine the stress concentration factors. The convergence 

study was done based on a two percent difference criteria for the stress results. Each load 

case stress concentration factor was within five percent of Peterson’s photoelastically 

determined stress concentration factors. The stress concentration factors are based on the 

nominal stress in the smaller cross-section of the structure. The factor K, used throughout 

this paper is defined as: 

_ Maximum Stress at the fillet (1.2) 

~ Nominal Stress at Smaller Cross Section(d) of the Structure | 
  Kt



ll. LITERATURE REVIEW 

In Peterson’s Stress Concentration Factors{1], results pertaining to two- and 

three- dimensional stepped structures came from photoelastic “stress freezing” 

techniques. Peterson’s results for the stress concentration factor, K, for bending and 

tension of a flat plate and round bar with shoulder fillets are based on photoelastic test of 

J. B. Hartman and M. M. Leven [2], and J. H. Wilson and D. J. White [3]. Peterson’s 

results for the factor of stress concentration, K,, for torsion of a shaft with a shoulder fillet 

is based on I. M. Allison [4], H. Fessler, C. C. Rogers, and P. Stanley [5], and G. J. 

Matthews and C. J. Hooke [6]. 

Hartman and Leven[2], and Wilson and White[3], state the maximum stress in a 

stepped structure subject to bending is a function of the two parameters D/d and r/d, 

where D is the larger diameter of shaft or width of plate, d is the smaller diameter of shaft 

or width of plate, and r is the radius of the fillet. The K, is defined as the ratio of the 

maximum stress at the fillet to the nominal stress of the smaller portion computed by the 

flexure formula. 

K, =—— (2.1) 

Figures 1- 3 are from Peterson’s Stress Concentration Factors{\], based on results 

from Leven and Hartman[2], and Wilson and White[3]. These charts were used to
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Figure 1. Stress Concentration Factor, K; 

For Bending of A Stepped Round Bar with Shoulder Fillets[1].
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Figure 2. Stress Concentration Factor, K, 
For Bending of A Stepped Flat Bar with Shoulder Fillets[1].


