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Abstract

With the rapid development of computer and information technologies,
medical imaging has become one of the major sources of information for
therapy and research in medicine, biology and other fields. Along with the
advancement of medical imaging techniques, computer-aided detection and
diagnosis (CAD/CADx) has recently emerged to become one of the major
research subjects within the area of diagnostic radiology and medical image
analysis. This thesis presents two multi-level learning-based approaches
for medical image understanding with applications of CAD/CADx. The
so-called “multi-level learning strategy” relies on that supervised and unsu-
pervised statistical learning techniques are utilized to hierarchically model

and analyze the medical image content in a ”bottom up” way.

As the first approach, a learning-based algorithm for automatic medical
image classification based on sparse aggregation of learned local appear-
ance cues is proposed !. The algorithm starts with a number of landmark
detectors to collect local appearance cues throughout the image, which are
subsequently verified by a group of learned sparse spatial configuration mod-
els. In most cases, a decision could already be made at this stage by simply
aggregating the verified detections. For the remaining cases, an additional
global appearance filtering step is employed to provide complementary in-
formation to make the final decision. This approach is evaluated on a large-
scale chest radiograph view identification task and a multi-class radiograph
annotation task, demonstrating its improved performance in comparison

with other state-of-the-art algorithms. It also achieves high accuracy and

!This work is done during the author’s internship with Siemens Healthcare Inc., USA.



robustness against images with severe diseases, imaging artifacts, occlusion,

or missing data.

As the second approach, a learning-based approach for automatic segmen-
tation of ill-defined and spiculated mammographic masses is presented. The
algorithm starts with statistical modeling of exemplar-based image patches.
Then, the segmentation problem is regarded as a pixel-wise labeling problem
on the produced mass class-conditional probability image, where mass can-
didates and clutters are extracted. A multi-scale steerable ridge detection
algorithm is further employed to detect spiculations. Finally, a graph-cuts
technique is employed to unify all outputs from previous steps to generate
the final segmentation mask. The proposed method specifically tackles the
challenge of inclusion of mass margin and associated extension for segmen-
tation, which is considered to be a very difficult task for many conventional

methods.

iii



Acknowledgements

First of all, I dedicate this thesis to my dear family for supporting me all
these years through this long journey.

Thanks for the academic guidance and financial support provided by my
advisors Dr. Shih-Chung Ben Lo and Dr. Jianhua Xuan. Especially, thank
Dr. Lo’s patience and kindness to guide me toward the maturity and sophis-
tication. Thank Dr. Matthew Freedman, Dr. Yue Wang, for their support
during my graduate study. Thank all my colleagues and friends in CBIL at
Virginia Tech, and ISIS Center at Georgetown University.

Thanks for the inspiring and dedicated guidance from my mentor Dr. Xiang
Sean Zhou in Siemens. Thank Dr. Bing Jian, Dr. Zhigang Peng, Dr. Le
Lu, Dr. Jinbo Bi, Dr. Dewan Maneesh, and Dr. Yiqgiang Zhan for their

help and guidance during my internship at Siemens Healthcare.

Thank you to all my friends for your support throughout my educational

endeavor.

iv



Contents

List of Figures
List of Tables
Glossary

1 Introduction

1.1 TImage Modality . . . . . . . . . . . ...
1.2 Computer-aided Detection and Diagnosis . . . . . ... ... ... ...
1.3 Statement of the Problems . . . . . . . .. ... ... L.

Robust Learning-based Medical Radiograph Classification

2.1 Introduction . . . . . . . . . . ...
2.1.1 Related Works . . . . . . . ...
2.1.2 Proposed Approach . . . .. ... ... ... ... .. .. ...,

2.2 Methods . . . . . . . . L
2.2.1 Landmark Detection . . . . . . .. ... ... L.
2.2.2  Sparse Spatial Configuration Algorithm . . . ... ... ... ..
2.2.3 Classification Logic . . . . . . . . .. .. .. oL

2.3 Experiments and Results. . . . . .. .. .. . o oL
2.3.1 Datasets . . . . . ...
2.3.2 Classification Performance . . . . . . .. ... ... ... .....
2.3.3 Intermediate Results . . . . . .. .. ... ... ... ...,
2.3.4 System Extension . . . ... ... ... ... ... . .......

2.4 Discussions . . . . .. ..o

o w NN -

ﬂ



3 Multi-level Learning-based Segmentation of Ill-defined and Spiculated

Mammographic Masses

3.1 Introduction . . . . . . . . . . ..
3.2 Method . . . . . . e

3.2.1
3.2.2

3.2.3
3.24
3.2.5

Preprocess . . . . . . ...
Pixel-Level Soft Segmentation . . . . . . ... ... ... .....
3.2.2.1 Pixel-wise Features . . . . .. ... ... ...
3.2.2.2 Segmentation by Pixel-Level Labeling . . . . . . .. ..
Object-level Labeling and Detection . . . . . ... ... ... ..
Spiculation Detection . . . . ... ... ... ... ... .....

Segmentation Integration by Graph Cuts . . . . . ... .. ...

3.3 Experiments and Results. . . . . .. . ... .o oL

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

Image Database . . .. .. .. ... ... ... ...
Pixel-Scale Classification Results . . . . .. ... ... ... ...
Segmentation Results . . . . ... .. ...
Multi-Observer Agreement . . . . . . . .. .. ... ... ...

Margin Segmentation Results . . . . . . ... ... ... .. ...

4 Conclusions and Future Work

4.1 Conclusions and Contributions . . . . . . . . . . . . . ... ...
4.2 Future Work . . . . . . e

References

5 Appendix

vi

54
54
55

57

63



List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Examples of medical radiographs . . . . . . .. .. ... L.

Example images of mammography . . . . .. ... ... ... .. .. ..

Examples of PA-AP chest images . . . . . .. ... .. ... .. .....
Examples of LAT chest images . . . . . ... ... ... ... .....
Examples of Images from the IRMA /ImageCLEF2008 database . . . . .
The overview of our approach for automatic medical image annotation .
Ilustration detected landmarks on PA-AP image . . . . ... ... ...
Illustration of some 2D Haar features . . . . . . . . .. .. ... ... ..
The landmark detection procedure illustration . . . . . . . . .. ... ..
The diagram of classification logic . . . . .. ... .. ... .......
Examples of the detected landmarks on different images . . . . . . . ..
The SSC algorithm performance . . . . ... ... ... ... ......

Optimized image visualization . . . . . . . . .. ... .. ... ...

Flow chart of the multi-level segmentation approach. . . . . . .. .. ..
Results of morphological smoothing . . . . .. .. .. .. ... .. ...
Results of pixel-level classification . . . . .. ... ... ... ......
Example of spiculation detection on synthetic image . . . . ... .. ..
Results of multi-scale spiculation detection . . . . ... ... .. ....
The distribution of the mass statistics within the merged datasets

Example outputs of the multi-phase pixel-scale classification . . . . . . .

9
13
14
14
15
19
24
26
27

32
33
38
41
41
45
47

The graphical representation of the segmentation validation mesaruements 48

Example segmentation results . . . . . . . .. ..o L.

vii

50



3.10 The box and whisker plots of the distribution of the segmentation mea-
surements . . . ... L L Lo e e e e e e e e e

3.11 Segmentation performance measurement . . . . . . . . .. .. .. .. ..

viii



List of Tables

2.1 PA-AP/LAT/OTHER chest radiographs annotation performance. . . . .

2.2 Multi-class radiographs annotation performance.

ix



Glossary

AMINDIST Average Minimum Distance

AOR

BIRADS

CAD

CADx

CI

HS

Area Overlapping Ratio

Breast Imaging Reporting and Data
System

Computer-aided Detection
Computer-aided Diagnosis
Confidence Interval

Hausdorfl Distance

ISLM

KNN

LAT

LS

MAOR

Image Sub-patch Level Modeling
K-Nearest Neighbor

Lateral

Level Set

Margin Area Overlapping Ratio

MINDIST Minimum Euclidean Distance

ML

MLAF

PA-AP

PACS

PM
SSC

SVM

Maximum Likelihood

Maximum Likelihood Function Anal-

ysis
Posteroanterior / Anteroposterior

Picture Archive and Communication

System

Probability Map

Sparse Spatial Configuration
Support Vector Machine

William Index



Introduction

With Wilhelm Conrad Roentgen’s dramatic and accidental discovery of “X-rays” in
1895, medical imaging and the discipline of diagnostic radiology began and developed
quickly over the past century. Associated with the research and development of mod-
ern physics and computer technologies, medical imaging technology has become one
of the major sources of information for therapy and for research in medicine, biology
and in other fields. It has been widely used in the radiology department for diagnosis
of diseases, for assessing acute injuries, for assessing disease severity or responses to a
particular therapy, for guiding surgical interventions and health screening. Accompa-
nied with the progress of medical imaging techniques, computer-aided detection and
diagnosis (CAD/CADx) has recently emerged to become one of the major research

subjects within the area of diagnostic radiology and medical image analysis.

In this section, we first briefly review the image modalities used in this study and
the background of CAD/CADx. Then, we present the statement of the problems
investigated in this work, specifically, medical image classification and mammographic

mass segmentation.



Figure 1.1: Examples of medical radiographs.

1.1 Image Modality

The imaging modality used in this study includes X-ray medical radiographs (e.g. 2D
chest radiographs) for the image classification work, and X-ray mammography for the

image segmentation work. We briefly reviewed the relevant background here.

(1) Conventional X-ray imaging produces a two-dimensional planar image revealing
the internal structures of objects. Since projection images are produced, they have no
depth information, and all opaque and semi-opaque structures in the beam are superim-
posed. X-ray images are formed by X-ray photons interacting with an X-ray detector.
During transmission, some of the applied energy of X-ray is absorbed by the body, and
some of the energy passes through the body to the detector. The difference between
those photons (quanta) that interact and those that do not determines the contrast in
the image. An image represents the transmission (or attenuation) distribution of the
patient under study. Several example images used in the image classification work is

shown in Fig. 1.1.

(2) X-ray Mammography is a technique optimized for imaging the breast. A lower



energy X-ray beam is used in order to enhance the image contrast. In addition, mam-
mography film utilizes a single layer emulsion with one intensifying screen and has
a higher spatial resolution than conventional radiography. X-ray Mammography has
been widely used since the beginning of last century to detect the early signs of breast
cancer, such as micro-calcification and small tumors. It has been shown that mammog-
raphy has the ability to show non-palpable abnormalities in the breast with very high
resolution (the equivalent of a 25um pixel resolution [1]). Early detection of the subtle
symptoms of breast cancer increases the probability to cure the cancer. To date, mam-
mography is the best image modality for breast cancer detection and diagnosis with
the good combination of sensitivity, specificity, short acquisition, and cost-effectiveness
ratio. This leads to their widely usage in the large-scale screening programs throughout

the world. An exemplar mammography image is shown in Fig. 1.2.

1.2 Computer-aided Detection and Diagnosis

Inspired from the early concept and preliminary studies of automated diagnosis or
automated computer diagnosis [2] in the 1960s, large-scale and systematic research and
development of various CAD schemes began from the early 1980s. Along with the
development and progress, three organs/anatomies including chest [3], breast [4], and
colon [5] have attracted the majority of CAD research interest from the early 2000s.
This may be caused by that the detection of cancer in these anatomies has been or is
being subjected to screening examinations.

Recently, CAD has become a part of the routine clinical work for detection of breast
cancer on mammograms at many screening sites and hospitals in the United States.
Prospective studies [6; 7; 8; 9] and results on large numbers of mammographic screenings
have been reported. Regarding the effect of CAD on the detection rate of breast cancer,
all of these studies indicated an increase in the detection rates of breast cancer with
use of CAD. This seems to indicate that CAD/CADx has the potential usefulness to be

applied in the real clinical environment. Commercial CAD product for mammogram



(a)

Figure 1.2: Example images of mammography: (a) full size mammography with sus-
picious mass within red circle, (b) suspicious mass enlarged (window level adjusted to
enhance contrast).



[10], lung CT [11] and colon CT [5] have been proved by FDA and are available for
pre-clinical/clinical use. Meanwhile, there are many research actively conducted in the
detection and differential diagnosis of many different types of abnormalities in medical
images (such as brain, liver, and skeletal and vascular systems) obtained from various
examinations and imaging modalities. With its current development, it is likely that
in the future, CAD/CADx systems together with other image processing software will
be integrated with the current Picture Archive Communication System (PACS) [12].
To conclude, computer-aided diagnosis has been integrated as a part of clinical work
in the detection of breast cancer by use of mammograms. The whole CAD scheme is
still in its preliminary development with potential for many applications of different
pathology types from various modalities. In the future, it is likely that CAD schemes
will be incorporated into PACS, and that they will be assembled as a package for
detection of lesions and also for differential diagnosis. CAD has the potential to be

employed as a useful tool for diagnostic examinations in daily clinical work.

1.3 Statement of the Problems

The intention of this research is to develop image content-based computational meth-
ods for investigating various medical imaging understanding problems for CAD/CADx
applications. In this work, we cover two major topics in the medical image computing
domain: (1) automatic image classification, and (2) automatic image segmentation.
The developed computational algorithms could be integrated as components or ex-
tended features of a CAD/CADx systems (e.g. a mammography CAD system). These
algorithms along with their master CAD system may have the potential to improve
the efficiency and effectiveness for radiologists in organizing and processing the medical
imaging data. Furthermore, the developed systems could assist radiologists in diagnos-
ing diseases in the clinical environment.

Automatic Medical Image Classification: The amount of medical image data

produced nowadays is constantly growing. Manually classifying these images is costly



and error-prone. 40% of all radiographs have missing or mislabeled DICOM header
information regarding anatomy or imaging orientations. This calls for automatic clas-
sification algorithms to perform the task reliably and efficiently. Inspired by the recog-
nition mechanism of human visual system, a learning-based algorithm for medical image
understanding is investigated in this work. The main purpose of the system is to auto-
matically recognize the projection view of the chest radiographs. Such algorithm could
be integrated with PACS workstation to support optimized image display for improving
the PACS radiography workflow. Furthermore, the method could be integrated as a
post-processing module for CAD systems for auto-invocation in the background thread
after recognizing the anatomic content and orientation of the image. We also demon-
strate that the proposed algorithm is generalizable to annotate more image classes on
other image modalities.

Mammographic Mass Segmentation: Segmentation of suspicious regions in
medical images, e.g. lung nodules in the CT images or breast lesions in the mammo-
grams, is arguably one of the most essential components for a CAD/CADx system.
Accurate segmentation is important for the detection and classification in the post pro-
cessing stage of the system. In this work, we specifically aims at segmenting masses
with spiculation and ill-defined boundaries. A multi-level learning-based framework for
segmentation mammographic mass is proposed in this work. The so-called “multi-level
learning-based” approach lies in the fact that we utilize supervised /unsupervised learn-
ing techniques to hierarchically model the image content including the appearance and
shape. The proposed method may contribute to mammographic CAD/CADx studies
due to its ability to delineate the extended borders of ill-defined masses more robustly

and accurately.



Robust Learning-based Medical

Radiograph Classification

2.1 Introduction

The amount of medical image data produced nowadays is constantly growing, and a
fully automatic image content annotation algorithm can significantly improve the image
reading workflow, by automatic configuration/optimization of image display protocols,
and by off-line invocation of image processing (e.g., denoising or organ segmentation)
or computer aided detection (CAD) algorithms. However, such annotation algorithm
must perform its tasks in a very accurate and robust manner, because even “occasional”
mistakes can shatter users’ confidence in the system, thus reducing its usability in the
clinical settings. In the radiographic exam routine, chest radiograph comprise at least
one-third of all diagnostic radiographic procedures. Chest radiograph provides sufficient
pathological information about cardiac size, pneumonia-shadow, and mass-lesions, with
low cost and high reproducibility. However, about 30%-40% of the projection and
orientation information of images in the DICOM header are unknown or mislabeled in
the picture archive and communication system (PACS) [13]. Given a large number of
radiographs to review, the accumulated time and cost can be substantial for manually

identifying the projection view and correcting the image orientation for each radiograph.



The goal of this study is to develop a highly accurate and robust algorithm for
automatic annotation of medical radiographs based on the image data, correcting po-
tential errors or missing tags in the DICOM header. Our first focus is to automatically
recognize the projection view of chest radiographs into posteroanterior/anteroposterior
(PA-AP) and lateral (LAT) views. Such classification could be exploited on a PACS
workstation to support optimized image hanging-protocols [14]. Furthermore, if a chest
X-ray CAD algorithm is available, it can be invoked automatically on the appropriate
view(s), saving users’ manual effort to invoke such an algorithm and the potential idle
time while waiting for the CAD outputs. We also demonstrate the algorithm’s capabil-
ity of annotating other radiographs beyond chest X-ray images, in a three-class setting
and a multi-class setting. In both cases, our algorithm significantly outperformed ex-

isting methods.

2.1.1 Related Works

A great challenge for automatic medical image annotation is the large visual variability
across patients in medical images from the same anatomy category. The variability
caused by individual body conditions, patient ages, and diseases or artifacts would
fail many seemingly plausible heuristics or methods based on global or local image
content descriptors. Fig. 2.1 and Fig. 2.2 show some examples of PA-AP and LAT
chest radiographs. Because of obliquity, tilt, differences in projection, and the degree
of lung inflation, the same class PA-AP and LAT images may present very high inter
patient variability. Fig. 2.3 shows another example of images from the “pelvis” class
with considerable visual variation caused by differences in contrast, field of view (FoV),
diseases/implants, and imaging artifacts.

Most existing methods (e.g., [15], [16]) for automatic medical image annotation were
based on different types of image content descriptors, separately or combined together
with different classifiers. Miiller et al. [17] proposed a method using weighted combi-
nations of different global and local features to compute the similarity scores between

the query image and the reference images in the training database. The annotation



(b) ()

Figure 2.1: The PA-AP chest images of (a) normal patient, (b) and (c) patients with
severe chest disease, and (d) an image with unexposed region on the boundary.

(b) (c) (d)

Figure 2.2: The LAT chest images of (a) normal patient, (b) and (c) patients with severe
chest disease, and (d) an image with body rotation.

Figure 2.3: Images from the IRMA/ImageCLEF2008 database with the IRMA code
annotated as: acquisition modality “overview image”; body orientation “AP unspecified”;
body part “pelvis”; biological system “musculoskeletal” . Note the very high appearance
variability caused by artifacts, diseases/implants, and different FoVs.



strategy was based on the GNU Image Finding Tool image retrieval engine. Giild and
Deserno [18] extracted pixel intensities from down-scaled images and other texture fea-
tures as the image content descriptor. Different distance measures were computed and
summed up in a weighted combination form as the final similarity measurement used by
the nearest-neighbor decision rule (1INN). Deselaers and Ney [16] used a bag-of-features
approach based on local image descriptors. The histograms generated using bags of lo-
cal image features were classified using discriminative classifiers, such as support vector
machine (SVM) or 1INN. Keysers et al. [19] used a nonlinear model considering local
image deformations to compare images. The deformation measurement was then used
to classify the image using INN. Tommasi et al. [20] extracted SIFT [21] features from
downscaled images and used the similar bag-of-features approach [16]. A modified SVM

integrating the bag-of-features and pixel intensity features was used for classification.

Regarding the task for recognizing the projection view of chest radiographs, Pieka
and Huang [22] proposed a method using two projection profiles of images. Kao et
al. [23] proposed a method using a linear discriminant classifier (LDA) with two fea-
tures extracted from horizontal axis projection profile. Aimura et al. [24] proposed
a method by computing the cross-correlation coefficient based similarity of an image
with manually defined template images. Although high accuracy was reported, manu-
ally generation of those template images from a large training image database was time
consuming and highly observer dependent. Lehman et al. [25] proposed a method using
down-scaled image pixels with four distance measures along with K-nearest neighbor
(KNN) classifier. Almost equal accuracy was reported when compared with the method
of Aimura et al. [24] on their test set. Boone [13] developed a method using a neural
network (NN) classifier working on down-sampled images. Recently, Luo [14] proposed
a method containing two major steps including region of interest (ROI) extraction, and
then classification by the combination of a Gaussian mixture model classifier and a NN
classifier using features extracted from ROI. An accuracy of 98.2% was reported on
a large test set of 3100 images. However, it was pointed out by the author that the

performance of the method depended heavily on the accuracy of ROIs segmentation.
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Inaccurate or inconsistent ROI segmentations would introduce confusing factors to the
classification stage. All the aforementioned work regarded the chest view identification
task as a two class classification problem, however, we included an additional OTHER
class in this work. The reason is that in order to build a fully automatic system to be
integrated into CAD/PACS for identification of PA-AP and LAT chest radiographs, the
system must filter out radiographs containing anatomy contents other than chest. Our
task, therefore, becomes a three-class classification problem, i.e., identifying images of
PA-AP, LAT, and OTHER, where “OTHER” are radiographs of head, pelvis, hand,

spine, etc.

In the more broad research field of object detection and recognition, many methods
based on the use of local features have been proposed. The objects of interest were in
many cases face, cars or people [26; 27; 28; 29; 30; 31]. Cristinacce and Cootes [20]
combined boosted detector described by Viola and Jones [32] with the statistical shape
model described by Dryden et al. [33]. Multiple hypotheses of each local feature were
screened using the shape model and the winning hypothesis was determined for each
feature. Agawal et al. [27] presented an object detection algorithm for detecting the
side view of a car in a cluttered background. It used a “part-based representation” for
the object. The global shape constraint was imposed through learning using the Sparse
Network of Winnows architecture. Mohan et al. [30] proposed a full-body pedestrian
detection scheme. They first used separate SVM classifiers to detect the body parts,
such as heads, arms and legs. Then, a second SVM classifier integrating those detected
parts was used to make the final detection decision. Leibe et al. [31] proposed a
method for robust object detection based on learned codebook of local appearances.
To integrate the global shape prior, an implicit shape model was learned to specify the
locations, where the codebook entries might occur. Our work was inspired by many
ideas from the non-medical domain, but with more suitable models of human anatomy,

accommodating the fact that in the medical domain “abnormality is the norm”.

11



2.1.2 Proposed Approach

We adopt a hybrid approach based on robust aggregation of learned local appearance
findings, followed by the exemplar-based global appearance filtering. It combines the
use of learned local-feature detectors, sparse and distributed shape prior constraints,
and an exemplar-based global appearance check mechanism.

The robustness and advantage of the proposed approach lie in several aspects:

e The algorithm starts with detections of semantic local visual cue representations.
By semantic we mean that these local cues are specified in an anatomically mean-
ingful way instead of, for example, using sub-images on a regular grid. These de-
tectors generates a concise codebook representation which, acting together, also
normalizes transformations and geometrical variations in translation, scale, and
rotation. Compared with the popular bag-of-features approaches (e.g., [16; 20]),
spatial anatomical location is preserved in our model, and this is beneficial in at
least two ways: first, each classification task is easier; second, shape priors can

be learned and enforced.

e Our shape prior modeling module is based on a group of learned sparse spatial
configuration models. This step enforces the spatial anatomical consistency of lo-
cal findings. Because of its sparse nature, i.e., it is a collection of spatial relations
among many small groups of landmarks, the shape prior constraint could still take
effect even with many missed detections. Compared with methods using global
shape representations (e.g., [34; 35]), our algorithm can be particularly effective
on challenging cases with a large percentage of occlusion, or missing data, such

as cases with large tumor or liquids in the lungs.

e Although the components outlined above worked very well (see Section 2.3.2:
98.47% of our method versus 96.18% from the literature), we found out that an
additional step of global appearance check of low classification confidence cases,
through an exemplar-based KNN filter, further improved the final performance

(to 98.81%). It suggests that this additional fusion step provides complementary

12
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Figure 2.4: The overview of our approach for automatic medical image annotation.

global information that is not fully captured by the integrated local detections. It
may seem that the percentage gains in discussion here are not large, however the
improvement in users’ experiences in the clinical environment is quite dramatic:
for a busy clinic, the difference above represents one error per months versus one

error several days.

e Our framework is designed to be generalizable, and we show that it can be ap-
plied to other image modalities and applications, such as anatomy/organ ROI

prediction and optimized image visualization.

2.2 Methods

Fig. 2.4 shows the overview of the algorithm. Our algorithm is designed to first de-
tect multiple focal anatomical structures within the medical image. This is achieved
through a learning-by-example landmark detection algorithm that performs simulta-
neous feature selection and classification at several scales. A second step is performed
to eliminate inconsistent findings through a robust sparse spatial configuration (SSC)
algorithm, by which consistent and reliable local detections will be retained while out-
liers will be removed. Finally, a reasoning module assessing the fitered findings, i.e.,
remaining landmarks, is used to determine the final content/orientation of the image.
Depending on the classification task, a post-filtering component using the exemplar-

based global appearance check for cases with low classification confidence may also be

13



included to reduce false positive (FP) identifications.

2.2.1 Landmark Detection

=1se
mul 2 4.5
R8s

Figure 2.6: Illustration of some 2D Haar
features: the sum of pixels which lie within

Landmark

Figure 2.5: annota-
tion/detectoin  examples  (shown as

crosses) in a PA-AP chest image. The la-
bels under the landmarks specify different
anatomic position within the PA-AP chest
image.

the black rectangle(s) are subtracted from
the sum of pixels in the while rectangle(s).
These features could be compupted eff-
ciently using integral images.

The landmark detection module in this work was inspired by the work of Viola and
Jones [32], but modified to detect points (e.g., the carina of trachea) instead of a fixed
region of interest (e.g., a face). We use an adaptive coarse-to-fine implementation in the
scale space, and allow for flexible handling of the effective scale of anatomical context
for each landmark.

Firstly, we collect a number of training images along with a group of anatomic
landmarks (as shown in Fig. 2.5) annotated by radiologists according to the literature
[36]. Then, to train a landmark detector, image sub-patches centered at the annotated
positions are cropped and collected as positive training samples; then, an over-complete
set of extended Haar features are computed within patches as shown in Fig. 2.6. The
sizes of patches for different landmark detectors vary from 13x13 to 25x25, and they are

determined independently based on positions within original (or down-scaled) images.

14
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Figure 2.7: Illustration of landmark detection. To detect the position of left lung tip
(LLT), the corse scale LLT detector first scans on the re-sampled coarse-scale image and
detects candidate focal sub-window(s) (shown as rectangles), where responses are large than
a pre-defined threshold. Next, the fine scale LLT detector runs within the sub-window(s)
in the image, and detect one final position with the highest response (shown as cross).

The sub-patches are allowed to extend beyond the image border to certain extent,
in which case the part of the patch falling outside the image is padded with zeroes.
The extended portion for the patch should be smaller than 50% of the total size in
order to be used as an effective positive sample. This ensures sufficient and effective
context information to be extracted. The size of a landmark detector is thus determined
manually to ensure that at least 80% of annotated landmarks are utilized as effective
training samples.

Regarding the classifier, we employ the boosted cascade method [32; 37] for simul-
taneous feature selection and classification, which guarantees great run time efficiency.
For each level cascade of a detector, the training criterion is to achieve high recall
(99.9%) and moderate false positive deduction rate (0.1%) on the validation train-
ing set. For the first level cascade, negative training samples are collected by randomly

cropping sub-patches in images belonging to negative classes. For subsequent levels, the
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negative training samples are obtained by collecting false positives using the partially
trained cascade detector. The whole training process stops when the ratio between the
total number of collected negative samples and that of positive ones is less than 0.1.
A typical trained cascade detector has 6 to 8 levels. Different landmark detectors are
trained independently across several scales within down-scaled images. For the image
annotation application, two scales are adopted to balance the computational time and
detection accuracy.

During the testing/detection phase, the trained landmark detectors at the coarsest
scale are used first to scan on the whole image to determine the candidate position(s),
where the response(s)/detection score(s) are larger than a predefined threshold. After
that, the landmark detectors at finer scales are scrutinized at previously determined
position(s) to locate the local structures more accurately and, thus, to obtain a single
detection with the highest response. An illustration of the landmark detection proce-
dure is shown in Fig. 2.7. The final outputs of a landmark detector are the horizontal
and vertical (x-y) coordinates in the image along with a response/detection score. Joint
detection of multiple landmarks also proves beneficial (see Zhan et al.[38] for detail).

The landmark detection procedure is invariant to image translation since detec-
tors are scanned on the whole image. The rotation and scale robustness is naturally
achieved through classifier training procedure. To further improve the trained detec-
tors’ robustness against image rotation, we added to the training set an additional

number of rotation modified training images (£15° with the gap of 5°).

2.2.2 Sparse Spatial Configuration Algorithm

Knowing that the possible locations of anatomical landmarks are rather limited, we aim
to exploit this geometric property to eliminate the possible redundant and erroneous
detections from the first step. This geometric property is represented by a spatial
constellation model among detected landmarks. The evaluation of consistency between
a landmark and the model can be determined by the spatial relationship between the

landmark and other landmarks, i.e., how consistent the landmark (as a candidate) is
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according to other landmarks. In this work, we propose a local filtering algorithm (Alg.

1) to sequentially remove false detections until no outliers exist.

Algorithm 1 Sparse spatial configuration algorithm

for each candidate x; do
for each voting group X, generated from the combinations of X\x; do
Compute the vote of x; from X,
end for
Sort all the votes received by landmark x;. (The sorted array is defined by ~x, ).
end for
repeat
T = arg minyg, max yx;
if max Ve < ‘/threshold then
Remove & and all votes involved with .
end if
until No more candidate are removed

In general, our reasoning strategy “peels away” erroneous detections in a sequential
manner. Each candidate x receives a set of votes from other candidates. We denote
the ith detected landmark as x;, which is a two dimensional variable with values corre-
sponding to the detected x-y coordinates in the image. Each candidate x; receives a set
of likelihood scores generated from its spatial relationship with voting groups formed
by other landmarks. The likelihood score received by candidate x; from jth voting

group V;; is modeled as multi-variant Gaussian as following:

1

s —(J:i—l/ij)Tzfl(xi_Vij) (2 1)
. )
2 |55/

nij (i Vij) =

where 3;; is the estimated covariance matrix, and the prediction v;; = g;;(x;|Vj;). Here
gij(®) is defined as:

qij (7:|Vij) = Aij x [Vig] (2.2)

where A;; is the transformation matrix learned by linear regression from a training set,
and [G;;] is the array formed by the x-y coordinates of landmarks from the voting group

Vij. A high likelihood score of n;;(x;|V;;) means that the candidate x; is likely to be a
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good local feature detection according to its spatial relations with other landmarks in
Vj.

Here we briefly illustare the transofmation matrix learning procedure. For simpli-
fication, we assume that three groups of annotated landmark sequence (collected from

n images) are given by as:

Landmarkl : (z11,911), -y (€10, Y1n)

Landmark2 : (z21,921), .-y (T2n, Y2n)

Landmark3 : (231,931), s (230, Y3n)

where x;; and y;; stands for the horizontal and vertical positions of the jth sample
for the landmark candidate i. Assuming that landmark 2 and landmark 3 form one
voting group for landmark 1, we try to predict the horizontal position of landmark 1.

Mathematically, their spatial relationship is modeld using linear regression as:

x1 = f(x2,y2,23,y3) + € = Bo + Brxa + Pay2 + B33 + Pays + ¢ (2.3)

where ¢ is the random noise of ¢ ~ N(0,2) independent of xo, yo2, x3, and ys.

Formulating training set variables in a vector format as:

B = [Bo, b1, 2, B3]

X1 =[z11,.. -, %10

1,221, Y21, 31, Y31

1, 290, Yon, T3n, Y3n

It is straightforward to show that the transformation matrix could be obtained using

maximum liklihood estimation as:
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B=(XxIx,)"'x,X, (2.4)

For each landmark z;, multiple voting groups are generated by the combination
of different landmarks from the landmark set excluding x; (denoted as X\z;). The
size of each voting group is designed to be small, so that the resutlant sparse nature
guarantees that the shape prior constraint could still take effect even with many missed
detections, thus leading its robustness in handling challenging cases such as those with
a large percentage of occlusion, or missing data. In this work, we set the sizes of the
voting groups to be 1 to 3. Therefore, for an image class with 10 landmark detectors,
there are a total of i C’g = 129 voting groups for each landmark candidate.

The reasoning sgr:;tegy (Alg. 1) then iteratively determines whether to remove the

“worst” candidate, which is the one with the smallest maximum vote score

current
compared with other candidates. The algorithm will remove the “worst” candidate
if its vote score is smaller than a predefined vote threshold Vipreshoig- This process
will continue until no landmark outlier exists. The bad candidates can be effectively

removed by this strategy.

2.2.3 Classification Logic

For an image belonging to certain anatomy class, we assume that there would be a
sufficient number of landmarks associated with that class (i.e. true positive detections)

to be detected. Therefore, the classification logic (as shown in Fig. 2.8) is determined as
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following: the number of landmarks for each image class is divided by the total number
of detectors for that class, representing the final classification score (denoted as .S; for
the ¢th image class ) . In case that equal classification scores are obtained between
several classes, the class with maximum average landmark detection scores are chosen
as the final class. Depending on the classification task, a FP reduction module based on
the global appearance check may also be used for those images with low classification
confidence, i.e. with scores within defined range of (1o, Tup). A large portion of these
images come from the OTHER class. They have a small number of local detections
belonging to the candidate image class, yet their spatial configuration is strong enough
to pass the SSC stage. Since the mechanism of local detection integration from previous
steps could not provide sufficient discriminative information for classification, we try to
integrate a post-filtering component based on the global appearance check to make the
final decision. In our experiment for PA-AP/LAT/OTHER separation task, only about
6% of cases go through this stage. To meet the requirement for real-time recognition,
an efficient exemplar-based global appearance check method is adopted. Specifically,
we use pixel intensities from 16x16 down-scaled image as the feature vector along
with 1NN, which uses the Euclidean distance as the similarity measurement. With the
fused complementary global appearance information, the FP reduction module could
effectively remove FP identified images from the OTHER class, thus leading to the

overall performance improvement of the final system (see Section 2.3.2).

2.3 Experiments and Results

2.3.1 Datasets

In this work, we ran our method on four subtasks: PA-AP/LAT chest image view
identification task with and without OTHER class, and the multi-class medical image
annotation task with and without OTHER class. For the chest image identification task,

we used a large-scale in house database, and for the multi-class radiograph annotation
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task, we used the IRMA /ImageCLEF2008 database !.

1) The in-house image database were collected from daily imaging routine from
radiology departments in hospitals; it contains a total of 10859 radiographs including
5859 chest radiographs and 5000 other radiographs from a variety of other anatomy
classes. The chest images covered a large variety of chest exams and diseases, repre-
senting image characteristics from real world PACS. It included upright position from
normal patients, supine position of critically ill patient in intensive or emergency care
units, and a small number of pediatric images with both suspended and lying position.
In addition, the image quality ranged from decent contrast and well-set gray level to
low contrast images, or images with severe pathology or implants. In this work, the
OTHER class excluded radiographs of certain anatomies (e.g., radiographs of finger and
shank) with large difference in the image width to height ratio in comparison to chest
radiographs. These radiographs could be easily differentiated from chest radiographs
using heuristic rules based on the image width to height ratio. We randomly selected
500 PA-AP, 500 LAT, and 500 OTHER images for training landmark detectors. These
training images were also used as the exemplar image database for the post-filtering

component. The remaining 9359 images were used as the testing set.

2) For the multi-class medical radiograph annotation task, we used the Image-
CLEF2008 database. All images from this database had been labeled with a detailed
code that specified acquisition modality, body orientation, body part and biological
system. It contained more than 10,000 images from total 197 unique classes. This
database had been used for as a part of the ImageCLEF workshop [39] for the medical
image annotation task. The distribution of different classes in this database was not
uniform. For example, the chest radiographs comprised about 37% of the total images.
And the top nine classes comprised about 54% of the total images. In this work, we
selected a subset of images (the top nine classes with the most number of images) from
this database, including PA-AP chest, LAT chest, PA-AP left hand, PA-AP cranium,
PA-AP lumbar spine, PA-AP pelvis, LAT lumbar spine, PA-AP cervical spine, and

"http://imageclef.org/2008 /medaat
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LAT left to right cranium. The remaining images were regarded as one OTHER class.
For the PA-AP and LAT chest images, we directly used the detectors trained using the
in-house database. 50 PA-AP and 50 LAT chest testing images were randomly selected
from the testing set of previous task. For the remaining 7 classes, we randomly selected
200 images for each class. 150 images were used for training landmark detectors, and
the remaining 50 images were used for testing. For the OTHER class, we randomly se-
lected 2000 training and 2000 testing images each. All images in the in-house database
and the IRMA database were down-scaled to have the longest edge of 512 pixels while

preserving the aspect ratio.

2.3.2 Classification Performance

For the chest radiograph annotation task, we compared our method with three other
methods described by Boone et al. [13], Lehmann et al. [25], and Kao et al. [23]. For
method proposed by Boone et al. [13], we down-sampled the image to the resolution
of 16x16 pixels and constructed a five hidden nodes NN. For method proposed by
Lehmann et al. [25], a five nearest neighbor (5-NN) classifier using 32x32 down-
sampled image with the correlation coefficient distance measurement was used. The
same landmark detector training database was used as the reference database for the
5-NN classifier. For method proposed by Kao et al. [23], we found that the projection
profile derived features described in the literature were sensitive to the orientation of
anatomy and noise in the image. Directly using the smoothed projection profile as the
feature along with the LDA classifier provided better performance. Therefore, we used
this improved method as our comparison.

For the multi-class radiograph annotation task, we compared our method with
the in-house implemented bag-of-features method proposed by Deselaers and Ney [16]
(named as PatchBOW+SVM) and the method proposed by Tommasi et al. [20] (named
as SIFTBOW+SVM). Regarding PatchBOW+SVM, we used the bag-of-features ap-
proach based on randomly cropped image sub-patches. The generated bag-of-features

histogram for each image had 2000 bins, which were then classified using a SVM clas-
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sifier with a linear kernel. Regarding SIFTBOW+SVM, we implemented the same
modified version of SIFT (modSIFT) descriptor and used the same parameters for ex-
tracting bag-of-features as those used by Tommasi et al. [20]. We combined the 32x32
pixel intensity features and the modSIFT bag-of-features as the final feature vector,
and we used a SVM classifier with a linear kernel for classification. We also tested the
benchmark performance of directly using 32x32 pixel intensity from the down-sampled
image as the feature vector along with a SVM classifier. To evaluate different meth-
ods’ performance, we used optimized classification precision. Note that it is possible to
carry out the ROC analysis for our method, which may require the parameters of differ-
ent components in our method (e.g., detection response thresholds, global appearance
check thresholds, and etc.) to be modified sequentially.

Table 2.1: PA-AP/LAT/OTHER chest radiographs annotation performance.

ref | Method PA-AP/LAT PA-AP/LAT)/
OTHER

- Our method - 98.81%

- Our method without FP re- | 99.98% 98.47%
duction

[25] | Lehmann’s method 99.04% 96.18%

[13] | Boone’s method 98.24% -

[23] | Improved Projection Profile | 97.60% -
method

Table 2.2: Multi-class radiographs annotation performance.

ref Method Mutli-class with- | Multi-class with
out OTHER OTHER
- Our method 99.33% 98.81%
- Subimage pixel intensity + | 97.33% 89.00%
SVM
[16] | PatchBOW + SVM 96.89% 94.71%
[20] | SIFTBOW + SVM 98.89% 95.86%

Table 2.1 and Table 2.2 show the recognition rates of our method, along with other
methods. It can be seen that our system obtained an almost perfect performance on

the PA-AP/LAT separation task. The only one failed case was a pediatric PA-AP
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Figure 2.9: Examples of the detected landmarks on different images.
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image. Our method also performed the best on the other three tasks. Fig. 2.9 shows
the classification result along with the detected landmarks for different classes. It can
be seen that our method could robustly recognize challenging cases under the influence
of artifacts or diseases. The learned landmark detectors are robust to medium degree

of rotation (£15°) and scale variance based on the testing result.

2.3.3 Intermediate Results

1) Landmark Detection: We provide here the intermediate results of landmark detec-
tors’ performance. In this work, we used 11 landmarks and 12 landmarks for PA-AP
and LAT chest images. As for the multi-class radiograph annotation task, we used 7-9
landmarks for other image classes. To test the landmark detectors’ performance, we
annotated 100 PA-AP and 100 LAT images separately. Since the landmark detectors
run on the Gaussian smoothed images, the detected position could deviate from the
ground truth position to certain degree, which is allowable for our image annotation
application. We determine the detected landmark as true positive detection when the
distance between the detected position and the annotated ground truth position is
smaller than 30 pixels. Note that the detection performance can be traded off against
computational time. Currently in order to achieve real-time performance, we accepted
an average sensitivity for the 23 chest landmark detectors at 86.91% (£9.29%), which

was good enough to support the aforementioned overall system performance.

2) SSC: For the PA-AP/LAT separation task on the 200 images where ground
truth landmarks were annotated, 55 out of 356 false positive landmark detections were
filtered by the SSC algorithm, while the true positive detections were unaffected. In
addition, the algorithm removed 921 and 475 false positive detections for the PA-
AP/LAT/OTHER task and the multi-class task with OTHER class. Fig. 9 shows that
the result of the voting algorithm in reducing false positive detections on non-chest
image classes. We can conclude that the voting strategy has improved the specificity

of the landmark detectors.
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Figure 2.10: The SSC algorithm performance on different image classes (better viewed
in color): (a) LAT chest, (b) foot, (¢) cranium, and (d) hand. The blue colored crosses are
true positive landmark detections; the yellow colored ones are false positive detections; and
the red colored ones are detections filtered by the SSC algorithm. APPA and LAT label
under the detected landmarks specify that detections are from PA-AP chest detectors or
LAT chest detectors.

2.3.4 System Extension

The proposed algorithm framework is generalizable, and it could be applied to other
image modalities and extended for other image parsing applications beyond radiograph
annotation. In this work, we further exploit the by-products of the algorithm, more
specifically, the detected/filtered landmarks on chest images, for an optimized image

visualization application.

The patient may stoop sometimes when taking the LAT chest image, and this may
cause the image to present certain degrees of tilt as shown in Fig. 2.2 (c) and (d)
compared with Fig. 2.2 (a), which is an image with a standard upright body position.
We could explore the detected landmarks on the LAT chest image to perform registra-
tion with images with standard upright position. This allows robust online orientation
correction for chest radiographs for optimized image visualization. Compared with the
system of Luo and Luo [40], where the orientation correction is restricted to images with
rotations of only 90°, 180°, 270°, our system is more flexible and robust in estimating
degrees of tilt. The orientation corrected images have the potential to help radiologists
to view the LAT chest radiograph more conveniently. In addition, with the detected

landmarks on PA-AP and LAT chest images, a synchronized view mechanism could
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Figure 2.11: Optimized image visualization. (a) the PA-AP chest image with pinpointed
position shown as cross, (b) and the orientation corrected LAT chest image with the esti-
mated corresponding position/range shown within the blue band. Figure (¢) and (d) show
that when the pinpointed position on the PA-AP chest image moves, the corresponding
position on the LAT chest image moves accordingly.
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be modeled to help radiologists to find the corresponding positions between the two
images. More specifically, we first compute the relative position of the pinpointed cross
on the PA-AP image (as shown in Fig. 2.11(a)) within the frontal lung ROI defined in
the PA-AP image. Assuming the relative position is roughly unchanged in the lateral
lung ROI in the LAT image, we could estimate the corresponding position/range on
the LAT image. Fig. 2.11 shows an example of the synchronized view feature of our
visualization workstation system. The blue band area on the LAT image corresponds
to the position pinpointed by the cross in the PA-AP image. This optimized display
feature has the potential to help radiologists to locate and scrutinize the corresponding

findings on PA-AP and LAT chest images simultaneously.

2.4 Discussions

To conclude, a robust and gerneralizable algorithm framework has been proposed for
medical radiograph annotation. Extensive experiments were conducted to validate the
system performance both in terms of accuracy and speed. Such systems can dra-
matically improve radiology workflow and save valuable time and cost in the clinical

environment.

The computation complexity of our method comes mainly from the landmark de-
tection procedure. Although the cascade classification framework guarantees the run
time efficiency for each landmark detector, the computation cost increases linearly with
the number of specified landmarks and the number of image classes. To meet the re-
quirement for online recognition, one possible solution is to use a few coarse resolution
landmark detectors to first select several candidate image classes, and then the multi-
scale detectors from the selected candidate classes are used to determine the final class.
In this work, this scheme was adopted for the multi-class medical radiograph anno-
tation task. According to our experiments, based on a multi-thread implementation
of the algorithm, the entire process time on average for an image on Intel (R) Xeon

(R) 1.86GHz with 3.00GB RAM was about 1s for the PA-AP/LAT/OTHER classifica-
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tion task and 2s for the multi-class task. This satisfies our requirement for the online
recognition procedure. Due to the generality and scalability of our approach, it has the
potential to be extended in several directions, for example, annotation of more classes of
radiograph images, extensions to other imaging modalities, and 2D /3D ROI detection
tasks, e.g., topogram for CT scan automation [41]. In addition, the same algorithm
framework has been extended for 3D medical image applications, e.g., coronary artery

detection and tracing in CT image [42].
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Multi-level Learning-based
Segmentation of Ill-defined and
Spiculated Mammographic

Masses

3.1 Introduction

Clinically, the shape and margin characteristics of a mammographic mass are regarded
by radiologists as the two most important features for breast cancer diagnosis. While
malignant masses usually have ill-defined margins and irregular shapes and/or spicu-
lation, benign masses usually have well-defined margin. More specifically, a spiculated
mass consists of a central mass body with “extensions”, hence the resulting stellate
shape. From medical image analysis perspectives, the image features (e.g., texture and
intensity patterns) associated with the extended regions and ill-defined borders are im-
portant information for the mass analysis. Therefore, a segmentation algorithm, that
is tailored to delineate the mass body and periphery including its irregular details or

spiculations, is technically desirable.
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Many algorithms have been proposed for automatic mammographic mass segmen-
tation. Region growing is one of the most often used methods. Pohlman et al.[43]
developed an adaptive region growing method, whose pixel aggregation criterion was
determined from calculations made in 5x5 windows surrounding the pixel of interest.
Kupinski and Giger [44] proposed two region growing approaches based on the radial
gradient index and a probabilistic model. Kinnard et al. [45] extended the probabilistic
model based method by further analyzing the steepest change of cost functions. Their
method was found to be able to further include some of the ill-defined mass boundaries.
Besides region growing, many other techniques have also been investigated. Te Brake
and Karssemeijer [46] proposed a discrete dynamic contour model, which began as a
set of vertices connected by edges (initial contour) and grew the subject according to
internal and external forces. Li et al. [47] developed a method that employed k-means
classification to categorize pixels as belonging to the region of interest (ROI) or back-
ground. Sahiner et. al [48] proposed a method consisting of segmentation initialization
by pixel-intensity based clustering followed by region growing to improve boundary
shape; then the initial result was further augmented by an active contour algorithm for
shape refinement. Recently, Shi et al. [49] proposed a level set approach for mass seg-
mentation. The segmented masks were found to be able to improve the performance for
discriminating benign and malignant masses in comparison with their previous work. It
is worth mentioning that the energy function defined in the level set approach was based
on the image gradient information, which would be noisy for masses with ill-defined
margins and spiculations. This might reduce the method’s reliability and robustness
in segmenting ill-defined masses. Dominguez and Nandi [50] proposed a segmentation
method based on contour tracing using dynamic programming. Although the method
worked well for masses with circumscribed margins, it had difficulties in segmenting
masses with less distinct contours. A review of mammographic mass segmentation

algorithms could be found in the literature [4].

While encouraging results have been obtained in the aforementioned works, fully

automatic segmentation of mammographic masses remains challenging, especially, for
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Figure 3.1: Flow chart of the multi-level segmentation approach.

those masses with ill-defined margins and spiculations. In this work, a multi-level
learning-based segmentation (MLS) technique is proposed for segmenting various types
of masses. The approach specifically tackles the challenge of mass margins and associ-

ated extensions, while minimizing the possibility of over-segmentation.

3.2 Method

Our segmentation method is composed of several major components (shown as rounded
rectangles) in Fig. 3.1: (1) pixel-wise soft labeling/segmentation, (2) object-scale mass
and clutters detection, (3) spiculation detection, (4) segmentation integration by graph-
uts. The pixel-level mass and non-mass class labeling and segmentation works as fol-
lows: given a region of interest (ROI), the system would label each pixel with its prob-
ability associated with mass configuration statistical model trained through supervised
learning. A pixel-level probability map (PM) for the whole image is thus obtained.
After this, the object-level image classification/detection module takes the PM along
with prior information (i.e., shape, size, and spatial distribution) to identify regions of

mass and clutters. In order to include irregular shapes and spiculation, a spiculation
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detection module based on a multi-scale ridge detection algorithm is then employed to
produce a binary image of spicules (names as “spiculation map”). Finally, the graph
cuts [51] algorithm is used to integrate the PM and all the object-level findings (i.e.,

mass region, clutters, and spicules maps) to produce the final segmentation.

3.2.1 Preprocess

We apply the morphological smoothing to remove small intensity peaks and minima in
the image. The smoothing operation consists of two steps including image opening by
reconstruction, and its complementary operation of image closing by reconstruction.
Image opening by reconstruction consists of the application of erosion with a small
structuring element, followed by reconstruction of the original image using the eroded
version as the maker image. Image closing by reconstruction is carried in a similar way;
however, image dilation is used instead of erosion. Image details are suppressed in the
processed image as shown in Fig. 3.2. In this work, reconstruction with disk of radius
equal to 3 pixels as the structuring element was applied to all images before pixel-level

feature extraction step.

(b)

Figure 3.2: Results of morphological smoothing: (a) The original ROI images, (b) The
image after morphological smoothing
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3.2.2 Pixel-Level Soft Segmentation
3.2.2.1 Pixel-wise Features

In the first step, the segmentation of mammographic mass is addressed with a pixel-
level labeling approach, where the probabilistic distribution of the mass are modeled
through the image sub patch level. In the large ROI, the system computes a collection
of regional features at each pixel position p(p C R2) from a sub region of interest
(sROI) of size 11 x11 pixel centered at p. In this study, a total of 30 dimensional
features (denoted as x,) including intensity, texture and shape were calculated on the

preprocessed image for each scanned sROI. These features are briefly described below.

Gray Level Co-occurrence Matrix (GLCM) [52] is widely used for analyzing
texture of 2D image. The co-occurrence matrix stores the co-occurrence frequencies of
the pairs of gray levels, which are configured by a distance d and orientation o. The
GLCM is constructed in four directions (f = 0°,45°,90°,135°) and with the pixel dis-
tance of 1 pixel. We then extract eight features from the constructed GLCM, including
energy, entropy, correlation, inverse difference moment, inertia, cluster shade, cluster

prominence, and Haralick correlation [52].

2D Local Binary Patterns (LBP) [53] can be viewed as an intensity- and
rotation-invariant generalization of the GLCM. In each pixel position, the LBP op-
erator compares the current pixel’s intensity differences with its p neighbors on the
circular periphery of radius r. The difference values are binarized and concatenated
to form a binary pattern code. The information recorded is intensity-invariant, and
rotation-invariance is approximated as p becomes larger. The LBP operator is moved
and evaluated throughout the whole texture image, and the binary pattern codes at
each pixel position are summed up to form the final LBP histogram.

Wavelets are another important and commonly used feature descriptor for texture
analysis, due to their effectiveness in capturing localized spatial and frequency infor-
mation and multi-resolution characteristics. Here, we extract mean intensities in the

decomposed four bands using 2D Haar wavelet.
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Vesselness and Blobness, computed based on the eigen-analysis of hessian matrix,
have also been employed for vascular or blob-like structure detection or enhancement.
We implement a 2D multi-scale version of Blobness and Vesselness feature extraction
module for only handling both bright objects, which corresponding to mass and line
structures. Note that the Wavelets, Vesselness and Blobness depend on their own scales
of spatial supporting settings, and the actual neighborhood may be larger or smaller
than the size of 11x11. We also extract a group of first order gray-level statistics
features, including minimum, maximum, mean, standard deviation, skewness and
kurtosis.

Since the texture features are computed within a small sSROI window at every pixel
position, directly texture feature calculation on the image with original intensity values
is computationally intensive and sensitive to noise. Besides, the constructed GLCM
may be very sparse, causing numerical problem in feature computation. Therefore, we
preprocess images using the multi-level thresholding Otsu method [54] to adaptively
merge together image regions with similar gray levels. The resulting image is rep-
resented by individual texture primitives coded by a smaller gray-level domain. All

texture-based features are extracted from this preprocessed image.

3.2.2.2 Segmentation by Pixel-Level Labeling

Based on our ground truth annotation maps of mass and non-mass, feature vectors are
split into positives and negatives and fed into an off-line classifier learning process. For
the pixel-level classification problem, the size of training samples (as scanned region
of size 11x11) can be really large (greater than 100,000). This requires the choosing
classifier with good scalability. We choose linear discriminant analysis (LDA) along
with Gaussian Mixture Models (GMM) as our classifier, i.e., GMM is used to learn the
distribution of the classes in the LDA projected subspace. For each of the binary mass
and non-mass class, LDA is first exploited to further project the extracted feature vector
T into a vector of x in a lower dimension of d. Then, the Expectation-Minimization

(EM) algorithm with multiple random initialization trials is used to determine the
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parameter set § = {a;, 1i;, i }¥_, in GMM consisting of k-Gaussian distributions. Here,
«; is the prior, u; is the mean, and ¥; is the covariance matrix of the ith distribution.
Here, we briefly describe the basic steps of the EM algorithm. Assume the distribution

of random variables X € R? is a mixture of k Gaussians given by:

k

f(alf) = Z \/W exp{— (»’U—m)T2 (¢ — 1)} (3.1)

Given a set of observations x1, o, ..., Tn, the maximum liklihood estimation of 8 is
Op1, = arg max f(z1, ..., xn|0) (3.2)

The EM algorithm iteratively converges from the initial estimation of 6 to Oy,
according to two steps:

1) Expectation step:

wy = el @lmn X)L (3.3)

S i (g, B)

Qv = % Zn: Wt (3.4)
=1
- (Z wtﬂt)/(z w;) (3.5)
t=1 t=1

= wilwe — ) (e — )"/ (Y wei) (3.6)
t=1 t=1

The first step computes the probability that an instance x; is generated by the ith
normal distribution. Then, the maximization step uses the probabilities to update the
current value of §. The process is repeated until the log-likelihood is increased by less
than a predefined threshold from one iteration to the next.

As there are many different types of tissues inside the mammogram, such as vessel,

glandular tissues, etc., the single-layer LDA classifier may have many false positives
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originating from this multi-tissue background. To reduce these mass false positives, a
multi-phase classification approach is adopted. It starts with the positive class output
PM from single phase, and treats it as a new image. This output image contains for
each pixel a probability that it belongs to the structure to be enhanced (mass). Next,
another round of pixel-level feature extraction (and selection) and LDA-GMM training
process is conducted using both the original image and the output image from the
previous phase(s). All these intensity-texture-shape features, in the joint image and
PM domain, are used to train a new classifier. This process can be iterated many times,
as a simplified “Auto-Context” [55]. The rationale behind this approach is that the
structure to be enhanced will be more distinctive in the (intermediate) enhanced image
than in the original image. Therefore, adding features from these weighted images will
result in potentially more discriminative features between the positive regions and the
spurious responses from the previous phase(s). Illustrative examples of generated PMs
are shown in Fig. 3.3. It can be clearly seen the generated PM is able to enhance the

mass tissue structure, meanwhile suppress the false responses of breast tissues.

3.2.3 Object-level Labeling and Detection

At this stage, the technical objective is to determine the mass region and other clutters
in the intermediate PM output (denoted as prob(p)). To suppress spurious responses,
the multi-scale Blobness filtering, with a larger smoothing kernel (than the pixel-level
feature extraction step) was used to capture the mass shape. It was applied on each
pixel to obtain a Blobness likelihood map denoted as blm(p) . Then, a shape-prior

refined probability map sprob(p) was obtained as:

sprob(p) = blm(p) x prob(p) (3.7)

Otsu thresholding method [54] was used for discrete quantization of sprob(p) to ob-
tain the potential mass pixels with sprob(p) > Vipreshold- Connected component analy-

sis was then employed to obtain several disjointed regions (DR)s C1{p}, C2{p}, ..., Cn{p}
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(2.2) (b.2) (c.2)

Figure 3.3: Results of pixel-level classification: (a.l) & (a.2) the original ROI images,
(b.1) & (b.2) the mass probability maps, (c.1) & (c.2) the segmentation ground truth masks
generated from multiple radiologists (see section 3.3.1 for detail), (d.1) & (d.2) the ground
truth contours (with three radiologists’ consensus) superimposed on the originalimages.
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on the binarized image. For each DR, we compute a fitness score to determine its like-

lihood of being a mass as:

Fi= oo GOl %) x sprob(p),i =,1,2,...m (3.8)

where G(p|u,X) is a 2D multivariate normal distribution representing a spatial prior
that the mass is near the center of ROI. The DR possessing the maximum fitness score

is selected as the mass candidate. The remaining DRs are regarded as clutters.

3.2.4 Spiculation Detection

It is known that malignant masses in mammograms are often characterized by a radial
pattern of linear structures (i.e. spicules) and irregular boundaries [56; 57]. Detecting
spiculation is thus essential for further inclusion of mass margins. In this task, a
steerable ridge detection approach [58] was employed, and it was further generalized
into a multi-scale analysis framework to detect the presence of spiculations. An Mth
order (M = 4) ridge detectors constructed by Gaussian kernels and their derivatives

was employed as:

Mk k—i  oi
o) = 30 Y v s o) (3.9)

k=1 1=0

v~

Ik,i (@)
where g(z,y) is a 2D Gaussian function, and oy, ; represents the weight coefficient for the
kernel of gy ;(x,y). The ridge detection procedure is formulated as a rotated matched
filtering. It involves the computation of inner-products with the shifted and rotated
versions of the 2D template h(x,y) at every pixel in the image of I(x) : x = (z,y). A
high magnitude of the inner-product indicates the presence of the feature and the angle
of the corresponding template gives the orientation. Mathematically, the estimation

algorithm is formulated as:

0% (x) = argmax(I(x) - hg(x)) (3.10)
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r*(x) = I(x) - hp(x) (3.11)

where 7*(x) is the magnitude of the feature; 8*(x) is its orientation at the pixel position
x; hg(x) is the rotated template with a degree of 6, and - is the inner product operator.
Due to the property of steerable filters defined in (3.9), we could cut down on the
computational load in (3.10) and (3.11). Specifically, the inner product of a signal I(x)

with an hg(x) can be expressed as:

Mk
I(x) - ho(x) =) Z bk, (0) Ii (x) (3.12)

where by, ;(0) are orientation-dependent weights computed using trigonometric polyno-
mials of 6 (see the literature[58] for details), and the functions I} ;(x) are the inner

products of the signal I(x) with un-rotated kernels of gy, ;(x):

Tii(x) = I(x) - gr,i(x) (3.13)

To determine the optimal detector h(z,y) in (3.9), which was equivalent to searching
for the optimal weight combinations of oy, ;, a functional optimization method following
the Canny-like criteria was used [58]. The ridge detector of fourth order used in the

experiments was determined to be:

h(z,y) =  —0.3928gy, + 0.1135g,, + 0.0346% gy,

—0.1846% g1y + 0.0250,102 (3.14)

where gy, = 0%9/02%, gyy = 8°9/0Y%, Guawz = 09/, gyyyy = 9'9/0Y*, Grayy =
0*g /0220y

Fig. 3.4 shows an example of the ridge detection result on a synthetic image. In order
to obtain spicules at different widths, the scale of a ridge detector was progressively

increased. An estimate of the ridge scale at each pixel was obtained by normalizing
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Figure 3.4: Example of spiculation detection on synthetic image: (a) synthetic linear
structures superimposed on a fatty mammographic background, (b) the ridge detector

respounse, (¢) the extracted backbone of the spiculation, and (d) the superimposed backbone
on the original image.

(a.2) (b.2) (2) (d.2)

Figure 3.5: Results of multi-scale spiculation detection: (a.1) & (a.2) the original ROI,
(b.1) & (b.2) the multi-scale line-strength image, (c.1) & (c.2) the detected spicules, (d.1) &

(d.2) the detected spicules superimposed on the ROI, and (e.1) & (e.2) the final spiculation
map.
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the line-strength obtained at each scale, and choosing the scale that gives the largest
response. The line-strength and orientation along with the chosen scale were taken as
a representative of the pixel in the image. In this study, three scales (o = 3,5,7) of
detectors were applied on the original image. Based on the line-strength and orientation
images, non maximal-suppression, i.e. thresholding with hysteresis, was used to extract
the backbone of each structure, followed by thinning to obtain ridges in the image.

To reduce non-spicule false positives generated from other linear structures (e.g.,
ligaments, ducts, etc.), several post-filtering rules based on geometric relationships
(e.g., position and direction) between the spicule candidates and the extracted mass
candidate (in section 3.2.3) were applied. A spiculation map was then obtained by
applying region growing (using the filtered spicules as seed) on the multi-scale line-
strength image. The final output of the spiculation detection module is a binary mask
(named as “spiculation map”), where the foreground object(s) represents the detected
potential spicule pixels. Fig. 3.5 shows an example of the detected spicules and the
spiculation map.

Using the detected spiculation pixels, we compute the ratio between the areas of
the detected spiculation to the areas of extracted mass candidate as the spiculation
measurement. If the ratio is larger than a pre-defined threshold, we determine the
mass as spiculated. This classification decision will be used in the final segmentation
integration stage (see section 3.2.5) to determine whether to include these spicules into

the graph cuts segmentation algorithm.

3.2.5 Segmentation Integration by Graph Cuts

At the final stage, we employ graph cuts [51] to integrate all the object-level findings,
including mass candidate, noisy clutters and spiculation, along with the pixel level PM
to generate the final segmentation mask. We construct an undirected graph G = (v, €)
defined by a set of nodes v (image pixels) and a set of directed edges € which connect
these nodes. In this graph, there are two distinct nodes (or terminals) s and ¢, called

the source and sink, respectively. The edges connected to the source or sink are called
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t-links, such as (s,p) and (p,t).

For the segmentation problem, an energy function F is defined based on the graph
G by considering two criteria: (1) the segmentation is guided both by the foreground
(i.e. mass) and background (i.e. non-mass) appearance probabilistic statistics; (2) the
segmentation is smooth, reflecting a tendency to a solidity of objects. Therefore, we
seek a labeling system f, which assigns one label to each pixel in the image, to minimize

the energy function E as follows:

E = Eaata(f) + Bamootn () = Y_ D0, fp) + > V. )T(fp # fo)  (3.15)

pepP (p9)EN

where FEg,00th 1S a piecewise smoothness term, Fg., is a data error term, P is the
set of pixels in the image, V' (p, ¢) is a smoothness penalty function, D(p, fp) is a data
penalty function, N is a four-neighbor system, f,, is the label of a pixel p, and T'(e) is
1 if its argument is true and 0 otherwise. In this bipartioning problem, the label f, is
either 0 or 1. If f, = 1, the pixel belong to the mass, otherwise, the pixel is not the
mass. We define V(p, q) as follows:

(Pr(lplfp=1) — Pr(l|fq = 1)))
202

V(p,q) = exp(— (3.16)

where Pr(Ip|f, = 1) is the probability of pixel p belonging to class f, = 1. In our case,
the Pr(I,|f, = 1) corresponds to the output value in the PM.

Regarding the data penalty term, we use the negative log-likelihoods function as:

D(p, fp) = —InPr(fp|f, = 1) (3.17)

A very attractive property of graph cuts is that it can easily incorporate topological
constraints into the final segmentation by setting appropriate weights of t-links in the
graph. These constraints indicate some image pixels a priori known to be a part of

the foreground or background. In our scenario, on one hand, we have extracted a mass
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candidate along with spiculation map (if the mass is determined to be spiculated),
which must be included in the final segmentation of a mass. On the other hand, we
regard the noisy clutters as regions must be excluded from the final segmentation. We
use the weights of edges defined in (3.18) and (3.19) to completely define the graph G

(see [51] for detail derivation).

o0 p € Foreground

w(p,s) =4 0 p € Background (3.18)
D(p, fp=1) otherwise
0 p € Foreground

w(p,t) = { oo p € Background (3.19)
D(p, f, =0) otherwise

where w(p, S) and w(p, T') are the weights of edges connecting the pixel p to the source
s and the sink t respectively.

By integrating the object level detections along with the mass PM into the graph
cuts framework, the optimal segmentation of mammographic mass could be obtained
in one single step by finding the minimum cost cut C' on the graph G. The cut c,
determining a unique labeling function f in the image, can be computed exactly in

polynomial time via a standard max-flow algorithm for two terminal graph cuts.

3.3 Experiments and Results

3.3.1 Image Database

In this study, we used a dataset containing a total of 54 (51 malignant and 3 benign)
ROIs. The spatial resolution of the image was sampled to 100umx100um. The mass
shape, margin, and density were measured by a senior radiologist according to Breast
Imaging Reporting and Data System Atlas (BI-RADS) [59] as shown in Fig. 3.6 (a) -

(c). Fig. 3.6 (d) shows the size of these masses ranged from 5mm to 50mm. The size
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Figure 3.6: The distribution of the mass statistics of shape, margin, density, sizes and
subtlety ranking within the database.

of a mass was measured as the longest dimension of the mass. The subtlety of these

masses as shown in Fig. 3.6 (e) were ranked on a scale from 1 (the easiest) to 10 (the

most difficult) for determining the malignancy of the case. In this study, we collected

a total of five radiologists’ delineation for each mass in the database independently.

With the multi-radiologists’ segmentation results, the final ground truth for each mass

was then formed by setting the pixel as the foreground (i.e. mass) where at least three

radiologists reached censuses. The remaining pixels were regarded as the background

(i.e. non-mass).
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3.3.2 Pixel-Scale Classification Results

For the pixel level classification, we ran a three-fold cross-validation experiment using
the database. A two-phase classification scheme was adopted after experiments, since
we found that using more phases did not substantially improve the classification per-
formance. The threshold for the first phase is set to be 0.1 in order to achieve for
high recall and moderate FP deduction. We empirically found that the performance is

stable with the sROI size in a range of 9 to 15 pixels (note that the default value is 11).

We compare the classification accuracy of using one single layer LDA + GMM
classifier with that of the two-phase classifiers. The accuracy with optimized threshold
could be improved from 86.15% using the single layer LDA classifier to 87.81% using
the multi-phase classifier. The effect of the multiphase approach is illustrated by the
enhancement results shown in Fig. 3.7. It is evident that the further reduction of
false positive samples, with increasing classification phases, thus improves the overall

classification performance.

3.3.3 Segmentation Results

To measure the level of agreement between radiologists’ delineation and the segmented
masses, three measurements including the area overlap measure (AOR), and two contour-
based measurements of the average minimum distance (AMIN DIST), and the Haus-

dorff distance (HSDIST) were adopted.

We define the distance measure between a point « and a curve B in terms of the
minimum Euclidean distance (MINDIST) in the Cartesian plane. If the curve B is
described described in terms of ¢ points {b1, ..., by}, the MIN DIST (a, B) is defined as:

MINDIST(a,B) = min , la — bl (3.20)

7’6{17"'7‘1

The Hausdorff distance [60] as illustrated graphically in Fig. 3.8 is the first distance

measure used, and it is defined in terms of the directed Hausdorff distance as:
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(c.2) (d.2)

Figure 3.7: Example outputs of the multi-phase pixel-level classification: (a.l) & (a.2)
the original ROIs, (b.1) & (b.2) the PMs generated by the first phase classifier, (c.1) &
(c.2) the PMs generated of the two-phase classifiers, and (d.1) & (d.2) the ground truth
masks provided by the radiologists. Note that the noisy responses generated from the chest
border tissues in the up-right corner of the ROI in (a.1) has been clearly suppressed by the
two-phase classifiers.
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A [H(A,B)

Figure 3.8: The graphical representation of the Hausdorff distance between contours A
and B, which can be interpreted in this figure as the maximum of the minimum distances
between any point on contour A and contour B. The area overlap measure is defined as
the ratio of the hatched area to the area of the cross area.

H(A, B) = max{h(A, B), h(B, A)} (3.21)

It is well known that the Hausdorff distance is a metric, i.e., it satisfies the identity
and symmetry equalities and the triangle inequality, and is nonnegative [60]. It does
not require an explicit pairing of points between A and B. One disadvantage of the
Hausdorff distance is that it does not measure how much A and B are dissimilar on
the average. For example, even when the two closed contours are identical at all points
except one, the Hausdorff distance can be large. We, therefore, defined a second dis-
tance measure, the average MINDIST (AMINDIST), by averaging the AMINDIST of
a; to B and the AMINDIST of b; to A

p q
SYMINDIST(a;, B) Y. MINDIST(b;, A)
i=1

AMINDIST(A, B) = = % + % (3.22)

The AOR between two closed contours A and B is defined as:

AOR(A, B) = m (3.23)
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when A and B are two interior regions. It is easily seen that AOR(A, B) = 0 when
A and B do not intersect, AOR(A,B) = 1 when A and B are identical, and 0 <
AOR(A, B) <1 when the similarity of the two closed contours are between these two
extremes.

The box and whisker plots of the corresponding distributions of these segmentation
measurements are shown in Fig. 3.10, with AOR of 0.766 (£0.144), AMINDIST of 9.79
(£0.12), and HSDIST of 58.38 (£31.25). The ROIs shown in Fig. 3.9 demonstrate
the effectiveness of the proposed approach. It is seen that the segmented contours are
capable of closely delineating mass body contours, and they includes sufficient amount
of mass margin portion. The approach is also technically robust in segmenting masses
in the presence of ill-defined texture patterns and unsmooth intensity changes inside
masses. In addition, the segmented results were seen to include substantial amount
of spiculations. An entire gallery showing the segmentation results for all the masses
examined in this study using the proposed segmentation algorithm is located in the

appendix.

3.3.4 Multi-Observer Agreement

To measure the consistency of our segmentation with multiple radiologists and the
consistency within multiple radiologists themselves, we adopted the Williams index
(W1I) [61]. The W is a ratio of the agreement of rater j = i to the group versus the

overall group agreement and is defined mathematically as follows:

_(n—2 j=1,i#j
WI; = < > = (3.24)

where s;; is a measure of similarity or agreement between raters i and j. We used
AOR, the reciprocal of AMINDIST, and the reciprocal of HSDIST as the similarity
measurements. If the upper limit of the confidence interval (CT) of W1 is greater than

the value one, we can conclude that the measurement data are consistent with the
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Indistinct Irregular MLS Expert Trace Contour Overlap

Expert Trace

Expert Trace

Spiculated Irregular MLS Expert Trace Contour Overlap

Figure 3.9: Segmentation results: from left to right, they are the original ROI, segmenta-
tion result of the MLS approach, manual segmentation, and the contours superimposed on
the original image of the MLS approach (black contour) and manual segmentation (white
contour). The margin and shape BI-RADS descriptors of a mass are also shown in labels
under images in the first column.

ot
o



Boxplots of AQR Eoxplots of AMINDIST
! ! ! ! ! i ! !
Cur Algorithm - L ———~{ B Qur Algorithm - - | |-———- HH
. . . . . . . . .
a 04 0z 03 04 05 06 07 04 04 1 0 10 20 30 40 a0 60
Values Values

(a) (b)

Bozplots of HEDIST Boxplots of MACH
'

' '
Cur Algerithrm - ‘ | B Cur Algerthm - e e
L

a 20 40 G0 80 100 120 140 180 B0 200 a 0.1 0.2 03 0.4 05 06 a7 0.8 a4
Values Values

(c) (d)
Figure 3.10: The box and whisker plots of the distribution of the segmentation measure-

ments. The vertical lines of the boxes correspond to the lower, median and upper quartile.
Outliers are represented by cross.
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Figure 3.11: The W1 for the algorithm and the radiologists.

hypothesis that the individual observer agrees with the group at least as well as the
group members agree with each other (i.e., the individual observer is a reliable member
of the group). The CI is estimated with a jack knife scheme [61]. The W1 of the
three segmentation measurements are shown in Fig. 3.11 (a) - (c), with AOR of 1.002
(£0.010) (CT at 95%), AMINDIST of 0.975 (£0.047), and HSDIST 0.995 (+0.029).

3.3.5 Margin Segmentation Results

The performance of the proposed algorithm on segmenting only the margin portion
was also evaluated. Here the margin is defined as the remaining foreground pixels by
subtracting the mass core region from the complete ground truth. The mass core region
was obtained through boundary smoothing via a rotation structure element (ROSE)
algorithm [62] followed by morphological erosion. The margin area overlapping ratio

(M AOR) of the segmented masses with the ground truth margin was then computed.
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Box and whisker plot of the distribution of the segmentation results are shown in
Fig. 3.10 (d), with M ARO of 0.574 (£0.179). We also measured the W1 of M ARO
between the algorithm and multiple radiologists. The result is shown in Fig. 3.11 (d),
with value of 0.9815(+0.021). It is shown that the proposed approach well agreed with

multiple radiologists in segmenting mass margin portion.
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Conclusions and Future Work

4.1 Conclusions and Contributions

We have proposed two learning-based algorithms that can achieve high accuracy and
robustness in the tasks of medical radiograph classification and mammographic mass
segmentation. The advantage and contribution of our work can be summarized in the
following aspects:

(1) Regarding the medical radiograph classification task, we have developed a hybrid
learning-based approach that integrates learning-based local appearance detections, the
shape prior constraint by a sparse configuration algorithm, and a final filtering stage
with the exemplar-based global appearance check. The approach is highly accurate, ro-
bust, and fast in identifying images even when altered by diseases, implants, or imaging
artifacts. The robustness and efficiency of the algorithm come from: (1) the accurate
and fast local appearance detection mechanism with the sparse shape prior constraint,
and (2) the complementarity of local appearance detection and global appearance check.
The experimental results on a large-scale chest radiograph view position identification
task and a multi-class medical radiograph annotation task have demonstrated the ef-
fectiveness and efficiency of our method. As a result, minimum manual intervention is
required, improving the usability of such systems in the clinical setting. Our algorithm

has already been integrated into an advanced image visualization workstation for en-
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abling content-sensitive hanging-protocols and auto-invocation of a CAD algorithm on
identified PA-AP chest images.

(2) Regarding the work for mammographic mass segmentation, the proposed MLS
approach is different from previous approaches, by specifically addressing the technical
issue of effective inclusion the ill-defined margins and spiculations for segmentation.
The advantages of the MLS approach can be summarized as follows. (1) By image
sub-patch level modeling (ISLM), the algorithm can enhance the mass structure to be
segmented, while substantially suppressing the influence from clutters and background
structures. Traditional region growing based methods [45] may easily “flood” into
these unwanted areas, if they are designed to include more mass margin portion. (2)
In the probability map (PM) generated by ISLM, image values for the mass are more
uniform than the original image patterns (e.g., intensity and texture). In other words,
the method is robust in processing masses with the ill-defined margin and appearance
variations, which are normalized through ISLM. Therefore, more mass margin can be
included relatively easily in comparison with methods directly using the image intensity
and gradient information [49; 50].

By integrating spiculation detection, we believe that the MLS approach is a more
effective segmentation method for its ability in delineating ill-defined margins, irregular
shapes and spiculations. This shall benefit the mass characterization module in many

mammographic CAD/CADx systems.

4.2 Future Work

For the future work, many components of the proposed algorithms could be further
investigated and tested with more solid experiments:

(1) Regarding the image classification work, a worthwhile study would be to run
experiments with more image classes to further investigate the current algorithm’s scal-
ability and robustness. With more images of different anatomy classes to be recognized

(with high accuracy), the algorithm would have the potential to be integrated with
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current PACS systems to benefit organizing medical image data. From the algorithm
development point of view, many of the components of the algorithm could be further
enhanced. For example, different landmark detection algorithms based on various fea-
ture extraction and classification methods could be investigated. Graphic model based
outlier detection algorithms could be investigated for the landmark filtering stage. Last
but not least, other global appearance filtering mechanisms could be substituted in the
framework to see the potential gain of the overall performance.

(2) Regarding the proposed MLS algorithm, it is of value to test on a large database
with more types of masses in order to confirm the robustness of the method s in handling
different cases in the real clinical environment. Although the method is targeted at ill-
defined and spiculated masses in this work, theoretically, it should also be able to
handle other types of masses, e.g., masses with circumscribed shape and well-defined
margins, given that a suitable training set is provided. It is also interesting to see
how to integrate the (learning-based) shape prior constraint into current framework,
which would especially benefit for segmenting masses with regular shapes. We have
also learned that the ISLM immediate output, i.e., PM, is a desired by-product of
the approach, which could be used as the image content descriptors for analyzing the
characteristics of mammographic masses. These features may be useful for automatic
analysis of malignancy of breast lesions and for retrieving mammograms with similar

image patterns in a content-based image retrieval system [63].
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Appendix

The segmentation results for all masses. For each mass, six images are shown.
They are from left to right: original ROI, segmentation result of the maximum
likelihood method [45](named as “ML”), segmentation result of the maximum
likelihood function analysis method [45](named as “MLFA”), segmentation re-
sult of the level set method [49](named as “LS”), segmentation result of our
method (i.e., MLS), and manual segmentation. The margin and shape BIRADS
descriptors provided by a radiologist are given in the label under the original
ROls.
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