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Design and Implementation of the VirtuOS Operating System

Ruslan Nikolaev

(ABSTRACT)

Most operating systems provide protection and isolation to user processes, but not to critical

system components such as device drivers or other systems code. Consequently, failures

in these components often lead to system failures. VirtuOS is an operating system that

exploits a new method of decomposition to protect against such failures. VirtuOS exploits

virtualization to isolate and protect vertical slices of existing OS kernels in separate service

domains. Each service domain represents a partition of an existing kernel, which implements

a subset of that kernel’s functionality. Service domains directly service system calls from

user processes. VirtuOS exploits an exceptionless model, avoiding the cost of a system call

trap in many cases. We illustrate how to apply exceptionless system calls across virtualized

domains.

To demonstrate the viability of VirtuOS’s approach, we implemented a prototype based on

the Linux kernel and Xen hypervisor. We created and evaluated a network and a storage

service domain. Our prototype retains compatibility with existing applications, can survive

the failure of individual service domains while outperforming alternative approaches such

as isolated driver domains and even exceeding the performance of native Linux for some

multithreaded workloads.



The evaluation of VirtuOS revealed costs due to decomposition, memory management, and

communication, which necessitated a fine-grained analysis to understand their impact on the

system’s performance. The interaction of virtual machines with multiple underlying software

and hardware layers in virtualized environment makes this task difficult. Moreover, perfor-

mance analysis tools commonly used in native environments were not available in virtualized

environments. Our work addresses this problem to enable an in-depth performance analysis

of VirtuOS. Our Perfctr-Xen framework provides capabilities for per-thread analysis with

both accumulative event counts and interrupt-driven event sampling. Perfctr-Xen is a flex-

ible and generic tool, supports different modes of virtualization, and can be used for many

applications outside of VirtuOS.

Perfctr-Xen is based upon work supported by the National Science Foundation (NSF) under

Grant CSR–AES #0720673. VirtuOS is not supported by any grant.
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Chapter 1

Introduction

An operating system (OS) is an essential part of modern computer systems. It not only

manages system resources such as CPU, memory, and peripheral devices, but also provides

standard interfaces for user programs to access these resources safely and concurrently. Mod-

ern operating systems support multiuser environments, provide sophisticated graphical user

interfaces (GUI), and go well beyond simple resource management.

As the complexity of OS grows, it becomes crucial to build safe, secure, and reliable systems

that are more resilient to bugs, less vulnerable to malicious code and provide stronger pro-

tection guarantees for their components. Despite substantial advances in operating system

technology over the past several decades, building such robust systems remains a challenge.
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1.1 Motivation

Modern general purpose OS require that an application runs in its own protected virtual

address space. System critical data resides in the kernel’s address space where it cannot be

directly accessed by applications.

This mechanism protects user processes from each other and the kernel from misbehaving

user processes, but falls short of protecting the system from failing kernel components. The

failure of just one kernel component generally causes the entire system to crash. Major

offenders are device drivers [43, 47, 54], which reportedly caused 65-83% of all crashes in

Windows XP [43,54,73]. These components are numerous, hardware specific, often shipped

by third parties with various degree of quality and are likely to be less tested than core

system components due to a more limited user base. Common software bugs in drivers

include improper use of resources and protocols, race conditions, and deadlocks (39% of all

Linux driver bugs [84]).

To reduce the impact of faults, existing methods rely on decomposition, a process of splitting

an OS kernel into multiple parts. The key challenge in this process is to provide strong

isolation of the decomposed parts while retaining good performance, and compatibility with

existing systems code and applications. Existing solutions run system components in sepa-

rate protection domains to isolate system resources such as memory. For instance, microker-

nels move device drivers and other system critical code to user space. A number of driver

protection schemes provide separate virtual memory address (VMA) spaces for kernel-mode
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drivers through individual per-driver page tables, or move drivers to user space. Lastly, vir-

tual machine-based approaches rely on a hypervisor to isolate memory and other resources.

With a few notable exceptions [92], most existing solutions also run system components in

a less privileged mode to provide stronger isolation and limit the impact of malicious code.

An Input/Output Memory Management Unit (IOMMU) [3, 7] can additionally be used in

some systems to guard against misbehaving devices and provide even stronger isolation.

Retaining good performance is often challenging. Microkernels historically required effort to

reduce interprocess communication (IPC) costs [50, 65]. Reducing IPC overheads is critical

since components in microkernels interact solely through IPC. A single operation such as

reading a file may require several IPCs to complete.

Compatibility with applications and systems code can also be challenging. Microkernels

historically required effort to retain compatibility with existing applications. To provide

transparency for applications, either an emulation layer was implemented [49], or a multi-

server OS [45,55] was built on top of a microkernel. Alternatively, hardware virtual machines

can be used to create strongly isolated domains in which to separate software components.

The use of virtual machines is particularly attractive if application and kernel compatibil-

ity is desired. Similar to microkernels, virtual machines require careful consideration and

optimization of their inter-VM and VM to hypervisor communication [52,71,85].

Although virtual machines and microkernels have nonidentical goals and motivations, they

occupy the same larger design space [49, 52]. For example, modern hypervisors were used

to achieve microkernel-like isolation of device drivers [42]. On the other hand, microkernels
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were used as a foundation for virtual machine monitors [41], or even to support the reuse of

existing device drivers [64] within the confines of a virtual machine.

1.2 VirtuOS

This work explores VirtuOS1, an alternative OS design that occupies a new point in the

microkernel-VM design space. VirtuOS uses hardware-based virtualization to safely isolate

larger pieces of kernel code into separate service domains, which house device drivers and a

specific set of related with them kernel services, such as a networking stack or file system

drivers. VirtuOS provides transparency to applications, excellent compatibility with existing

systems code, and retains good performance especially for multithreaded programs. User

processes run in a dedicated primary domain as shown in Figure 1.1. Since all programs

communicate with the underlying kernel exclusively through system calls, the system call

layer is an ideal place to dispatch program requests to different virtual machines. VirtuOS

allows user processes to directly interact with service domains by means of an exceptionless

system call interface [88], which was originally proposed as a substitute for the traditional,

exception-based system call mechanism used in Linux. It reduces both direct costs due to

CPU mode switches as well as indirect costs due to TLB and cache pollution. The use

of an exceptionless model can provide substantial performance improvements, particularly

1First published in [75]: “VirtuOS: An Operating System with Kernel Virtualization” by Ruslan Niko-

laev and Godmar Back. In Proceedings of the 24th ACM Symposium on Operating Systems Principles

(Farmington, PA, USA, 2013), SOSP13, pp. 116-132.
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for multithreaded server applications. In our work, we adopt the exceptionless interface to

organize efficient communication between user processes and service domains. We separate

system calls across primary and service domains and dispatch user process system calls to

different domains. A demultiplexing mechanism allows application-based specialization and

redundancy by operating multiple service domains for groups of user processes. Because

programs usually do not invoke system calls directly but rather make use of the C library

as an intermediary, exceptionless calls can simply be integrated into the C library, thus

obviating the need to modify programs. VirtuOS design is fully transparent to programs

which are unaware of the service domain’s presence and do not need to be modified for

VirtuOS.

Figure 1.1: Architecture of VirtuOS.

The architecture of VirtuOS is extensible by adding new service domains. VirtuOS service

domains can be created with relatively little effort. Each service domain includes a specialized

back-end driver which facilitates handling of system calls. The back-end driver from one
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service domain can be reused for another by modifying domain-specific system call handler

routines. This design also retains excellent compatibility with existing code; most of the

handler routines simply redirect requests to the corresponding kernel functions designated

to handling traditional system calls arriving through a call gate. For example, a network

service domain runs a slightly adapted version of an existing OS kernel (∼ 1600 lines of

changes) and its back-end driver (∼ 3100 lines), allowing reuse of major components such as

the socket layer, TCP/IP implementation, and unmodified device drivers. We allow direct

access to the hardware from service domains using PCI passthrough [9] which maps one or

more physical devices to a virtual machine. We also use IOMMU [3, 7] to guard against

misbehaving devices.

To adopt exceptionless system calls, we had to solve a number of unique challenges because

service domains are isolated from each other and from the primary domain in separate

virtual machines. File descriptors, credentials, and other relevant process information need

to remain consistent across different domains. Since each domain manages file descriptors

independently, VirtuOS uses a translation mechanism which allows processes to view all file

descriptors as if they belonged to a single domain. Considering that system call arguments

may point to user memory, we also had to implement interdomain memory sharing for each

process allowing the exchange of data across different domains.

We developed a prototype which implements a networking and a storage service domain to

demonstrate the feasibility of this design. We used the Xen hypervisor along with the Linux

kernel for VirtuOS’s domains, including modified versions of the uClibc [14], NPTL [34] and
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libaio [6] libraries. We tested our system with a wide range of server and client programs

such as OpenSSH, mySQL, Apache, and Firefox.

We evaluated the performance for server-based workloads both under failure and non-failure

scenarios. We found that VirtuOS can recover from the failure of individual service do-

mains after restarting those domains and the processes that were using them. For network

throughput tests and multithreaded transaction processing benchmarks, we found that Vir-

tuOS meets or exceeds the performance of not only a split-driver model but also native

Linux, indicating that it retains the performance benefits of exceptionless system call dis-

patch for those workloads. The performance loss for applications that do not benefit from

the exceptionless model remains within a reasonable range.

1.3 Perfctr-Xen

Running performance-critical applications in virtualized systems is challenging because of

virtualization overhead and the difficulty of making appropriate resource allocation and

scheduling decisions, and VirtuOS is no exception. Commonly used performance evaluation

frameworks extensively exploit profiling to allow systems and application developers to un-

derstand the performance of their applications. Such profiling frameworks rely heavily on

hardware performance counters provided by modern CPUs. These counters provide informa-

tion about hardware-related events such as cache misses, branch mispredictions, and many

others.
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Thorough performance analysis of VirtuOS mandates per-thread monitoring support for

applications. Because guests running in the system are unaware of each other, hardware

performance counters must be specially treated by the hypervisor to ensure that each guest

sees virtualized counters that account only for events occurring for that guest. However,

existing solutions for the Xen, KVM, and VMware ESX hypervisors [4, 36, 37, 71] have

a number of restrictions, which include lack of per-thread monitoring, reliance on specific

modes of virtualization, support for a limited number of microarchitectures, and limited

monitoring mode support (e.g., profiling but not programmatic accumulative counting).

As the second contribution of this dissertation, we developed Perfctr-Xen2, an infrastructure

to provide direct access to hardware performance counters in virtualized environments using

the Xen hypervisor. Our framework supports both programmatic accumulative mode count-

ing and interrupt based profiling. In accumulative mode, the hypervisor maintains offset

values and exposes them to guests allowing global performance counters to be translated

into per-thread values (offsetting technique). Perfctr-Xen relies on the cooperation of guest

kernel and underlying hypervisor to provide profiling tools running in the guest with access

to performance counters that is compatible with the APIs used in native, unvirtualized envi-

ronments, notably PAPI [23]. Consequently, frameworks and libraries that rely on PAPI can

be used inside Xen and VirtuOS, such as HPCToolkit [12] or TAU [87]. To accomplish this

compatibility, we modified both the Xen hypervisor as well as the guest kernel running inside

2First published in [74]: “Perfctr-Xen: a framework for performance counter virtualization” by Ruslan

Nikolaev and Godmar Back. In Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments (Newport Beach, CA, USA, 2011), VEE11, pp. 15-26.
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each virtual machine. Perfctr-Xen supports all modes of guest virtualization and exploits

optimizations that avoid trap-and-emulate overhead. Although our implementation focuses

on Xen, the techniques we use are applicable to other hypervisors.

We used Perfctr-Xen to analyze memory copying overhead in VirtuOS by measuring the

numbers of various L1/L2 cache events. Perfctr-Xen has proven to be useful in validating a

hypothesis for the cause of this overhead.

1.4 Contributions

The technical contributions of this dissertation with respect to operating system design are

the following:

(1) An approach to partitioning existing operating system kernels into primary & service

domains, each providing a subset of system calls;

(2) A method for intercepting and demultiplexing of system calls using a user library; and

the dispatching of remote calls to service domains using an exceptionless mechanism;

(3) A way to coordinate process and memory management in the primary and service domains

so that applications can make transparent use of service domains.

The technical contributions with respect to performance monitoring in virtualized environ-

ments are the following:

(1) The application of an offsetting technique that allows direct access to logical per-thread
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counter values from user mode while avoiding the costs associated with saving and restoring

hardware performance counter registers;

(2) The optimization of guest and hypervisor communication to minimize and amortize the

costs associated with their coordination, while avoiding the costs of trapping and emulating

counter-related instructions;

(3) A technique for increasing the accuracy of performance monitoring by correcting for

monitoring overhead.

1.5 Roadmap

Chapter 2 reviews principles of virtualization, OS design, abstractions, and performance

monitoring libraries and toolkits.

Chapter 3 discusses challenges and introduces a general design outline for VirtuOS. Chapter 4

focuses on implementation aspects of VirtuOS.

Chapter 5 lays out the design and implementation of Perfctr-Xen. We discuss hardware

performance counters and introduce an approach that allows us to adopt tools for virtualized

environments. We evaluate Perfctr-Xen with series of micro- and macrobenchmarks.

Chapter 6 discusses evaluation of VirtuOS using Perfctr-Xen, demonstrates real-life perfor-

mance with mySQL and Apache, and presents a failure recovery example.

Chapter 7 provides an in-depth review of related work in the areas of kernel fault tolerance,
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OS optimization and performance monitoring. We conclude our work in Chapter 8.



Chapter 2

Background

2.1 OS Abstractions

OS organize the control flow of programs, manage shared access to the CPU, memory,

devices and other resources, protect core system components and programs from each other,

and provide services to programs. Using a multi-tasking OS, several user programs can run

concurrently on the same system. Processes and threads function as abstractions for the CPU.

They encapsulate the execution state of programs and their constituents. An OS scheduler

allocates and shares CPU resources for processes and threads. All processes run isolated

from each other in their own virtual memory (VM) address space. VM provides a view of

memory that is specific to each process and its constituents and which is distinct from the

actual physical memory address space. An OS memory manager allocates physical memory

12
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and maintains page tables for virtual-to-physical address mappings. Core components such

as the scheduler and memory manager together constitute the OS kernel.

Modern OS provide protection against misbehaving programs through dual mode operation.

For this purpose, CPUs provide privileged and deprivileged modes of execution. The latter

restricts access to privileged CPU operations (e.g., reloading page tables). All user program

code executes in deprivileged mode; this helps to isolate and contain any invalid operations

in a program and avoids adverse effects on the remaining parts of the system. A misbehaved

program will be terminated without causing any unrecoverable damage to the system. CPUs

provide support for a mode switch between privileged and deprivileged modes.

Most operating systems today use files, which are named entities comprising a sequence of

bytes stored on a storage device. Files are abstractions for I/O devices. OS provide facilities

to open and close files and associate open files with file descriptors. UNIX-compatible OS

such as Linux adopted the concept of “everything is a file,” which postulates that not only

regular on-disk files but also devices, network sockets and pipes are handled through the

same file-descriptor based interface. File descriptors are represented as integers; the kernel

maintains file descriptor tables to look up any file related data structures. Devices are handled

using device drivers, and an OS exposes access to them through the /dev file system.

The OS kernel provides services for programs, such as access to files, by means of a system

call interface. Most often, the C library is used as an intermediary between a kernel and

programs. The C library encapsulates most system calls into function calls to provide an

architecture-independent interface.



14

2.1.1 Processes, Threads and Interrupts

Each process consists of one or more threads, which are entities that share a process’s virtual

memory address space, file descriptor table, and other system defined resources. Threads

can be executed concurrently but are not isolated from other threads in their respective

processes.

Task
OS 

Kernel

Thread

1:1 model N:1 model M:N model

Task Task Task Task

CPU HWCPU CPU

Thread Thread Thread Thread Thread Thread
User

Processes

Figure 2.1: Threading models.

For each process, the kernel defines one or more tasks, which are abstractions that comprise

the execution state of entities that can be executed concurrently and possibly on different

CPUs. Since CPU resources are limited, the OS scheduler must accommodate the execution

of all tasks by suspending some tasks and resuming others from time to time. This procedure

is known as a task context switch.

Threading models determine how threads are mapped onto tasks, three examples of which

are shown in Figure 2.1. For example, the N:1 model requires only one task per process since
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all threads within the process are mapped onto a single task. Tasks are scheduled by the

OS scheduler but the OS kernel is unaware of threads mapped onto the task. Consequently,

processes require a user level scheduler to perform thread context switches, which periodically

suspend one thread and resume another. The N:1 model needs only minimal kernel support

but it only allows the use of a single CPU for all threads, which limits its usability in

manycore systems. Most modern OS such as Linux adopted an 1:1 model, which mandates

that every thread is provided with a separate task. The 1:1 model is straightforward and

makes scheduling less complex since it does not need a user level scheduler. All threads are

scheduled directly by the OS scheduler. Moreover, the 1:1 model does not require special

handling of blocking system calls; since all threads have separate tasks, one task’s blocking

will affect only one thread and not prevent other threads from running, unlike in the N:1

model. The 1:1 model has the disadvantage that it requires a mode switch for each thread

context switch because context switches are only done through the OS scheduler. The

M:N model was proposed to reconcile the N:1 and 1:1 models. M threads belonging to a

single process are mapped onto N tasks. Since normally M ≥ N , a user mode scheduler

is still required to suspend some threads and resume others. The M:N model can be used

in manycore systems and has the advantage of being capable to context switch between

different threads in a process without using underlying OS kernel.

To organize asynchronous communication with devices, OS use interrupts. Interrupts tem-

porarily change the flow of control of the currently scheduled task to execute directly in the

context of that task. As a consequence, interrupt handlers cannot use potentially blocking
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operations, i.e. cause a task to be switched out. If blocking is needed, special tasks known as

kernel threads can be scheduled by an interrupt handler to handle specific jobs. These tasks

run in privileged mode and use the kernel’s virtual address space. To minimize the number

of kernel threads and control CPU consumption, modern kernels implement per-CPU work

queues, which may accept jobs from any interrupt handlers and execute them in the context

of dedicated kernel threads.

2.1.2 System Calls

User program tasks run in deprivileged mode but often need to execute operations imple-

mented by the OS kernel. Since kernel code needs to run in privileged mode, a system call

mechanism makes it possible for these tasks to invoke privileged kernel code.

Traditional system call implementations rely on an exception mechanism that transitions the

processor from deprivileged to privileged mode, then executes the system call code within

the context of the current task. For this purpose, modern CPUs provide special instructions

to either increase or decrease the CPU’s current privilege level. To prevent unsanctioned

privilege escalation by a user program, transitions to the higher privilege level can happen

only through special call gates which define tables with specific kernel addresses to which

user code is allowed to jump. User code passes arguments in registers on most architectures.

The system call service routines referenced by the table are obliged to handle any arguments

containing pointers with care, taking into account that any memory addresses specified by
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user code may point to invalid locations. Traditional system calls impose substantial costs,

both direct costs due to the cycles wasted during the mode switch, and indirect costs due to

cache and TLB pollution caused by the different working sets of user and kernel code.

Exceptionless system calls [88] avoid this overhead. Instead of executing system calls in the

context of the current task, a user-level library places system call requests into a buffer that

is shared with kernel worker threads that execute system calls on the task’s behalf, without

requiring a mode switch. Effective exceptionless system call handling assumes that kernel

worker threads run on different cores from the user threads they serve, or else the required

context switch and its associated cost would negate its benefits. A key challenge to realizing

the potential gains of this model lies in how to synchronize user and kernel threads with

each other. Since application code is generally designed to expect a synchronous return

from the system call, user-level M:N threading is required, so that a thread can context-

switch with low overhead to another thread while a system call is in progress. Alternatively,

applications can be rewritten to exploit asynchronous communication, such as for event-

driven servers [89]. VirtuOS uses the exceptionless model for its system call dispatch, but

the kernel worker threads execute in a separate virtual machine.

2.2 Kernel Design Models

When designing an OS, we must decide what components should be placed in its kernel. In

this regard, two major approaches exist: monolithic kernels and microkernels.
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2.2.1 Monolithic Kernels

Monolithic kernels run the majority of system components such as the OS scheduler, memory

manager, device drivers, network stack, and file system drivers in the confines of a single

large kernel as shown in Figure 2.2. Consequently, all these components run in privileged

CPU mode and have direct access to underlying hardware.

Because components run in the kernel, they have unrestricted access to the CPU and any

hardware resources such as I/O ports, PCI registers, and DMA buffers, which makes it easier

to develop device drivers. A monolithic kernel design simplifies the interaction between

various components such as bus and device drivers because components can call each other

directly and share the same address space.

The downside of the design is the lack of isolation and confinement of components. For

example, a buggy disk device driver may access incorrect PCI bus registers, causing other

hardware and/or drivers to fail. Unrestricted access to computer resources can additionally

lead to in-memory data corruption, improper access to I/O ports, etc.

2.2.2 Microkernels

Microkernel-based OS provide an alternative to the monolithic design. They move all key

system components out of the kernel, leaving only core parts such as IPC (inter-process

communication) inside a microkernel as shown in Figure 2.3. System components run in

deprivileged CPU mode inside dedicated user processes.
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Figure 2.2: Monolithic OS.

The key advantage of the design is its ability to completely isolate different components from

each other and from the underlying kernel. Moreover, failed components can be transparently

restarted in a number of failure scenarios such as buffer overflow, interrupt errors, deadlocks,

etc. Failures do not typically result in a complete OS crash, obviating the need for system

reboot.

Access to hardware resources is more complex than in monolithic systems and requires careful

handling and protection. For example, device drivers should be both protected from each

other as well as from the underlying bus driver. Each driver should only be allowed to access

DMA buffers, I/O ports, and PCI registers pertaining to the device(s) it serves. The kernel

must map memory-mapped I/O pages and I/O ports to each process which executes a driver.

In a microkernel-based design, components communicate through IPC mechanisms such as

message passing. If one component needs to get access to facilities provided by another com-

ponent, it sends a message with a request and receives a response eventually. Microkernels
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Figure 2.3: Microkernel-based OS.

often support both synchronous and asynchronous IPC calls. Because the number of IPC

calls in microkernels may be substantial, it becomes crucial to reduce their cost [65].

Aside from optimizing IPC performance, microkernel-based systems often devote substantial

effort to creating compatibility layers for existing system APIs, e.g. POSIX. Multiserver

operating system designs pursue an alternative approach by attempting to deconstruct a

monolithic kernel’s functionality into separate servers running on top of a microkernel.

2.3 Virtualization

Virtualization allows multiple instances of an operating system to run on a single computer.

Originally introduced for VM/370 [32], the idea has later been revitalized for modern plat-

forms [24,83]. A hypervisor is a software layer that separates the virtual hardware an OS sees
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from the actual hardware and arbitrates access to physical resources such as CPU or mem-

ory. Among widely known hypervisors are Xen [17,29], KVM [48,61], VMware ESX [13,76],

and VirtualBox [27].

Virtualization improves isolation and reliability because each OS runs independently from

the others on its own virtual processors so that OS failures are contained; increases resource

utilization as the same hardware can be used for multiple purposes; and leads to better

productivity as large pieces of software can be preconfigured and installed very easily.

Over the years, virtualization has been adopted to solve various problems. Server applica-

tions extensively use system resources and may need specialized OS for efficient resource

management. For this, researchers proposed “virtual appliances,” [86] which are software

bundles containing preconfigured packages with their own OS aimed at simplified distribu-

tion and deployment. They run along with other virtual appliances and general purpose OS

on a single machine. Commercial providers of infrastructure as a service (IaaS) solutions

rely on virtualization to provide business solutions for server consolidation. Virtualization

has also been proposed as a means of utilizing manycore platforms efficiently [15]. Finally,

it has been shown that hypervisors can be utilized to provide better security and robustness

for operating systems [42,64, 81].
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Figure 2.4: Architecture of a Type-I hypervisor.

2.3.1 Hypervisor

In this work, we use Xen [17], a widely known Type I hypervisor [60] that allows execution

of virtual machines in guest domains. Type I hypervisors run directly on hardware and

should be distinguished from Type II hypervisors which run inside some existing operating

system known as host OS. In Figure 2.4 we present a diagram showing the different layers of

a Type I hypervisor system. The hypervisor itself forms the lowest layer, which consists of

the hypervisor kernel and Virtual Machine Monitors (VMMs). The kernel has direct access

to the hardware and is responsible for resource allocation, scheduling and sharing. A VMM

is a layer responsible for virtualizing and providing resources to a given operating system.

Depending on the hypervisor’s design, VMMs may or may not exist as entities separate

from hypervisor kernel. VMWare ESX [13] is one example where a clear distinction between

hypervisor and VMM is put in place.
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2.3.2 CPU Virtualization

To run several OS on a single machine, a hypervisor needs to provide guests with virtual

CPUs, entities that allow guests to have access to CPU resources while allowing the hy-

pervisor to schedule different operating systems on the available physical CPUs or cores.

Complete and transparent CPU virtualization traditionally required architectural support.

Popek and Goldberg formulated necessary and sufficient conditions for virtualization in [78].

Among the most important characteristics are fidelity, performance, and safety. Fidelity

requires that the virtual environment in which programs run should be indistinguishable

from the real hardware. To achieve performance, a substantial amount of instructions need

to be executed directly by hardware and without any additional hypervisor handling. Fi-

nally, safety requires that the hypervisor has full control of all system resources. Sensitive

instructions used by guests need to be trapped and emulated if they could affect the cor-

rectness of the hypervisor’s behavior. Trap-and-emulate is a technique for intercepting CPU

instructions and executing them using special (hypervisor) handlers. Some architectures

such as the original IA32 architecture do not meet described criteria, as they do not allow to

intercept all necessary instructions when executed in deprivileged mode [82]. To overcome

this problem, binary translation and paravirtualization techniques were proposed.

In a binary translation [11] mechanism, machine code is being processed by a translator

program. The translator program allows prefetching, inspecting and special treatment of all

relevant instructions. It was popularized by the VMware hypervisor, which first introduced

binary translation for the purpose of IA32 platform virtualization.
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Paravirtualization, a concept pioneered by the Xen hypervisor, is the adaptation of guest

operating system code to a particular hypervisor. Paravirtualization is a series of adaptations

inside the guest OS kernel code that avoids the use of untrappable instructions, reducing

emulation and management costs and yielding better performance. In a broader sense,

paravirtualization has become synonymous with any adaptation in a guest OS that facilitates

its execution on top of a virtual machine monitor.

Xen’s original paravirtualized guest implementation relied on the 4-ring protection hierar-

chy present in IA32 processors, executing the guest kernel in Ring 1, while user processes

executed in Ring 3 and the privileged hypervisor code executed in Ring 0. The MMU’s

segmentation facilities protected guest kernel code and data from user processes, but guest

kernels had to be adapted to successfully run in this mode. The advent of the x86 64 64-bit

extension of IA32 removed segmentation, making this approach less practical. Instead, pro-

cessor vendors introduced hardware virtualization extensions such as VT-x and AMD-V that

allowed the execution of unchanged guest kernels. The first generation of these extensions

supported the safe virtualization of the CPU by introducing a VMM mode distinct from the

mode in which privileged guest kernel code executes; later generations added support for

MMU virtualization via nested paging without resorting to shadow page tables. Well known

hypervisors such as Xen and VMware now provide support for hardware virtualization.

Currently Xen implements hardware machine containers (HVM) to exploit those hardware

virtualization capabilities. In plain HVM mode, a guest OS is entirely unaware that it is not

running on physical hardware. As a result, an unchanged guest kernel (such as an out-of-box
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image of a commercial OS) can be executed. Xen reintroduced the ability of guests to more

efficiently communicate with and use facilities of the underlying hypervisor in its PVHVM

mode and will continue this approach in future releases using a new design referred to as

PVH mode. VirtuOS uses PVHVM mode in its service domains; we plan to use PVH mode

once it is available. Perfctr-Xen supports PVHVM as well as traditional paravirtualization,

thus making an in-depth performance analysis of VirtuOS feasible.

2.3.3 Memory Virtualization

Conventional OS manage memory assuming that they have unrestricted control over physical

memory. Hypervisors introduce special adaptations to guest OS allowing to run multiple

guest domains at the same time. For this purpose, hypervisors distinguish virtual, physical

and machine memory address spaces. The latter is actual memory exposed by hardware.

Physical and virtual memory are guest specific and have their conventional meanings with the

only difference that physical addresses correspond to memory exposed by the VMM rather

than hardware. Hypervisors and CPUs provide support for virtual-to-physical, physical-to-

machine and virtual-to-machine address translation. Since address translation is done at

page granularity, hypervisors and guests refer to the physical and machine addresses using

their physical and machine frame numbers.

Fully-virtualized guests are completely unaware of the underlying hypervisor. Thus they do

not know anything about machine frames and treat physical frames as if they represented
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actual hardware exposed memory. Guests create page tables containing virtual-to-physical

memory mappings. However, these page tables cannot be used by the hardware since phys-

ical frames do not correspond to actual memory locations. The hypervisor will trap any

attempt to load such page tables and substitute them with shadow page tables. Shadow

page tables are created and maintained by the hypervisor; their entries are created on de-

mand and contain virtual-to-machine memory mappings generated by the hypervisor from

the corresponding guest page tables and the physical-to-machine (P2M) hypervisor transla-

tion tables. The hypervisor manages shadow page tables transparently; they are not exposed

to guests. Because maintaining shadow page tables is costly, CPU vendors introduced nested

page tables. This technique eliminates shadow page tables and trapping by providing an ad-

ditional hardware translation layer. The first layer is for regular OS page tables containing

virtual-to-physical mappings. The second layer is for physical-to-machine mappings and is

managed by the hypervisor.

In the case of paravirtualization, guests are adapted to assist the hypervisor with mem-

ory management. Paravirtualized guests still have physical frames but unlike in the fully-

virtualized case, they have direct access to the P2M translation table, allowing them to

perform physical-to-machine translation. Because of this, no shadow page tables are nec-

essary, and guests create page tables containing entries with virtual-to-machine mappings.

The hypervisor will verify the consistency of page tables before loading them to make sure

that the range of machine addresses is valid.
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2.3.4 I/O Virtualization

Apart from virtualizing CPU and memory, a hypervisor needs to organize device sharing.

Because hypervisors are typically small and do not include third party components, device

drivers are usually executed in a host OS (Type II hypervisors), specialized driver domains, or

a dedicated privileged domain (e.g., Dom0 in case of Xen). Usually, the privileged domain has

unrestricted access to hardware. For all other guest domains, 3 options exist: (1) Complete

emulation of devices. In this case, the privileged domain will emulate devices and guests will

access them as if devices were some real piece of hardware; (2) a Split driver model in which

drivers consist of two parts that interact with each other using inter-domain communication

facilities. One side (normally a privileged domain) runs a back-end driver which provides

shared access to physical devices, and the other side (other guests) runs a front-end driver

to expose access to that device; (3) Direct I/O in which a device is disabled in the privileged

domain and reassigned to a specified guest.

Split Driver Model

To share devices and provide safe access to guest OS efficiently, some hypervisors such as

Xen introduced specialized drivers that rely on inter-domain communication facilities to

achieve good performance. The hypervisor includes an inter-domain memory sharing API

that allows domains to share memory, which is accessed through guest kernel extensions.

Event-channels provide a inter-domain signaling facility. Using an event channel, a guest
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domain can trigger an interrupt in another domain such that a corresponding IRQ handler

is executed. Split drivers use these facilities to implement I/O device ring buffers to exchange

data; batching of concurrent requests may be used to minimize the number of interrupts.

The split driver model also provides the option of placing drivers in their own, dedicated

driver domain [42, 85]. Though VirtuOS does not use a split driver model, it uses both the

shared memory facilities and event channels provided by Xen.

Direct I/O

The most recent generation of processors and chip sets provides safe I/O virtualization

facilities, which are supported by modern hypervisors such as Xen. These facilities allow

guest domains direct access to a piece of hardware in a manner that allows the safe assignment

of devices to domains. Devices and drivers are isolated so that failure in either of them cannot

adversely affect other domains. VirtuOS relies on two key facilities: PCI passthrough and

IOMMU.

In Xen, PCI passthrough allows hypervisors to assign access to devices residing on a PCI

bus to guests other than Dom0, without requiring emulation or paravirtualization. These

guests can access those devices using unchanged drivers and they have full ownership of

those devices. To avoid collisions, the privileged Dom0 domain excludes those PCI addresses

from the I/O space it manages. To make PCI passthrough safe, the physical presence of an

Input/Output memory management unit (IOMMU) is required, along with software support

from the hypervisor. An IOMMU remaps and protects addresses and interrupts used by
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memory-mapped I/O devices. It thus protects from devices and drivers that might make

improper use of DMA or interrupts. VirtuOS relies on safe I/O virtualization facilities to

execute unchanged driver code in service domains.

Self-virtualizing Hardware

Hardware designers have proposed the use of self-virtualizing devices [79], which define vir-

tual devices that share same physical device. The device’s firmware is aware of the presence

of multiple guest domains and provides support for multiplexing its features to them. This

facility could be used in VirtuOS to share the same physical device by multiple service

domains. Therefore, VirtuOS should be able to benefit from this technology as it emerges.

2.4 Sharing vs. Isolation

Figure 2.5: Spectrum of sharing vs. isolation.

As operating systems evolved, different approaches with respect to sharing and isolation were

proposed. In Figure 2.5, we show the relationship of different abstractions with respect to

these two parameters. Threads provide virtually no isolation but they share almost all crucial
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program resources such as virtual memory space and file descriptors. While processes provide

good isolation with respect to memory accesses and file descriptor management, they share

the same file system, process ID namespace, system devices, etc. In a corporate environment,

it is useful to share computer system resources between all employees. This leads to operating

system sharing and the need to set up independent and isolated environments for different

employees. LxC (Linux Containers) [90] is an example of a container based operating system

which is able to provide different user environments through process filtering, changing root

file system and networking isolation. LxC, however, does not allow to run unrelated operating

systems, shares same device drivers, memory management, CPU scheduler and other OS

critical components. Since it does not provide complete isolation of core components, it

may sometimes be limiting for people who want complete isolation of user environments.

Virtual Machines solve this problem by isolating entire operating systems from each other

and leaving only fundamental mechanisms (e.g., network sockets) for communication between

various operating systems running on the same host. Finally, distributed systems run their

components on different physical hosts, and each host may use any of the above-mentioned

methods to organize isolation or sharing within a host. One example of these are cloud

systems which provide specific services to remote users such as IaaS (Infrastructure as a

Service) or SaaS (Storage as a Service).
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2.5 Lock-free Algorithms

To support safe concurrency without locks, systems designers proposed to use lock-free al-

gorithms. Lock-free algorithms are typically built using CPU instructions that provide con-

sistent memory updates across different CPUs, such as atomic read-modify-write (RMW)

operations and/or memory barriers. Unlike spinlocks, lock-free algorithms are not affected

by preemption since all threads collaborate to guarantee that at least one thread is making

progress. If a thread is preempted in the middle of an operation, another thread will help

complete the operation to avoid blocking and maintain consistency. Lock-free algorithms

that also prevent starvation are known as wait-free algorithms. Despite their advantages,

they are hardly used in practice due to their implementation complexity.

Modern CPUs support RMW through either load-linked/store-conditional (LL/SC), or compare-

and-set (CAS) instructions. LL and SC instructions are always used in pairs. LL loads a

value from memory, and SC stores an updated value only if the previous value remains

unchanged. CAS atomically loads a value from memory, compares it with the old value

specified by the program and replaces it with the new value if the old value matches the

value stored in memory. The CAS operation returns a boolean status indicating if the old

value was updated. LL/SC provide a more general facility than CAS. Despite this, LL/SC

is often used to simply implement CAS and is not exposed directly to the programmer [93]

because of memory access restrictions that most CPUs impose in between a pair of matching

LL and SC instructions.
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2.5.1 ABA problem

Because multiple threads may access elements simultaneously, care must be taken to ensure

that the deallocation of an element by one thread will not result in memory access violations

by other threads that access the same element. In garbage-collected environments, such

memory access violations are impossible since the element will not be deallocated if some

context can still reference it. For environments with manual memory management, such

as an OS kernel, the simplest approach is to maintain a list of free elements that can be

reclaimed in the future. In this approach, memory access violations are impossible since

memory is not actually deallocated by the OS memory manager.
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Figure 2.6: ABA problem.

When elements are added to a list of free elements, other threads need to identify that the

data structure has changed. For example, consider operations that insert and remove ele-

ments from a list-based LIFO queue (stack). Typically, any stack implementation maintains
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a pointer to the topmost element as shown in Figure 2.6a. In our example, we also maintain

a list of free elements which is empty initially. One thread reads a pointer to the topmost

element (Line 2, Algorithm 2.1) before being preempted. Another thread removes A and

adds it to the free list as shown in Figures 2.6b and 2.6c. Then the second thread also inserts

B (Figure 2.6d), reclaims and inserts A (Figure 2.6e). Note that when the first thread is

resumed, the CAS operation which updates the topmost pointer (Line 5, Algorithm 2.1) will

erroneously succeed even though the stack has changed and A is no longer the same element.

This is known as the ABA problem.

Algorithm 2.1 A LIFO queue operation.
1: repeat
2: x← top

3: ...
4: new topmost element is going to be x new

5: until CAS(addr = &top; old = x;new = x new)

To solve the ABA problem either LL/SC, or CAS with tagging needs to be used. LL/SC will

prevent the ABA problem because SC (used in lieu of Line 5, Algorithm 2.1) succeeds only if

the specified A memory location is unchanged since LL (used in lieu of Line 2, Algorithm 2.1)

was executed. To solve the ABA problem with CAS, each value is associated with a unique

tag which is incremented each time a corresponding value is updated. The tags need to be

updated atomically together with their associated memory values. If the values are pointers,

a double-width operation is necessary. For the x86 64 architecture, cmpxchg16b corresponds

to the double-width CAS operation.
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2.6 Performance Monitoring

2.6.1 Hardware Event Counters

Modern CPUs provide access to hardware event counters through programmable perfor-

mance monitoring registers. Such registers can be programmed to count events of interest,

such as cache accesses or misses or branch mispredictions. The registers may be read-

only or read-write. System software controls whether registers are directly accessible to

non-privileged user applications or whether accesses must be done in privileged mode from

system code. The number of registers is typically smaller than the set of event types that

can be counted, requiring that the user select a subset of events of interest. The set of event

types is specific to a given microarchitecture and frequently changes as the microarchitecture

evolves. Most performance monitoring registers can be set up to trigger interrupts when they

overflow. This mechanism is useful to perform statistical profiling using sampling intervals

that contain a constant number of the events of interest in each interval.

2.6.2 Frameworks and Libraries

A cornucopia of performance monitoring frameworks and libraries exist. A representative set

of examples is shown in Table 2.1. These frameworks and libraries differ in their functionality,

level of abstraction, granularity of monitoring, and the interfaces upon which they rely.

At the bottom level, low-level performance counter libraries provide a thin layer over the
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Table 2.1: Characteristics of Performance Monitoring Libraries and Frameworks.

Framework Type Monitoring Direct access Interfaces Used
perf events low level Per thread Yes ioctl, mmap, sysctl
perfctr low level Per thread Yes ioctl, mmap, dev
perfmon high, low level Per thread No syscalls, mmap, signals
PAPI high level Per thread Yes (w/perfctr) perfctr, perfmon, etc

OProfile profiler System wide N/A oprofilefs
XenoProf profiler System wide N/A oprofilefs

PerfExplorer profiler Per thread N/A PAPI
HPCToolkit profiler Per thread N/A PAPI

facilities provided by the hardware, which typically does not hide architecture-specific event

types from the user. These systems consist of kernel extensions and a corresponding user

library. The kernel extensions implement operations that require privileged access, such as

reprogramming counters or setting up interrupt handling and forwarding interrupt notifica-

tions to processes. The user library provides an API for accessing event counters.

Events may be counted globally (system-wide), or per thread. Most libraries support both

modes, although some (e.g., OProfile [30]) provide only global counting. Global recording

of events has the advantage that it can account for vertical interactions at all levels of

the software stack as well as for horizontal interactions with other programs, such as local

servers. On the other hand, global profiling makes it difficult to separate events of interest

from unrelated system activities or noise.

Per-thread counting provides each thread with its own logical set of performance counters,

just like each thread has its own logical set of machine registers. To implement per-thread

accounting, the performance counter framework needs to maintain per-thread state, which
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is updated on each context switch.

Some libraries (e.g., perfctr [77] and perf events [46]1), allow a thread to directly read

the physical performance monitoring register in user mode in order to obtain fine-grained

and precise information about events during its execution, while other libraries (e.g., perf-

mon [40]) require a system call to obtain access to this information. Those systems that

provide direct access must either maintain the thread’s logical value in the physical register

while the thread is scheduled, or they must place a correction value (offset) in an agreed-

upon location (such as a memory-mapped area in the thread’s address space) that allows a

thread to compute its logical value based on the value read from the physical register.

High-level performance counter libraries such as PAPI [23] provide a layer that hides mi-

croarchitecture specific event types behind a uniform, higher-level API. Performance profilers

such as TAU [87] and HPCToolkit [12] in turn are built on top of higher-level performance

counter APIs. These profilers statistically sample events and present cumulative statistics

to the user that relates these events to instructions and functions in the user code, with

appropriate references to the source code if available.

The choice of framework influences the accuracy of measurements [97]. Bypassing high-

level APIs in favor of low-level APIs typically reduces the measurement error, but requires

architecture-specific code. The accuracy depends also on which events should be counted

(user mode only vs. user and kernel mode events [97]).

1perf events was previously known as perf counter
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To compensate for the limited number of performance counter registers, some frameworks

(perfmon, PAPI) support event multiplexing. This technique applies only a subset of the

desired event sets during subsections of a program’s execution, then scales the results to

extrapolate their values for the entire program.

2.6.3 Support in Virtual Machines

Support for performance event monitoring depends on the type of virtualization being used.

There is limited support in Xen 4.2 for selected microarchitectures when hardware-assisted

virtualization is used. In this approach, accesses to performance monitoring registers are

intercepted via traps. However, the set of architectures supported is far smaller than that

supported by PAPI, and it lacks support for traditional paravirtualized domains. A similar

approach for the KVM hypervisor is described in [36, 37].

The XenoProf [71] framework extends the OProfile [30] system-wide profiler to allow per-

domain (e.g., per guest) profiling in Xen, even when hardware-assisted virtualization is not

used. However, XenoProf does not allow independent and simultaneous profiling of different

domains. VMware’s vmkperf [4] is yet another tool for performance analysis but with no

profiling support.

Aside from these approaches, most current virtual machines disallow access to the perfor-

mance monitor registers by the guest operating systems, thus preventing widely used low-

level libraries such as perfctr and perf events from being used. Consequently, users cannot
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benefit from high-level performance profilers such as TAU PerfExplorer and HPCToolkit to

diagnose the performance of their applications when executing on top of virtual machines.



Chapter 3

Design & Architecture of VirtuOS

VirtuOS’s primary goal is to explore opportunities for improved isolation of kernel com-

ponents by exploiting virtualization without significant compromises in performance. We

present the architecture of our system in Figure 3.1. Our design partitions an existing ker-

nel into multiple independent parts. Each part runs as a separate service domain which

represents a light-weight subset of kernel functionality dedicated to a particular function.

A single, primary domain is dedicated to core system tasks such as process management,

scheduling, user memory management, and IPC.

Service domains do not run any user processes other than for bootstrapping and system

management related to a domain’s function. Our design attempts to minimize their numbers,

because the primary sole task of service domains is to handle requests coming from the user

processes managed by the primary domain.

39
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Figure 3.1: Decomposition in VirtuOS.

Our design does not assume that there is only one primary domain in which user processes

run; it could be extended to support multiple user environments, each having its own set

of primary and service domains as shown in Figure 3.2. In that scenario, conventional

hypervisor approaches such as split model drivers or self-virtualizing hardware could be used

to multiplex different service domains. This makes VirtuOS design applicable in traditional

virtualization applications.

Figure 3.2: Generalization of VirtuOS design.
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3.1 Failure Model

Our design goal is to contain faults originating in service domains only; we assume that the

primary domain is stable enough to perform core system tasks such as task scheduling, IPC,

and memory management. Service domains execute code that is potentially less reliable,

such as drivers and corresponding software stacks.

VirtuOS provides recovery guarantees with respect to failures caused by software errors and

transient hardware faults. Such hardware faults include invalid DMA memory accesses or

interrupt signaling errors. Service domain failures can be contained as long as the hypervisor

itself enforces isolation. We designed all communication between the primary domain and

all service domains such that it can tolerate arbitrary service domain failures, which implies

careful handling of any requests or responses from those domains. If a failure is detected, the

service domain must be restarted using standard hypervisor utilities. Service domain failures

affect only those processes that have started using the failed domain; only these processes

may need to be restarted.

We believe this model provides advantages compared to the alternative of rebooting the

primary domain or the entire machine, especially when multiple service domains are used

for different hardware components, such as separate network interfaces or storage devices,

which may be accessed by disjoint subsets of processes. In addition, server applications such

as web servers are often designed to use multiple OS processes, which can be restarted if

failures occur.
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3.2 System Call Design

VirtuOS processes communicate with service domains at the level of system calls. We refer

to system calls destined for a service domain as remote system calls, whereas local system

calls are directly handled by the primary domain. A modified C library contains all necessary

infrastructure to transparently demultiplex local and remote system calls and forward remote

calls to service domains. Since most programs and libraries do not execute system calls

directly, this design enables source and binary compatibility with dynamically linked binaries.

Since most POSIX system calls use file descriptors, we tag file descriptors with their cor-

responding domain. As an example, a socket(2) system call for the AF INET* families may

be forwarded to the networking service domain, which creates a socket and assigns a file

descriptor number in return. Any subsequent operation such as read(2) or write(2) will then

be dispatched to the service domain from which it originated. To avoid the need for coordi-

nation between service domains and the primary domain in assigning file descriptor numbers,

VirtuOS’s C library translates user-visible file descriptors to domain file descriptors via a

translation table. This design also allows the implementation of POSIX calls (e.g., dup2())

that assume that a process has control over its file descriptor space, but it requires that the

user-level library interpose on all file descriptor related calls.
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3.2.1 Exceptionless Dispatch

To dispatch system calls to a service domain, we initially considered the use of a tradi-

tional exception-based mechanism. We discarded this design option because every system

call would then have required exiting the virtual machine in order to use an interdomain

communication facility such as event channels, in addition to the costs associated with the

mode switch itself. Instead, we adopted the concept of exceptionless system calls described

in Section 2.1.2.

The implementation of exceptionless system calls across virtual machines poses a number of

unique challenges that are not present when applying this method to optimize the perfor-

mance of native system calls as done in FlexSC [88]. In FlexSC, the kernel worker threads

handling the system calls can easily obtain direct access to a client thread’s address space,

file descriptor tables, credentials, and POSIX signal settings. Such direct access is impossible

in VirtuOS since the kernel worker threads reside in a different virtual machine. Our imple-

mentation addresses these differences, which requires the primary domain to communicate

essential information about running processes to the service domains, which we describe in

Section 4.2.

We present the detailed architecture of VirtuOS in Figure 3.3. A front-end driver in the

primary domain kernel communicates with back-end drivers in the service domains to inform

them when processes are created or have terminated. The front-end and back-end drivers

also cooperate to establish the necessary shared memory areas between user processes and
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service domains. Each process creates two such shared areas for each service domain: (1)

one area to hold the request queue for outstanding system call requests, and (2) an area used

as a temporary buffer for system calls that transfer user data. We also added a component

to the underlying hypervisor to keep track of service domain states and domain connection

information, which is necessary for domain initialization and recovery after failures.

The request queue for outstanding system call requests consists of fixed-sized system call

entries, which contain the information needed to execute a system call. System call entries

are designed to be small so they fit into a single cache line. When a system call is dispatched

to a service domain, a system call entry is added to the request queue shared with that

domain. We adapted a FIFO/LIFO lock-free queue with ABA tagging [56, 72, 94] to ensure

that the request queue, as well as other shared queues, can be accessed safely by both the

user process and the service domain. We discuss implementation of queues in Section 4.5.
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Figure 3.3: Detailed architecture of VirtuOS.
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3.2.2 Managing User Memory Access

System call arguments may refer to user virtual addresses, such as when pointing to buffers

a system call should copy into or out of. Our design uses a copying-based strategy in which

the user process copies data into or out of a temporary buffer of memory shared with the

service domain. A shared memory region is mapped in a continuous virtual address space

region in the user program and in the service domain. During initialization, user programs

use a pseudo /dev/syscall device to create a memory mapping for this region. The primary

domain’s front-end driver, which services this device, then communicates to the back-end

drivers within the service domains a request to allocate and grant access to pages that can

be mapped into the user process’s address space.

A special purpose allocator manages the allocation of buffers for individual system calls from

this shared region. For simplicity, our implementation uses a simple explicit list allocator,

along with a per-thread cache to reduce contention. If the free list does not contain a large

enough buffer, the region can be dynamically grown via the /dev/syscall device. The region

can also be shrunk, although the allocator used in our current prototype does not make use

of this facility. Since the POSIX API does not impose limits on the sizes of memory buffers

referred to in system call arguments, we split large requests into multiple, smaller requests

to avoid excessive growth.

Although this design for managing memory access requires an additional copy, it sidesteps

the potential difficulties with designs that would provide a service domain with direct access
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to a user process’s memory. Since a user process may provide any address in its virtual

address space as an argument to a system call, direct access would require coordination with

the primary domain’s physical page management. Either pages would have to be pinned

to ensure they remain in physical memory while a system call is in progress, which would

severely restrict the primary domains flexibility in managing physical memory, or the primary

domain would have to handle page faults triggered by accesses from the service domain, which

would require complex and expensive interdomain communication. Moreover, it would be

difficult to identify which pages should remain mapped to the service domain.

3.2.3 Polling System Calls

Polling system calls such as select(2), poll(2), or Linux’s epoll wait(2) operate on sets of file

descriptors that may belong to different domains. These calls block the current thread until

any of these file descriptors change state, e.g. become readable, or until a timeout occurs.

We implement these calls using a simple signaling protocol, in which the primary domain

controls the necessary synchronization. We first partition the file descriptor set according to

the descriptors’ target domains. If all file descriptors reside within the same domain (local

or remote), a single request to that domain is issued and no interdomain coordination is

required. Otherwise, we issue requests to each participating service domain to start the

corresponding polling calls for its subset. Lastly, a local system call is issued that will block

the current thread. If the local polling call completes first, the primary domain will issue

notifications to all participating service domains to cancel the current call, which must be
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acknowledged by those domains before the call can return. If any remote call completes

first, the corresponding service domain notifies the primary domain, which then interrupts

the local call and starts notifying the other domains in the same manner as if it had completed

first. The C library combines results from all domains before returning from the call.

3.3 Thread Management

VirtuOS uses separate strategies to schedule user-level threads issuing remote system call

requests and to schedule worker kernel threads executing in service domains.

3.3.1 User-level Thread Scheduling

User

Process Ready
Queue

Syscall Handler

Dispatch (libc-sclib)

Network
Domain

Resume

Shared
Regions

Syscall Handler

Storage
Domain

Request
Queue

Request
Queue

Figure 3.4: Sharing ready and request queues.

To retain the performance benefits of exceptionless system call dispatch, we must minimize

the synchronization costs involved in obtaining system call results. VirtuOS uses a com-
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bination of M:N user-level threading and adaptive spinning to avoid the use of exceptions

when possible. The threading implementation uses a single, per-process ready queue, which

resides in memory that is shared with all service domains. Like the per-service domain

request queues, it is implemented in a lock-free fashion to allow race-free access from the

service domains. Figure 3.4 shows the relationship between a process’s ready queue and its

per-domain requests queues. When a system call request is placed into a service domain’s

request queue, the issuing user-level thread includes a pointer to its thread control block

in the system call entry. If other user-level threads are ready to execute, the current user-

level thread blocks and performs a low-overhead context switch to the next ready user-level

thread. Once the service domain completes the system call request, it directly accesses the

user process’s ready queue and resumes the blocked thread based on the pointer contained

in the system call entry.

If there are no ready user-level threads after a system call request is issued, a user-level

thread spins for a fixed amount of time, checking for either its system call request to com-

plete or a new thread to arrive in the ready queue. Otherwise, it blocks the underlying

kernel thread via a local system call, requiring an exception-based notification from the re-

mote service domain when the request completes. Such spinning trades CPU capacity for

latency. We determined the length of the spinning threshold empirically so as to maximize

performance in our benchmarked workloads, as we will further discuss in Section 6.2. Al-

ternative approaches include estimating the cost of exception-based notification in order to

optimize the competitive ratio of the fixed-spin approach compared to an optimal off-line
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algorithm, or using an on-line algorithm based on sampling waiting times, as described in

the literature [59].

Service domains perform range checking on any values read from the shared area in which

the ready queue is kept, which is facilitated by the use of integer indices. Thus, although

a failing service domain will affect processes that use it, sharing the ready queue will not

cause faults to propagate across service domains. Though request queues are not shared

across service domains, service domains must perform range checking when dequeuing sys-

tem call requests to protect themselves from misbehaving processes; moreover, the domain

subsequently subjects any arguments contained in these requests to the same sanity checks

as in a regular kernel.

3.3.2 Worker Thread Scheduling

Each service domain creates worker threads to service system call requests. Our approach

for managing worker threads attempts to maximize concurrency while minimizing latency,

bounding CPU cost, maintaining fairness, and avoiding starvation.

We create worker threads on demand as system call requests are issued, but always maintain

one spare worker thread per process. Once created, a worker thread remains dedicated to

a particular process. This fixed assignment allows us to set up the thread’s process-specific

data structures only once. Although handling a system call request from a process must

be serviced by a worker thread dedicated to that process, all worker threads cooperate in



50

checking for new requests using the following strategy.

When a worker thread has completed servicing a system call, it checks the request queues of

all other processes for incoming requests and wakes up worker threads for any processes whose

request queue has pending requests. Finally, it checks its own process’s request queue and

handles any pending requests. If no request is pending in any queue, the worker thread will

continue to check those queues for a fixed spinning threshold. If the threshold is exceeded,

the worker thread will block.

To avoid excessive CPU consumption due to having too many threads spinning, we also limit

the number of worker threads that are spinning to be no larger than the number of virtual

CPUs dedicated to the service domain. In addition, our design allows a service domain to

eventually go idle when there are no requests for it. Before doing so, it will set a flag in

the domain’s state information page, which is accessible via a read-only mapping to user

threads. User-level threads check this flag after adding system call requests to a domain’s

request queue, and initiate a local system call to wake up the service domain if needed. To

avoid a race, the service domain will check its request queue one more time before going idle

after it has set the flag.



Chapter 4

VirtuOS Implementation

This chapter describes the specific implementation strategy used in our VirtuOS prototype,

as well as difficulties and limitations we encountered.

4.1 Effort

We implemented our system based on the Linux 3.2.30 kernel and the Xen 4.2 hypervisor. We

use the same kernel binary for the primary domain as for service domains. On the user side,

we chose the uClibc library, which provides an alternative to the GNU C library (glibc). We

selected uClibc after concluding that glibc’s code generation approach and extensive system

call inlining would make comprehensive system call interposition too difficult. Unlike when

using exceptionless system calls for optimization, we require that all system calls, no matter

at which call-site, are dispatched to the correct service domains. We replaced Linux’s pthread

51
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Table 4.1: New or modified code in VirtuOS.

Component Number of Lines
Back-end Driver 3115
Front-end Driver 2157
uClibc+NPTL 11152
libaio 2290
Linux kernel 1610
Xen 468
Total: 20792

library with our own to provide the M:N implementation described in Section 3.3.1.

Table 4.1 summarizes our implementation effort with respect to new or modified code. The

relatively small number of changes needed to the Linux kernel shows that our virtualization-

based approach enabled vertical slicing with comparably little effort.

4.2 Service Domain Implementation

Service domains handle remote system calls by redirecting requests to the corresponding

functions of the service domain kernel. To keep our implementation effort small, we reused

existing facilities and data structures whenever possible. For each process, we create a shadow

process control block (PCB) that keeps track of that process’s environment, including its

credentials and file descriptors, as well as additional information, such as the location of

the regions containing system call arguments and data. The data structures contained in

the shadow PCB track the data structures referenced by the process’s PCB in the primary

domain. For instance, the primary domain must keep the service domains’ view of process’s



53

credentials and capabilities in sync. Any changes are propagated to all service domains,

followed by a barrier before the next system call is executed.

We reuse the existing infrastructure to manage per-process file descriptor tables, although

the shadow PCB’s table includes only those file descriptors that were created by the service

domain for a given process. Since VirtuOS’s C library translates user visible file descriptors

before issuing system call requests, a service domain can directly use the file descriptor

numbers contained in system call arguments. Reusing the existing data structures also

ensures the correct semantics for the fork(2) system call, which requires duplication of a

process’s file descriptor tables and credentials.

We exploit the existing mechanisms for the validation of user-provided addresses, i.e. the

copy from user(), copy to user(), etc. functions that are already used in all system call

handler functions when accessing memory. We set the executing worker thread’s user memory

range (via set fs()) to accept only addresses within the shared region used for this purpose,

as discussed in Section 3.2.2. Since all data pages are in contiguous regions in both the user

process and the service domain, our system call library can pass addresses that are valid

in the service domain as system call arguments, which are computed by applying an offset

relative to the region’s known base address.
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4.3 Process Coordination

The primary and the service domains need to communicate when new processes that make

use of a service domain are created or destroyed. The front-end driver in the primary domain

informs the back-end driver of each new process, which then performs initial memory setup

and prepares for receiving system call requests.

The drivers communicate using Xen’s interdomain communication facilities. We use Xen

event channels as an interdomain interrupt facility and Xen I/O ring buffers to pass data

between domains. We establish two separate event channels. The first one is used for adding

and removing processes, as well as expanding and shrinking the shared memory regions used

by processes to communicate with the service domain. We use a request/response protocol

on this channel. We use a second event channel for all notifications coming to and from

service domains. We use two separate ring buffers, one for each direction. We modified the

ring buffer implementation to allow for one-directional communication (i.e., requests with

no responses) to support asynchronous requests that do not require a synchronous response.

Xen’s ring buffers support batching so that only one interdomain interrupt is required when

multiple requests or responses occur concurrently.

To ensure consistency, our back-end driver executes process management related requests

from the front-end sequentially. For instance, a request to remove a process must be processed

after the request to add that process. To avoid having to maintain dependencies between

requests, we use a single-threaded implementation, which may create a bottleneck for some
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workloads.

We use two optimizations to speed up process management. First, we preallocate shared

memory regions. When a new process is created, the front-end driver will attempt to use

a preallocated region to map into the new process. If successful, it will issue a request to

obtain grant references for the next region in anticipation of future processes. Otherwise, it

must wait for the previous request to complete before installing the shared region. Second,

we avoid waiting for responses where it is not necessary in order to continue, such as when

shrinking the shared memory region.

4.4 Recovery Toolkit

The front-end driver exposes a /dev/syscall service device interface for system management

and recovery. A user-mode syscall tool can start, stop, or clean-up after crash system call

service for a given service domain. We currently require a user to restart a service domain and

load its back-end driver manually. We expect that this functionality can be later integrated

into the tool to make recovery easier.

4.5 Lock-free Queues

To support safe concurrency for ready-, request- and other queues, we adapted lock-free

FIFO/LIFO queues with ABA tagging [56,72, 94], as introduced in Section 2.5.
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4.5.1 Memory Management

Since queues need to be accessed by both service domains and user processes, queues reside

in the memory regions shared between user processes and service domains. To simplify the

implementation, shared regions contain per-queue fixed-size arrays of elements. For each

queue, we maintain a list of free elements as discussed in Section 2.5.1. Initially, the free list

contains all elements from the fixed-size array.

4.5.2 Pointers and Error Validation

In VirtuOS, service domains are prepared to see queues in inconsistent states if user programs

misbehave. Since the queues are mapped to different memory address ranges in service

domains and user processes, they use indices into the fixed-size array of elements instead

of pointers so that they can easily check their validity. To prevent the ABA problem, each

index has an associated tag. For this purpose, we defined a dptr structure which consists of

an index and tag.

4.5.3 LIFO Queues

Each LIFO queue (stack) consists of a list of allocated elements and a list of free elements.

The list of allocated elements uses the alloc top variable to point to the top of the list as

shown in Figure 4.1a. Elements are stored in a per-queue fixed-size array of elements (ents).

Since each element in a singly-linked list needs to point to its successor, LIFO queues also
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have a fixed-size array of indices (next). This array records the indices of successor elements

as shown in Figure 4.1b.
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Figure 4.1: Lock-free LIFO queue.

To enqueue an item (Algorithm 4.2), an element is taken from the top of the free list (Line 2),

initialized with the item’s data (Line 5) and inserted at the top of the allocated list (Line 6).

To dequeue an item (Algorithm 4.3), an element is taken from the top of the allocated list

(Line 2), the element’s data is copied (Line 5), and the element is inserted at the top of the

free list (Line 6). To check that a queue is non-empty (Algorithm 4.4), we simply verify that

the top of the allocated list does not equal NULL.

To insert an element into the allocated or free list, we use the procedure shown in Algo-

rithm 4.5. This procedure reads the current top value (Line 3), initializes the successor’s

index for the allocated element with it (Line 4), and atomically changes the top value with

index (Line 5) if top did not change since it was read. If top changed, the entire procedure
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Algorithm 4.2 Enqueue operation for LIFO queues.

1: function Enqueue(q: queue *, data: entry data *)
2: i← Remove(next = &q → next; top = &q → free top;max = MAX ENTRIES)
3: if i = STATUS ERROR or i = STATUS EMPTY then
4: return STATUS ERROR

5: Initialize q → ents[i] with data

6: Insert(next = &q → next; top = &q → alloc top; index = i)
7: return STATUS SUCCESS

Algorithm 4.3 Dequeue operation for LIFO queues.

1: function Dequeue(q: queue *, data: entry data *)
2: i← Remove(next = &q → next; top = &q → alloc top;max = MAX ENTRIES)
3: if i = STATUS ERROR or i = STATUS EMPTY then
4: return i

5: Copy q → ents[i] to data

6: Insert(next = &q → next; top = &q → free top; index = i)
7: return STATUS SUCCESS

Algorithm 4.4 Checking if a LIFO queue is non-empty.

1: function Check(q: queue *)
2: cur top← (q → alloc top)
3: if cur top.index = NULL INDEX then
4: return STATUS EMPTY

5: else if cur top.index ≥MAX ENTRIES then
6: return STATUS ERROR

7: else
8: return STATUS SUCCESS
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will be repeated. To remove an element from a list, we use the procedure shown in Algo-

rithm 4.6. This procedure reads the current top value (Line 3), gets the successor’s index

(Line 8), and atomically updates the top value with the successor’s index (Line 9). The

method returns the previous top value (i.e., the index of the removed element).

Algorithm 4.5 Inserting an element into a LIFO queue list.

1: function Insert(next: integer[], top: dptr *, index: integer)
2: repeat
3: cur top← ∗top
4: next[index]← cur top.index

5: until CAS(addr = top; old = [cur top.index, cur top.tag];
new = [index, cur top.tag + 1])

Algorithm 4.6 Removing an element from a LIFO queue list.

1: function Remove(next: integer[], top: dptr *, max: integer)
2: repeat
3: cur top← ∗top
4: if cur top.index = NULL INDEX then
5: return STATUS EMPTY

6: else if cur top.index ≥ max then
7: return STATUS ERROR

8: next top← next[cur top.index]
9: until CAS(addr = top; old = [cur top.index, cur top.tag];

new = [next top, cur top.tag + 1])
10: return cur top.index

4.5.4 FIFO Queues

FIFO queues are similar to LIFO queues except that they require separate head and tail

variables for the allocated and free lists. Each list starts with a sentinel element as shown in

Figures 4.2a and 4.2b. FIFO queues also require ABA tags for the array of indices, which

are in addition to tags for the alloc head, alloc tail, free head and free tail variables.
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Figure 4.2: Lock-free FIFO queue.

To enqueue and dequeue items, we follow the procedures shown in Algorithms 4.7 and 4.8.

Since both the head and the tail of FIFO queues need to be updated consistently using only

CAS operations, FIFO queues require threads to help each other to complete all updates.

For all operations that update queues, tails are updated using separate CAS operations.

Algorithm 4.7 Enqueue operation for FIFO queues.

1: function Enqueue(q: queue *, data: entry data *)
2: ent← Remove(next = &q → next; ents = &q → ents;head = &q → free head;

tail = &q → free tail;max = MAX ENTRIES)
3: if ent.index = STATUS ERROR or ent.index = STATUS EMPTY then
4: return STATUS ERROR

5: Initialize q → ents[ent.index] with data

6: return Insert(next = &q → next; tail = &q → alloc tail;
index = ent.index;max = MAX ENTRIES)
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Algorithm 4.8 Dequeue operation for FIFO queues.

1: function Dequeue(q: queue *, data: entry data *)
2: ent← Remove(next = &q → next; ents = &q → ents;head = &q → alloc head;

tail = &q → alloc tail;max = MAX ENTRIES)
3: if ent.index = STATUS ERROR or ent.index = STATUS EMPTY then
4: return ent.index

5: Copy ent.data to data

6: return Insert(next = &q → next; tail = &q → free tail;
index = ent.index;max = MAX ENTRIES)

Algorithm 4.9 Checking if a FIFO queue is non-empty.

1: function Check(q: queue *)
2: while True do
3: cur head← (q → alloc head)
4: cur tail ← (q → alloc tail)
5: if cur head.index ≥MAX ENTRIES then
6: return STATUS ERROR

7: suc head← (q → next[cur head.index])
8: tmp head← (q → alloc head)
9: if cur head = tmp head then
10: if cur head.index 6= cur tail.index then
11: return STATUS SUCCESS

12: if suc head.index = NULL INDEX then
13: return STATUS EMPTY

14: CAS(addr = &q → alloc tail; old = [cur tail.index, cur tail.tag];
new = [suc head.index, cur tail.tag + 1])
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To remove an element from a FIFO queue list (Algorithm 4.11), we first read the current

head and tail values (Lines 3-4). We then fetch the successor index of the sentinel element,

i.e. the first element (Line 7), and make sure that the head has not changed (Line 9). After

this, we check if the tail refers to any element behind the sentinel element. If not (Line 10),

the tail pointer is advanced (Line 13) and the entire procedure is repeated. Otherwise, we

read the data of the first element (Line 17), which then becomes the new sentinel element

(Line 18). When the method completes, the old sentinel element can be reclaimed. To check

if a queue is non-empty, we follow a very similar procedure (Algorithm 4.9), which does not

remove any elements but simply makes sure that the tail points to the sentinel element and

the sentinel’s successor index is NULL (Lines 10-13).

To insert an element into a queue list (Algorithm 4.10), we initialize the allocated element’s

successor index to NULL (Lines 2-3). The method reads the tail index (Line 5) and fetches

its successor index (Line 8). If the successor index is not NULL, the tail needs to be advanced

to the very last element (Line 16). The successor index of an element pointed by the tail

is updated to refer to the new element (Line 12). As the last step (Line 13), we attempt

to update the tail pointer to refer to the new element. If the corresponding CAS operation

fails, it has already been updated by another thread.
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Algorithm 4.10 Inserting an element into a FIFO queue list.

1: function Insert(next: dptr[], tail: dptr *, index: integer, max: integer)
2: next[index].tag ← next[index].tag + 1
3: next[index].index← NULL INDEX

4: while True do
5: cur tail ← ∗tail
6: if cur tail.index ≥ max then
7: return STATUS ERROR

8: suc tail ← next[cur tail.index]
9: tmp tail ← ∗tail
10: if cur tail = tmp tail then
11: if suc tail.index = NULL INDEX then
12: if CAS(addr = &next[cur tail.index]; old = [suc tail.index, suc tail.tag];

new = [index, suc tail.tag + 1]) then
13: CAS(addr = tail; old = [cur tail.index, cur tail.tag];

new = [index, cur tail.tag + 1])
14: return STATUS SUCCESS

15: else
16: CAS(addr = tail; old = [cur tail.index, cur tail.tag];

new = [suc tail.index, cur tail.tag + 1])

4.6 Special Case Handling

A number of system calls required special handling in VirtuOS. In this section, we discuss

the most relevant cases.

Exec. To load an executable image into a process, POSIX provides the exec(2) call. In

this call, the entire virtual memory space is reinitialized as specified in the executable image.

File descriptors are preserved unless they have the O CLOEXEC flag set, which indicates that

they need to be closed on exec. To implement POSIX semantics, we save information about

all file descriptors that needs to be preserved in a temporary file. We currently save the file

descriptor translation table and other relevant system information in a per-process temporary
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Algorithm 4.11 Removing an element from a FIFO queue list.

1: function Remove(next: dptr[], ents: entry[], head: dptr *, tail: dptr *, max: integer)
2: while True do
3: cur head← ∗head
4: cur tail ← ∗tail
5: if cur head.index ≥ max then
6: return {.index = STATUS ERROR, .data = ∅}

7: suc head← next[cur head.index]
8: tmp head← ∗head
9: if cur head = tmp head then
10: if cur head.index = cur tail.index then
11: if suc head.index = NULL INDEX then
12: return {.index = STATUS EMPTY, .data = ∅}

13: CAS(addr = tail; old = [cur tail.index, cur tail.tag];
new = [suc head.index, cur tail.tag + 1])

14: else
15: if suc head.index ≥ max then
16: return {.index = STATUS ERROR, .data = ∅}

17: result← ents[suc head.index]
18: if CAS(addr = head; old = [cur head.index, cur head.tag];

new = [suc head.index, cur head.tag + 1])
19: return {.index = cur head.index, .data = result}
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file. Before the new program is started, the C library is initialized at which point we restore

the file descriptor translation table from the temporary file and recreate any system call

pages in the new address space.

Ioctl and Fcntl. The ioctl(2) and fcntl(2) system calls contain a parameter that may

point to a memory region of variable size, depending on the request/command code passed.

For example, the ioctl(TCGETS) system call passes a pointer to a struct termios variable to

retrieve a terminal’s attributes. We handle fcntl() by treating each command code separately,

performing any necessary copies. For ioctl(), we use the IOC SIZE and IOC DIR macros to

decode memory argument size and direction, and include special handling for those ioctl()

calls that do not follow this convention.

Scatter-Gather I/O. Vectored I/O calls such as readv(2) and writev(2) allow the use of

multiple, discontiguous buffers in a single invocation. Because VirtuOS uses an intermediate

buffer in process’s shared region, we simply allocate a contiguous buffer and consolidate the

data copied into or from it. Instead of readv and writev, we execute read(2) and write(2)

calls in the service domain.

Large Buffers. A system call can potentially transfer large amounts of data. We currently

support contiguous buffers as large as 32MB as it is not very common for programs to use

larger buffers in system calls. However, we do support the proper semantics by splitting

larger requests into multiple system calls. For network-specific calls such as sendto(2) we
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additionally add the MSG MORE flag to indicate that a user has more data to transfer. This

flag indicates that the user will send more data, and the OS kernel needs to combine the

data to avoid sending partial frames.

Epoll interface. The epoll(2) API is used in Linux as an alternative to POSIX’s poll(2)

and select(2) functions. In this API, epoll ctl(2) adds or removes file descriptors to and from

a watch list, which is maintained by the kernel. The epoll wait(2) operation references a file

descriptor that refers to the watch list. To simplify the implementation and avoid additional

overhead, our C library does not keep track of the individual file descriptors added or removed

in epoll ctl. Only the service domains are aware of the file descriptors in their respective

per-domain subsets. epoll ctl sets a per-domain flag when any file descriptor pertaining to

the domain is added to a watch list. We dispatch epoll wait requests to all service domains

whose corresponding domain flag is set.

Asynchronous I/O. To support asynchronous I/O for data intensive applications such

as mySQL, we had to modify Linux’s AIO library, which provides access to the AIO system

call interface. The AIO interface provides asynchronous system calls to initiate I/O requests

through AIO contexts and gathers results from associated completion queues using blocking

io getevents(2) call. Since the API allows combinations of operations pertaining to different

service domains, io getevents may need to merge results from multiple domains. Our imple-

mentation provides file descriptor translation and necessary integration with our C library

for all AIO operations. A single user perceived AIO context is mapped to individual contexts
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in each domain. Since Linux currently allows the use of AIO only for regular files, we did

not include support for network I/O in our prototype.

POSIX signals. POSIX signals interact with system calls because receiving a signal may

result in a system call interruption. For most system calls, automatic system call restarting

is supported, and control does not return to the user program after a signal is being handled.

This is the most transparent model and does not require any additional support in VirtuOS

because service domains need not know anything about signal delivery to user processes.

However, a user may also request system call interruption if a signal is pending. Calls such

as read(2) will complete with the EINTR error status after delivering the signal to the user

program. To support this behavior, we inform service domains of pending signals for in-

progress system calls. We mark the signal as pending in the remote worker thread’s shadow

process control block (PCB), resume the worker thread and let it abort the system call as

if a local signal had been produced. In addition, we make note of pending signals through

an additional flag in the system call request queue entries; this flag lets the worker thread

recognize that a system call should be aborted even if the notification arrived before the

request was started. To avoid spurious interruptions, we keep a per-thread counter that is

incremented with each system call and store its current value in each system call request. The

counter value functions as a nonce so that a service domain can match signal notifications

to pending system calls and ignore delayed notifications.
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Proc file system. The Linux /proc file system can be used to obtain information about

file descriptors and other information pertaining to a process. Some applications inspect

the information published via /proc. Our system call library translates accesses to /proc

when a user process accesses the file descriptor directory so that programs see translated file

descriptors only, hiding the fact that some file descriptors belong to service domains.

4.7 Limitations

The vertical decomposition of a monolithic kernel makes the implementation of calls that

intertwine multiple subsystems difficult. For instance, Linux’s sendfile(2) call, which directly

transfers file data onto a network connection, must be implemented via user-level copying

if the file and the network connection are serviced by different service domains. Since pipes

and user memory are managed exclusively by the primary domain, vmsplice(2) which splices

user pages into a pipe is not subject to the above limitation.

Our prototype also does not support mmap(2) for file descriptors serviced by storage do-

mains. mmap could be supported by granting direct access to the service domain’s memory,

similar to how the request queue and data pages are shared. User processes would register a

handler for the corresponding memory region to redirect faults to the service domain. The

service domain would be identified by the mmap file descriptor’s tag. When a program

accesses memory in the mmap’ed region for the first time, page faults would occur. The

primary domain’s kernel would then send requests to the service domain to share physical
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frames corresponding to the page fault addresses. Shared physical frames would be mapped

into the user virtual address space by the primary domain. The primary domain would also

need to limit the number of shared frames; it could keep a list of shared frames sorted by the

timestamp of the mapping. When the limit is exceeded, the primary domain could reclaim

the frame with the oldest timestamp to create a new mapping. The service domain would

also need to be notified to reuse the physical frame for a different file location. We leave the

implementation of mmap() for future work.

Our current prototype also does not provide transparency for file path resolution when a

storage domain is involved. To recognize accesses to files stored in a storage domain, the C

library keeps track of a process’s current working directory and translates all relative paths

to absolute ones. This approach provides a different semantics if a process’s current working

directory is removed.



Chapter 5

Performance Analysis Framework

Prior to our work, performance monitoring in virtualized environments was limited because

no existing framework provided support for all modes of virtualization; existing frameworks

also had restrictions with respect to the modes of monitoring they supported. In our Perfctr-

Xen framework, we addressed these challenges. Perfctr-Xen supports paravirtualized and

hardware-assisted modes of virtualization in Xen and it enables support for both a-mode

(accumulative mode) and i-mode (interrupt mode) monitoring. Our implementation sup-

ports the use of a wide spectrum of higher level tools and frameworks, thereby opening the

way for VirtuOS’s performance evaluation.

In this chapter, we discuss problems that occur when monitoring performance in virtualized

environments such as Xen and how the implementation of our framework addresses them.

We test the correctness and evaluate the accuracy of Perfctr-Xen in all modes of monitoring

70
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Figure 5.1: Context switching in a virtualized environment. The guest domains and the

hypervisor are both unaware of when a domain or thread switch takes place.

using several benchmarks.

5.1 Virtualizing Hardware Event Counters

The encapsulation of guest domains from the underlying hypervisor poses a difficulty for

virtualizing performance counters, because these two components are mutually unaware

of their scheduling policies. As shown in Figure 5.1, the guest kernel remains unaware if

the hypervisor suspends its domain on the physical CPU on which it runs. Likewise, the

hypervisor is unaware of when a guest kernel switches to a different user task on its domain’s

virtual CPUs.

Both inter- and intra-domain context switches involve the performance monitoring frame-

work and may require updating machine-specific (MSR) registers. First, PMU (Performance
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Monitoring Unit) configuration registers (e.g., event selectors) need to be re-programmed to

reflect the desired event configuration of the thread to be resumed. Second, if the perfor-

mance counter register contains the logical value of the thread to be resumed, it must be

restored (and the value of the outgoing thread must be saved). Otherwise, its value must be

sampled and recorded in the corresponding data structure for the thread or domain.

Since the guest domain kernel runs in a deprivileged environment, its access to the regis-

ters during intra-domain context switches must be managed by the hypervisor. For fully-

virtualized domains, a trap-and-emulate approach can be used to intercept and emulate the

corresponding privileged instructions that write to these registers. Although read accesses

could be trapped as well, current architectures allow the hypervisor to grant direct read

access to the MSR registers to guest domains. If the guest is adapted to use paravirtualiza-

tion, the cost of trapping and emulating individual privileged instruction can be reduced by

using hypercalls instead, which allows the batching of multiple updates. The guest can also

cache previously activated configurations to avoid these hypercalls if possible, thus avoiding

unnecessary writes to the MSR configuration registers.

Whereas the counter-related configuration information must be saved and restored on both

inter- and intra-domain switches, the values of the registers containing the actual event counts

require saving and restoring only if the register physically contains the thread’s logical value

during execution. Consequently, the cost of writing to these registers can be avoided when

register is not required to contain thread’s logical value, which holds true in two cases. First,

if a counter is used to obtain accumulated event counts (in ‘a-mode’), a virtualization-aware



73

guest domain can apply the necessary correction offsets to obtain the logical accumulated

value from the physical value. Second, in the case of the timestamp counter (TSC) register,

hardware-assisted virtualization via Intel VT or AMD-V allows for transparent, per-domain

offsetting, which also avoids the cost of physically updating these registers on a context

switch. In addition, on some architecture implementations, it is impossible to safely update

the TSC register since it may be shared across cores. Avoiding the save-and-restore cost is

beneficial because it can be expensive (66-93 CPU cycles per register; for Pentium 4 as much

as 18 registers must be restored).

On the other hand, if a counter is used in interrupt mode (‘i-mode’), the physical register

contains a small negative value that will overflow, thus triggering an interrupt, after a desired

number of events occurs. In this case, saving and restoring cannot be avoided. The interrupt

is handled by the hypervisor, who must forward this interrupt to the affected domain via a

virtual interrupt mechanism. Upon receipt of the virtual interrupt, the guest kernel notifies

the user-level profiling components via a Unix signal. Previous work [71] claimed that such

delivery needs to be synchronous, an assertion repeated in [36]. In Xen, the delivery of virtual

interrupts to guest domains is not synchronous, but uses a software interrupt mechanism,

thus making it possible that their delivery could be delayed by higher-priority interrupts. In

Section 5.2.2, we argue that support for synchronous interrupt delivery is not required if the

performance counter registers are restored before the guest domain is resumed, and if the

guest domain verifies that a register in fact overflowed before delivering the notification to

the user level.
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Perfctr-Xen supports performance counter virtualization in Xen in three configurations,

which required different and separate implementations: (1) for paravirtualized guest ker-

nels, which use hypercalls to communicate performance counter configuration changes from

guest to hypervisor, and in which the guest and hypervisor cooperate to maintain informa-

tion about the current thread context; (2) for fully-virtualized guest kernels, which use the

save-and-restore approach for all registers; and (3) a hybrid approach in which a guest can

run in a hardware-assisted, fully-virtualized domain but still enjoy the generality of and the

optimizations developed for the paravirtualization case.

5.2 Implementation

Our implementation is based on, and compatible with, the existing perfctr [77] implemen-

tation. In this section, we describe perfctr in detail and outline how we adapted it to

enable performance counter virtualization in Xen for paravirtualized and hybrid modes.

Section 5.2.2 describes our virtualization strategy for fully virtualized domains.

5.2.1 The perfctr library

We chose perfctr because it is widely used and provides the foundation for higher-level

libraries and frameworks such as PAPI, HPCToolkit, or PerfExplorer, as shown in Figure 5.2.

It is efficient, light-weight and allows direct access to performance counters in user mode.

Perfctr supports a wide range of x86 implementations spanning multiple generations and
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perfctr-guest

PAPI

PerfExplorer,

HPCToolkit, etc.
Guest: Profilers

Guest: High-level 

performance counters

Guest: Low-level 

performance counters (*)

perfctr-xen
Hypervisor: support for 

low-level counters (*)

Figure 5.2: Software layers in Perfctr-Xen.

Components marked with an asterisk (*) were adapted from perfctr .

different vendors, whose hardware event counter implementation can differ significantly. In

addition, perfctr works on non-x86 platforms such as PowerPC and ARM and can easily be

integrated in any Linux distribution.

Perfctr consists of a kernel driver and a user-level library. The kernel driver maintains per-

formance counter-related per-thread data structures, updates them on each context switch,

and makes them available to the user-level library via a read-only mapping. Besides miscella-

neous architecture-specific information, this per-thread data structure contains the following

information:

• Control State. Information about which PMU data registers a thread is actively using,

which events these registers count, and to which physical register address they are

mapped. Similar information is kept with respect to the use of the time-stamp counter,

which is also virtualized.
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• Counter State. For each PMU data register, as well as the TSC register, two values

are kept: Sumthread, which reflects the thread’s accumulated logical event count up to

including the last suspension point; and Startthread, which reflects the sampled value

of the counter at the last resumption point.

Perfctr supports two types of counters: a-mode and i-mode counters. A-mode counters are

used by threads to measure the number of events occurring in some region of a program.

User code explicitly reads the counter’s value when needed. When a thread wants to access

the logical value of a counter at time t, a user library function issues a RDTSC or RDPMC

instruction to obtain the register’s physical value Phys(t) and computes the logical value

Logthread(t) as

Logthread(t) = Sumthread + (Phys(t)− Startthread) (5.1)

On each context switch, the perfctr kernel driver updates the accumulated value of the

outgoing thread as Sumthread ← Sumthread + (Phys− Startthread) to account for the events

during the last scheduling period. In addition, the Startthread value of the thread to be

resumed is reset as Startthread ← Phys. Note that the actual physical register value is not

changed on a context switch for a-mode counters.

I-mode counters, which are used for sampling, trigger interrupts after a certain number of

events has occurred, which represents the sampling period. Since the value at which an

overflow interrupt is triggered is fixed at 0 and cannot be programmed, the physical register

must be set to a small negative value whose absolute value represents the desired length of
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the sampling period. I-mode counters are treated differently during a context switch: their

physical value is saved on suspend and restored on resume. The Sumthread field maintains

the counter’s accumulated logical value as for a-mode counters. The Startthread field is used

to record the physical value when a thread is suspended. Consequently, the logical value of

an i-mode counter can also be obtained using equation (5.1).

When an overflow occurs, perfctr handles this interrupt, identifies the register(s) that have

overflowed and updates Sumthread, then disables further event counting for these registers.

Using the OS’s signal delivery mechanism, a signal is sent to the user process. The signal

handler is then responsible for recording the sample based on the provided user process’s

state and it must re-enable event counting. Once re-enabled, the physical value of the register

is reset to the sampling period, which is also recorded in the data structure maintained by

perfctr .

5.2.2 The Perfctr-Xen framework

Perfctr-Xen includes a hypervisor driver, a guest kernel driver, and a modified user-level

library, whose functionality we describe in this section.

A-mode counters

The virtualization technique described in Section 5.2.1 requires that the underlying system

perform two actions during a context switch: (1) update the counter state of the threads



78

being suspended and resumed, and (2) activate the resumed thread’s control state. As

discussed in Section 5.1, in a virtualized environment, both intra-domain context switches

between threads in a domain and inter-domain context switches between domains can occur.

During intra-domain switches, the guest kernel can perform the state updates similar to

the native implementation. For inter-domain context switches, the hypervisor must perform

these updates.

We first considered having the hypervisor update each thread’s counter state directly on the

guest kernel’s behalf. This approach has the advantage that no changes to the perfctr user

library are required. However, it would create undesirable coupling between the hypervisor

and the guest kernel implementations, because the hypervisor would need to traverse guest

kernel data structures. Instead, we decided to split the control and counter state in two parts.

At the guest kernel level, a per-thread data structure is maintained. At the hypervisor level,

a per-VCPU data structure is maintained for each virtual CPU that is assigned to a guest

domain. The hypervisor provides read-only access to this data structure to the guest kernel,

who in turn maps it into the address space of each thread using performance counters.

The per-VCPU data structure is modeled after the per-thread data structure used in the na-

tive version of perfctr (in fact, our implementation uses the same data structure declarations,

as discussed in Section 5.2.2). For each PMU data register, as well as for the TSC register,

the hypervisor maintains two values per VCPU: Startvcpu and Sumvcpu. Startvcpu represents

the sampled value of the counter at the most recent resumption point of the domain or

thread (whichever happened last). If the hypervisor resumes a domain, it directly updates



79

Startvcpu after sampling the counter. If the guest kernel resumes a thread, it requests via a

hypercall that the hypervisor record the sampled value in Startvcpu. The same hypercall is

also used to activate this thread’s counter-related control state.

The field Sumvcpu represents the cumulative number of events incurred by this domain since

the last intra-domain thread resumption point until the most recent domain suspension

point. It is set to zero on each intra-domain switch during the hypercall that notifies the

hypervisor that the guest kernel resumed a thread. On each inter-domain context switch,

the Perfctr-Xen hypervisor driver updates the accumulated value of the outgoing VCPU as

Sumvcpu ← Sumvcpu + (Phys − Startvcpu) to account for the events incurred since the last

intra- or inter-domain resumption point.

The Perfctr-Xen guest kernel driver maintains the value Sumthread for each thread as in

the native case, which represents the cumulative number of events up to the last thread

suspension point. A counter’s logical value at time t is computed as

Logthread(t) = Sumthread + (Phys∗(t)− Start∗thread) (5.2)

Phys∗(t) represents the adjusted physical value that accounts for possible VCPU preemption,

which is computed as

Phys∗(t) = Sumvcpu + (Phys(t)− Startvcpu) (5.3)

Thus, the logical value represents the sum of the cumulative number of events until the last

thread suspension point, plus the number of events encountered from there until the last

domain resumption point while the domain was active, plus the events encountered since
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then until t, reduced by an adjusted start value Start∗thread.

The adjusted thread start value Start∗thread compensates for the requirement that each intra-

domain context switch includes a hypercall. Since this hypercall is introduced by our frame-

work, we wish to exclude any events occurring during its execution. Right before resuming a

guest thread, the guest kernel driver computes Start∗thread = Phys∗(tr) after returning from

the hypercall at time tr

Start∗thread = Sumvcpu + (Phys(tr)− Startvcpu) (5.4)

This adjustment excludes any events incurred between when the hypervisor sampled the

counter during the hypercall and tr. The inclusion of the term Sumvcpu ensures that all such

events are excluded, even if the domain was suspended and resumed during the hypercall by

the preemptive scheduler. Since Start∗thread takes the place of Startthread in equation (5.1),

we store its value in the Startthread field of the per-thread structure.

The use of Start∗thread enables an additional optimization. In applications in which multiple

threads count the same types of events, the hypercall accompanying the intra-domain context

switch does not change any counter’s control state. In this case, we skip this hypercall.

Consequently, Startvcpu is not reset to the counter’s current physical value and Sumvcpu is

not reset to 0. Since we still initialize Start∗thread using equation (5.4), we allow the thread

being resumed to subtract events incurred by other threads within the same domain since

Startvcpu was last initialized. This optimization reduces the frequency with which Startvcpu

is updated, which in turn increases the risk that an integer wrap-around leads to incorrect
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results when computing a thread’s logical value. To reduce this risk, we expanded the width

of the counters. Whereas perfctr uses 32 bits to represent only the lower 32 bits of all

counters, our implementation uses their actual width (64 bits for the TSC register, and 48

bits for PMU data registers; 40 bits on older CPUs). We sign-extend based on the physical

register width and store the extended values in 64-bit variables.

Figure 5.3: Example scenario for virtualized a-mode counters.

Example Scenario. Figure 5.3 shows an example scenario to illustrate equations (5.2)

and (5.3). Initially, thread 0.0 in domain 0 is running. At point T0, thread 0.0 is suspended

by the guest kernel and its accumulated event count is recorded in Sumthread. At T1, thread

0.0 is resumed. The hypervisor sets Sumvcpu ← 0; upon return from the hypercall, the

guest records Start∗thread. At point T2, the domain is suspended; the hypervisor records the

number of events elapsed in Sumvcpu and later resumes the domain at point T3. At this

point, the hypervisor samples Startvcpu as Phys(T3). Finally, the logical value computed
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at time T4 reflects the sum of the three segments during which the thread was active, while

excluding those time periods during which the thread or domain was suspended.

I-mode counters

As in the native perfctr implementation, i-mode counters require saving and restoring the

physical register value on both intra- and inter-domain context switches. In addition, when a

thread using i-mode counters is suspended by the guest, the PMU must be reprogrammed to

stop triggering interrupts for this counter. Since writes to PMU registers can be performed

only by the hypervisor, an additional hypercall is necessary when a guest thread is suspended.

Our implementation uses the Startvcpu and Sumvcpu fields in the VCPU structure to maintain

the currently active thread’s Startthread and Sumthread values at the time the thread is

resumed. While a thread is active, we set its per-thread Startthread ← 0 and Sumthread ← 0

in order to be able to use equation (5.2) to compute the logical value (if desired).

When an intra-domain context switch occurs, a guest invokes a suspension hypercall which

will update Sumvcpu and store the current physical value in Startvcpu. These values are

then preserved in the Sumthread and Startthread fields of the outgoing thread. The guest

then invokes a resumption hypercall which will restore Sumvcpu and Startvcpu based on the

previously saved Sumthread and Startthread fields of the thread to be resumed. The Startvcpu

value will be written to the corresponding physical register. When an inter-domain context

switch occurs, the hypervisor updates Sumvcpu to account for the events incurred by the

domain and preserves the outgoing VCPU’s value in its Startvcpu field before restoring the
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physical register value from the saved Startvcpu field of the VCPU to be scheduled.

Overflow interrupts are controlled by local APIC (Advanced Programmable Interrupt Con-

troller) on x86 and x86 64 platforms. When an overflow interrupt occurs, the hypervisor

reinitializes APIC vector for performance counters and forwards the interrupt to the guest

domain using a virtual interrupt we added for this purpose (VIRQ PERFCTR). When the guest

receives the virtual interrupt, it performs the same actions as in the native perfctr imple-

mentation, with three slight nuances: (1) When the guest receives the virtual interrupt, it

suspends counting for the interrupted thread, and Sumvcpu will be updated via the suspen-

sion hypercall. To prepare for the next sampling period, Startthread is reset with the negative

sampling period. (2) When the user thread resumes counting, the resumption hypercall is

executed, which restores Startvcpu from Startthread and sets the physical register value from

Startvcpu. (3) Unlike original perfctr implementation, the guest using Perfctr-Xen does not

need to do anything with APIC controller, as it is handled by the hypervisor.

The virtual interrupt is not delivered synchronously because a software interrupt mechanism

is used. As such, it is possible that the delivery of the interrupt is delayed, for instance,

because other, higher-priority interrupts are being handled first. This could have two con-

sequences. First, it could affect the accuracy because the events incurred during those

interrupts will be counted as being part of that thread’s activity. However, it is already the

case that interrupt-related guest kernel activities can perturb the currently running thread’s

event count. Second, it is possible that a higher-priority interrupt triggers a context switch

in the guest. When the virtual interrupt is eventually handled, a different thread may be
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running on the VCPU. Since we save and restore each thread’s counter state on intra-domain

interrupts, we can check if the currently running thread indeed encountered an overflow (i.e.,

if any of its counters have a non-negative value), and prevent the delivery of the overflow no-

tification if this is not the case. When a thread whose counters have overflowed is suspended

before the interrupt has been delivered, we mark it by setting an ’interrupt pending’ flag,

which is checked when the thread is resumed so that the overflow notification is delivered in

the correct context.

Memory Management

(a) Hybrid mode (b) Paravirtualized mode

Figure 5.4: Page mappings in Perfctr-Xen.

The virtualization approach described above relies on sharing data structures between hy-

pervisor and guest threads, as well as between guest kernel and guest threads. To expose the
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hypervisor’s per-VCPU data structures, we extended the existing shared info data struc-

ture in Xen. This structure is per-domain and contains data that Xen hypervisor shares

with a domain such as VCPU, event channel and wall clock information. Our extension

required increasing the structure’s size from 1 page to 8 pages; as a result, we needed to

modify those places in the code where a size of a single page was assumed. The additional

information, which is kept in 7 adjacent pages, is also made visible to user threads via a

read-only mapping to facilitate the computation of the logical counter value. User threads

also have read-only access to per-thread information which is mapped into their user space

as in the original implementation.

The way in which the per-VCPU data mapping is established differs between paravirtu-

alized and hardware-assisted mode. In paravirtualized mode, shown in Figure 5.4a, the

shared info structure does not appear as physical memory to the guest kernel. Instead,

it is allocated by the hypervisor in machine memory and appears at a fixed virtual address

in the guest kernel’s address space. The corresponding machine address is communicated

to the guest kernel through the xen start info data structure. The guest kernel uses a

Xen Guest API (xen remap domain mfn range) to create an additional mapping to these

machine frames.

In hardware-assisted mode, shown in Figure 5.4b, the guest has full control over its physical

address space. It can allocate the shared info structure in any of its physical page frames.

The chosen physical address is communicated from the guest kernel to the hypervisor. Since

shared info appears in the guest’s physical memory map, Linux’s standard mapping API
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(vm insert page) can be used to add read-only mappings into the user threads’ address

spaces.

A domain may use multiple VCPUs, and the guest kernel scheduler may migrate threads

between VCPUs based on its scheduling policy. Consequently, we expose the per-VCPU data

structures of all VCPUs to every user thread. We also added an additional field smp id to

the per-thread structure to record the VCPU on which the thread is resumed. The user-level

library uses this field as an index to access the correct per-VCPU structure.

Care must be taken to handle thread or domain migrations that may occur while accessing

those counters. We implemented an optimistic approach in which we check if the values

of the Startthread and Startvcpu fields corresponding to the TSC counter changed between

before and after the attempted access. Such a change indicates a domain and/or thread

migration, in which case we retry the access until we succeed.

Implementation Effort

In addition to providing compatibility with perfctr , we aimed to reuse as much of its codebase

as possible. We were able to reuse the architecture-dependent code portions almost entirely,

which will allow us to add support for newer CPU families as soon as they are supported by

perfctr . Both the guest kernel driver and the hypervisor driver are based on perfctr . For the

guest kernel driver, we replaced the functions that assumed direct access to the hardware

with the appropriate hypercalls. For the hypervisor driver, we needed to provide glue code
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Table 5.1: New or modified code (Perfctr-Xen).

Component Number of Lines Details
perfctr 563 VCPU support, hypervisor communication, etc.
Linux 36 shared info management, VIRQ PERFCTR
Xen 3488 perfctr-xen, shared info management, VIRQ PERFCTR

so that it could function within the Xen hypervisor rather than the Linux kernel for which

it was designed. This glue code was written in the form of preprocessor macros and inlined

functions contained in a separate header file, allowing us to avoid changes to most of the

perfctr code. Table 5.1 summarizes the total amount of added or modified lines of code in

the Xen hypervisor, the Linux guest kernel and the imported perfctr code. We note that

more than half of the number of lines of code added to Xen stems from the addition of the

perfctr driver.

Counter Virtualization in Fully-Virtualized Domains

The implementation described above requires that the guest kernel includes our Perfctr-

Xen implementation so that it can benefit from the optimizations we made to enable direct

access to counter values, which avoids the cost associated with save-and-restore for a-mode

counters. Fully-virtualized domains do not require any guest kernel changes.

For fully virtualized domains, Xen’s VPMU driver already supports counter virtualization

for PMU registers on some recent CPUs. This virtualization is achieved by using a save-and-

restore mechanism for PMU registers on inter-domain context switches as well as a hardware-
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assisted trap-and-emulate mechanism for PMU configuration registers. (A similar approach

was implemented for KVM in [36].) The hypervisor intercepts the privileged instructions a

domain uses when writing to configuration registers. A hardware-supported access bitmap

allows the hypervisor to provide exclusive access to dedicated PMU registers for a domain.

These mechanisms allow the use of the native perfctr implementation in fully-virtualized

environments for the PMU registers, but they fail to provide per-VCPU virtualization for

the TSC register, which cannot be reliably written to.

Xen exploits the TSC offsetting feature provided in hardware-assisted virtualization, so that

each domain can set its own virtual initial value. However, this per-VCPU offset δ is not

adjusted during inter-domain switches, hence does not reflect just the cycles during which

a particular VCPU was active. To address this problem, we modified the implementation

in the following way. When a domain is suspended, we take a sample of the TSC value

(TSC last ← Phys(t)). When the domain resumes, we obtain the current value TSCcur ←

Phys(t), and re-calculate the TSC offset as δ ← δ− (TSCcur−TSC last). The updated offset

is recorded by the CPU and will be reflected when a guest executes the RDTSC instruction.

5.3 Experimental Evaluation

Our Perfctr-Xen implementation was able to pass all perfctr and PAPI built-in tests. We

verified that it functioned correctly with higher-level tools such as the HPCToolkit profiler.

In this section, we discuss our experiments to validate the correctness of our implementation
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using microbenchmarks, we discuss test results obtained for the SPEC CPU2006 benchmarks,

and show profiling results obtained using the HPCToolkit running on top of Perfctr-Xen.

All experimental results were obtained for Xen 4.0.1, Linux 2.6.32.21-PvOps, perfctr 2.6.41

run on a Intel Xeon E5520 with 2x4 cores and 12 GB of RAM.

5.3.1 Goals and Methodology

In the experimental evaluation, we test the correctness of our hardware performance counter

virtualization and verify the accuracy of the obtained results.

We ran series of micro- and macrobenchmarks and compared the results we obtained with

Perfctr-Xen running inside a virtualized environment and with the unmodified perfctr library

executing in a native (non-virtualized) Linux system. We also present results for the existing

VPMU solution for HVM domains as an additional baseline where we want to emphasize

measurement accuracy.

5.3.2 Correctness

To validate the correctness of our implementation, we compared the Perfctr-Xen implemen-

tation running in Xen with the original perfctr implementation running in native mode on

the same hardware. For most counters, we expect to obtain the same value. For some coun-

ters (e.g., cache misses) we expect to see slight deviations because different domains running

in parallel may compete for the same resource.
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A-mode Counters
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Figure 5.5: Microbenchmark result for a-mode counters.

We first ran a specially developed 1-minute long microbenchmark. This synthetic mi-

crobenchmark heavily exercises branch instructions, memory accesses, and floating-point

operations without performing any useful task. In Figure 5.5, the error relative to the native

execution environment is shown for several test scenarios and event types. We considered

two domains (Dom0 and Dom1) and two threads (Thread 1 and Thread 2) in each domain,

running in parallel. Each test result is denoted as N : Dx − Ty, where N is the test case

scenario, x is a guest domain and y is a thread. We considered the following test scenarios

N , which represent different arrangements of CPU multiplexing: (1) Each domain runs on

two dedicated physical cores (PCPUs), and each thread in every domain runs on a dedicated

VCPU. (2) Each domain runs on a dedicated PCPU and all threads in every domain run on
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a shared VCPU. (3) Domains run on a shared PCPU and all threads in each domain run on

a shared VCPU. (4) Like (1), except that threads are randomly migrated across VCPUs, and

VCPUs are randomly migrated across different PCPUs. We used the Xen xm command to

pin VCPUs to PCPUs, and we used the Linux taskset command to pin threads to VCPUs.

We considered the following counters: TSC (Time Stamp Counter), IR (Instructions Re-

tired), BIR (Branch Instructions Retired), LLCM (L2 cache misses), and LLCR (L2 cache

references). The results show some deviations, but the overall relative error (compared to

native) remains very small. As expected, the per-thread values for the number of cycles

spent, instructions and branch instructions retired match more closely the values obtained

in native execution than the values corresponding to cache misses because those values are

less affected by resource sharing. The results shown were obtained for paravirtualized do-

mains; we obtained comparable results for hardware-assisted domains using our hybrid mode

implementation.

I-mode Counters

To verify the functioning of our i-mode counter implementation, we used PAPI’s included

tests. We present the results for the overflow pthreads test. The test is a synthetic benchmark

that performs a set of floating point operations. We ran the test for 300 sampling periods,

and recorded the logical counter values afterwards. The benchmark runs 4 threads for which

it uses a random CPU (VCPU in our case) assignment. We present results for two scenarios:

(1) Dom0 and Dom1 run on separate PCPUs. (2) Dom0 and Dom1 run on a shared PCPU.
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As Figure 5.6a shows, the error relative to the native mode for the number of retired floating-

point instructions (PAPI FP INS) is negligible. Figure 5.6b shows the number of cycles as

measured using the PAPI TOT CYC event type, which exhibit a larger relative error. This

result is expected because we do not compensate for events occurring in the hypercall events

at resumption points when using i-mode counters. The hypercalls consume cycles, but do

not perform any floating point operations.
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Figure 5.6: PAPI overflow test for i-mode counters.

5.3.3 Benchmarking with A-mode Counters

We used the SPEC CPU2006 benchmarks to show error estimates for a-mode counters upon

CPU and memory bounded workloads. Native mode execution is again used as reference
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point. Since Dom0 is a paravirtualized domain in Xen, we used the Dom1 and Dom2

domains for tests that include fully-virtualized domains. (To exclude any possible effect

of Dom0, we pinned it to a dedicated core.) We considered 5 scenarios: (1) Native mode

execution. (2) Fully-virtualized domains Dom1 and Dom2, each running on a dedicated

core (DC). (3) Fully-virtualized domains Dom1 and Dom2 running on the same core (SC).

(4) Paravirtualized domains Dom0 and Dom1, each running on a dedicated core (DC). (5)

Paravirtualized domains Dom0 and Dom1 running on the same core (SC).

The official SPEC distribution contains a large set of different benchmarks. We ran all

of them using the ’train’ problem size and recorded the total number of events counted

during their execution. Since some benchmarks were executed under different data sets, we

calculated the cumulative event counter values for all data sets. We present results for a

subset of benchmarks only, choosing those for which both a non-negligible number of events

was counted and for which the difference between the scenarios was largest; these represent

the relative weakest performance of our framework.

In Figure 5.7a, the results for the cycle counts reported by the virtualized TSC are shown. If

the benchmarks execution were unaffected by virtualization, and if our framework achieved

the same accuracy as perfctr running natively, we would expect to obtain the same results

for all test scenarios for a given benchmark. This is true for most benchmarks, although

3 benchmarks (mcf, astar, and lbm) show significant deviations for the fully virtualized

configuration. When counting the number of instructions retired (Figure 5.7b), we did not

observe any significant differences.
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Figure 5.7: SPEC CPU2006 test for a-mode counters.
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Figures 5.7c and 5.7d display the number of L2 cache references and misses, respectively.

Since these events are more strongly influenced by environmental factors inherent to the

virtualized environment, they show slightly larger deviations, particularly for the number

of cache misses. For example, libquantum shows a significant drop in the number of cache

misses observed, although the number of cache references is roughly the same. These effect

warrant further investigation to ascertain if they indeed reflect environmental circumstances

or are caused by inadvertent interactions with the measurement framework.

5.3.4 Benchmarking with I-mode Counters

HPCToolkit’s sampling mechanism is based on PAPI, which exploits the i-mode counter

capabilities of our framework. As a profiler, HPCToolkit maps sample counts to individual

functions. We tested HPCToolkit on the SPEC CPU2006 benchmarks. As an example,

we selected the 429.mcf benchmark, which performs combinatorial analysis. We considered

PAPI TOT CYC (number of cycles), PAPI L2 TCM (L2 cache misses), and PAPI BR INS

(number of branch instructions) events. We considered sampling periods of 40000, 1000, and

500 events, the overall event counts ranged from 10s to 100s of millions of events. Similar to

our previous setup, we run 2 concurrent instances of HPCToolkit in two separate domains

using the following scenarios that correspond to labels in Table 5.2. (1) Domains Dom0 and

Dom1 run on the same PCPU. (2) Domains Dom0 and Dom1 run on different PCPUs. We

present results for all top-level functions that accounted for at least 1% of the total number

of samples, sorted by decreasing number of samples. The tables show the ratio of the
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sample counts reported under virtualized vs. native execution. For most functions, similar

counts were reported, although one (primal iminus) shows significant differences which will

warrant further investigation. We note that the same set of functions was identified in both

execution modes, making the use of HPCToolkit in a virtualized environment a viable tool

for identifying bottleneck functions that account for the largest proportion of events.
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Table 5.2: HPCToolkit profiling results for 429.mcf. Sample count ratio virtualized/native.

(a) PAPI TOT CYC

Function 1:D0 1:D1 2:D0 2:D1
main 0.98 0.99 0.95 0.98
global opt 0.98 1 0.95 0.98
price out impl 0.98 1.01 0.95 0.99
primal net simplex 0.98 0.98 0.94 0.96
primal bea mpp 0.99 0.99 0.97 0.98
replace weaker arc 0.9 0.97 0.88 0.94
refresh potential 0.96 0.98 0.88 0.9
update tree 0.96 0.97 0.9 0.93
primal iminus 1.56 1.56 1.36 1.51
insert new arc 1.2 1.13 1.02 1.13
flow cost 0.94 0.93 0.94 0.94
dual feasible 0.95 0.95 0.95 0.93
suspend impl 0.91 0.9 0.9 0.89

(b) PAPI L2 TCM

1:D0 1:D1 2:D0 2:D1
1.01 1.01 0.99 1.01
1.01 1.01 0.99 1.01
1 1.01 0.98 1.01
1.03 1.02 1.01 1.01
1.04 1.04 1.07 1.05
0.97 0.97 1 0.96
1.04 1.01 0.9 1.01
0.83 0.72 0.53 0.61
4.5 4.75 3.5 4.83
0.27 0.46 0.3 0.22
0.97 1.03 0.91 0.94
0.95 0.95 1.05 1
1 0.94 1 1.06

(c) PAPI BR INS

Function 1:D0 1:D1 2:D0 2:D1
main 1.01 1.01 0.98 1.01
global opt 1.01 1.02 0.98 1.02
price out impl 1.02 1.04 0.99 1.03
primal net simplex 1 1 0.97 1
primal bea mpp 1 0.98 0.97 1
replace weaker arc 0.99 1.05 1.04 1.09
refresh potential 1.02 1.28 1.03 1.04
update tree 0.86 0.75 0.84 0.86
primal iminus 1.53 1.47 1.23 1.27
insert new arc 0.99 0.87 0.95 0.96
flow cost 0.97 0.97 0.97 0.97
dual feasible 1.03 1 1 1
suspend impl 1.07 1 1 1.07



Chapter 6

Experimental Evaluation

Our current prototype implementation uses the Linux 3.2.30 kernel for all domains. We

tested it with Alpine Linux 2.3.6, x86 64 (a Linux distribution which uses uClibc 0.9.33 as

its standard C library) using a wide range of application binaries packaged with that dis-

tribution, including OpenSSH, Apache 2, mySQL, Firefox, links, lynx, and Busybox (which

includes ping and other networking utilities). In addition, we tested compilation toolchains

including GCC, make and abuild. Our system is sufficiently complete to be self-hosting.

The specification of the system used for evaluation is shown in Table 6.1.

98
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Table 6.1: System specification.

System Parameter Configuration
Processor 2 x Intel Xeon E5520, 2.27GHz
Number of cores 4 per processor
HyperThreading OFF (2 per core)
TurboBoost OFF
L1/L2 cache 64K/256K per core
L3 cache 2 x 8MB
Main Memory 12 GB
Network Gigabit Ethernet, PCI Express
Storage SATA, HDD 7200RPM

6.1 Goals and Methodology

Our experimental evaluation comprises of (1) an evaluation of VirtuOS’s overhead during

system call handling and process coordination, (2) an evaluation of its performance for server

workloads, and (3) a verification of its ability to recover from service domain failures.

Our goals are to show that VirtuOS imposes tolerable overhead for general workloads, that it

retains the performance advantages of exceptionless system call dispatch for server workloads,

and that it can successfully recover from service domain failures.

We run series of micro- and macrobenchmarks to that end. We use a native Linux system or

Linux running inside a Xen domain as baselines of comparison, as appropriate. We used the

distribution-provided configurations for all programs evaluated in macrobenchmarks. We

were unable to compare to FlexSC due to its lack of availability.
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6.2 Overhead

Compared to a conventional operating system, VirtuOS imposes multiple sources of overhead,

which includes file descriptor translation, spinning, signaling (if necessary), copying, and

process coordination. All microbenchmarks were run at least 10 times; we report the average

result. We found the results to be highly consistent, with a relative standard deviation of

less or equal than 2%.

6.2.1 System Call Dispatch & Spinning.

Our first microbenchmark repeatedly executes the fcntl(2) call to read a flag for a file descrip-

tor that is maintained by the storage domain. In native Linux, this system call completes

without blocking the calling thread. In VirtuOS, as described in Section 3.3.1, this call

is submitted into the service domain’s request queue. Our microbenchmark considers the

single-threaded case in which there are no other user-level threads to run after the call is sub-

mitted. In this case, the calling thread will spin for a fixed number of iterations (the spinning

threshold), checking if the request has been processed. If not, it will block the underlying

kernel thread, requiring the more expensive, interdomain interrupt-based notification from

the service domain.

For a single fcntl(2) call, we found that we needed to iterate at least 45 times for the sys-

tem call to complete without blocking. If the system call completed without blocking, the

achieved throughput was 0.7x that of the native case, which we attribute to the file trans-



101

lation and dispatch overhead, which outweighed any benefit due to exceptionless handling.

Otherwise, if notification is necessary, we are experiencing a slowdown of roughly 14x. This

result shows that spinning is a beneficial optimization for workloads that do not have suffi-

cient concurrency to benefit from user-level threading. We found, however, that we needed a

much larger spinning threshold (1000 iterations) to achieve the best performance for our mac-

robenchmarks. We use the same value for all benchmarks; on our machine, 1,000 iterations

require approximately 26,500 machine cycles.

6.2.2 Process Coordination

● ● ●

●

●

●

●
● ● ● ● ●

Concurrency

S
lo

w
d
o
w

n

1 2 4 8 16 32 64 256 1024

0

10

20

30

40

50

Figure 6.1: Process creation overhead.

As discussed in Section 4.3, the primary and the service domains need to coordinate when

processes are created and destroyed. Requests to create and destroy processes are handled

sequentially by a single kernel thread in each service domain. We created a microbenchmark

that forks N concurrent processes, then waits for all of them. The forked processes simply

exit. The case N = 1 represents the case of serial execution of single programs, such as

in a shell script, albeit without actually executing any commands. Figure 6.1 shows a
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slowdown of 52x for this benchmark case, which decreases to about 8x as more processes are

concurrently forked. This decrease shows the benefit of batching, which reduces the number

of interdomain interrupts.

6.2.3 Copying Overhead
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Figure 6.2: Throughput vs Buffer Size for writing to tmpfs.

As described in Section 3.2.2, VirtuOS requires an additional copy for system calls that access

user memory. Simultaneously, we expect those system calls to also benefit more greatly from

exceptionless dispatch. We created a microbenchmark to evaluate these costs and benefits.

The benchmark writes 16MB in chunks of 32, 64, up to 2MB to a file created in a tmpfs

filesystem, which is provided by a native kernel in the baseline case and by a storage domain

in VirtuOS. Linux implements this file system type using anonymous paged virtual memory.

For the data sizes in our experiments, no paging is necessary. Thus, any differences reflect a

combination of the effects of exceptionless system call handling and the additional data copy

required by our method of dispatching system calls. Figures 6.2a and 6.2b show absolute
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throughput for various block sizes and throughput ratio correspondingly.

Since the overall amount of data written remains the same, smaller block sizes indicate a

higher system call frequency. For block sizes less than 64K, the savings provided by the

exceptionless model in VirtuOS outweigh the additional costs. Such small block sizes are

common; as a point of reference, the file utilities included in our distribution’s GNU coreutils

package (e.g., cp & cat) use a 32K block size. For larger block sizes, the copying overhead

becomes more dominant, reducing performance to about 0.8x that of native Linux.

6.2.4 Cache misses

The memory copying overhead identified in Section 6.2.3 prompted us to perform an addi-

tional, in-depth analysis using the Perfctr-Xen framework. We repeated the experiment to

measure L1/L2 data cache misses. Counted cache misses include the following types: 1) A

cold miss when a cache entry is loaded first time from the memory. 2) A capacity miss when

some cache entries are evicted to load others due to finite cache size. 3) A conflict miss when

same cache entries accommodate different memory addresses. 4) An invalidation miss when

an entry is evicted due to concurrent updates by other cores and CPUs.

As shown in Figure 6.3a, the number of L1/L2 cache misses goes down as the chunk size

increases for chunks less than 32K. As the chunk size increases, the total number of system

calls decreases, and we expect to see fewer invalidation misses. For 32K+ chunks, we also

observe capacity misses because the size of the L1 data cache is 32K in our system. To
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verify that cache misses for smaller chunks are not capacity related, we performed additional

experiments. We measured the number of L1->L2 writebacks (Figure 6.4), which increases

drastically for blocks greater than 32K+. We also modified the microbenchmark to elide

the data transfer for system calls while retaining total number of system calls. As shown in

Figure 6.3b, the number of cache misses monotonically decreases even for blocks>32K. Taken

together, the experiments demonstrate a relationship of the copying overhead in Section 6.2.3

to the L1 data cache capacity.
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Figure 6.3: L1/L2 Cache Misses (Perfctr-Xen).
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6.3 Performance

6.3.1 TCP Throughput and Latency

We first measured streaming TCP network performance by sending and receiving requests

using the TTCP tool [1], using buffer sizes from 512 bytes to 16 KB.

We compared the performance of the following configurations (1) Native, non-virtualized

Linux; (2) Linux running in Xen/Dom0; (3) Linux running in Xen/DomU PVHVM with

configured PCI passthrough for a network card; (4) Linux running in Xen/DomU using net-

back drivers in Dom0; (5) VirtuOS. We used configuration (4) as a proxy for the performance

we would expect from a Xen driver domain, which we were unable to successfully configure

with the most recent version of Xen.

For all configurations, we did not find any noticeable differences; all are able to fully utilize

the 1 Gbps link with an achieved throughput of about 112.3 MB/s, independent of the buffer

size used. In all configurations, this throughput is achieved with very low CPU utilization

(between 1% and 6% for large and small buffer sizes, respectively) in Linux and VirtuOS’s

primary domain. We observed a CPU utilization of about 20% on the network service

domain, due to the polling performed by kernel worker threads described in Section 3.3.2.

This relative overhead is expected to decrease as the number of concurrent system call

requests from the primary domain increases since more CPU time will be used for handling

system call requests than for polling.



106

We also analyzed TCP latency using lmbench’s lat tcp tool [69, 70], which measures the

round-trip time for sending 1-byte requests. These results are shown in Figure 6.5. We

used two spinning thresholds for VirtuOS: default and long, which correspond to the default

settings used in our macrobenchmarks and to an infinite threshold (i.e., spinning until the

request completes).

Here, we observed that VirtuOS’s latency is slightly higher than Linux’s, but significantly

less than when Xen’s netfront/netback configuration is used. We conclude that VirtuOS

performs better than alternative forms of driver isolation using Xen domains. Furthermore,

if desired, its latency can be further reduced by choosing longer spinning thresholds, allowing

users to trade CPU time for better latency.
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Figure 6.5: TCP 1-byte roundtrip latency (lat tcp).

6.3.2 Multithreaded programs

We evaluated the performance of multithreaded programs when using the network and stor-

age domains. We use the OLTP/SysBench macrobenchmark [62] to evaluate the performance
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of VirtuOS’s network domain. In this benchmark, a mySQL server running in VirtuOS re-

ceives and responds to 10,000 requests, each comprising of 10 selection queries with output

ordering, sent by network clients. The client uses multiple, concurrent threads, each of

which issues requests sequentially. The files containing the database are preloaded into the

buffer cache to avoid skewing the results by disk I/O. The benchmark records the average

response time over all requests; we report throughput computed as number of threads /

average response time.

We present throughput and the throughput gain of VirtuOS vs Linux in Figures 6.6a and 6.6b

respectively. VirtuOS’s performance in this benchmark mostly matches or exceeds that

of Linux by 1-16%. To evaluate the performance of the storage domain, we used the

FileIO/SysBench benchmark [62]. This benchmark generates 128 files with 1GB of total

data and performs random reads with a block size of 16KB. We examined two configura-

tions. In the first configuration, shown in Figure 6.7a, we eliminated the influence of actual

disk accesses by ensuring that all file data and metadata was kept in the buffer cache. In

the resulting memory bound configuration, we observed between 30% and 40% performance

loss, which we attribute to the cost of the additional memory copy. Compared to the mi-

crobenchmark presented in Section 6.2, the use of many concurrent threads exerts higher

pressure on the L1/L2 cache, which increases the copying overhead. Figure 6.7b shows the

relative performance for a mixed workload that includes random reads and random writes.

Here we allow the Linux kernel and the storage domain to pursue their usual write back

policies. Both systems provide roughly similar performance in this case.
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Figure 6.6: Sysbench/OLTP mySQL throughput.
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Figure 6.7: FileIO/SysBench throughput.

Taken together, these benchmarks show that for multithreaded workloads which benefit from

M:N threading, it is possible to achieve performance that is at least as good as native Linux’s.
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6.3.3 Multiprocess programs

We also tested VirtuOS with single-threaded, multiple process applications such as Apache

2, and compared its performance with native Linux. Single-threaded applications cannot

directly utilize benefits of the M:N thread model and, hence, may require notification if

system calls do not complete within the spinning threshold.

We used the Apache benchmark utility (ab) to record throughput while retrieving objects

of various sizes. We present throughput for small and large objects in Figures 6.8a and 6.8b

respectively. Both Linux and VirtuOS are able to saturate the outgoing Gigabit link for

objects >= 16KB in size; for smaller sizes, VirtuOS’s performance lags that of Linux by up

to 20%. Adjusting the spinning threshold in either direction did not improve those numbers.
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Figure 6.8: Apache throughput.
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Table 6.2: Number of service domain VCPUs and kernel threads.

Program Primary Domain Service Domain M:N
mySQL 8 VCPUs 1 VCPU M:18
FileIO 4 VCPUs 4 VCPUs M:4
Apache 8 VCPUs 3-4 VCPUs N/A

6.3.4 Concurrency Tunables

We found that the results in Sections 6.3.2 to 6.3.3 are sensitive to choosing multiple pa-

rameters correctly. Table 6.2 shows the assignment that worked best for our benchmarks.

We found that we needed to provide as many VCPUs to the primary domain as there are

physical cores (8) for many tests, except for the FileIO benchmarks, where we needed to

limit to number of VCPUs available to the primary domain to ensure enough CPU capacity

for the service domain. The optimal number of VCPUs assigned to the respective service

domain varied by benchmark. We let the Xen scheduler decide on which cores to place those

VCPUs because we found that pinning VCPUs to cores did not result in higher performance,

except for the FileIO benchmarks, where assigning the VCPUs of the primary domain to

the cores of one physical CPU and the VCPUs of the service domain to the other resulted

in approx. 15% higher throughput. For our Linux baseline, we used all 8 cores.

In addition, we observed that it is also beneficial to tune the maximum number of kernel

threads created by our M:N library for the multi-threaded workloads. We note that such a

limit may lead to deadlock if all available kernel threads are blocked in local system calls

and the threading library does not create new kernel threads on demand, which our current
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prototype does not implement.

6.4 Failure Recovery
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Figure 6.9: Failure recovery scenario.

VirtuOS supports failure recovery for any faults occurring in service domains, including

memory access violations, interrupt handling routine failure and deadlocks. Such faults may

cause the affected domain to reboot; otherwise, the domain must be terminated and restarted

using Xen’s toolkit utilities. We provide a cleanup utility to unregister terminated service

domains, free any resources the primary domain has associated with them, and unblock any

threads waiting for a response from the service domain. We do not currently provide a

fault detector to detect when a domain should be restarted. Our recovery time is largely

dominated by the amount of time it takes to reboot the service domain (approx. 20 seconds

in our current configuration).

We designed an experiment to demonstrate that (1) a failure of one service domain does

not affect programs that use another one; (2) the primary domain remains viable, and it



112

is possible to restart affected programs and domains. In this scenario, we run the Apache

server which uses the network domain. A remote client connects to the server and continually

retrieves objects from it while recording the number of bytes transferred per second. To

utilize the storage domain, we launch the Unix dd command to sequentially write to a file.

We record the number of bytes written per second by observing the increase in used disk

space during the same second interval.

Figure 6.9 shows the corresponding transfer rates. At instant 0, the Apache server is

launched. At instant 6, the dd command starts writing data to the disk. At instant 9,

a remote client connects to the Apache server and starts using it. At instant 29, the network

domain is abruptly terminated, reducing the client’s observed transfer rate to 0, without

affecting the ability of dd to use the storage domain. At instant 60, the network domain and

the Apache server are restarted, and the remote client continues transferring data.



Chapter 7

Related Work

7.1 System Designs

OS fault containment and security have traditionally been both OS design goals as well as

the subject of ongoing research. Thus, VirtuOS shares its design goals both with many

existing systems and research prototypes.

7.1.1 Kernel Design

A number of approaches decompose kernel functionality to provide better fault containment

for system components. Microkernel-based design addresses fault containment by provid-

ing better component isolation. Microkernels such as Mach [10] and L4 [66] provide an

architecture in which only essential functionality such as task scheduling and message-based

113
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interprocess communication is implemented inside the kernel, whereas most other system

components, including device drivers, are implemented in separate user processes. Aside

from optimizing IPC performance, microkernel-based systems often devote substantial effort

to creating compatibility layers for the existing system APIs, e.g. POSIX [53].

Multiserver OS designs such as Sawmill [26,45,91] pursue the opposite approach by attempt-

ing to deconstruct a monolithic kernel’s functionality into separate servers running on top

of a microkernel. Multiserver OS differ from VirtuOS in the methods used for communi-

cation and protection. Moreover, VirtuOS does not currently attempt to address all goals

multiserver OS address, such as supporting system-wide policies or resource sharing [45].

Recently, microkernels have been used in lieu of hypervisors. Microvisors [51] expose ab-

stractions typical to hypervisors such as VCPUs, memory address space containers, and

communication channels to run virtual machines with guest OS on top of a microkernel.

An exokernel-based OS [39] is an alternative OS design which allows applications to directly

access hardware resources. Applications in exokernel-based OS do not require a mode switch

to access OS services because applications are linked against their own library OS and call

corresponding OS service functions directly. When a library OS needs to access global state,

a system call to the exokernel is needed.

Dune [18] uses hardware-assisted VMs to isolate applications from each other. Nested paging

allows applications to switch their page tables efficiently. Process context switches benefit

from TLB tagging available for hardware-assisted VMs. Dune also improves signal delivery
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latencies by delivering hardware interrupts directly to user processes. However, Dune still

uses a monolithic kernel which does not isolate device drivers from each other. Additionally,

applications may have to use more expensive hypercalls in lieu of system calls to access OS

services.

The nonkernel [19] also runs applications in separate hardware-assisted VMs while allowing

them to have direct access to hardware in a manner that is similar to exokernels. To ensure

safe access to devices, it relies on IOMMU and self-virtualized I/O. The nonkernel is specifi-

cally aimed at infrastructure as a service (IaaS) applications, which allow executing multiple

VMs on shared hardware.

7.1.2 Driver Protection Approaches

Because most kernel failures are caused by faulty device drivers, there is a particular focus on

making them safer and isolating them from other system components. Nooks [92] introduced

hardware protection domains inside a monolithic kernel to isolate device drivers from each

other and from the remaining kernel. Such isolation protects against buggy drivers that

may perform illegal memory accesses. Nooks demonstrated how to restructure an existing

kernel’s interaction with its drivers to facilitate the use of intrakernel protection domains,

and explored the trade-off between benefits due to isolation and costs imposed by the domain

crossings this approach requires. This approach requires drivers to be adapted to the new

mechanism, as their interaction with the OS kernel changes. Switching to and from protection
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domains requires page table switches, along with corresponding TLB flushes, which if done

frequently may affect the performance of some applications.

Microdrivers [44] split drivers into parts running inside the kernel and parts running as

user processes. In microdrivers, hardware-specific and performance critical code remains in

the kernel whereas the remaining code is moved to user space to provide better isolation.

Additionally, code running in user space can be written in a higher-level language [80].

Mainstream OS have provided support for writing device drivers that execute in user mode

for some time, but these facilities have not been widely used because the added context

switches made it difficult to achieve good performance [63]. Some systems provide the

ability to run unchanged kernel components such as out-of-box Linux drivers in user mode.

DD/OS [64] provides this ability by creating a virtual machine built as a user-level task

running on top of L4, whereas SUD [21] provides such an environment inside ordinary Linux

user processes. Xen Driver Domains [85] use a mechanism with comparable protection

properties by running unchanged drivers in specialized guest OS. The Qubes OS [8] adopted

the Xen hypervisor and Xen Driver Domains to enhance security by running separate virtual

machines for drivers and applications. The Qubes OS supports a storage domain, a network

domain and application virtual machines.
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7.1.3 Language and Protocol-based Approaches

Researchers have also proposed to make kernel components safer by using language and

protocol-based techniques. SafeDrive [99] uses a type system approach to provide fine-

grained isolation of kernel components written in C, which relies upon a combination of

compile-time analysis and runtime checking. Carburizer [57] analyzes and modifies driver

code to withstand hardware failures by removing the assumption that the underlying hard-

ware behaves according to its specification. Static analysis approaches have been used to

find bugs and improve the reliability of systems code [16, 38], as well as approaches derived

from model checking [96]. Domain-specific languages can reduce race conditions, deadlocks

and protocol violations by formally describing the driver’s expected software interface (e.g.,

Dingo [84]). Despite their advantages and often negligible overhead, the approaches do not

aim to prevent all crashes due to kernel component failures. Furthermore, they require co-

operation on the part of the developers since they mandate changes to kernel components

or the way they interact with the system.

7.1.4 Restartability

A number of systems attempt to minimize the impact of failures of isolated components and

to speed up recovery after failures. The microreboot approach [28] advocates designing server

applications as loosely coupled, well-isolated, stateless components, which keep important

application state in specialized state stores. In doing so, individual components can be
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quickly restarted with limited loss of data. CuriOS [33] applies similar ideas to a microkernel-

based OS. VirtuOS’s use of existing kernel code in its service domains prevents us from

using this approach since monolithic kernels make free and extensive use of shared data

structures. Fine-grained fault tolerance (FGFT [58]) uses device state checkpoints to restore

the functionality of drivers after a failure, but it so far has been applied only to individual

drivers rather than the state of an entire kernel.

7.1.5 Security

Some solutions are specifically focused on improving the security of existing systems. McAfee

DeepSafe [68] proposed a virtualization-based solution which improves OS security by adding

security layers underneath the OS kernel, and thus providing better protection from malware.

NICKLE [81] focuses on kernel rootkit detection which relies on a trusted hypervisor that

checks kernel code and disallows any unauthorized operations. These solutions primarily aim

to protect operating systems from intrusion by attackers. They do not address a problem of

containing (usually unintentional) device driver bugs.

7.2 Performance Optimizations

Apart from improving the robustness and security of OS, there have also been substantial

efforts to improve performance of existing OS, which are related to our work.
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7.2.1 Exceptionless techniques

Multiple systems deploy exceptionless techniques: FlexSC [88,89] proposed the use of excep-

tionless system calls, which we adopted in VirtuOS, for the purposes of optimizing system

call performance in a monolithic kernel.

Factored operating systems (fos) [95] use a microkernel-based OS design with servers running

on dedicated cores. The design can increase scalability compared to traditional systems

due to reduced TLB and cache contention. fos uses proxy libraries to handle system calls

coming from user programs. Proxy libraries generate messages and then make calls to a

microkernel. The latter delivers a request to a server running on dedicated cores. Corey [20]

uses a similar approach; it dedicates kernel cores and handle requests from application cores

through shared-memory IPC. Both of these systems are designed for scalability on multicore

systems and distribute OS services across cores. VirtuOS shares with these systems the

assumption that the increasing availability of cores makes their dedication for systems-related

tasks beneficial.

7.2.2 Improving Virtual Machines

VirtuOS relies on an underlying hypervisor, and could benefit from a number of orthogo-

nal ideas that were introduced to improve virtual machine technology. For instance, self-

virtualizing hardware [79] makes it easier to safely and efficiently multiplex devices across

domains, which would allow multiple service domains to share a device. Spinlock-aware
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scheduling [98] modifies the hypervisor’s scheduler to avoid descheduling VCPUs that exe-

cute code inside a critical region protected by a spinlock, which could adversely affect the

performance of service domains.

Low inter-domain communication costs improve the performance of any system that uses

virtual machines. The Fido system [25] optimizes Xen’s interdomain communication facilities

by allowing read-only data mappings to enable zero-copy communication. Fido amortizes

costs but users need to sacrifice some security and protections guarantees.

The Xoar system [31] addresses the problem of improving the manageability and robustness

of complex hypervisors with dedicated control VMs (i.e., Dom0 in Xen) by splitting the

control VM into multiple, individually restartable VMs.

7.3 Performance Monitoring

7.3.1 Monitoring in Virtualized Environments

There has been a number of previous efforts to add support for hardware event counters

to virtualized environments. XenoProf [71], which is integrated in Xen, allows the use of

event counters for system-wide monitoring and profiling. It is an extension of the OProfile

Linux system-wide profiler. Each monitored domain runs an instance of OProfile with a

Xen-specific driver, which communicates with XenoProf in the hypervisor. XenoProf col-

lects PC samples and puts them into shared buffer. Then it notifies the corresponding
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domain via a virtual interrupt, so that it can map the PC sample to a specific symbol in the

executable. XenoProf does not support performance counter virtualization (i.e., the simul-

taneous monitoring of multiple domains), works only in paravirtualized mode, is specific to

OProfile and cannot be easily adapted to work with other higher-level toolkits such as PAPI

or HPCToolkit.

Work concurrent with ours [36, 37] implemented performance counter virtualization for the

hardware-assisted KVM virtual machine monitor that is included in recent versions of the

Linux kernel. Like Xen’s VPMU driver discussed in Section 5.2.2, this implementation uses

a save-and-restore mechanism for PMU registers. During interdomain context switches, the

hypervisor saves and restores the PMU registers of a domain. The delivery of overflow

interrupts to a domain relies on hardware support provided by architectural virtualization

extensions. Such full virtualization approaches have the advantage that they do not require

any accommodations to the guest kernel or user libraries, and thus allow the use of virtually

any framework in the target domain, but they forgo the potential optimizations arising from

guest kernel adaptation, such as the offsetting technique for a-mode counters discussed in

Section 5.2.2. In addition, each instruction that changes a configuration register requires a

separate trap to emulate its effect, whereas the use of hypercalls allows the batching of such

changes by combining them into a single call.

The VTSS++ system uses a system-wide global sampling mechanism that records time-

stamped event counter values [22]. The global TSC register is used to obtain these time

stamps. In addition, the system records the time stamps of all intra- and inter-domain
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context switches. An off-line post-processing system then reconstructs the events produced

by individual threads and domains. This method has the advantage that no guest kernel or

user-level provisions are required, but its reliance on post-processing makes analysis more

complicated.

The vmkperf utility [4] used by VMware ESX allows the counting of events occurring within

given time intervals, similar to a-mode counters. vmkperf does not support the functionality

of i-mode counters and therefore cannot easily be used to support high-level profiling toolkits.

7.3.2 Linux Frameworks

The perf events (previously known as perf counter) framework [46] provides performance

monitoring capabilities similar to those of perfctr . This framework has been integrated in

recent versions of the Linux kernel. Like perfctr , it supports per-thread counters and direct

user mode access. Higher-level frameworks such as PAPI include support for perf events,

although the recently added direct access feature [67] is not currently supported in PAPI. The

techniques we presented in this work are applicable to perf events as well; a virtualization

of perf events is possible future work. The tight integration of perf events with the Linux

kernel may require a substantial amount of refactoring in order to create a hypervisor driver.

This coupling may make it more difficult to exploit a single code base for the guest and

hypervisor driver as done in our Perfctr-Xen implementation (see Section 5.2.2).

The perfmon framework [40] for Linux provides both low-level and high-level features. The



123

framework supports per-thread monitoring and sampling, although it relies exclusively on

system calls to access counter data. The Intel VTune performance analyzer [5] and AMD’s

Code Analyst [2, 35] are proprietary frameworks for precise, low-overhead event sampling.

They consist of a kernel driver and high-level infrastructure that provides result analysis

capabilities. Event counts can be viewed on per-thread or per-module basis. Our techniques

could be applied to a possible virtualization of perfmon, VTune, and CodeAnalyst.



Chapter 8

Conclusion

This work presented VirtuOS, a fault-resilient operating system design which provides isola-

tion for kernel components by running them in virtualized service domains. Service domains

are constructed by carving a vertical slice out of an existing Linux kernel for a particular

service, such as networking or storage.

VirtuOS allows processes to directly communicate with service domains via exceptionless

system call dispatch. Thus, user processes can transparently benefit from isolated service

domains without requiring the use of a special API. A special-purpose user-level threading

library allows service domains to efficiently resume threads upon system call completion via

direct queue manipulation. To the best of our knowledge, VirtuOS is the first system to use

virtual machines for system call dispatch and to apply exceptionless communication across

virtual machines.
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To make the analysis of VirtuOS’s performance overhead feasible, we developed Perfctr-Xen,

a novel performance counter framework for the Xen hypervisor. Perfctr-Xen extends the

existing perfctr framework so it can be used in virtual machine environments running under

the Xen hypervisor. Perfctr-Xen enables the use of higher-level profiling frameworks such as

PAPI or HPCToolkit in those environments, without requiring changes to them. Perfctr-Xen

supports both paravirtualized guests and guests using hardware-based virtualization, thus

making possible per-thread analysis in primary and service domains of VirtuOS.

We have tested our VirtuOS prototype with several existing applications; our experimental

evaluation has shown that our design has the potential to outperform not only existing solu-

tions for driver isolation but can for concurrent workloads that benefit from M:N threading

meet and exceed the performance of a traditional, monolithic Linux system using exception-

based system call dispatch.
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Source Code

VirtuOS’s and Perfctr-Xen’s source code is available at http://people.cs.vt.edu/

~rnikola/ under various open source licenses.
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