


77 

particular point w is .., 

(4.1.1) 

Over the region of interest R, the average of (4.1.1) will 

be used, that is, 

(4.1.2) 

where 

-1 1 o = �d�~�.� 
R 

(4.1.3) 

Now, in order to talk about designs (for possible compar-

isons) which do not contain the same number of points and 

also to insure that the criterion is independent of the 

variance 0 2 of the observations, the criterion (4.1.2) is 

placed on a "per observationll basis and denoted by 

(4.1.4) 

A 

The difference �y�(�~�)� - �~�(�~�)� can be partitioned into 

�;�(�~�)� - �~�(�~�)� = �[�~�(�~�)� - �E�Y�(�~�)�}� + �[�E�~�(�~�)� - �~�(�~�}�}�,� {4.1.5} 

which enables us to separate J into two parts, that is, 

= V + B. (4.1.6) 

In this last expression (4.1.6) for J, the quantities V and 

B are called the average variance and the average squared 

bias respectively, where ,average means averaged over the 

region of interest R. 

In the material that follows in this section, we shall 
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assume that q=2 and the approximating function or fitted 

model is a polynomial bf degree 1 in the w, i.e., 
~ 

{4.l.7} 

where ~i=(l, wI' •.. , wp ' ±l), Si=(ao' aI' ... , up' aLl} 

and a L is the paralneter associated with the contrast term. 
1 

It will also be assumed that the true polynomial function is 

of the form 

~(~) = ~i ~l + ~2 ~2 (4.1.8) 

where the vector ~2 contains terms of degree 2. The reason 

for using models of only degree land 2 above is that we are 

assuming it is unlikely that a model of third-degree or 

higher is needed to adequately describe the mixture system 

especially in our reduced region of interest. Even in the 

extended region of interest (Section 4.3), the fitted model 

will be at most second degree. 

Now, to minimize the expression (4.1.6), we separately 

consider the following three conditions: 

(i) the assumed degree of the fitted model is adequate but 

error arises owing to the variance of the predictor y, 
~ 

(ii) the variance of y is assumed to be negligible and 

therefore if error is present it is due only to a misclassi-

fication of the model, 

(iii) neither the variance nor the bias error can be ignored 

and therefore we want to minimize the quantity J = V + B. 

Before we discuss the minimization of J corresponding 

to the above three conditions, we define what are meant by 
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the moments of the design and region moments (see for example, 

Box and Draper [3J). This discussion will be useful since 

both types of moments will be used extensively in the devel-

opment of the theory of design construction for the minimi-

zation of the average mean square error of y. 

4:2 Design moments and region moments. 

In order to specify the distribution of the design 

points in the experimental region, we use the moments of the 

design. In Section 3.4, the W'W matrix was used for obtaining 
~ N 

the estimates of the parameters in the general linear model. 

Now the quantities in the matrix ~ ~'~ (the moment matrix), 

where N is the number of experiments, are the moments of the 

design up to the second degree. The usual notation in re-

sponse surface work is to designate the moments in square 

brackets as 

N 
[i] = ~ I Wui ' [ii] = 

u~ 

N 

~ I Wu~ , [ij] 

u=l 

N 

= Nl \ W .W _. (4-2-1) L U1 UJ 
u=l 

Note that if the model contains terms up to second degree, the 

moment matrix will contain moments up to fourth degree such 

as [iiii], [iijj], etc. 

By the particular method with which we have defined 

the elements of the design matrix, that is, wli+w2i+ ••. +wNi=O 

(l~i~p), then 



[iiJ = 1 
N 
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(4.2.2) 

is a measure of the spread or variability of the design 

points associated with the ith variable. In addition, had we 

specified that [iiJ = 1 as in [3, 6J, then 

[iiiJ 

[iiJ 3/ 2 = 1 
N 

(4.2.3) 

is a measure of skewness, i.e., a measure of the extent to 

which the marginal distribution of the pattern of design 

points for the ith variable is skew or symmetric. Also, if 

[ii] = I, then 

1 
N 

N 

\' w4 . L Ul. 

u=l 

(4.2.4) 

is a measure of kurtosis, i.e., a measure of the extent to 

which there is a tendency to a unifonn distribution of points 

or to a concentration of points at the center and at the 

extremes. 

Since the w . (l~u~N, lSi~p) are chosen by the experi­
Ul. 

menter, the experimenter has at his freedom the choice of 

the moments of the particular design. However, once the fonn 

of the moment matrix is specified, the distribution of the 

design points is detennined. 

Region moments. 

In Section 4.3, the radius of the largest sphere cen-

tered at w=Q that will fit inside the convex polytope is 
,.., f'oJ 
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derived. Denote this radius by p*. Then with either the 

unit sphere or the largest sphere defined as our region of 

interest, we assume that the IIcenter of gravity" of the 

design points is at the center of the region defined by 

p 

\w. 2 :;; 0
2 

L u~ 
i=l 

(4·2-5) 

where p=l or p=p*~l. Let p=p*. If p* > 1, we lift the 

restriction that the design points must fall within or on 

the unit sphere. On the other hand, we shall limit the 

position of the design points to either within or on the 

sphere of radius p* and denote this augmented sphere by R*. 

For the region defined by (4-2-5), Dirichlet multiple 

integrals can be used. That is to say, 

(
°1+1) (02+1) (Op+l) 

r 2 r 2 ··-r 2 

{ ~
p (0. +1) 

r -~-+ 
2 

i=l 

1 } 
{4.2.6} 

unless any O. is odd in which case the value of the integral 
~ 

is zero. Now Box and Draper [3J define the matrix of region 

moments as 

~f= rWWf'dW -e JT Ne- ~ 
R 

(4.2.7) 

where w , ~f are the vectors of terms in the models of 
""e 

degree e, f (e,f = 1,2), R is the region of interest and 0 

is defined by (4.1.3). To find 0-1 in the formula (4.1.3) 
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in Section 4.1, we have using (4.2.6), 

-1 n = 

= 
[r(~)Jp 

r(~ + 1) 
In a similar manner, from (4.2.7), 

1 

= o 
N 

±l 

o· ,.., 

*2 
P I 
p+2 ""p 

0' ,.., 

+1 

o 
f".I 

1 

·0 w dw P ,., 

w 
p 

+1 

w2 
+w 

P - P 

+w 
- p 

1 

(4.2.8) 

dw 
tv 

(4.2.9) 

(4.2.10) 

since w'-(l -1- , ••• I 
th w , ±l) and where I is a p order 

p ""p 

identity matrix. The signs in the last row and last column 

(with the exception of 1) of the matrix in (4.2.9) would all 

be plus or minus depending on whether the sign of the last 

element in w' is plus or minus. In addition, the matrices -1 

~21 and !::22 are 

= (l J 'i2'Jti d'i 
R* 
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2p 0 +j ,.., -,.,p 
*2 

(pxp) 

~21 = L- (4.2.11) p+2 

g 0 Q, ,..., 

(~)xl 

and 

~22 = 0 I 'fJ2"12 ' dw 
Nt 

R* 

21 +- -I Q .... p lplp 
*4 px(~) 

Q (4.2.12) = (p+2) (p+4) 

Q I 

(~)xp 
,yeP) 

2 

where 

and 2p is a p x 1 column vector of ones. If 

1 (2 
~2 = wI' 

as in Chapter 7, then (4.2.12) is the same except that I 
lP) 

2 is replaced with 21 
(p) 

2 

We now consider the three cases of minimizing J men-

tioned in Section 4.1. The first case is where B is assumed 

to be zero and therefore the emphasis is on minimizing the 

average variance only. The second case is that of minimizing 
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J == B, i.e., the variance of y is assumed to be negligible. 

The third case which-will be covered in Appendix G is where 

we minimize the variance plus the square of the bias. In 

[3], designs constructed for the purpose of minimizing J in 

the first two cases are called lIall-variance" and nall-bias" 

designs respectively. 

Case (i) Minimizing average variance when the bias is 

assumed to be negligible. 

One of the objectives of most planned experiments is 

to minimize the variance of the predicted quantity for future 

values of the concomitant variables when the bias can be 

ignored. The naIl-variance" design minimizes the variance 

criterion 

J Var y(~) d~ 
R 

{4.2 .. 13} 

Since the fitted model in (4.2.13) is of degree 1, the model 

is written as 

. ,. 
'!!l ~1· 

From Section 3 .. 5, gl == (N1'~1)-1~1'¥' and therefore the esti­

mated value can be written as 

Y'" (w) = w ' ,., ""'1 (4.2.14) 

where ~1 corresponds to the Nxk matrix of independent variables 



85 

associated with the first-degree model. With the usual assump-

tions on e, i.e., 2 E(e) = 0 E(ee ' ) = 0 I 
- N' _N ~N' 

the variance of the 
IV 

predictor yew) is 
IV 

V "() 2 '(W I W )-1 ar y ~ = cr ~1 ~1 N1 ~1· (4.2.15) 

Now if we put (4.4.1S) into the formula (4.2.13) for V, we 

have 

However, since ~1'W1 is constant, 

v = trace [ N (N 'w ) -1 [ Q J ~1~1' d):! } ] 
1 ""1 R 

= trace [ N(~lf~l)-l ~ll } . (4.2.17) 

-1 In (4.2.17), the elements of (~1'W1) are the variances of 

the estimates n
i 

of the a
i

(i=1,2, ••. ,p,O,L
1

) in the model 

l = ~1'~1 + ~ and if we note the construction of ~11 from 

(4.2.10), then (4.2.17) can be rewritten as 

P 
p*2 \ 

V = N [ Var nO + p+2 L Var Ui + Var nL 
i=l 1 

] (4.2.18) 

where uL is the estimate of the constrast parameter (we have 
1 

been assuming q=2), and R* is the region of interest. Box [lJ 
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showed that the first p+l terms in (4.2.18) are minimized 

when the design in ~l is orthogonal. That is, minimum 

variance first-degree designs are provided by any set of 

orthogonal vectors for which 

N 

\ w . = 0 for i = l,2, ... ,p. L U~ 
u=l 

Case (ii) Minimizing average sguared bias when the variance 

is assumed to be negligible. 

In Appendix 1, [3J, Box and Draper show that for bias 

alone to be minimized, a sufficient condition is that the 

design moments must be equal to the region moments up to and 

including degree (dl +d2), where d l is the degree of the 

fitted model and d 2 is the degree of the true polynomial 

function and d2~dl. In our case, d1=1 and d 2=2, i.e., 

y(~) = w' 
~l 

and 

When this is true, 
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In Section 4.1, equation (4.1.6), the average squared 

bias is expressed as 

NO I [E 
A 2 

B = 
0

2 Y(\i) - Tl(~)J d~. 
R 

A 

If we substitute Y (\j) , Tl ('£!) and f: into the formula for B, 

then 

N = 0.. 1 t::. a. 0'2 .., 2 ,.., ...,2 

where 

~ = ~'~ll~ - ~i2~ - ~'H12 + ~22 • 

Now if we partition t::., we have ,.. 

(4.2.19) 

-1 -1 ] 
+ (~ - ~11 812) '~ll{~ - B11 ~12) ~2· 

(4.2.20) 

If we set 

-1 
~ = ~ll ~12' 

the second term in (4.2.20) is eliminated. Box and Draper 

state that in particular, B is minimized when ~iNl=~ll and 

~iN2=~12 which is just a statement that the moments of the 

design equal the moments of the region R (or R*) up to and 
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case (iii) Minimizing the average mean sguare error: J=V+B. 

Here the emphasis is on a design which will guard 

against not only model misclassification but excessive vari­

ance of y. The minimization of J=V+B however will not be 

discussed now since this sUbject is covered at some length 

in Appendix G. 

4.3 Extended region of interest: Largest sphere centered 

at the point of interest that will fit inside the 

factor space. 

Suppose the region in the ~ space in which the experi­

ments can be performed is called the operability region. The 

operability region is the (k-q)-dimensional design space 

bounded by the extremities of the convex polytope. In some 

cases, the experimenter may wish to explore the entire oper­

ability region, but we have assumed in the present paper that 

this is not the case. We have stated that a particular group 

of experiments is performed in order to explore a region of 

interest R entirely contained within the region of operation. 

The reason for this as we said before is that situations fre­

quently arise where the interest is attached only to some 

reduced region and therefore certain parts of the region of 

operation can be ignored. 

Since it is impossible to forsee all conceivable 

choices for the shape of the region of interest R, we have 

restricted the development in this paper to the case where R 
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is spherical. The reasons for this are two-fold. In the 

first place, this is necessitated by the complexity of the 

operability region or shape of the convex polytope as the 

number of categories as well as the number of components 

increases. We sa\~ in the last section tha t the region mo-

ments for a spherical region can easily be calculated for 

various values of q and k using Dirichlet multiple integrals. 

Secondly, by the scaling convention used in this paper, that 

is, the specification of an ellipsoidal region of interest 

for the mixture components and then the setting up of the 

spherical region of interest in the design variables. For 

instance, if we refer back to Section 3.1, the form (3.1.2) 

describes the intermediate variables v. (l~j~k) as linear 
J 

functions of the mixture components. Then by specifying the 

2 2 
Vj (lSj~k) as falling within or on the sphere vl+ ... +vk~l, 

we not only defined the region of interest as being a unit 

sphere in the metric of the v. but by using an orthogonal 
J 

transformation matrix T, the region of interest is a unit ,..., 

sphere also in the metric of the w. (l~i~k-q), the design 
~ 

variables. 

Since the region of interest may at times be located 

(depending on ~Q and ~) near a boundary of the region of op­

eration, it might be well to determine how much flexibility 

we have before reaching the boundary. This flexibility can 

be measured by calculating the radius of the largest sphere 

centered at w=Q that will fit inside the factor space or _ I'V 
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convex polytope and comparing it ¥Tith p=l, the radius of the 

unit sphere. Then if the need arises, we may be able to ex­

tend our interest outside the previously defined region of 

interest. Arising needs could be the result of an under­

estimate of the interval of interest for one or more of the 

mixture components or simply the construction of a design of 

the second degree (Chapter 7) which consists of concentric 

sets of points and it is desired to construct a set of points 

which has radius greater than unity_ 

Let us denote the largest sphere centered at ~=Q that 

will fit inside the convex polytope by R* as in Section 4.2. 

In order to determine the length of the radius of the (k-q)­

dimensional sphere, we have to find the distance from the 

center ~=Q to the closest boundary of the polytope. The case 

where q=2 will be shown now and an extension to q=3 will be 

shown in Chapter 6. 

The dimensionality of the boundary (extremity) closest 

to the point ~=Q will be 1 less than the dimensionality of 

the convex polytope. This is proved in Appendix C. For ex­

ample, in two dimensions, the distance from the point ~=Q to 

the closest edge (dimensionality I) is less than the distance 

to the closest vertex (dimensionality 0). In three dimen­

sions, the distance from the point ~=2 to the closest face 

(dimensionality 2) is less than the distance to the closest 

edge or closest vertex. 

This proposition would be obvious if IIless" were 
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replaced by "not more ll and in fact this is all we require for 

our purposes, although the stronger result is of geometrical 

interest in its own right. 

In the case of two categories where n is the number of 

components in category 1 and k is the total number of compo-

nents, an extremity of dimensionality k-3 was defined in 

Section 2.3 by either 

n k 

X. 
]. 

= 0, I Xi' = 
1 
2' I (i=l, ... ,n), (4.3.1) 

it=l j=n+1 
i'li 

or 

n k 

I Xi 
1 0, I 0 = 2 , x_ = x j ' = 

J 
( j =n + 1, . . . ,k). ( 4 . 3 . 2) 

i=l j'=n+1 
j'lj 

Let the closest extremity be defined by (4.3.2) where j=n+l. 

Since the v. 's have the same metric as the w. IS, we can work 
]. ]. 

with the v. IS. From (3.1.2), we know that 
]. 

v. 
]. 

for l:;';i~k, 

and therefore in the v., the restrictions corresponding to 
]. 

(4.3.2) are 

and 

n 

I (hivi + X Oi ) 
i=l 

(4.3.3) 

= 0 , (4.3.4) 
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k 

I (hj'Vj' + XOj ') = ; . 
-j '=n+2 

Now, every equation of the first degree 

~ 

\a.z.=d L 1. 1. 

i=l 

(4.3.5) 

where z. (l~i~t) is the ith component of an ~-vector, repre-
1. 

sents either a point, line, plane, ... , (n-l)-flat of n-l~~-l 

dimensions in space and every point, line, etc. can be so 

represented. 

the quantity 

If the coefficients a. (l~i~~) are divided by 
1. 

1 
2 , 

then the coefficients 

a. 
b. 1. 

= 
1. 

~ 

(L aD !. 
2 

1=1 

are called the direction cosines of the plane, etc., and the 

equation can be written in the normal form as 

where 

~ 

'b.z. = d ' L 1. 1. 

i=1 

(4.3.6) 

(4.3.7) 
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In addition, the square of the perpendicular distance from 

the origin to the plane defined by (4.3.6) is 

d 12 = d 2 
~t'--';;";'--

(4.3.7A) 

L a~ 
i=1 

Now if we put (4.3.3) in the normal form, we have 

n 

n 1 
h.v. 2 -Ix 

I 1. 1. i=l Oi 
= n 1 n 1 

i=1 ( I h~) 2 ( I h~) 2 

i=1 i=1 

= 0 (4.3.8) 

1 
since xOl+x02+ •.• +xOn= 2- From (4.3.8), we see upon sub-

stituting (4.3.8) in (4.3.7A), that the origin ~=~ is a point 

on the boundary defined by (4.3.3). Putting (4.3.4) and 

(4.3.5) in the normal form respectively, we have 

k 

I h; ,v; , = 

k 2)1 ( L h j • 2 
j'=n+2 

j'=n+2 

= , 

k 2 )1 ( L h j ."2 
j'=n+2 

(4.3.9) 

(4.3.10) 

Then from (4.3.7A), the square of the distance from v=O to - ".." 

the extremities defined by (4.3.9) and (4.3.10) respectively 

are 
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2 
xOn+1 
k 

L h~, 
jt=n+2 

(4.3.11) 

(4.3.12) 

Since we want the distance from ~=Q to the boundary defined 

by (4.3.2) where the extremities defined by (4.3.9) and 

(4.3.10) are orthogonal (product of the direction cosines is 

zero) to one another, then the distance from v=O to the _ ....J 

boundary (4.3.2) is the distance to the intersection of 

(4.3.9) and (4.3.10). Using Pythagoras's theorem for 

(4.3.11) and (4.3.12), we have for the square of this dis-

tance 

+ 
1 

k }, 
L 2 

hj' 
j I =n+2 

and therefore, the distance from X=Q to the extremity de-

fined by (4.3.2) where j=n+1, is 

1 1 
}2 . (4.3.13) + k 

L 
j'=n+2 

Since the extremities of dimensionality k-3 were defined by 

(4.3.1) and (4.3.2), then from (4.3.13) if we let 
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{ h~ 
1 } 

1 

PI == min x Oi + 2 
l~i~n 

n 
l. L h~, 

i'==l 
i'li 

{ h~ 
1 .} 

1 
== min x ~ + 2 P2 n+l~j$k OJ k 

L 2 J 
hj' 

j'==n+l 
j'lj 

the radius of the largest sphere centered at w==O (v==O) that ,.., ...., - ,.., 

will fit inside the convex polytope is 

(4.3.14) 

With the use of (4.3.l4) for the radius of the largest 

sphere, the experimenter now has a measure in terms of dis-

tance from the center of the design space upon which to 

place design points. In other words, the radius of the de-

signs (the distance the design points lie from the center 

~=Q of the design) can now be expressed as some fraction of 

the radius of the largest sphere centered at ~==Q that will 

fit inside the factor space. Therefore, in the next chapter 

concerning first-degree designs, we shall refer to this 

largest sphere (denoted by R*) as the extended region of 

interest. The reason for this as we pointed out at the be-

ginning of this section is that the radius ~* is an upper 

bound for the distance that the design points may lie from 

the center of the designs (due to their symmetry with ~=g) 

that we shall be using. Also, in using the largest spherical 
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region, we can always reduce this region to the original 

region of interest defined by (3.1.1) by putting p*=l. 

It should be mentioned however, that if the calculated 

p* is much larger than unity, care should be taken in making 

the assumption of equivalent models (i.e., fitted models) in 

R* and in the unit spherical region. If p* is much larger 

than unity, it may be necessary to talk about the fitted 

models in the two regions as being of different degrees, i.e. 1 

fit a higher degree (second-degree) model in R*. 



v. FIRST-DEGREE DESIGNS. 

In [3J, Box and Draper show, when fitting a first-

degree model when the true surface over the operability re-
A 

gion is quadratic, that the average mean square error of y 

is minimized if one uses a first-degree orthogonal design 

which has third-degree moments equal to zero. In Chapter 3, 

in the reparametrization of the model y = V S + €, we stated 
~ ~ - -

that any k x (k-q) matrix !l could be used such that the 

k x k matrix T is orthogonal. We now show that a class of 
N 

designs exists which enable us not only to use any k x (k-q) 

matrix !l in the reparametrization but also the class of 

designs satisfies the first condition, i.e., the designs are 

orthogonal. 

To describe another reparametrization of the model 

l = ~ ~ + ~I let!* = !~ where M is a k x k orthogonal (not 

an identity) matrix. 

the following manner: 

Partition the matrices T* T and M in 
~/- ~ 

[~ :1 - ~~ 
where ~1 is a (k-q) x (k-q) orthogonal (not identity) matrix. 

Then 

or 

T* = -1 

97 
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If the resulting model using T* in the reparametrization is 
-

l = ~~3 + £, 

where the matrix ~ is N x (k-q) of rank k-q and 23 is defined 

in the same way as ~3 in Section 3.2, then 

The models are 

8 = T*'S = MIT'S = M'a • -3 ~l - -1-1- ~1~3 

which shows that the elements of the matrix ~ are the result 

of some arbitrary rotation, defined by the matrix ~l' of the 

elements of H, i.e., e = ~l· 

By stating then that any matrix I
l

, such that! is 

orthogonal, can be used, we shall need to use a class of 

designs for which the properties of yare invariant to an 

arbitrary rotation of the design points. One such class of 

designs satisfying this property is the class of rotatable 

designs and for first-degree, orthogonality and rotatability 

are synonomous. 

Therefore, in this chapter (and Chapter 6), we re-

strict the choice of designs to first-degree rotatable 

designs in which the third-degree moments are zero. The 

latter property, that is, the third-degree moments of the 

design being zero, is a result of requiring the bottom half 

of the design matrix to be the negative replicate of the top 

half of the design matrix. That is to say, the levels 'of 
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the design variables in the bottom half are the reflections 

(in some cases), with respect to the center of gravity of 

the design, of the levels of the design variables in the top 

half of the design matrix. Box [lJ points out that this 

insures that the third-degree moments of the design vanish. 

(We shall also verify this in Section 5.2.) 

The reader familiar with the arrangements of design 

points associated with first and second-degree rotatable 

designs will not find the material in this chapter and 

Chapter 7 entirely new since we shall be working with sim­

plex designs and two-level factorial designs. However, to 

the reader not familiar with the concept of rotatability of 

designs, this concept and the requirements for achieving 

rotatability of designs are discussed in Appendix D. 

5.1 Description of the designs. 

In setting-up a pattern of experimental design points, 

it must be understood that certain patterns of points might 

fail not only to provide accurate estimates of the param­

eters in the model but might not even allow certain param­

eters to be separately estimated at all. However, when we' 

speak of a first-degree design, we shall mean an arrange­

ment of design points which permit the separate estimation 

of all the parameters in a first-degree linear model. 

In attempting to obtain a best distribution of 

experimental points, we shall keep the following three con­

siderations in mind. The arrangement must be such that 
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(i) the variances of the estimated coefficients are as small 

as possible, 

(ii) the biases in the estimated coefficients which might 

occur if the first-degree model is representationally 

inadequate should be as small as possible, 

(iii) since these designs are the first step in any type of 

sequential experimentation, we must concentrate our efforts 

only on first-degree designs which can easily be augmented 

by the addition of points to second-degree designs. 

When q=2, the first-degree model in the design vari-

abIes is of the form 

y = Wa + € (5.1.1 ) - ,..., ,.., ,.., 

where 

~N/2 
W = ~N D (5.l.2) 
""" -w 

~2N/2 

and j I (n I =N, N/2) is an nl x 1 column vector of ones. 
""n 

In (5.1.2), D is the design matrix of the w. IS (1~i~k-2) 
-w ~ 

and the second-degree moments of the design are defined by 

A2 = ~ (Wii + ... + W;i) for 1~i~k-2. Note that the second­

degree moments of a first-degree rotatable design are all 

equal to the same value. This value is denoted by A2 . 

In the material that follows, two types of designs 

will be considered and for both designs, it will be shown 

that the third-degree moments vanish. Let p = k-2. The 

first type of design is the double-simplex (to be defined 
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shortly) where there are N=2(p+l) experimental points and 

the design points lie at the vertices of two regular p-di-

mensional simplices inscribed in the region of interest R*. 

The second type of design considered is the scaled two-level 

factorial where N=2 x 2P or some one-half fraction thereof. 

The design matrix of the scaled two-level factorial is of 

the form 

D 
""w 

(5.1.3) 

where c is a scale factor such that A2 2. ttl = c 1S no 00 arge 

for the design points to fit in the restricted factor space. 

The ~ x p matrix E in (5.1.3) consists of the plus and minus 

ones in a two-level factorial design matrix. The element in 

th . th 
the i (lSiSp) column of the matrix F is the i coordinate ,..., 

of the design point in the p-dimensional design space. For 

the moment, we have assumed that ~ = 2P . In Appendix I, the 

use of fractional factorials in the two halves of D for 
-w 

reducing N, the number of experiments in {S.l.3}, is dis-

cussed. We shall also from time to time refer to c as the 

"radius multiplier" since the design points in D , defined ...,w 

by (5.1.3), lie on a sphere of radius cJp. 

The next two sections will be directed at the dis-

cussion of the first two considerations for choosing a first-

degree design listed at the beginning of this section. 

Designs which are appropriate when neither the variance nor 

the bias error can be ignored are discussed in Appendix G, 
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as we said before. The third consideration (iii) is satis-

fied by the types of first-degree designs suggested. This 

point will be verified when we discuss second-degree designs 

in Chapter 7. 

5.2 Designs to minimize average sguared bias when the 

variance is assumed to be negligible. 

As is shown in Section 4.2, when we fit a first-degree 

model and the true polynomial function is of degree 2, a 

source of error enters into the estimates of the regression 

coefficients. That is, bias enters into the first-degree 

estimates when it is impossible to represent the true func-

tion by an equation of the type fitted, a first-degree poly-

nomial. 

If we proceed as in Section 4.2, we want to construct 

a design such that the moment matrix of the design points 

equals the matrix of region moments. When the region of 
. 

interest is R*, then from equation (4.2.10), the region 

moment matrix is 

1 Q' +1 -

~11 = 0 J ~l~i d~ = Q *2 I Q (5.2.1) ~~p 
R* p+2 

+1 0' 1 -
Now for a first-degree rotatable design where the 

matrix!1 is defined by (5.1.2), the moment matrix of the 

design points (see Appendix D) is of the form 
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1 QI 0 

~ ~iW1 = Q "'2I Q (5.2.2) -p 

0 0' 
,;;;.> 1 

In (5.2.1) and (5.2.2), I is an identity matrix of order p. 
-p 

In equation (4.2.20) for B, we stated that if we set 

~ = (~i~1)-lWi~2 = ~ii~12' i.e., ~~i~l = ~ll and ~i~2 = ~12' 
then B is minimized. However, when ~ll is defined as in 

(5.2.l), -1 does not exist since is of rank p+l. In ~ll ~ll 

Appendix G, it is shown that the average squared bias B is 

unaffected by the categorization of the components and de-

2 
pends only on "'2' P* , P and a. - (the standardized quadratic 

~J 

effects). Therefore, to say that ~11 = ~~i~l' we are saying 

only that the upper left-hand (p+l) x (p+l) matrices in 

(5.2.1) and (5.2.2) are equal. 

In setting the upper left-hand (p+1) x (p+l) matrices 

in (5.2.1) and (5.2.2) equal to one another, the following 

must be satisfied, 

2 
~ 
p+2 

(l~iSp) , (5.2.3) 

where p* is the radius of the extended region of interest. 

If we use a design matrix of the form (5.1.3), i.e., 

so that "'2 
2 = C I then by putting 

- p* 
c - /p+2 I (5.2.4) 
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the equality in (S.2.3) is satisfied. Therefore, we see that 

to minimize bias alone, we want an orthogonal design with 

radius 

1 
(p~2)2 p*. (5.2.5) 

In this chapter, we have been talking about first-

degree designs in which the bottom half of the design matrix 

is the negative replicate of the top half of the design ma-

trix. This property of the design matrix insured us that 

the third-degree moments of the designs would be zero. In 

addition, by using this particular form of the design matrix, 

we see that the estimates of the parameters (with the excep-

tion of the "mean lf parameter) in the first-degree model will 

also be completely free of bias from the second-degree terms. 

We now attempt to clarify this concept. 

Suppose with p independent variables we construct 

either the double-simplex or scaled two-level factorial de-

sign and denote the top half of D by D 1- In the simplex -w -w 
design, Nl in 9w1 equals p+l and with the two-level fac­

torial, Nl = 2P or some fraction thereof. If we let 

[ 
D ~ -wI 

!?w = -£>wl 
, (5.2.6) 

then the properties of rotatabi1ity are preserved, that is, 

the moments of degree 1 are zero and the moments of degree 2 

are equal. Let the matrix of variables for the second-degree 

terms obtained by mUltiplying the elements of the colurr~s of 
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D in (5.2.6) be of the form 
-w 

for example, when p=2 and 

then 

!?wl = 

-1 -1 
1 -1 

-1 1 
1 1 

D [i i -i
J = 1 1-1 

III 

The matrix of third-degree moments is null since 

[g~l' -P~l] [g] = [~~1~ - P~lQ] = £. (5.2.7) 

The fact that all the third-degree moments are zero is im-

portant since these moments define all the elements except 

one row of the alias matrix. This matrix was denoted by A -
in Section 4.2 and defined by 

(5.2.8) 

In (5.2.8), !l is the matrix of independent variables used 

in fitting the first-degree model and the matrix ~2 contains 

terms which are contained in the true polynomial function 

but are ignored in the assumed (fitted) model. We shall 

try to clarify this concept of bias expressed in {S.2.7} and 

(5.2.8) now with an example. 

Double-simplex .. 

Let p=2 and define the first-degree model by 
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y = 0.0 + alwl + a 2w;. + a L zl + 8. 
1 

In order for the second-degree model to contain all terms up 

to and including those of degree 2, we define the second-

degree (true polynomial) model by 

y = wlal + 8 
..., .... I"J ,.., 

where si = (0.0 , 0.1' 0. 2 , uL ) and a row of ~l is 
1 

(5.2.9) 

~~l = (1, wu1 ' wu2 ' zlu)· The second-degree model in matrix 

n,otation is 

y = ~l£l + i12~2 + 8 (5.2.10) 
,." 

...., 

where a' = -2 (all' 0. 22 , 0.12 ) and a row of ::!2 is 

w' = 2 2 
wulwu2 )· the matrices ~l and 

-u2 (wu1 ' wu2 ' Now ~2 corre-

sponding to the above two models can be defined by (we shall 

not be concerned with minimizing the average squared bias 

but use a design matrix that is of general form) , 

1 0 1 2 0 0 p P 

1 -p/2 /3p/2 1 p2/4 3p2/4 -/3p2/4 

~1 
1 -p/2 -/3p/2 1 

, !!2 
p2/4 3p2/4 /3p2/4 

(5.2.11) = = 2 
, 

1 -p 0 -1 p 0 0 

1 p/2 -/3p/2 -1 p2/4 2 2 
3p /4 -/3p /4 

1 p/2 /3p/2 -1 p2/4 3p2/4 /3p2/4 

where p is the radius of the design. Then, 

1/6 0 3p2 3p2 0 

(WIN) -1 1/(3p2) a 0 0 
= , !!i~2 = ""1-1 1/(3p2) 0 0 0 

, 

0 1/6 0 0 0 
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(5.2.12) 

If ~l and ~2 are defined as in (5.2.9) and (5.2.10),.then 

from Section 4.2, the expected value of the estimates of the 

parameters in the first-degree model are 

" 
E(~l) = ~l + ~ ~2· (5.2.13) 

Substituting ~ and the vectors of parameters in (5.2.13), we 

have 
,.. 2 

E(o.O' = 0.0 + t-(o.ll + 0. 22 ) 
.... 

E (o.l) = 0.1 
.... (5.2.14 ) 

E (0.2) = 0.2 
.... 

E(o.L ) = 0. 
I Ll 

Thus only the "mean" parameter is biased by second-degree 

effects, and the smaller the design radius p, the smaller 

the amount of bias. 

Upon observing the matrix ~l in (5.2.11), we see that 

we can rotate the design points say through a 450 angle 

such that the matrix ~l is now 

1 J3p/2 p/2 1 

1 0 -p I 

~l 
1 -/3p/2 p/2 1 (5.2.15 ) == 
1 -J3p/2 -p/2 -1 

1 0 p -1 

1 J3p/2 p/2 -1 
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and the ~i~l matrix is the same as before. Because of this 

property of simplices, i.e., under an orthogonal transfor-

mation the pattern of design points goes over into a con-

gruent pattern, it is difficult to talk specifically about 

the elements of the design matrix of simplex designs. Hence 

our reason for referring to the scaled two-level factorial 

in most of the material in this chapter. Also, it is inter-

esting to note that if all the elements in the design matrix 

in (5.2.15) are multiplied by c=/Pllp+2, the minimum average 

square bias criterion is satisfied. 

5.3 Designs to minimize average variance when the bias of 

the model is assumed to be zero. 

As was shown in Section 4.2, equation (4.2.18), in 

order to minimize the quantity 

V = N~ f Var y(\t) d~, 
a R* 

we want a design which minimizes the quantity 

p 

V = N[Var ~o + ~:~ L Var ~i + Var uL J. 
i=l 1 

Now with respect to the type of design, we know that V is 

minimized when ~l is orthogonal. In terms of the size of 

the design however, if we look at the quantity 

(S.3.l) 

where· 



N(W'W )-1 = .... 1 ..... 1 

1 

o 

o· 
-' 

0' ,.., 
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o 

Q , and ~11 = 

1 

then V in (5.3.1) can be expressed as 

v = (p; 2) p ~ ~ + 2. 

1 

o 

+1 

o· 
,.J 

+1 

o ,., 

I 

(5.3.2) 

In (5.3.2), since p*2 is fixed, we see that to minimize V, 

the largest A2 must be selected. This is achieved if all 

the design points lie on the boundary of the largest sphere 

, 

centered at ~=Q that will fit in the factor space. Therefore, 

if the matrix D is specified by (5.1.3), i.e., -w 

and if we set 

~ 
c = I"p , (5.3.3) 

then the average variance criterion (5.3.2) is minimized. 

5.4 An example showing the design matrices of the mixture 

components corresponding to the "all-variance" and 

nall-bias ll designs respectively_ 

Suppose the components xl' x 2 belong to category 1 
1 III 

and x 3 ' x4 belong to category 2. Also let ?So=( 4' 4' 4' 4) 

d H d " (1 1 1 1) Th f S " 4 3 an _= l.ag 4' 4' 4' 4· en rom ectl.on ., 

1 { I l}l 
p * = - 1 + 1 '2 = 1"2. 

4 16 16 
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Let us use the largest sphere R* as the region of interest 

and also use a design matrix of the form 

[

-1 U ~w = c i -i · 
-1 -1 

This design matrix corresponds to D 1 in {5.2.6}. Then if -w 

the matrix !1 is of the form 

[ 

.707 0 ~ 
T = -.707 0 
-1 O. 707 ' 

o -.707 

and if we use £ in (5.3.3), the levels of the mixture com-

ponents corresponding to the "all-variance" design are 

~l !2 :Z3 ~4 

[073 .427 .427 0073J 
D 

.427 .073 .427 .073 (5.4.l) = .427 .073 .073 .427 ""x 

.073 .427 .073 .427 

Now, if we use c in (5.2.4), the levels of the mixture com-

ponents corresponding to the "all-bias" design are 

lli
25 .375 .375 012

u D .375 .125 .375 .125 (5.4.2) = .375 .125 .125 .375 ""'x 
.125 .375 .125 .375 

The design matrices (5.4.1) and (5.4.2) are found from the 

equation (3.2.15), i.e., 

D = H W T' + x_O j' 
~x - N1 ~4 

(5.4.3) 
,.., 

where W = D . ,.., -w 



VI. AN EXTENSION TO THREE AND MORE CATEGORIES. 

In this chapter, we shall be concerned with extending 

the development of the mixture problem to cover situations 

where the number of categories of mixture components is 

greater than 2. In some sections of this chapter, the 

number of categories is general. In other sections, the 

theory is directed to situations involving just three and 

four categories of components. This limitation on the 

number of categories should not present any objections since 

in actual practice, it seems unlikely one would find appli-

cations of the mixture problem where q ~ 5. If however the 

procedure for q>4 is desired, the development is an obvious 

extension of that where q s 4. Also, in this chapter the 

discussion in the sections will be held to a minimum since 

most of the material is merely an extension of the theory 

developed for the two-category mixture problem. 

6.1 General discussion concerning three categories. 

In Section 1.3, we defined the mixtures stating that 

each mixture must be the result of some combination of at 

least one of the components from each of the categories. It 

was also mentioned that the weights assigned to each of the 

categories in defining the mixtures are equal. That is, if 

q = 3 and we let 
.(, 

I n. 
. 1 l. 1.= 

(6.1.l) 

111 
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where in (6.1.1), n. (lsi~3) is the number of components in 
~ 

the ith category, then 

St 

L 1 
(1~t~3) x_ = 

J 3 (6.1.2) 

j=St_1+1 

and 

3 St 

I I x_ = 1. 
J 

(6.l.3) 

t=l j=St_l+l 

The shape (number of extremities) of the convex poly-

tope again depends on the number of components in each of 

the categories. However, it is difficult to generalize 

the formula for the number of extremities (denoted by N in 

Section 2.3) as we did for two categories. This is because 

of the increasing number of components with the additional 

number of categories (i.e., k ~ 2q). On the other hand, we 

tabulate N (Table 1. on the next page) associated with the 

polytope for various n. (1~i~3) for the three-category case 
~ 

to indicate the complexity of the convex polytope or factor 

space of the mixture components. 

-To calculate the number N of extremities of dimen-

siona1ity k-3-~, we proceed as with two categories by de-

fining ~ (l~~Sk-3) as the number of components set equal to 

zero. For example, let ~=2, n
l

=2, n 2=2 and n 3=3. Then 

N = (~) - [(~) + (~) ] 

= 21 - 2 = 19. 
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Table I. 

The Number of Extremities of the Polytope When the 

Components Come From Three Categories. 

N 
-.; 

j.l n 1 n 2 n3 j.l n l n 2 n3 N 

2 2 2 3 3 3 
1 6 1 9 
2 12 2 36 
3 8 3 81 

3 2 2 4 108 

1 7 5 81 

2 19 6 27 

3 24 4 3 2 
4 12 1 9 

4 2 2 2 35 

1 8 3 76 

2 26 4 98 

3 44 5 72 

4 40 6 24 

5 16 

3 3 2 
1 8 
2 27 
3 48 
4 45 
5 18 
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= 35 - (6 + 1 + 3 + 3 + 6 + 2 + 2) = 12. 
,..., 

The values of N in Table 1. can be checked using the general-

ization of Euler's formula, . 

where N. (O~i~r-l) is the number of boundaries of dimen-
1 

sionality i of the r-dimensional polytope and r=n
l

+n 2+n3-3. 

For example, for r=2+2+2-3=3, then 

8 - 12 + 6 = 2 

= 1 - (_1)3. 

For r=3+2+2-3=4, then 

12 - 24 + 19 - 7 = 0 

= 1 - (_1)4. 

Now the general polynomial model (1.1.2) can again be 

defined so that the terms in the model represent valid mix-

ture combinations of the components. The desirability of a 

representation of this form as stated in Section 2.2 is that 

the terms in the model can be put into a one to one corres-

pondence with the design points suggested by this expression. 

Thus the estimated response at some points in the factor 

space can simply be represented by a single term in the model. 

For example, if we want a quadratic model representation and 
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n 1 = n 2 = n3 = 2 when q = 3, then if we apply the constraints 

(6.1.4) 

while at the same time repeatedly multiplying the terms in 

the model 

6 

Y = '\ t=3.x. L ~ ~ 
i=l 

246 

Y = I I I Yij~XiXjX~ 
i=l j=3 t=s 

2 6 

+ I I Yi34tXiX3X4Xt 
i=l t=5 

i<j 

13 •. X.x. + € 
1.J 1. J 

2 4 

+ I I YijS6XiXJXSX6 
i=l j=3 

4 6 

+ I I Y12j~XIX2XjX~ + €. 

j=3 t=5 
(6.1.5) 

1 The estimated :esponse at the mixture combination x 1=x3=xS- 3 
'" is simply y = Y135 where Y13S is the estimate of YI3S -

9 
One disadvantage of the form (6.1.5) of the polynomial 

is that it contains an excessive number of terms (namely 20). 

Furthermore, without adding a center point or without repli-

eating experiments, there is no way to measure the lack of 

fit of the model~ This is because the model contains the 

same number of terms as there are design points suggested by 

this expression. The design spaee is a 3-dimensional cube 

and the design points lie at the vertices and midpoints of 

the edges. Therefore, we shall proceed as with two categories 

(Chapter 3) to transform the mixture components to indepen-

dent variables so as to be able to define the problem with 

fewer variables. 
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6.2 Transformation to independent variables: 

Three and four categories. 

To briefly review the steps in transforming to inde-

pendent variables, it was explained in Chapter 3 that with 

q categories of k mixture components, the rank of the matrix 

V in the general linear model y = V~ + e is k-q. This led 
~ ~ _~ N 

to the reparametrization of the model to a model X = ~~3 + ~ 

where a row of the matrix W contains the levels of the k-q 
f"'i 

independent variables. Now if we let q=3 and p=k-3, then 

the transformation from the variables v. (lSj~k) to the de­
J 

sign variables w. (lSi s k-3), which was shown for the case 
~ . 

q=2 in Section 3.2, extends as follows to the case where q=3, 

v 2 (6.2.1) 

w p 
...., 

0 hI h2 hS 0 0 0 0 
1 

".." ,.., 
0 0 0 0 hS +1 hs 0 0 

1 2 ,..., 
0 0 0 0 0 0 hs +1 

,..". 

hk vk 2 

where the matrix !i is (k-3) x k and 

".." 
h. 

h. = -.!. (1S:i:S:S
1

) 
~ 1* h 

....., h . 
h. = ~ (S1+1SjSS2) (6.2.2) 

J 2* h 

,..., h t h t = 3* (S2+1 s:tsk ) 
h 
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and from (6.1.1), 

, h1. = . 1* ( 
S. f 

1. 1 

L h~)2 
j=S'1 1+1 

1. -

i'=1 / 2 / 3. 

(6.2.3) 

The last three rows of the transformation matrix in 

(6.2.1) can be put in vector form by 

h" = (0 ,.., 

'" hI = (0 ,.., 

,..", 

•.. , hs I 0 I 0 , 
1 

,0) 

"" ...., o , ... , 0 I hS +1' ... I hs ' 0 , ..• I 0) (6.2.4) 
1 2 

o , ... I 0 
..., ,... 

a , 0,..., 0 ,hs + I' . . . , h k ) , 
2 

and therefore, (6.2.1) can be rewritten as 

[~J = !'~ (6.2.5) 

In (6.2.1) and (6.2.5), T is defined -
to be a k x k orthogonal matrix and with the elements of the 

vectors in (6.2.4) specified by (6.2.2), the matrix ~l can 

be constructed from the h. (lSi$k) so that the matrix T is 
1. -

orthogonal (see Appendices E, F). 

For the construction of the N x k matrix W of inde-...., 

pendent variables, we stated in Section 3.3 that the design 

matrix will be divided into q compartments where each com-

partment contains N. (l~j~q) rows. When q=3 and the N_ are 
J J 

equal, the coefficients z. (l$i~2) of the contrast columns 
1.U 

are determined by equations (3.3.6), (3.3.6A) and (3.3.8). 

The form of the matrix W is -
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!N/3 !N/3 

W = 2N D -!N/3 !;N/3 (6.2.6) 
'" NW 

QN/3 -~N/3 

Note that to form the matrix 

[Q R Q. Q.] 

where g is an N x 1 column vector of zeroes so that columns 

of ~lements (not all zero) can be added to form the matrix ~ 

in (6.2.6), the columns of the matrix ~ must be rearranged 

to 

(6.2.7) 

Then over N observations, the transformation in (6.2.5) is 

Y ! = [~ E Q Q] · (6.2.7A) 

When q=4 and the N. (1~j~4) are equal, an additional 
J 

column is added to the matrix ~ in (6.2.6) so that ~ is now 

1N/4 !N/4 1N/4 

W = iN D 
-1N/ 4 !N/4 !N/4 (6.2.8) - -w Q. -3N/ 4 !N/4 

0 0 -~N/4 ,.., -' 

To determine the settings of the levels of the mix-

ture components to be performed experimentally, the proce-

dure is identical to that of two categories. That is to say, 

if 

x = n~ Q] [~~] l! (6.2.9) 

= WT' tI. - -'1 .- ' 
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k-q 

XUj = ( I wutt jt) h j + XOj 
t=l 

(6.2.10) 

where Wut is the element in the u th row and tth column 
,..., 

(l~u~N, l~t~k-q) of the matrix Wand t_p is the element in 
,..., J"" 

the jth row and tth column of T (l~j$k, l~t~k-q) where the -
matrix T is defined as in (6.2.5). Note that if the matrix 

I -

R is located in the matrix ~ as in (6.2.7A), and the matrix 

T is of the form (6.2.7), then 
".., 

k-q+l 

x = ( I wutt jt) h_ + XOj uj J 
t=2 

6.3 Radius of the largest sphere: Three categories. 

When q=3, the shortest distance from the point ~=g to 

an extremity of the polytope is equal to the length of the 

shortest orthogonal projection from ~=Q to an extremity of 

dimensionality k-4. Thus the radius p* of the largest 

sphere centered at the point ~=g that will fit inside the 

convex polytope is 

where 

p* = min p. 
1!;i!;3 1. 

Pi = min xOj s. l+l~jS:S. 
{
.l. + 
h~ 

J l.- 1. 

s. 
1. 

I 

1 

(6.3.1) 

1 
}2 • (6.3.2) 
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6.4 Design matrices for three and four categories. 

When the mixture problem involved just two categories 

of components, the design matrix D was constructed such that , -w 

the levels of the design variables in the bottom half of D 
""w 

are the negative of the levels of the variables in the top 

half of D. In addition, each half of the matrix D con-
~ ~w 

sisted of a first-degree orthogonal design. This partition-

ing first of all enabled us to estimate the effects of all 

the terms in the first-degree model separately from one 

another. Secondly, we were able to keep the estimates of 

the first-degree effects free of bias from possible second-

degree effects by assuring that the third-degree moments of 

the design vanish. 

Now in order to maintain the above conditions of 

symmetry and orthogonality when q=3 and q=4, let us define 

the design matrices D in the following manner. For three 
-w 

ca tegori e s , 

(6.4.1) 

where with the simplex design, E is a (p+l) x p matrix and 

the p+l rows consist of design points which lie at the ver-

tices of a p-dimensional simplex. For the scaled two-level 

factorial design, the t x p matrix ~ (where t=N/3 if the 

sizes of the compartments in D are equal) consists of the 
-w 

plus and minus ones in a two-level factorial design matrix 

and the elements of the p columns of F represent the levels ,.., 
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of the variables in the first-degree model. 

In (6.4.l), ~ is a matrix consisting of center point 

replicates, i.e., wui=O (l~i~p). In (6.2.6), n is N2 x p 

where N2=N/3 but this is not necessary_ That is, if NIIN2~N3 

(where Nj is the number of rows in the jth compartment of ~w1 

then the z. (i+l) , the coefficients in the (i+l)st compart-
l.. 

ment corresponding to the ith contrast (lsi s 2), will be cal-

culated by the formula (3.3.7). Finally, the total number 

of experiments with the simplex design is N=2{p+l)+N2 and 

with the factorial design, N=2.2P- i +N2 where i=O,l,2, ... 

For the case of four categories, the design matrix of 

the design variables will be 

Qw =c~~:] (6.4.2) 

With the simplex design, 

D - .... ~ FJ -wI - -E (6.4.3) 

or 

9wl = [i] (6.4.4) 

where F is defined as in (6.4.1). The scaled two-level .... 

factorial will also have a design matrix of the form (6.4.2) 

where 9wl= r but the elements of the N/2 x p matrix E will 

be the plus and minus ones in a two-level factorial design 

matrix. With the simplex design, N=4(p+l) and with the 

factorial design, N=2-2P- i where i=O,l,2, •.. Actually, the 

only requirements for the form (6.4.2) of the design matrix 
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is that the design matrix be divided into four parts where 

each part or compartment contains a first-degree orthogonal 

design, and the columns in each compartment must sum to zero. 

6.5 Moment matrices for three and four categories: 

A comparison between orthogonal contrasts and 

orthogonal blocking. 

We stated in Section 3.3 that we would try to justify 

our choice of using orthogonal contrasts rather than orthog-

onal blocking. One of the reasons for this choice is in the 

construction of the moment matrix. We now show the general 

forms of the moment matrices corresponding to both methods 

in an attempt to clarify this point. 

Let the number N_ (l~jSq) of rows in the j compart­
J 

ments of D be equal. This enables us to generalize the -w 
form of the matrix D. If q=3 and the matrices Wand D 

-w - -w 
are defined by (6.2.6) and (6.4.l) respectively, the moment 

matrix is 

1 Q' 0 0 

1. W'W 
Q A21 Q Q 

= "'p (6.5.1) 
N ""'-

, 
0 Q' 2/3 0 

0 0' 0 2 ,.., 

where 

N 

=I 
u=l 

2 
W. 

Ul. 

N 
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If q=4 and D is defined by (6.4.2) and W is defined as in 
-w -

Section 6. 2 I (6. 2 .8) I then 

1 0' 0 a a ,..., 

Q A2I Q Q a 
"'p 

,... 

1. W'W = 0 Q' 1/2 0 0 (6.5.2) N ,.., --

0 o· 0 2/3 0 .... 

0 Q' 0 0 3 

By observing the matrices in (6.5.1) and {6.5.2} above, we 

see that the general form of the moment matrix with q cate-

gories using orthogonal contrasts (where the N. (l~j~q) are 
J 

equal) is 

1:. W'W = N ,.., I'OJ 

1 QI Q 

o ,.., A2I -p Q. 

9 Q' ~ 

(6.5.3) 

where the matrix Q is a (q-l) x (q-1) diagonal matrix and 

the diagonal elements are equal to ~, :' l~, ... , q. When 

the Nj (l~j~q) are not equal, ~ is still diagonal but the 

elements are different from those in (6.5.3). 

If the method of orthogonal blocking is used to 

measure the variation between the groups of observations, 

the formulas used for calculating the coefficients in the 

block contrasts are different from the formulas (3.3.7) or 

(3.3.8). In some cases, the calculations of the coefficients 

in the block contrasts are considerably more time consuming. 

Also, although the form of the moment matrix using orthogonal 

blocking is the same as (6.5.3), the matrix D in (6.5.3) will 
-..I 
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not be diagonal. Instead, using orthogonal blocking where 

the N. are equal, 
J 

D = Q. I - j j,] - l.:I ... q-l - ~ 

where j is a (q-1) x 1 column vector of ones. ,... 

(6.5.4) 

Considering the forms of the moment matrices using 

both methods, we see that one distinct advantage in using 

orthogonal contrasts is in obtaining the precision matrix . 
N(~,~)-l (the inverse of the moment matrix). This inverse 

matrix is easily obtained because of the diagonal property 

of the moment matrix. Besides obtaining estimates of the 

parameters in the model, the precision matrix is also used 

for comparing the efficiencies of designs (although the 

block variables are of no concern). Therefore, one might 

choose to use the method of orthogonal contrasts to that of 

orthogonal blocking simply because of the ease in inverting 

a diagonal matrix. 

Actually this ease in calculations may be debatable 

since the matrix D in (6.5.4) is of the form 
~ 

D = ,..., 

a b b 

b a b 

. . 
b 

b 

b 
b b ••• b a 

The inverse B-1 is of the same form and requires only the 

solution of two equations in the two unknowns a and b. That 

is to say, the inverse £-1 will be of the form 
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c d d d 

d c d d 

d 

d 

d d ••. d c 

c = 
a+(g-3)b , 

a 2+(q-3)ab-(q-2)b2 d = -b 
22· 

a +(q-3)ab-(q-2)b 

When a = ~ - 1 and b = -1, then 
q 

c = g(I+2q_q 2) 
1+q_q2 

, d = 2 • 
l+q-q 

In any event, the reader now has an alternative method from 

orthogonal blocking for extracting information when blocking 

the observations. In the next chapter, we extend the method 

of orthogonal contrasts in covering second-degree designs. 

6.6 The effect of the addition of categories on 

the properties of y. 

The average squared bias was defined in Section 4.2 by 

B = N2g2 ~ g2 · (6.6.1) 
a 

Now since the contrast terms in the model are the only terms 

affected by the addition of categories of mixture components 

and these terms do not have any influence on the fit of the 

model to the physical situation, it can easily be shown that 

B in (6.6.l) is unaffected by the addition of categories of 

components. Since the quantity B involves only the quanti­

ties A2 , p*2, P and n. _ (the standardized quadratic effects 
1) 
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of the true surface), we shall om:,- t the detai Is of proving 

the above statement. 

The average variance criterion, on the other hand, is 

affected by the inclusion of additional terms (k~2q) to the 

model. That is to say, from Chapter 4, equations (4.2.17) 

and (4.2.10), 

v = trace (N(Wi~1)-1~11} 
2 

--E-~ 
= (p+2) A2 + K, (6.6.2) 

where the quantity K depends on the contrast terms in the 

-1 
model. The orders of the matrices N(Wi~l) and ~11 are 

increased by the addition of categories which inturn affects 

K in (6.6.2) • However, the procedure used to minimize V 

does not change in that we want to use a design with a large 

"'2 since p *2 is fixed. This means that we want to use a 

design whose points all lie on the boundary of the largest 

p-dimensiona1 sphere centered at ~=~ that will fit inside 

the factor space (convex polytope). 



VII. SECOND-DEGRRE DESIGNS. 

In Chapter 5, designs used when fitting a first-

degree linear model were introduced. Within the region of 

experimentation however, there often exists some degree of 

curvature of the response surface. When curvature exists 

and it is desired to obtain a measure of this curvature, 

thep generally the fitting of only a first-degree model is 

not sufficient. That is to say, in order to obtain some 

measure of the curvature of the response surface, we must 

fit a model which is at least of the second degree. 

In this chapter therefore, we shall direct our 

attention to the construction of second-degree designs and 

the associated second-degree model in the design variables 

w. (l~i~k-q). The second-degree designs suggested for use 
1 

will possess the property that they are easily formed by 

augmenting the previously constructed first-degree designs. 

In this chapter, we shall also extend the development of 

the method of orthogonal contrasts so as to be able to mea-

sure the variation that might exist between stages of experi-

mentation where a stage corresponds to any condition which 

is thought to be homogeneous such as a period of time, a 

particular piece of production machinery, a chemist, etc. 

The analysis of a second-degree central composite design, 

that is, the calculation of the estimates of the parameters 

in the second-degree model using a central composite design 

127 
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is shown in Appendix H. 

7.1 The second-degree model in the design variables and the 

general form of the moment matrix for a second-degree 

design. 

Let the number of categories of mixture components 

be two (i.e., q=2). Then the second-degree model in the 

des~gn variables can be written as 

y = ~igl + ~2~2 + e 

where ~i = (1, wI' ... , wk _ 2 ' ±l) and 

(7 .1.1) 

2 2 
~2 = (wI' •.. , wk _ 2 ' /2wl w2,···, /2wk _ 3wk _2)· 

The coefficient /2 of the crossproduct terms in Wi is stan­.... 2 

dard notation in response surface work and will not compli-

cate the analysis as we shall see. In the model (7.1.l), 

the vectors of parameters are 

and 

0, a. gi = (O,ll,···,O,k-2 k-2' ~, ... , k-3,k-2). (7.1.2) 
I /2 12 

Over all N observations, the model will be written as 

Y = W a. + e _ ..., lOW ..... (7 .1. 3) 

where the u th row of the matrix W is w'_(w' Wi ) and 
~ -u- -lu/~2u 

st=(~i' gi). Note that the matrix ~ was used previously to 

denote the matrix of independent variables but in this chap-

ter, when we refer to the matrix ~, we shall always mean the 

form used in (7.1.3). 
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To determine the form of the moment matrix, for gen-

era1 q, of a second-degree design, let us rearrange the 

contrast column in the matrix W as well as the contrast -
parameter in a and let p=k-q. Then the matrix W for gen-,.., ,.., 

era1 q is 

~ = [~'~1"",~p'~f, ... '~~'i~lW2, ... 'i2W~_lWP'~1, ... ,~q_J 
. . .. .. ... ~ 

(7.1.4) 

where the elements in the z. (ls i sq-l) columns take the 
~ 

values of the z . (l~iSq-1) in the equations (3.3.6), (3.3.6A) 
U~ 

and (3.3.7). The gene~1 form of the moment matrix for any 

second-degree design where the matrix ~ is defined by (7.1.4) 

is 

1 Q.' A - I 0' ~' 0 21p -
0 A21 Q, Q, Q Q, - -p 

1. WIW 
G A4 A4 A4 

= A2 j Q A4 G A4 A4 Q 0 E , (7.1.5) 
N - IV -p -

. 
A4 A4 • · • A4 G 

Q, Q Q 2A4 I. 
(~) 

Q, Q 

Q Q, Q. Q, 2 0 
-' 

0 o· p' 0' 0' d ,.., - ,.., -
where the quantities in the moment matrix are 
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N 

A2 = 1. I w
2

. N U1 
u=l 

N 

A4 = ~ I w
2 

.w
2

_ 
U1 UJ 

u=l 

N 

G = 1. I w
4

. N U1 
(7 .1. 6) 

u=l 

N 

NQ = diag ( I z~u) ..., 

u=l 

N 

P. 1 L 2 - - z W 
1 - N q-1,u ui 

u=1 

N 

d 1 I 2 - - z - N q-1,u 
u=1 

Note that the moments A2 , A4 and G are independent of the 

i (lsi~p). The quantity Pi in (7.1.6) will be,discussed 

later in Section 7.3. 

We shall now discuss the construction of second-

degree designs and also explain how the quantities in (7.1.6) 

influence the strategy of the experimenter in choosing a 

second-degree design. In Chapters 5 and 6, the discussion 

was limited to rotatable designs and we shall maintain this 

requirement of rotatability for the second-degree designs 

discussed in this chapter. 
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7.2 Second-degree rotatable arrangements and designs. 

Two of the most commonly used second-degree rotatable 

designs are the equiradial rotatable designs and the rotat-

able composite designs. In a manner of speaking, the ro-

tatable composite designs belong to the class of equiradial 

designs. When however we speak of equiradial designs, we 

are referring to a class of designs in which the design 
I 

points are equi-spaced on the boundaries of two or more con-

centric p-dimensional spheres and the radii of the spheres 

are unequal and greater than zero. Also, the number of 

points on the boundary of each sphere, whose radius is 

greater than zero, must be greater than or equal to five. 

In contrast to this, with the rotatable central composite 

designs, one of the spheres has radius equal to zero. 

A set of design points is said to form a rotatable 

arrangement of the second degree in p variables if 

N 

I w
2

. = N A2 Ul. 
(7 • 2 .1) 

u=l 

N 

I w
4

. = 3NA
4 Ul. 

u=l 
N 

I 3w 2 2 
= .w 

Ul. uj (7.2.2) 

u=l 

and all other sums of powers and products up to and in-

eluding degree 4 are zero (see Appendix D). Now the point 

set is said to form a rotatable design if the above equations 



132 

(7.2.1) and (7.2.2) are satisfied and the momen't matrix 

(7.1.5) is non-singular. Box and Hunter [6] show that a 

necessary and sufficient condition for the moment matrix to 

be non-singular is that 

A.4 > -E­
A.~ p+2 

(7 • 2.3) 

a condition which is always satisfied, as pointed out in [6], 

merely by the addition of center point replicates to the 

design. The inequality (7.2.3) becomes an equality only 

when all of the design points lie on a p-dimensional sphere 

and consequently the moment matrix is singular. This is seen 

by the following example. 

Let p be the common distance from the design points 

to the center of the design for a single set of design points. 

Then, we can see that in the! matrix (7.1.4), 

p 

\' w2 . = p2 L U~ 
u=l 

(7 • 2 .. 4) 

where wuO=l, and therefore, the matrix ~ is deficient. 

Consequently, the constant parameter a O in the model (7.1.3) 

cannot be separately estimated from the quadratic parameters 

a .. (l~i~p). Now, if we have just one single set of design 
~~ 

points, then from (7.2.4), 

N 

p2 = ~ I 
u=l 

= pA. 2 " (7 .. 2 .. 5) 
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If we let 

N P 

p4 = (p2)2 = ; I ( I w~i)2 , 

u=l i=l 

then 

= 3PA4 + p(p-l)A4 · 

422 But since p =(p ) , that is, 

then 

A4 __ --E-
2 - • 

A2 p+2 

(7.2.6) 

(7 .2. 7) 

A result of the equality (7.2.7) as we shall see later in 

Section 7.4, is that the moment matrix associated with the 

set of points only on the boundary of one sphere is singular 

and therefore, the estimates of the parameters cannot be 

found by the usual least-squares procedure. 

In the construction of a second-degree design, we 

have shown that if the experimenter places a set of n l points 

at a distance PIFO from the center of the design, he must 

augment the design with an additional set of n 2 points at a 

distance P2FP l from the center or at the center. Of course, 

the quantities A2 and A4 (see (7.1.6» in the moment matrix 

will be affected by the pattern of design points and this 
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the experiment.er must consider prior to constructing the 

design. 

One further point to consider prior to constructing 

second-degree designs is the dimensionality of the factor 

space (number of independent variables). In two dimensions, 

there are an infinite number of concentric equiradial sets 

of points but in using regular figures, the pentagonal and . 
hexagonal arrangements each with center point replicates 

are most cornmon. In three, four and five dimensions, only 

a limited number of regular figures exist. In fact, in five 

and more dimensions, only three regular figures exist. They 

are, the regular simplex, the crosspolytope or p-dimensional 

octahedron, and the hypercube or p-dimensional cube. (See 

for example, Regular Polytopes, Coxeter, H.S.M. (1963), The 

MacMillian Company, New York, p. 291-296.) 

Box and Hunter [6J point out that the crosspolytope 

and hypercube can always be combined to form a second-degree 

design. This combination of the crosspolytope and hyper-

cube is an obvious extension of our previously mentioned 

two-level factorial design, and therefore, the combination 

will now be considered. 

7.3 The central composite design. 

In Chapters 5 and 6, the discussion on first-degree 

designs consisted of simplex designs as well as two-level 

factorial designs. If we confine our discussion at the 
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moment to the two-level factorial designs, we notice that 

these designs permit the estimation only of the coefficients 

0.0 , a. , 0.. _ (l~iSp, l:'S:i<j~p) in the model 
~ ~J 

P P p 

Y = 0.0 + Io.·w. + I 0. .. w~ + l: l: QijWiWj 
+ €. (7 . 3.1) 

~ ~ ~~ ~ 

i=l i=l i<j 

With the addition of center point replicates however, it is 

sho~ in Appendix I that the estimate of all+0.22+ ... +o.pp 

can be obtained but the experimenter is still without infor-

mation on the individual 0. .. (lSiSp). It was with this 
l.~ 

latter object in mind (i.e., estimating the individual 0. .. ) 
l.~ 

that central composite designs were introduced by Box and 

Wilson in 1951. 

In their original form, the central composite designs 

were formed by adding certain additional points to the two-

level factorial designs. In fact, apart from the factorial 

portion of the design, these augmented designs (sometimes 

referred to as "star" designs) may be regarded as a one-

factor-at-a-time experiment. This is because the experi-

menter starts at the center of the region of interest (w .=0, 
U~ 

l~i~p) and then tests each factor or variable in turn at a 

high level (w .=w) and at a low level (w .=-w), while all 
Ul. Ul. 

the other variables are held at their central value (w.=O). 
Ul. 

For example, with p variables, the central composite 

design which consists of the hypercube, the crosspolytope 

and nO center point replicates will have a design matrix of 



the form 

D = -w 

+c -
+c 

+c 

-00 

00 

0 

0 

0 

o 
o 
o 

o 
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+c -
+c -

+c -
0 

0 

-00 

00 

0 

o 
o 
o 

o 

+c -
+c -

Ql 

+c -
0 

0 

0 

0 
~2 (7.3.2) 

0 

-00 

00 

o 

o 

In D , which we horizontally partitioned into the matrices -w 
El , ~2 and £3' the elements of the M x p matrix £1 consist 

of the scalar product of the radius multiplier c and the 

plus and minus ones in the design matrix of a two-level 

factorial design. The matrix £2 is a 2p x p matrix whose 

elements are the axial or star points. The nO x p matrix 

£3 contains nO center point replicates. Hence, the total 

number of experiments to be performed with the rotatable 

central composite design is N=M+2p+nO. 

The factorial portion ~l of the matrix Ew will con­

tain one or more first-degree orthogonal designs. That is, 
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the matrix £1 will be part or all of the design matrix D .... w 

considered in Chapters 5 and 6. The nO center point repli­

cates in Q
3 

consist of center point replicates performed 

with the factorial portion £1 plus center point replicates 

run while performing the axial group ~2. Since the axial 

group is also a first-degree orthogonal design, then, as 

previously mentioned in Chapter 3, the central composite 

design is simply two or more first-degree designs augmented 

with an additional group of center point replicates. 

If we refer back to (7.1.4), and with the design 

matrix defined by (7.3.2), we see that the matrix W, for 

general q, is now of the form 

Ql 
2. _ I 

+l"2c 2 
c JM] z1' z 2' . • . , z 

q-l ,., -p -
-to 0 0 

to 0 0 
0 -to 0 
0 to 0 

B2 g 
! = IN • (7 • 3. 3) 

0 0 -to 
0 0 to 

0 0 0 

!23 
0 0 0 

0 
IV 

0 0 0 

The general form of the moment matrix using the central 

composite design is defined by {7.1.5} but now the quan-

tities in (7.1.6) are 
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A2 = ~[MC2 + 2w2] 

I 4 
A4 = N[MC ] 

G = lCMc4 + 2w4] 
N 

N 

P. = NI \' z 1 w
2 

. 1 L q- ,U UL 
u=l 

N 

NQ = diag ( I z~u) 
u=l 

N 

d I I 2 - - z - N q-l,u 
u=l 

(7.3.4) 

(l~i~p) 

(1~i~q-2) 

With regard to the quantities in (7.3.4) above, since the 

design points must lie within or on the boundary of the 

largest sphere centered at ~=Q that will fit inside the 

factor space, and if we put 

and 

. then, 

2 
Pccd 

Pccd JJ..* 
= 7p ~ ip 

(7 .3.5) 

where P d is the radius of the central composite design cc 

and p* is the radius of the largest sphere. (Note that p* 

could be the radius of the unit sphere. This choice is 

left to the experimenter as in Chapters 5 and G.) . 
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Probably the two most appealing characteristics of 

the central composite designs then are that they are not 

only easy to construct by adding points to the two-level 

factorial designs, but also, they do not contain an exces-

sive number of design points. In addition, these designs 

permit the experimentation to be performed in stages. For 

example, if after the initial first-degree design (two-level 

factorial) is completed and one desires to fit a second-

degree model, then all that is needed to form the central 

composite design is a few additional axial points w .= +w 
U1 -

(lSiSp) and some center point replicates. Here a stage 

might correspond to a period of time. 

In our definition of the design matrix (7.3.2), we 

stated that the M x p matrix ~l contained one or more first­

degree orthogonal designs. Let us assume that the rows of 

gl comprise enough compartments, each containing a first­

degree orthogonal design, so that with the z. (1~i·q-2,l-u~M) 
1U 

defined as in Section 3.3, zi1+zi2+ ... +ziM=O (ISi~q-2). 

Then from the definition of Z 1 in Section 3.3, we see q- ,u 
that 

Z 1 1 + Z 1 2 + ... + Z I M = M. q- , q- , q- I 

On the other hand, if E1 contains the complete factorial 

(i.e., all of the rows of D in Chapters 5 and 6), then .... w 

Zq_l,l + Zq_I,2 + .•• + Zq_l,M = O. 

Let us assume that the design points in th~ rows of 
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the matrix Rl as well as some center point replicates have 

been performed and refer to these experiments as the first 

stage of the central composite design. We are now ready to 

run the second stage ~2 as well as some additional center 

point replicates and at the same time, we shall want to 

measure the variation (if any exists) between the two stages 

of experimentation. Since we have discussed the use of 

orthogonal contrasts when fitting a first-degree model and 

since the elements in the columns of the matrix W corre--
sponding to the q-l contrasts are already determined by the 

previous experimentation, we shall continue in the next 

section with the orthogonal contrast approach. It will be 

shown in the next section that orthogonality of the contrast 

column, which we use to measure the variation between the 

stages of experimentation, with the other columns in the 

matrix N will influence the settings of the levels of the 

axial points in the rows of the matrix E2 . 

7.4 The use of orthogonal contrasts to measure the 

variation between stages of experimentation. 

Although we have referred to the completion of the 

factorial portion 21 of Qw in (7.3.2) as the first stage of 

experimentation, we can just as easily consider it the 

result of at least one stage. That is to say, up to now 

each stage of the experimentation process has consisted of 

some number of rows of the matrix £1 as well as naj~O 
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center point replicates. The running of the design points 

in the matrix £2 as well as nOw center point replicates will 

then be the last stage of experimentation associated with 

the central composite design. 

To obtain a measure of the variation that might exist 

between the stages of experimentation, we shall use one con-

trast containing N non-zero coefficients. In fact, since we 

are going to use just one contrast, then the coefficients 

z (lSu$N) in this contrast will not require a subscript i 
u 

as in Section 3.3. To simplify the mathematics, let us 

replace the non-unit coefficients (if any exist) of the q_lst 

contrast in the matrix W with the unit value, that is, -
z 1 =z =1 (l~u~M). In the chapters on first-degree designs, q-,u u 

the matrix D was divided horizontally into q compartments -w 
and N. (l~jSq) was the number of rows in the jth compartment. 

J 

We shall specify now that Nj is not only the number of rows 

f th .th t t f D b t N 1 . 1 d o e J compar men 0 -1' u . a so 1nc u es n . 
J oJ 

center point replicates which combined with the rows of the 

jth compartment of Q
l 

comprise and will be called the jth 

group of design points. If we state that the matrix £1 
A 

contains qsq compartments, then the axial points and nOw 

additional center point replicates will be' the (q+l)st group 

of experiments. 

To see what values we impose on the elements w in the 

matrix E2 by making the N x 1 contrast column orthogonal to 

the other columns of the matrix ~, let 



and 

u=N. 1+1 J-

u=N. 1+1 J-

2 z w . = u u~ 

z 
u 
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2 w. 
u~ 

... 
(1:$;] ~q+ 1) , (7.4.1) 

... 
(1~]~q+l,lsi~p~(7.4.2) 

where z is the uth coefficient in the contrast and c_ is a 
u J 

scalar quantity denoting the sign and magnitude of the coef-

ficients of the contrast corresponding to the jth group. 

Since each compartment of ~l contains a first-degree orthog­

then 

w .w ., 
u~ UJ 

u=N. 1+1 J-

= 0 . (7.4.3) 

That is, the contrast column is orthogonal to the columns of 

the matrix! corresponding to the crossproduct terms {see 

(7.3.3». 

Let us denote by z. (w) the coefficients that fall in 

the rows corresponding to the rows of the matrix Q2 as well 

as the nOw center point replicates. Since we want the con­

trast column to be orthogonal to the columns corresponding 

to the pure quadratic terms (w2.:1~i~p) in the model (this 
u~ 

will make f=Q in (7.1.5) and will simplify the inversion of 

the moment matrix as we shall see later), that is, 
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= 0 , 

then 

1\ 

q 

-L Zj' 

j=l 

(7.4.4) 

(7.4.5) 

The summation on the left-hand side of (7.4.5) is over the 

2 
zuwui where u corresponds to the rows of ~2 plus nOw center 

point replicates (the axial group). 

that is, T l +T 2+ ... +Tq+l =O, then 

By definition of z , 
u 

q N
j 

(2p+nOw )z (w) = - I I 
j=l u=N. 1+1 J-

q 

= - L NjZ. (j) • 

j=l 

z 
u 

(7.4.6) 

where z. (j) is the value of z for all N. coefficients in 
u J 

the jth group_ But z. (j)=l for l~j~q, and therefore in 

z. (w) = 

A 

q 

( 2 1 ) \ N
J
-p+nOw L 

j=l 

(7.4. 7) 
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To make the column of contrast coefficients orthog-

onal to the columns corresponding to the pure quadratic 

terms in the model, since z. (w) is constant from (7.4.7), 

then from (7.4.5) and (7.4.2), 

4 

and 

Therefore, 

2 
W. 

Ul. 

q N. 

2 
W. 

Ul. 

N \' \J 2 
= (N~N ) L L wui • 

w - 1 N 1 

2 
W. 

Ul. 
u=NA+1 

g = 

2 
W. 

Ul. 

J= U= - 1+ J-

N
W --N-N w 

(lS;i~p) . 

(7.4.8) 

(7.4.9) 

Equation (7.4.9) shows that the ratio of the sum of the 

squares of the w . in the axial group to the sum of the 
Ul. 

squares of the w . in all the other groups must be directly 
UJ. 

proportional to the ratio of the corresponding number of 

design points that make-up the axial group and the sum of 

the design points in all of the other groups. Actually, 

equation (7.4.9) is used to determine the number of center 

2 
point replicates nOw to be taken since the wui (l~u~N/1Si~p) 
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are usually fixed by some other criterion such as rotata-

bility. We shall clarify this point with an example later 

in this section. 

We have been talking about only one contrast contain-

ing N non-zero elements. Actually, the matrix W may contain 
".." 

more than one contrast where the other contrasts all have 

zero value coefficients in the rows corresponding to the 

rows of the matrix ~2. (These contrasts formed the elements 

of the matrix g in (7.1.5).) In this case, a result which 
... 

is identical to (7.4.9) can be derived involving the q groups 

th 
in El of Ew only_ For example, let the t (lstS q-2) con-

trast column be orthogonal to the columns corresponding to 

the pure quadratic terms in the matrix~. Since the q-2 

contrasts are already orthogonal to the "meanll column con-

taining N ones, then they are also orthogonal to the column 

corresponding to the contrast L q _l just derived. 

(3.2.7), we know that 

(t+l) 
Ztu = 

t 

;t+l l: Nj 
j=l 

(lstS:q-2) 

From 

(7.4.10) 

where z. (j)=l (l~jst) by definition in Section 3.3. Now, 

since the tth contrast is orthogonal to the columns contain-

ing the pure quadratic elements where N_ includes the center 
J 

point replicates associated with the 

Nt+l t Nj 
\' Z (t+l)w2 = _ \' \' 
L tu ui L L 

_th A 

J group (l~j~q), then 

2 w. 
u~ 

(lSiSp) , 

j=l u=N_ 1+1 J-



and therefore, 

2 w. 
U1 

j=1 u=N. 1+1 J-
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2 w. 
U1 

= (7.4.11) 

We now have in the matrix ~, q-2 contrast columns 

whose elements are defined by (3.3.6), (3.3.6A) and (3.3.7), 

and one contrast column whose elements are defined by z. (j)=l 
A 

where j=1,2, •.. ,q and equation (7.4.7). 

Looking at the form of the design matrix (7.3.4) for 

a central composite design, we see that 

(ISiSp) 

u 

where the summation is over the elements in the axial group 

only. If we put this result in equation (7.4.9), the value 

of w such that the contrast column z 1 is orthogonal to the q-

pure quadratic columns, making £=Q in (7.1.5), can be ca1cu-
A 

1ated. Actually, once the sizes of the N. (lSj~q) are deter­
J 

mined, we could take the value of w so that the design is 

rotatable. This is found by putting G=3A4 in (7.3.4), fixing 

the value of w for rotatabi1ity at W~MC. With this value 

of w substituted in (7.4.9), the number nOw of center point 

replicates associated with the axial group is determined. 
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Equation (7.4.7) is then used to obtain the value of z. (ill) 

so that the contrast column is also orthogonal to the "mean" 

column in ~. 

Let us look at an example where p=2 and the matrix 

~1 is of the form 

-1 
-1 

1 
1 

-1 
1 

-1 
1 

In an attempt to obtain an estimate of error and some mea-

sure of the lack of fit of the first-degree model, two center 

point replicates were taken so that Nl =6. Now the value of 

w in the matrix E2 for rotatability iS~MC ~2c. Putting 

this value of ill in (7.4.9), we see that the number of center 

point replicates nOw is 

4 + nOw = 2(2c 2 ) 

6 4c
2 

now = 2. 

The value of z. (w) so. that the contrast column is orthogonal 

to the mean column in ! is, from (7.4.7), 

(w) (12 - 6) 
z. = - 6 

= -1, 

and therefore the matrix W is 



W= -

1 

1 

1 

I 

I 

1 

1 

1 

I 

1 

1 

I 

-c 

-c 

c 

c 

~2c 

/2c 

o 
o 
o 
o 
o 
o 
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-c 

c 

-c 

c 

o 
o 

~2c 

hc 
o 
o 
o 
o 

2 
c 

2 
c 

2 c 
2 

c 

2c
2 

2c 2 

o 
o 
o 
o 
o 
o 

2 
c 

2 c 
2 

c 
2 

c 

2 
c 

2 
-c 

2 
-c 

2 
c 

o 
o 
o 
o 
o 
o 
o 
o 

1 

1 

1 

1 

-1 

-1 

-1 

-1 

1 

I 

-1 

-1 

Table II. on the next page shows the value of ill for 

rotatability as well as the value of ill for orthogonality of 

the contrast column for different p, nOw' nOc and the number 
A 

of groups q in Ql- The quantity nOc is the sum of all the 

center point replicates taken while performing the experi-

I ments in ~l. From the table, we see that when p=3,p=6(2 rep), 

there is no way to satisfy rotatabi1ity and orthogonality 

simultaneously. In this case, a choice has to be made as to 

which criterion to sacrifice and we shall now consider the 

sacrificing of each criterion. 

The first case is that of sacrificing the rotatability 

criterion for the ease in calculating the precision matrix 

(the inverse of the moment matrix). The orthogonality cri-

terion is also necessary in order to get estimates (i.e., 

separate estimates) of all the parameters in the model. 

Although the variance contours will not be exact spheres, 
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Table II. 

The Value of W for Rotatability and Orthogonality 

When Using the Central Composite Design. 

2 3 4 5(1 rep. ) 1 1 6 P = 6 (4 rep.) 6 ("2 rep.) 2 
.... 
q ;:: 1 2 2 2 2 2 S 
.... 
q 

I Nj 
;:: 6 12 20 22 26 40 72 

j'=l 

nOe ;:: 2 4 4 6 10 S S 

nOw = 2 2 2 1 1 2 6 

(w) = -1 3 
-2 -2 -2 -20 -4 z. -- 7 2 

W ;:: /2e tSe 2e 2e 2e 2.378e 2/2e 
rot. 

W = orth. /2e /Se 
/3 2e 2e 2e /S.6e 2/2e 
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the difference is slight (as evidenced by the small devia-

tion of w in the table). Thus the estimates of the constant 

parameter as well as the pure quadratic parameters, as noted 

by Box and Hunter, will be affected slightly as the design 

is rotated. 

The second case is the sacrificing of the orthogon-

ality criterion for the maintaining of spherical variance 
t 

contours. The design is rotatable but the non-orthogonality 

property of the design is maintained in all rotations of the 

design and therefore, the estimates of the parameters aO and 

a .. (lsi~p) have to be corrected for the contrast effect. 
11 

Since these arguments may be clarified by looking at 

the respective precision matrices, we shall take the space 

to show these precision matrices. The form of each precision 

matrix will, as we shall show, depend on the criterion used. 

The form of the precision matrix when w for orthogonality 

is chosen. 

Suppose for p=3, P=6(~ replicate), the value of W 

is chosen so that the contrast column is orthogonal to the 

columns of the matrix ~ corresponding to the pure quadratic 

terms in the model. Then the moment matrix is of the form 

(7.1.5) but where f=~. Since we know that the precision 

matrix is the inverse of the moment matrix, then to calculate 

N(~,~)-l, we put N(~f~)-l[~(!'~)J=I. The form of the pre-

cision matrix is 
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e A' 
jiJ 

f-' Jp Q' 

0 1. I 9 Q ,.. A2-P 

ghh h 

h g h h 

h h g h 

N(W'tl> -1 f- Q 0 = Jp 
" 

,.., 

" 
hh h 

h h h g 

Q Q g 1 
I 

2A4 (p) 
2 

g Q Q Q 

0 0' 
N Q' Q' 

where the quantities in (7.4.12) are 

e = G + A4 (p-1) 
U 

-A 
f 2 = U 

G + A4 (p-2) 
2 

- A2 (p-l) 
g = 

A2 _ 
h 2 = (G -

2 and U= G + A4 (p-l) -PA 2 -

(G - A4) U 

A4 
A4 )U 

A· 0 
AJ 

0 9 .-oJ 

0 Q ,., , (7.4.12) 

a 0 ,., ..., 

-1 g Q 

Q' 1 
d 

(7.4.13) 

1 1 Now when p=2,4,5(2 rep.),6,6(4 rep.), the value of w 

is the same for both criteria and therefore G=3A4 in (7.1.5) 

and (7.4.13). Thus the quantities in (7.4.13) are simplified 

to 
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e = 

f = 

2 
"'2 - "'4 

h = 2A U f 

4 

(7.4.14) 

2 
where U 1 = A4 (p+2)-pA 2 - Note that when the design consists 

of just one single set of points which lie on the boundary 

of a p-dimensional sphere, then from (7.2.7) where 

the 'quantity U1=Q and therefore e,f and h in (7.4.14) are 

undetermined. 

The form of the precision matrix when the value of w for 

rotatabi1itv and not orthogonality is used. 

If one chooses the value of w for rotatabi1ity when 

p=3, P=6(~ rep.), then the moment matrix will be of the 

form (7.1.5) where G=3A4 . The form of the precision matrix 

then is 



N(W'W)-l 
""" ..., 

where the 
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e o· f -, Q' - Jp 

0 1. I Q, 0 ,.... Ai""P -
ghh h 

hgh ... h 

hh 9 h 
= f-lp Q, Q, 

h h h 

hh h 9 

0 0 0 1. I - ..., ,..., 
2A4 (p) 

2 

0 Q, Q, Q. -
i o· E' 0' - ,..., 

quantities in (7.4.15) are 

2 
e = 1 + PA 2 

Y 

f = -A 2 
Y 

2 p2 
9 = (1-p)A 2+{1+p}A4+(1-p)d 

2 p2 
h = A2-A4+'d 

2A4Y 

i = pPA 2 --dY 

-P 
P = dY 

2A4Y 

2 
t = p(A4-A 2 )+2A4 

dY 

9,' i 

Q g 

o P I (7.4.15) - ,...; 

o 
.-oj 

-1 
9. 

o ,..., 

o -

(7.4.16) 

2 2 and y= -PA 2+(p+2)A4-pP It is easy to see that the matrix 
d 

(7.4.12) is a much less complicated matrix than that of 
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(7.4.15). Based on this argument then, one might prefer to 

1 sacrifice the rotatability criterion when p=3 and p=6(2 rep.). 

We have been discussing the experimental program 

associated with the central composite design as well as the 

use of one orthogonal contrast for obtaining a measure of 

the between stages variation if the experimentation is per-

formed in multiple stages. We have primarily been concerned 
t 

with a stage as being a particular period of time in which 

a group of experiments is performed. As we said before 

however, a stage is any condition which is considered to be 

homogeneous during the running of one or more groups of 

experiments, for example, a period of time, a piece of 

equipment, etc .. We also mentioned before that the formulas 
A 

for the estimates ~ of ~ in (7.1.3) are derived in Appendix H. 
A 

In most cases, the estimates ~ can be found with the use of 

a simple desk calculator. This is verified by the example 

shown at the end of Chapter 8. 

We have failed to mention that although the second-

degree model and designs are formed by augmenting the first-

degree model and designs in the system of the design vari-

ables, the experimental settings of the mixture components 

will be calculated exactly as was shown with the first-

degree designs. For example, if the matrix! is of the form 

(7.1.4) where the elements of D are denoted by w ~ (1su~Ni -w uJ 

2~j~k-q+l), and the elements of the matrix !l are denoted 

by t. _ (1~iSk, 1~j~-q), then from equation (3.2.15), 
~J 
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k-q+l 

xuj = ( L wuttj,t-l) h j + x Oj 
.t=2 

(7 .4.17) 

is the level of the jth component to be run in the u th 

experiment. 

Thompson and Myers [22J derive optimal central com-

posite designs using the average mean square error of y 

where the average variance is considered only_ In other 

words, in assuming that most of the variation in the pre-

dieted response using a second-degree model is sampling 

variation and the bias is negligible, Thompson and Myers 

state that designs with both the axial (w) and factorial 

points placed on the boundary of the unit sphere provide 

the smallest value of J=V for different values of w, c, nO 

and p. 

Box and Draper [4J also discuss the minimization of 
... 

the average variance of y (assuming the bias of y is neg-

ligible) for composite designs. They show that to minimize 

the average variance criterion, the largest design possible 

(even with points outside the region of interest) should be 

used. In addition, they suggest adding center point rep-

lieates in order to obtain a better estimate of the error 

variance. Since we are concerned with achieving orthogonality 

of the contrast column in the ~ matrix as well as rotatability, 

caution must be taken when using the tables tabulated by 

Thompson and Myers, as well as Box and Draper when seeking 
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optimal second-degree designs. 

7.5 Simplex-sum designs. 

In the last two sections, we discussed the central 

composite design with the assumption that for fitting a 

first-degree model, a two-level factorial design is used. 

It was stated in Chapter 5 however that when p=2 and the 

double-simplex design is used, then a simple addition of 

center point replicates would result in the formation of 

the second-degree hexagonal design. It is interesting to 

note that this particular design could also be derived by 

adding the vectors which connect the centroid with the 

vertices of the 2-dimensional simplex (equilateral triangle). 

This method was introduced by Box and Behnken [2J and the 

resulting designs are called simplex-sum designs. These 

designs however do not offer any advantages over the corn-

posite designs and in fact, require more experimental points 

in most cases and therefore, we shall discuss only the cases 

where p=2 and p=3 where p=k-q. 

Let q=2 and consider the design points located only 

in the top half of the design matrix D (Chapter 5). The -w 

number of experimental points is N=p+l where p is the number 

of design variables. In Chapter 5, it was pointed out that 

in the design space of the w. (lSiSp), the design points lie 
~ 

at the vertices of an inscribed regular simplex. For ex-

ample, if p=2, the design points lie at the vertices of an 
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equilateral triangle; if p=3, the points lie at the vertices 

of a regular tetrahedron. 

When p=2, then the three points at the vertices of an 

equilateral triangle when joined to the origin of the design 

space (center of the triangle), define three vectors. If we 

add these vectors two at a time, a second equilateral tri-

angle is obtained and by adding the original vectors three 

at a time, we obtain a center point. Therefore, the orig-

inal set,of points plus the derived points generate the 

hexagonal design. 

When p=3, the four vectors from the center of the 

tetrahedron to the vertices of the tetrahedron when added 

in all possible ways two at a time generate six further 

vectors which pass thro~gh the midpoints of the edges of 

the tetrahedron. When the four vectors are added in all 

possible ways three at a time, they generate four vectors 

passing through the midpoints (centroids) of the faces of 

the tetrahedron. Finally, when the four vectors are all 

added together, a center point results. If the lengths of 

the derived vectors are suitably scaled, the resulting de-

sign coincides with the central composite design. 

Since the method of constructing the simplex-sum 

designs is discussed in [2J, we shall only briefly discuss 

the construction of a design matrix for the case p=3 simply 

to outline the method. If we let q=2 and denote the top 

half of D in (5.1.2) by ~(l), then 
-w 
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w' -I 

D (I) 
Wi 
..... 2 

(7 .5.1) = w' - -3 
w' 
"'4 

where ~i is the ith row vector of design points. If we take 

all combinations of two rows of D(I} at a time, we have -
Wi 
-1 + w' -2 
w' -1 + w' -3 

D(2) 
WI + WI 
~l ""4 (7.5.2) = ....., Wi + W' -2 -3 
W' -2 

+ WI 
-4 

w' -3 
+ WI 

'"'4 

The matrix D(2) is referred to in [2J as the second subset ,.., 

of design points. Taking all combinations of sums of three 

rows of D(l) at a time, we have ,.., 

W' -1 + w' -2 
+ WI 

-3 

D (3) W' + Wi + Wi 
-1 -2 -4 (7 .5.3) = + Wi .- W' + w' -1 .... 3 "'4 
w' -2 

+ Wi 
-3 

+ WI 
---4 

and D (3) is called the third subset of points . Geometrically 
..." 

these subsets are symmetrically oriented one to another in 

that the row vectors of Q(2} bisect the edges of the simplex 

defined by ~(l). The row vectors of ~(3) pass through the 

centroids of the faces of the simplex defined by £(1) • 

To'determine the radius of the points in each of the 

subsets of points, let 
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a 1 
D (1) 
IV 

a 2 
D (2) ,., 

D = 
D (3) 

(7.5.4) 
-w a 3 "'" 

where the a. (1~i~3) can be called radius mUltipliers and 
~ 

n is a vector of center point replicates the elements of ...., 

wh~ch can be generated by ~i + ~2 + ~3 + ~4. Since the 

radius of the design points must be less than or equal to 

the radius of the largest sphere centered at ~=Q that will 

fit in the factor space, then 

(i=j, i~j). (7 . 5. 5) 

But from Chapter 5, we know that with the simplex design, 

[ - n(l)J'[- n(l)] = 
Jp+l' -= Jp +1' ~ 

and therefore, 

w!w_ 
-1.-) 

= (p+l) A
2
-1 

= -1 

p+l 

o -
i=j 

ilj. 

0' 
-.I 

(p+l) A21 
""p 

(7.5.6) 

If w I (.) is the u th -u 1. 
row vector in the .th subset, then the 1. 

square of the length of ~~(i) is 

~~(i)~~(i) = i[(p+1)A 2 - 1J + 2(~)[-1] 

= i[(p+l)A 2 - iJ 

However, since a~(w~w_) ~ p*2, then 
1. -)-) 

a~[ (p+l)A 2 - iJi ~ p*2, 

(7 • 5 .7) 
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a. ~ 
~ 
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p* 

1 · 
[i(p+l)A 2 - i 2J2 

(7.5.8) 

In [2J, standard solutions are tabulated based on 

the convention that 

N 

A2 = ~ I w~i =l,(lsiSp) · 

u=l 

For the standard solution in [2J, the radius of the points 

in the ith subset (i.e., a suitable set of radius multi-

pliers such that the moments of the design fulfill the 

requirements for rotatability), is 

(7 .5. 9) 

If p* in {7.5.8} is replaced by r. in (7.5.9), then a. 
1 1 

(l~i~3), the radius multiplier for the ith subset can be 

calculated. 



VIII. SUMMARY, RECOMMENDATIONS AND INDUSTRIAL EXAMPLE. 

8.1 Summary and recommendations. 

In this paper, we have attempted to utilize known 

response surface methods (design configurations and the 

definition of a region of interest), when the experimentation 

involves mixture components which are classified categori­

cally_ That is to say, the mixture components belong to q 

distinct categories (q~2) where each category contributes 

a fixed proportion to every mixture and therefore every 

category must be represented in the mixtures by one or more 

of its member components. This statement of the problem 

eliminates situations where a mixture may consist simply of 

one component or of some combination of components all of 

which belong to one particular category, for example, in 

the combinations of acids and glycols considered in Section 

1.3 of Chapter 1, we could not consider a mixture consisting 

only of acid constituents. 

By the restrictions placed on the proportions con­

tributed by each of the categories (and therefore on the 

proportions contributed by the components in these cate­

gories), the factor space of the components loses its geo­

metrical simplicity. That is to say, the factor space no 

longer assumes the form of a simplex configuration as in the 

usual (Scheffe) mixture problem, but rather the form of a 

convex polytope. The complexity of the polytopes in terms 

of the number of extremities (boundaries of the polytopes) 

161 
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corresponding to two categories is shown in Section 2.3 of 

Chapter 2. 

Unlike the statements of the problems of Scheffe [20J 

and Lambrakis [16] where the interest is extended over the 

entire factor space of the components, in our problem, the 

interest is defined to some smaller region within the factor 

space (convex polytope). The region of interest for the k 

mixture components is defined analytically to be ellipsoidal 

and of the form 

where the x Oi and hi (lsi~) are chosen by the experimenter. 

The x Oi denotes the center of the interval of interest for 

the .th 
(l:£i~k) component and h. is a constant which allows 1. <1. 

for the spread of the symmetric interval of interest for the 

ith component. This definition of a region of interest 

enables us to isolate the experimentation to specific areas 

of interest and therefore ignore other areas of the factor 

space which are not of interest. The centroid ~O of the 

ellipsoidal region is called the point of maximum interest 

and in some cases, this point may coincide with the centroid 

of the convex polytope, that is, when xOi-! (l~i~). 

To simplify the analysis in which we use least-squares 

theory as well as to center the problem around the point of 

maximum interest, a transformation of the mixture components 
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to intermediate variables is performed. The intermediate 

variables are defined by 

This transformation enables us not only to eliminate the 

physical units of the mixture components but also the prob­

lem is simplified in that a unit sphere (in the metric of 
i 

the v.'s) which is centered at V.=O (l~j~k) is much easier 
J J 

to work with than is an ellipsoidal region especially when 

constructing designs. 

The rank of the N x k matrix x is k-q in the general 
,..; 

linear model ~ = ~ X + £, where the elements of the matrix 

X specify the levels of the k mixture components to be run -
in the N experiments. This 1ess-than-full-rank property of 

the matrix ~ is a consequence of the constraints placed on 

the components. Therefore, if 

Vi = (x - x ) 'H- l 
-u -u ~O -

where ~~=(xul' xu2 '···' xuk )' ~O=(xOl' x02 '···' x Ok ) and 

~=diag(hl, ..• ,hk)' is the u th row vector of the N x k matrix 

V, then the rank of the matrix V is also k-q. Since most of - -
the work involving response surface methods has been developed 

under the assumption that the variables are independent and 

since the criterion used in this paper to optimize designs 

can be applied more easily using independent variables, a 

reparametrization of the model y ,.... = V S + € to a model - .,.." 
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containing independent variables is performed. The reparam-

etrization is performed by using an orthogonal matrix T and 

the resulting model is y = W a 3 + 8, where a 3'=(a
l

, ... ,a
k 

). "...; ,...,,.,..,...,, "'" -q 

The variables w. (lsi~k-q) in this latter model are called 
]. 

the design variables. 

By the method used to transform the mixture components 

x. (lSiSk) to the v. (lsi~k) as well as the transformation 
]. ]. 

... 
to the wi (lsiSk-q), it is shown that once the estimates ~3 

of the parameters in the model X = ~ ~3 + ~ are obtained, a 

simple inverse transformation enables us to represent the 

estimated response'with either a model in the v. 's or a 
l. 

model in the x. ·s. Thus the procedure is that we begin with 
]. 

dependent mixture components but work (construct designs, 

etc.) with independent design variables. 

The N x (k-q) matrix ~ in the model l = ~ ~3 + £ con­

sists only of the levels of the design variables to be used 

in the N experiments. We show how q additional columns of 

non-zero elements can be added to the matrix ~ enabling us 

to obtain information about the observations which would 

otherwise not be detected or measured. The addition of the 

q columns (i.e., the derivation of the elements of the q 

columns) is such that the estimates of the effects of the k-q 

design variables are unaffected by the addition of the q terms 

to the model. The addition of the q columns to the matrix ~ 

is accomplished in Chapter 3 with the use of orthogonal con-

trasts of the observations and the theory is shown to be 
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analogous to the theory behind orthogonal blocking. The 

resulting matrix after the q columns are added is the N x k 

matrix ~ and the general linear model is expressed as 

y = W a + €. The matrix W has rank k. 
,.." ,..,,..,., ,..., "e"J 

The criterion used for optimizing first-degree designs 
A 

is the average mean square error of y, introduced by Box and 

Draper [3J. This criterion involves the integration over a 

region of interest where for the most part the design points 

are placed. Since Dirichlet mUltiple integrals can be used 

for integrating over k-dimensional spherical regions, the 

integration over the region of interest is simplified. An 

extended region of interest defined as the largest sphere 

centered at the point of interest that will fit inside the 

factor space is derived. The radius (denoted by p*) of this 

largest spherical region gives us an upper bound in terms of 

the distance that the design points can lie from the center 

of the design since the designs suggested (Chapters 5 and 7) 

for use are rotatable. (In so far as we have claimed that 

any matrix !l with k-q orthonormal columns such that the 

matrix T is orthogonal can be used, we have in affect claimed -
that the design can itself be rotated. If any design points 

were outside this sphere, then upon rotation, they might 

fall outside the experimental region.) 

In Chapter 5, the derivation of the optimal first-

degree designs for the "all-variance" situation (where the 

bias of y is assumed to be zero), and the "all-bias" 
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situation (where the variance of y is assumed to be zero) 

are shown as are the settings of the levels of the design 

variables using a double-simplex design and a scaled two-

level factorial design. The simplex and the two-level fac-

torial designs are particularly convenient in that they 

possess the property that they can be augmented easily to 

second-degree designs. This property of the designs is 

verified in Chapter 7 when the Central Composite and Simplex-

sum designs are discussed. 

As we stated, rotatable designs are suggested for use. 

This is for two reasons. First, at the beginning of Chapter 

5, it is explained that by using rotatable designs, we are 

able to use any k x (k-q) matrix !l with orthonormal columns 

so that the k x k matrix T is orthogonal in the reparam-
~ 

etrization of the model without affecting the properties 
A 

(variance and bias) of the predictor y. Secondly, the pur-

pose of the experimental design is to explore a response 

surface and often to try to locate a maximum or minimum point 

when the orientation of the response surface with respect to 

the experimental region is unknown. For this reason, it 

would seem desirable to use an experimental design which 

provides uniform information, that is, constant Var y on 

each sphere which is centered at ~=Q. With rotatable designs, 

the Var y is a function only of the distance the predicted 

point lies from the center of the design regardless of the 

direction from the center of the design. This property is 



167 

especially desirable in initial experimentation. 

Since most of the work in Chapters 3, 4 and 5 deals 

with the problem of just two categories of mixture compo­

nents, in Chapter 6 the development is extended to three 

and more categories of components. The discussion is held 

to a minimum since most of the theory is an obvious exten­

sion of the theory involving two categories of mixture 

components. 

In Chapter 7, the use of second-degree designs and 

second-degree models for measuring the curvature of the re­

sponse surface is shown. The use of orthogonal contrasts 

for measuring variation that might exist between stages of 

experimentation is also extended to the second-degree situ­

ation. 

Recommendations. 

We have shown when using a.first-degree model, how 

the estimated response can be expressed in the models of the 

mixture components, intermediate variables and the design 

variables. The reason for showing the different models is 

that applications of the mixture problem are diverse as are 

the personnel involved with the applications. Some may prefer 

to use the model in the mixture components while others prefer 

to use the model containing the design variables. 

The feeling of the writer of this paper is that the 

latter model (the model in the design variables) is a more 

convenient model to work with not only for first degree but 
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for second-degree cases as well. This is because the re-

sponse surface is defined with q fewer variables (q is the 

number of categories), and the estimates of the parameters 

in the model can be interpreted more easily_ Therefore, 

when plotting contours of constant response, locating sta­

tionary points, etc., the labor is reduced since the terms 

corresponding to the contrast effects can be ignored during 

these operations. 

Does this imply then that the development of the 

orthogonal contrasts of the observations can be ignored? 

On the contrary; dividing the program of experimentation in­

to separate groups of experiments has been proven to be an 

effective method for studying response surfaces. It was 

also shown that with the use of orthogonal contrasts, vari­

ation could be removed from the analysis of the response 

variables when the experimentation is divided into groups 

of experiments. 

The extension of the use of orthogonal contrasts 

when fitting a second-degree model could be omitted when the 

experimentation or execution of the second-degree design 

points is performed in one stage. This would eliminate con­

flicting settings of ±w when p=3 and P=6(~ rep.), enabling 

the experimenter to concentrate solely on rotatability. 

However, when a possible source of variation exists and this 

variation can be measured when the experimentation is per­

formed in separate groups of experiments, it would seem wise 
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to use the contrast terms in the nodel. The industrial 

problem in the next section exemplifies this point. 

In the future, time will be spent on the inclusion of 

quantitative variables such as temperature, pressure, etc., 

in the mixture problem. The use of a different coordinate 

system for the design variables such as a complex coordinate 

system will also be researched in an attempt to preserve 

symmetry of the design configurations in the system of the 

mixture components. There are many additional areas, re­

lating to the mixture problem, which should be investigated 

such as the use of designs other than rotatable designs and 

the generalization of the ellipsoidal region of interest so 

that the principal axes are not necessarily parallel to the 

axes of the mixture components. 

8.2 An industrial example using a second-degree 

central composite design. 

In the production of a polymeric solution, the mix­

ture system involves combinations containing at least one 

acid with at least one glycol. For this particular example, 

the chemistry of the solution has been reduced to two acids 

xl' x 2 and two glycols x 3 ' x 4 - The purpose of the experi­

mentation is to try to adequately describe the response 

surface with a prediction model so that future predictions 

involving these four components can be made. It is desired 

also to draw contours of the response surface so as to pic-
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torially represent the response surface over the region of 

interest. 

The only knowledge concerning the experimentation is 

that the combinations x
l

x
4 

and x
2

x
4 

produce unsatisfactory 

results. It is assumed that a quadratic model should ade-

quately fit the response system and one stipulation in the 

experimental program is that the setting up as well as the . 
running of the mixture combinations can be performed on only 

two pieces of chemical equipment. Thus, in addition to con-

structing a second-degree design, we want to group the ex-

periments so as to remove any variation that exists between 

the two pieces of equipment. 

It is decided to place the base point ~O at the center 

1 1 1 1 
of the factor space, that is, 20={4' 4' 4' 4). The compo-

nents are of equal importance and thus given equal spread 

and ~=diag(!, !, !, !). Since we want to plot response 

contours over the region of interest and also want the 

largest possible region for this particular example, the 

design points are placed on the boundary of the largest 

spherical region. A central composite design is to be used 

and the radius multiplier c=1.0. 

From Table II., the value of w for rotatability as 

well as orthogonality when k-q=2 is 

= 1.414. 
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Thus the matrix ~ is 

1 -1 -1 1 1 1.414 1 
1 1 1 1 1 1.414 1 
1 -1 1 1 1 -1 .. 414 1 
1 1 -1 1 1 -1.414 1 
1 -1.414 0 2 0 0 -1 

W= 1 1.414 0 2 0 0 -1 - 1 0 -1.414 0 2 0 -1 
1 0 1.414 0 2 0 -1 
1 0 0 0 0 0 -1 
1 0 0 0 0 0 -1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 

and the matrix T is ,.., 

[707 -.707 0 

07gJ T = .707 .707 0 - 0 0 -.707 
0 0 .707 .707 

To get the corresponding settings of the mixture components, 

we know from (3.2.15), 

3 

XUj = (I Wui tji)h j + Xo] 

i=2 
where t._ is the element in the jth row and ith column of the 

J~ 

matrix!. The levels of the mixture components and the 

values of the observations taken at these levels of the 

mixture components are 

xl x
2 x3 x

4 
design response 
120int 

.427 .073 .427 .073 (1) 9.3 

.073 .427 .073 .427 (2) 8.2 

.427 .073 .073 .427 (3) 6.1 

.073 .427 .427 .073 (4) 10.4 

.50 .00 .25 .25 (5) 6.4 

.00 .50 .25 .25 (6) 8.9 

.25 .25 .50 .00 (7 ) 11.9 

.25 .25 .00 .50 (8) 7.3 

.25 .25 .25 .25 (9) 7.7 

.25 .25 .25 .25 (10 ) 7.9 

.25 .25 .25 .25 (11) 7.8 

.25 .25 .25 .25 (12) 7.8 
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If we refer to Appendix H, we see that the estimates 

U in the second-degree model 

2 2 
Y == Uo + ul w1 + u 2w2 + u1lw1 + u 22w2 + u12wl w2 + uL z1 + € 

1 
are 12 

(10 == ! L Yu == 7.80 

u==9 

.8420 

-1.4882 

4 8 12 

== i6 I Yu - i6 I Yu ~ L Yu 
1 + Y6 ) -.1062 ull + 4(Y5 == 

u==l u==5 u==9 

4 8 12 

(122 == i6 L Yu i6 I Yu ~ I Yu + 
1 

+ Y8 } .8688 4(Y7 == 

-q,==1 u==5 u==9 

(112 
1 

== 4(Y1 + Y2 - Y -3 Y4 ) == 0.25 

4 10 

uL = i2(L Yu + Yll + Y12 - L Yu ) = .0417 
1 u==l u=5 

and therefore, the prediction model is 

With this prediction model, the response contours were 

plotted and are shown in Figure 3 on the next page. 
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(6) 

Figure 3. 

Response Contours Over the Region of Interest. 
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APPENDIX A. 

GLOSSARY OF TERMS. 

This glossary is divided into two parts. Part I 

covers the material in Chapters 1 and 2 where in these chap-

ters the problem of categorizing the mixture components is 

introduced and the literature concerning mixture experi-

mentation is reviewed. Part II covers the material in 

Chapters 3 to 8 where the solution to the categorized mix-

ture problem is discussed. The reason for dividing the 

glossary into two parts is that the notation overlaps in 

some cases. That is, the symbols used in Part II in some 

cases are the same as in Part I but the definitions are 

changed. The reason for changing the definitions is that 

in Part I, the notation in the literature review is kept as 

in the literature reviewed and in Chapters 3 to 8, the no-

tation is used in a different sense because of the lack of 

new symbols which can be used. In the cases where the def-

inition of a symbol used in Part II is the same as the def-

inition used in Part I, the statement Part I is entered only 

in Part II under the heading of Definition. 

Symbol 

1. S., y. 
1 1 

Part I: Chapters land 2. 

Term 

unknown 
parameters 

Definition 

These parameters are used in 

the polynomial representation 

of the unknown response surface. 
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Symbol Term 

'" 
2. b.,c"d.,~. estimates 

1 1 1 1 

3.. c. 
'1 

4. D 
-x 

5. D -z 

6. e 
u 

7. '1(-) 

8. f(·) 

9. h 

proportion 

design 
matrix 

design 
matrix 

error 

response 

function 

scalar 
quantity 

177 

Definition 

Parameters and parameter esti-

mates used in the fitted models 

for estimating the unknown re-

sponse surface. 

The proportion contributed by 

the ith (l~i~n) major component 

in a mixture. Lambrakis [16J. 

A two-level factorial design 

matrix in k variables. It has 

N rows. Box and Gardner [5J. 

The N x k matrix of constrained 

variables. Box and Gardner [5J. 

The random error occuring in 

the u th observation as a result 

of observing the true response. 

Unknown response which defines 

a response surface over some 

region. 

Polynomial expression used for 

estimating the true form of the 

response surface. 

Upper bound for the proportion 

contributed by the first com­

ponent in a mixture. Scheffe [20J. 



Symbol 

10. k 

11. K 

12. t., t! 
~ ~ 

13. n_ 
J 

14. m. 
~ 

15. I..l 

16. N, N. 
~ 

17. N 

Term --
scalar 
quantity 
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Definition 

The total number of mixture 

components forming the mixtures. 

The proportion or fraction of 

the total mixture contributed 

by the components in category 2. 

Lower and upper bounds respec­

tively for the ith mixture com­

ponent. McLean and Anderson [17J. 

The number of components in the 

jth (1Sj~q) category_ When q=2, 

n1=n. 

Degree of polynomial used to 

represent the response over the 

ith (1siSn) simplex. 

The number of mixture components 

set equal to zero for deter-

mining an extremity of dimen-

siona1ity k-q-~ of the polytope. 

The number of boundaries of 

dimensionality k-q-I..l and i re~ 

spectively of the convex poly­

tope. 

The number of experiments (de-

sign points) used for estimating 

the parameters in the model. 



Symbol 

18. q 

19. w. 
1. 

20. x., S. 
1. 1. 

21. x. _ 
1.J 

22. Y u 

... 
23. y(.) 

24. z. 
1. 

Term 

scalar 
quantity 

component 

mixture 
components 

observed 
response 

predicted 
response 
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Definition 

The number of categories of 

mixture components. 

The ith component in a k-vector 

of constraints placed on the 

z. (l~i~k) where the z. are 
1. 1. 

constrained variables. Box 

and Gardner [5J. 

Represents the proportion of 

the ith (l~i~k) component or 

constituent in a mixture. 

Th t · of the J- th e propor l.on 

(l$jSn.) component in the ith 
1. 

(lSi~n) "major" component 

present in a mixture. 

The response observed by the 

th experimenter in the u exper-

th iment or at the u setting in 

the design matrix of the con-

comitant variables • 

The value of the predicted 

response at a particular point 

in the factor space. 

The ith constrained variable. 

Box and Gardner [5J. 



Symbol 

1. ~ 

2. a. 
~ 

5, ~4 

6. ~., y. 
1. 1. 

7. B 
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Part II: Chapters 3 to 8. 

Term --
matrix 

radius 
multiplier 

unknown 
parameters 

bias 

Definition 

The alias matrixl~=(~iWl)-1~i~2. 
This matrix is used to show the 

bias in the estimates of the 

parameters in a first-degree 

model if the true polynomial 

function is of higher degree 

than 1. 

The radius multiplier for 

Simplex-sum designs. 

Vectors of unknown parameters 

used in the models of first and 

second degree respectively. 

Vector of unknown parameters 

used for measuring the effects 

of the independent design 

variables. 

Vector of unknown parameters 

used for measuring the contrast 

effects. When only one con-

trast is considered, ~4=aL • 
1 

Part I (1.) 

The square of the bias of y 

averaged over the region of 

interest. 



Symbol Tenn 
... ... A 

8. b.,c.,a..,~.,y. 
~ ~ ~ ~ ~ 

10. C ,..., 

11. c 

12. D , W "'w ,.., 

13. D 
-x 

14. D ,..., 

matrix 

radius 
multiplier 

design 
matrix 
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Definition 

Part I (2.) 

An N x (q-l) matrix the elements 

of whose columns are the coef-

ficients of the q-l contrasts 

of the observations. 

An N x q matrix: £ = [iN £lJ. 

Radius multiplier which when 

multiplied by the elements in 

a row of the design matrix 

defines the radius of the design 

as alp, where p is the number 

of design variables. 

An N x (k-q) matrix of design 

variables whose elements rep-

resent the levels of the design 

vari~bles to be run in the N 

experiments. It has rank k-q. 

An N x k design matrix of the 

mixture components. 

A (q-l) x (q-l) matrix used in 

the definition of the moment 

matrix for comparing the method 

of orthogonal contrasts to the 

method of orthogonal blocking. 



Symbol 

15. D(i) 

16. 

-

D -wI 

18. ~ 

19. 

20. 

21. 

-

e u 

F -

22. f ( . ) 

23. G 

24. h. 
1 

Tenn 

response 

error 

matrix 

function 

moment 

scalar 
quantity 
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Definition 

The ith subset of design points 

used in the design matrix of 

the Simplex-sum designs. 

Upper or lower half of the 

design matrix. 

Matrices, which together, com-

prise the design matrix of a 

central composite design. 

A matrix used for defining the 

quantities which make-up the 

average square bias formula. 

Part I (7.) 

Part I (6.) 

A matrix which is used in de-

fining the design matrix of the 

independent design variables. 

Part I (8.) 

The pure fourth moment of a 

second-degree design. 

A scalar quantity used for de-

fining the symmetric interval 

of interest for the ith (l~i~) 

mixture component. 



Symbol 

25. H 

26. I .... p 

27. J 

28. !.{. 
29. k 

30. K 

31. L. 
1. 

32. M 

33. J.l 

34. ~'{'f 

Term 

matrix 

scalar 
quantity 

vector 

scalar 
quantity 

contrast 

matrix 
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Definition 

A diagonal matrix of scale 

constants. The jth (lSjSk) 

element in the diagonal is h __ 
J 

This matrix is k x k. 

An identity matrix of order p • 

Represents the mean square 
A 

error of y averaged over the 

region of interest. 

An .{. x 1 column vector of ones. 

Part I (10.) 

Scalar quantity used in the 

formula for the average vari-

ance of y. 

The ith contrast of the obser-

vations. 

The number of rows in the 

factorial portion of the design 

matrix for a second-degree 

central composite design. 

Part I (15.) 

Matrix of region moments de-

rived by integrating the product 

of the terms in the models of 

degree .{., f over the region of 

interest. 



Symbol 

35. n_ 
J 

36. N 

38. N 

39. 

40. A" [ii] 
1. 

41. n 

42. P. 
1. 

43. q 

44. p* 

Term 

number 

moment 

radius 
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Definition 

Part I (13.) 

Part I (16.) 

Number of design points in the 

axial group. Nw=2p+nOw where 

nOw is the number of center 

point replicates run while per-

forming the axial group. 

Part I (17.) 

The number of rows in the jth 

(lSj~q) compartment of the design 

matrix. The number of observa­

tions in the jth (l~j~q) group. 

Moments of a design. 

The area (volume) of the region 

of interest. This quantity is 

used in the formula for J. 

Quantity used in defining the 

moment matrix of a second-degree 

design. 

Part I (18.) 

The radius of the largest 

sphere centered at the point of 

interest that will fit inside 

the convex polytope. 



Symbol 

45. R* 

46. R 

47. S. 
1 

48. T 

51. 

52. 

-

t. _ 
1J 

v. 
1 

region 

transfor­
mation 
matrix 

element 

variable 

185 

Definition 

Extended region of interest. 

This region has radius p*. 

Region of interest. This 

region is ellipsoidal in the 

system of the mixture components 

and is a unit sphere in the 

system of the design variables. 

The sum of the number of mix-

ture components up through the 

.th t S 1 ca egory, e.g., 2=nl +n 2 -

A k x k orthogonal matrix used 

in the transformation from the 

k dependent intermediate vari-

abIes to k-q independent design 

variables together with q zeroes. 

A k x (k-q) partition of the 

matrix!. The matrix II con­

tains k-q orthonormal columns. 

A k x q partition of the matrix 

!, the elements of whose 

columns are such that y !2 = Q. 

Th 1 t · th · th d e e emen 1n e 1 rowan 

jth column of the matrix T. -
The ith (l$i~k) intermediate 

variable. 



Symbol 

53. V 
""" 

54. V 

55. w. 
1, 

56. W 

57. ~l 

58. !!2 

59. X. 
J. 

60. ?:So 

Term 

matrix 

scalar 
quantity 

variable 

matrix 

component 

base point 

186 

Definition 

An N x k matrix the elements of 

which are the levels of the 

intermediate variables to be 

used in the N experiments. It 

has rank k-q. 

The variance of y averaged over 

the region of interest. 

The ith (l~i~k-q) design vari-

able. 

An N x k matrix formed by add-

ing q columns, the elements of 

which are not all zero, onto the 
...., 

matrix ~. The matrix W has rank ,., 

k. 

An N x k matrix whose rows con-

tain the levels of the variables 

in a first-degree model for the 

N experiments. 

An N x (~) matrix whose columns 

represent the terms in a second-

degree polynomial not contained 

in a polynomial of degree 1. 

Part I (20.) 

A vector of k components each 

of which specifies the center 



Symbol 

61. X ,....,. 

62. Y u 

63. 

64. 

65. 

66. 

y (.) 

Z. 
1.U 

67. z .• (j) 
1. 

68. w 

matrix 

response 

contrast 
coefficient 

187 

Definition 

of the interval of interest for 

the corresponding mixture COID-

ponent. This vector specifies 

the location of the base point 

in the factor space of the 

mixture components. 

An N x k matrix containing the 

elements x .-xO' (l~u~N, l~i~k). 
Ul. l. 

The matrix ~ has rank k-q. 

Part I (22.) 

Part I (23.) 

The sum of the n observations in 

the jth (l~j~q) group. 

The mean of the observations in 

the jth (lSj~q) group. 

The u th (l~uSN) coefficient in 

the ith contrast of the obser-

vations. 

The values of the coefficients in 

the jth group (l~j~q) in the ith 

(j) 
contrast. All z. are equal 

1.U 

in a particular group. 

Level of the axial points in a 

central composite design. 



APPENDIX B. 

THE GEOMETRY OF n DIMENSIONS: SECTIONS AND FRUSTA OF 

SIMPLICES. 

The elements of the series (point, line, plane, hyper­

plane, •.. , n-flat} are regions determined by 1, 2, .•. , n+l 

points and have 0, 1, 2, ..• , n dimensions. In n dimensions, 

if we have p (p~n) equations which are linear in the variables 

wi (l~i~n), then the p equations define an (n-p)-flat. That 

is, a p-flat is a flat space of p dimensions and is deter­

mined by any p+l points. Also, every r-flat (r~p) which is 

determined by r+l of the p+l points lies entirely in the 

p-flat. 

Let the p+l points uniquely define a p-flat. These 

p+l points then cannot be contained in the same (p-l)-flat. 

Also, no q of them (qSp) can be contained in the same (q-2)­

flat, for if they do, then this (q-2)-flat, which is deter­

mined by q-l points, together with the remaining (p+l)-q 

points would determine a (p-I)-f1at since (p+l)-q+q-l = p 

points. Thus a system of any p+l points, no q of which lie 

in the same (q-2)-flat is a system of linearly independent 

points. 

A polytope, the analogue of a polygon in two dimen­

sions and a polyhedron in three dimensions, is a figure 

bounded by hyperplanes (flats). In n dimensions, the figure 

is bounded by a set of {n-l)-flats. Adjacent (n-l)-flats 

meet in boundaries of (n-2)-dimensions or (n-2)-flats and in 
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the types of polytopes that we are considering, two and only 

two en-I)-flats will meet in a boundary of (n-2)-dimensions. 

A polytope is conv~ when it lies entirely to one side of 

each of its (n-I)-boundaries. 

The least number of (n-l)-flats which can enclose a 

space and form a polytope is n+l. Therefore in two dimen-

sions, we have the triangle. In three dimensions, the tetra-
i 

hedron. Such a figure is called a simplex. A simplex of n 

d " . h (n+l) b d' f· d' . ~mens~ons as r+l oun ar~es 0 r 1mens~ons. 

Let us now consider the two category mixture situa-

tion. The reason for considering two categories is primarily 

because figures in two and three dimensions can be visual-

ized, and with two categories when k=4, 5, these figures can 

be drawn and intuitively apprehended. When n is the number 

of components in category 1 and k (k~n+2) is the total number 

of components, the section of the simplex is that part of the 

,simplex specified by the constraint 

n k 
1 I Xi = L x. = J 2· 

i=l j=il+l 

(BI) 

Since we are considering the interior as well as the bound-

aries of the simplex, we see from (Bl) that the section will 

be a polytope of dimensionality 1 less that that of the sim-

plex. 

The other polytopes formed by cutting the simplex 

with the section (BI) are called frusta of the simplex. The 
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forms of the section and the frusta depend on the position of 

the hyperplane (EI) with regard to the vertices of the simplex 

and Sommerville [2lJ points out that there is a close connec­

tion between the form of the section and those of the frusta. 

From (BI), we see that the hyperplane separates the k 

vertices of the simplex into two groups, one with n vertices 

and the other with k-n vertices. Sommerville [2lJ denotes 

the type of polytope of the section by (n, k-n) so that of 

course, (n, k-n) = (k-n, n). The other types of polytopes, 

the frusta are denoted by (nlk-n) and (k-n/n), where the 

first of the two numbers in the symbol represents the number 

of vertices of the simplex which the frustum contains. 

Let us first consider a tetrahedron and denote the 

vertices by A, B, C, D as in Figures 4a and 4b on the next 

page. Let the section divide the vertices into groups 2, 2. 

The section (2, 2) is a quadrilateral (Plane E in Figure 4a), 

and the two frusta are of the same type (212), pentahedra 

which are bounded by two triangles and three quadrilaterals. 

Now consider the case where the plane of section 

divides the vertices into groups 1, 3. This does not con­

form to the constraint (Bl) since n must be greater than 2 

but does help clarify the subject of sections and frusta. 

Then the section is a triangle (PQR in Figure 4b), i.e., 

(1, 3) denotes a triangle and the frusta are of the type 

(113), a tetrahedron and (311), a pentahedron which is 

bounded by two triangles and three quadrilaterals. This 
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A 

B 

Figure 4a. 

A 

c 

Figure 4b. 

Sections and Frusta of the Simplex ABeD. 

D 

D 
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latter example corresponds to the two category situation out­

lined in Section 1.3 where category 1 has one component and 

category 2 has k'=3 components. 

Finally let us consider the simplex ABCDE and let the 

hyperplane divide the vertices into groups 2, 3 say AB and 

CDE. According to Sommerville [21J, the vertices of the 

section are the points of intersection of the lines AC, AD, 

AE, BC, BE. The edges are the lines of intersection of the 

planes ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE; and the 

faces are the planes of intersection of the hyperplanes ABCD, 

ABCE, ABDE, ACDE, BCDE. The first three of these faces are 

(2, 2) sections, i.e., quadrilaterals, and the last two are 

(1, 3) sections, i.e., triangles. Thus the section is a 

pentahedron (311) or (212) and we have the description of 

the factor space corresponding to the case involving two cate­

gories where n=2 or n=3 and k=5. 



APPENDIX C. 

TO SHOW THAT THE DIMENSIONALITY OF THE BOUNDARY CLOSEST TO 

ANY INTERIOR POINT OF A CONVEX POLYTOPE IS 1 LESS THAN 

THE DIMENSIONALITY OF THE POLYTOPE. 

In Appendix B, we defined a body or polytope of n 

dimensions as being convex if it lies entirely to one side 

of teach of its (n-l)-boundaries. That is, if PI and P2 are 

any two points in or on the body, so also are all the points 

of the interval PIP2- Generalizing then, all interior angles 

which are formed by the intersection of any two adjacent 

boundaries of the polytope must be less than two right angles. 

Suppose the shortest distance from an interior point 

o is to a P9int A on the boundary hyperplane which we de­

note by IT. Then the interior angle between OA and IT is ~90o. 

For suppose it is not, i.e., let the interior angle between 

OA and IT be less than 90°. Then there exists a point AI 

close to A such that QA'<OA. 

Now suppose that the shortest distance from the point 

o to a boundary is described as the length of the projection 

OB where the point B is on the intersection of two boundary 

hyperplanes ITl and n2 • Let the hyperplanes ITl and IT2 each 

be of dimensionality n-l. Then the intersection is of dimen-

sionality n-2. Now the interior angle between OB and ITl is 

~ 900
# i.e., angle aBCI ~ 90°, where Cl is any point in ITl . 

Also, the interior angle between OB and IT2 is ~ 90°, i.e., 
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angle OBC
2 

~ 90° where C
2 

is any point in TI
2

. Therefore, if 

we take any plane through OB, it will interesct ITI and TI2 in 

two lines BC
I 

and BC2 and such that angle OBCl ~ 90° and 

angle OBC
2 

~ 90°. Hence the angle C
l

BC
2 

~ 180° and we have 

a contradiction to the statement that all interior angles of 

a convex polytope are less than two right angles. Therefore, 

the shortest distance from an interior point is not to a 

boundary of dimensionality n-2. 



APPENDIX D. 

THE MOMENTS OF A ROTATABLE DESIGN. 

The class of rotatable designs is characterized by 

the property that these designs generate constant information 
i\, 

(in terms of the variance of the predictor y) on each sphere 

whose center is the center of the designs. In other words, 

" the variance (inverse of the information) of the predictor y 

at some point in the design space is a function only of the 

distance the point lies from the center of the design and is 

not a function of the direction. 

The concept of rotatability for designs of degree 

greater than 1 was first introduced by Box and Hunter [6J. 

Box and Hunter show that the necessary and sufficient con­

ditions for a design to be d th degree rotatable is that the 

generating function of the moments up to degree 2d, given by 

(Dl) 

should be of the form 

d 

Q = I a2S(t~ + t~ + •.. + t;)s (D2) 
s=o 

where a 2s (5=0, 1, ... , d) are constants depending on the 

design points and are independent of the t., and the w . 
J. uJ. 

(l~iSp) are the levels of the independent design variables. 

That is to say, if the moment 
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is denoted by 

9 
p p], 

e 91 9 2 then by equating the coefficients of tl t2 t P in 
P 

(Dl) and (D2), Box and Hunter show that for a set of points 
i th 

to be d degree rotatable, it is necessary and sufficient 

that the design moments satisfy the condition that 

9 
P p] = 0 

= 

9. I 
~. 

if all or any 9. are odd 
~ 

if all 9. are even. 
~ 

(D3) 

In (D3), e = S1 + a2 + ••• + 9p ~ 2d and AS is a constant 

depending on a but is unaffected by the way in which a is 

partitioned into aI' 92 , •.. , Sp. 

In this paper, since we are concerned with designs of 

degree 1 and 2, we shall show, using (D3), the method for 

constructing the moment matrix associated with first and 

second-degree rotatable designs. For d = 1, the only non­

zero moment for a rotatable design is [i 2 ], and therefore 

from (D3), 

(D4) 
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Hence the moment matrix for a first-degree rotatable design 

where ~~=(l, wu1 ' 

For d=2, the non-zero moments are 

Hence from (D3), 

and 

[i4 J = 

= 

A4 21 21 
22 1111 

A4 41 

22 .21 . 
3A4 . 

. CDS) 

(D6) 

(D7) 

Using (D4), (D6) and (D7) then, we have for the moment 

matrix of a second-degree rotatable design where 

w' = (1, W l' ••• ' w , w 12, •.. , w 2 I W lW 2'···' Wu lWup ) , -u u up u up u u , p-

1 2,' A ~ I o· 2lp ..., 

1 Q, A2I 0 0 -p ..., .., 
(D8) - WIW = 

N - ~ A ~ Q, A (2I + - - I ) Q, 21p 4 -p ~plp 

0 0 0 A4 I - - - (p) 
2 

where 2p is a p x 1 column vector of ones. 



APPENDIX E. 

THE CON8TRUcrION OF AN ORTHOGONAL MATRIX I FOR GENERAL g. 

In Chapter 3, the k x k orthogonal matrix T was par-
""" 

titioned into the two matrices !l and !2- The matrix !l was 

a k x (k-q) matrix containing k-q orthonormal columns and !2 

was a k x q matrix such that ~2=Q, where y is an N x k mat­

rix containing the levels of the intermediate variables. 

The elements of the matrices !l and !2 were given for q=2. 

In this appendix, we show that given a form for 

general q of the matrix !2 so that Y!2=Q, a corresponding 

form of the k x (k-q) matrix !l can be derived so that the 

k x k matrix! is orthogonal. 

Let us define the quantity 

(EI) 

where n~ (l~~Sq) is the number of mixture components be­

longing to the tth category. Let 

(1S j ~q) (E2) 

and 

(E3) 

be defined where h. (8. l+1$i~8.) is the quantity used in 
1]- ]. 

the transformation (3.l.2), that is, 
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1. 

Xl.' - x01." 
h. 

1. 
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(s. l+l~i$S_;l~j~q). 
]- J 

If we define the matrix! to be of the form 

where !l is a k x ~-q) matrix containing k-q orthonormal 
IV 

columns, h is a k x 1 column vector with the elements ,.., 

li' = <ill' h2 , • •• ,11s ,0,0, •.• ,0), 
1 

and ~(i) (l~i~q-l) is a column vector containing S. l-S, 
~ 1.+ 1. 

non-zero elements~ then one particular construction of the 

matrix T is ,.., 

[ ] 

T = ,.., 

o ,.., 

Q 

[ ] 

o ,..., 

o ..., 

Q 

[ ] 

Q, o ,.., 

o -
Q, • (E5) 

[ ] Q Q, ... Q h (q-l) 
...., 

The non-zero elements in the last q-l columns of the matrix 

T are the elements in the column vectors h(i) (It:iSq-l), "" ,.., 

which we shall define shortly. With the form (E5) of the 

matrix T, then ,..., 

VT = [0 WOO ••• oJ 
~~ ~ ~ ~ ~ ~ 

where the form of the matrix V is described at the beginning -
of this appendix. 

From (E5), we see that the matrix !l is a diagonal 

matrix of matrices. In fact, we shall show that each matrix 
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in !l is an n~ x (n~-l) matrix where n~ is defined in (EI). 

Denote by t .. the element in the ith row and jth 
l.J 

column of the matrix T. From (E4), we see that the first ,.., 

column of the matrix !, that is, til (ISi~k) is 

,.., 
= h. l. 

h. 
l. 

= 1* 
h 

for i=1,2' ••. 'Sl 

-* where S. and hl. (lsi~q) are defined in (El) and (E2) l. 

respectively. Now, in the ~th matrix in the diagonal of 

the matrix !l' the elements are 

t. - = -h. 1 
1.J 1.-

= 0 

i=j+t-l 

(E6) 

{E7} 

j=S~_1+4-~, ••. ,S~-t+l. 

Column-normalizing the elements in (E7) gives the matrix !l. 

Let us look now at the last q-l columns of the matrix 

!. The columns consist of the n
j
+l x 1 vectors ~(j) (l~j~q-l), 

where the vector h(j) is in the k_q+j+lst column of the mat­

rix T (from the left). In order to make these q-l coltmms ,.., 

orthogonal to the columns of the matrix !l and at the same 

time insure that the dot product of the elements of h(j) ,.., 

equals 1, that is, h(j) 'h(j)=l, the elements of the vector ..., ,.., 
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~(j) will be denoted by h
f 

where 

IV h f 
h f = h j + l * (Sj+l~f~Sj+l) 

and 

(E8) 

(E9) 

For example, the second matrix (t=2) down the diagonal of 

the matrix!l (before column-normalizing) is of the form 

hS +2 
1 

hS +1h S +3 
1 1 

-hS +1 h h 
1 S1+ 2 S1+3 

2 

0 -I-hs 2+ j 
- 1 1 . J= 

0 0 

0 0 

o o 

h h 
Sl+l S1+4 

hs +2h S +4 
1 1 

hS +3h S +4 
1 1 

3 

-I h s
2
+ j 

- 1 1 J= 

0 

o 

h h 
S1+1 S2 

hS +2h S 
1 2 

hS +3h S 
1 2 

hs +4h S 
1 2 

8 2-S1-1 

-1: hS~+j 
j=l 

, (E10) 

and the corresponding elements in the vector h(l) are 
#OJ 

,.. 
(1) hS +2 

h = 1 -



APPENDIX F. 

THE GRAM-SCHMIDT ORTHOGONALIZATION PROCESS. 

Let the matrix I be of the form (ES) in Appendix E. 

With the ~th matrix in the diagonal of the matrix ~l and the 

associated vector h(~-l), we want to construct an orthogonal ...., 

basis of dimensionality n~ which is a subspace of the k-di­

mensional vector space spanned by the columns of the matrix T. ,... 

Let ~=l and choose the vector ~l = h where 

B I = (h 1 ' h 2' • . . , hn ' 0 , 0, • • . , 0) • 
1 

The Gram-Schmidt orthogonalization process consists of con-

structing the vectors Y. (1~iSn1) in the following manner, 
...,~ 

'¥:l = ~l 

'¥:2 ~2 
Xi~2 

= - Y'Y Xl 
-1 ..... 1 (FI) 

Y' X -n -l-n 
Y X 

1 1 Y = -n -n Y' Y -n -1 1 1 ""n -l-n -1 1 1 1 

so that the vectors 

i=l, 2, • • • ,nl (F2) 

form an orthogonal (orthonormal) basis of dimensionality n 1 -

For example, let n l =3 and ~i={hl,h2,h3). Put ~2=(1,O,O) and 

~3=(O,1,O). Then from (FI), we have 
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~2 = [g] -
[hI h2 h3 ] [g] 

[:~ [hI h2 h3 ] ~hl 
h2 

2 2 h3 
h2 + h3 

1 = -hl h 2 222 
-hl h

3 
hl+h2+h3 

!3 = [~l t2 [~J y 
[hl h2 h3J[~J 

[:~ y.y ..... 2 
h 2+h 2+h2 ..... 2-2 
123 

0 

= h
2 1 3 

h 2+h2 
-h2h 3 2 3 

Then the upper left-hand 3 x 2 matrix in the k x k matrix T is 

~2 t~ D1 D2 

where 

~ 2 2 ~ 1 

D1 
(h2 + h3) 2 = 222 

hI + h2 + h3 

[h;h: h;] 
I 
'2 

D2 = 



APPENDIX G. 

A DISCUSSION OF THE PROCEDURE FOR MINIMIZING THE AVERAGE 

" MEAN SQUARE ERROR OF Y WHEN NEITHER THE VARIANCE NOR 
A 

THE BIAS OF Y CAN BE IGNORED. 

In this appendix, we attempt to reach some compromise 

in the practical situation when neither the contribution 
A A 

frqm the variance of y nor the contribution of the bias of y 

can be ignored. In other words, we shall attempt to minimize 
A. 

the quantity J = V + B where V is the average variance of y 

" and B is the average squared bias of y, where average means 

averaged over the region of interest. The region of interest 

will be the extended region of interest R*. 

It has been shown ([3], Appendix 1) that the average 

squared bias B can be written as 

N 
B = -2 ~2 I ~ ~2 

a 
(GI) 

where ~=~'~11~-~121~-A'~12+~22' ~2 is the vector of parameters 

associated with the second-degree terms in a second-degree 

model, ~ is the alias matrix (~i~1)-1~i~2 and ~ef (e,f=l,2) 

are the region moment matrices. When q=2, the expression 
A 

(5.3.2) in Chapter 5 for the average variance of y was shown 

to be 

where p is the number of independent variables (p=k-2) and 

p* is the radius of the region of interest. Now, if we 
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combine this last ssion for V with the expression (Gl) 

for the average squared bias to form J=V+B, then it can be 

shown that for any first-degree rotatable design in which 

the third-degree mcments vanish, 

+ 

P 
4 \ -' 2 

2 p * (p+ 2 ) La,.. + 
~~ 

i=l 

P 
4 \\-2 

p* {p+2)L L a ij -
i<j 

2 {p+2} (p+4) 

P 
4 I #OJ 2 2p* ( a.,) 

~~ 

i=l 

where n .. = aijiN is the element in the ith row and jth 
~J 

(J 

(G2) 

column of a matrix [aJ containing the standardized quadratic 

parameters. That is, the matrix [uJ, which is symmetric p x p, 

is defined [3J as such; the diagonal elements n .. are the 
1.1. 

parameters associated with the pure quadratic terms multi-
-' 

plied by the quantity i~, and the off-diagonal elements a ij 
2 

are the crossproduct or interaction parameters of the true 

surface also multiplied by the quantity i~ . 

Let us rewrite J in a simpler form by letting n=p, 

n n 

9 = trace ca2
] = I ai~ + ! II ai~ 

i=l ilj 

and It 
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Then 

[ np*2 J [ *2 2 *4 ( 2 1\) 1 + p~+ -H J. J = 2 +(n+2)A
2 

+ e !I.(A2- n+2 ) 
(n+2) (n+4) 

(G3) 

The quantity e (O~e~~) is defined [3J as an overall measure 

of the magnitude of the quadratic tendency of the true sur-

face relative to the sampling error and A (O~!I.~n) is defined 

to be a measure of the condition of the quadratic surface in 

terms of the latent roots of the matrix of quadratic pa­

rameters. It is shown ([22J, Appendix B) that both quanti-

ties e, !I. are independent of the elements of the transfor-

mation matrix T, and therefore the form (G3) for J can be ,.., 

used in the mixture problem. 

Looking at the expression (G3) for J, we see that the 

value of A2 (the second moment of the design) which minimizes 

J is a function of p*2, S and !I.. Since p*2 is fixed for a 

particular situation and if we know S and A (or if estimates 
... ... 
8, A are available), the best spread of the design points 

can be obtained in the following manner. If we set-up J in 

(G3) as a function of A2' we have 

np*2 ~2 
Q(A 2) =(n+2)A + SA(A2 - n+2 ). 

2 
(G4) 

To minimize Q(A
2

) in (G4), we can take the derivative with 

respect to A2 and set the result equal to zero, 

2 - np* 
2 

(n+2) A2 
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Then 

3 28Ap*2 ,2 _ np*2 _ 
29AA 2 - n+2 A2 n+2 - 0, 

or 

2 
np* 

28J\(n+2} = o. (G5) 

Now one method of obtaining the roots of the equation (G5) is 

to reduce (G5) to the form 

3 x + ax + b = O. (G6) 

b 2 a 3 
The equation (G6) has one real root if c= 4 + 27 ~O. This 

root is 

x = [_ ~ + c l / 2 }l/3 + [_ ~ _ c l / 2}l/3. 

Let A2= x + p*2 and put this value of A2 as x in (G6). 
3 (n+2) 

Then 

3 x 
p*4 x _ 2p*6 

3(n+2)2 27 (n+2) 3 

2 
np* 

28J\(n+2) 

which is the form of the equation (G6) where 

p*4 
a = - , 

3(n+2)2 

= 0, 

If we substitute these values of a and b in the formula for 

c, we see that the value of c is greater than zero and there-

fore the value of A2 which minimizes (G3) is 

= p*2 + [_ b + c l / 2}l/3 + [_ b _ c l / 2}l/3 
A2 3 (n+2) 2 2 (G7) 
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where in (G7), 

4 2 
b = _p*2[~ 8A + 27n (n+2) ], 

548A(n+2)3 
c = 

assuming 8 and A are known. 

We can now minimize J in (G3) assuming the parameters 

~ .. , ~. _ (i<j), or functions 8, A of the parameters are 
~~ ~J 

known. However, since even estimates of these parameters 

are not usually available, one way to use (G3) is to assume 

some design configurations and check these designs for ro-

bustness (the ability of J to remain fixed for different 

values of the unknown parameters) for reasonable ranges of 

values of the unknown parameters. This is the procedure 

used in [3].and [22], but we shall discuss the method also 

since the region of interest is not restricted to a unit 

sphere. 

To find the minimizing value of A2 for estimates of 9 

and A, we set-up J as a function of the second moment, i.e., 

J = V (A
2

) + 9B (A
2

) (Ga) 

where V(A 2 } and B(A 2 ) are defined in (G3). To determine a 

reasonable value for A2 for a given value of 8, let 

V(A
2

) 
9 = 9B(A

2
} I 

(Gg) 

where g is a positive constant selected by the experimenter 

for the particular situation. Note that the quantity 9 is 

a measure of the ratio of the variance to the bias when J is 



209 

minimized for given values of e and A. From [3J, for given 

values of A and g then, minimizing values of A2 may be found 

by minimizing the function 

(GIO) 

This gives a minimizing value of A2 which at the same time 

satisfies (G9). If we differentiate Q(A 2 ) in (GIO) and set 

the result equal to zero, we have 

If.A~ is a solution of (GIl) and 

g [V I (A 2) } g-IB (A 2) B I (A 2) f; 0, 

then by dividing (GIl) by g[v' (A
2

)}g-lB(A
2

)B 1 (A
2
), we have 

V (A~) = _ V· (A~) 

gB (A ~ ) B I (A 2 ) 

= e*. (G12) 

Therefore, (G12) provides a e = 9* and A2 = A~ such that 

= o' [V + BJ = 0 
OA2 

V{A 2) - e*gB(A2) = V - gB = 0 

2 *2 
where V' (A 2 )= -np* and BI (A 2 )= 2A(A 2 - ~). 

2 
(n+2) A2 

Let us now substitute VI (A
2
), BI (A 2 ), V (A 2 ) and B (A 2 ) 

in (GlI). Then we have for (GIZA) 
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(Gl2A) 

which can be written as a function of A
2

, that is, 

224 
A3 + {2p* {n-2)-gnp* } 2 rnp* (g-n-2)}A 

2 4 (n+2) A2 + 2 (n+2) 2 2 

2 4 
- g~X* {p* (A;2) } = o. 

(n+2) (n+4) 
(G13) 

For given values of A and g, the expression (G13) can be 

used to find the minimizing value of A2 -

In working with an expression similar to (G13) for 

the values of g=1,4i n=2,3,5; A=.2,1,2,3,4,5 and p*=l, Box 

and Draper [3] deduce that when there is no knowledge con-

cerning 9 and A but that the influence of variance and bias 

are assumed to be about equal, the "al1-bias u design ( a 

design which is used for minimizing J when V is assumed to 

be equal to zero) or a design close to the "all-bias" design 

is best. 

For our mixture problem, since we do not know the 

values of the parameters e and A, we can propose some designs 

and calculate the value of J for different values assigned 

to e and A. In other words, for given values of n,A,p* and 

g, equation (GI3) can be used to calculate A2 . Then since 9 
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is found from (G9), we can then use equation(G3) to find the 

optimal or minimum value of J. 

In choosing a design which will take into account 

contributions from both the variance and bias of y, our first 

choice would be a design the length of whose radius is be-

tween the two extremes (that is, the radius of the naIl-bias" 

design and the radius of the "all-variance" design). Let us 

choose a design matrix associated with the scaled two-level 

factorial where d is the radius multiplier. In this design, 

the points all lie on a sphere of radius din and the second 

2 moment of the design is A2=d. Since the points of the 

design which minimizes Valone all lie on a sphere of radius 

p*, and the "all-bias" design has radius (n~2)1/2p*, we 

shall consider a design which measured from the naIl-bias" 

design is. t% larger. That is, the radius of the new design 

is t% closer to the "all-variance" design than is the uall-

bias" design and this radius is 

= tp* + (1 - t) (n~2)1/2p*. 

Also, with this design, the second moment is 
2 

A2 = Pt · 
n 

(G14) 

(GIS) 

With the expression (GIS) for A2, we can find the 

value of t from (G14) that gives a J value (using (G3» 

closest to the optimal J value calculated when A2 was found 
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from (G13). By closest, we mean a J value which is robust 

for various values of A and g. Then with this value of t, 

equation (G14) is used and the radius multiplier for the 

new design is 

(GI6) 

Thompson and Myers [22J constructed tables of J 

values using a formula similar to (G13) where p*=l. The 

A 
values of t, @= n' g and k where k=n+2 are; 

t = 1.0, 0.75, 0.60, 0.50, 0.40, 0.00 

® = 0.1{0.2)0.5, 0.6(0.1)1.0 

9 = 20, 10, 6, 4, 2, 1, 0.5, 0.25 

k = 3, 4, 6. 

For the above values, Thompson and Myers state that the J 

values when t = 0.60 are the most robust in terms of de-

partures from the optimal J values for a variety of situ­

ations. Since the n in (GIS) equals k-2, the tables in [22] 

can be used for our problem if we put p*=l and n=2, 4 in 

(G14) and (GIS) for k=4, 6 in [22J respectively. 



APPENDIX H. 

OBTAINING THE ESTI~mTES OF THE PARAMETERS IN A SECOND-

DEGREE MODEL USING A CENTRAL COMPOSITE DESIGN. 

In Chapter 7, Section 7.3, the form of the design 

matrix as well as the form of the moment matrix of a central 

composite design were shown. These matrices are used to 

obtain the vector of estimates~. In fact, the estimates ~ - -
of a. in the model y = W Os + €, where the matrix W is of the ,.., ,."", ,..",,..,,. ,.., ,..., 

form (7.3.3), are obtained by the formula 

a. = (W I W) -lw I y • 
".., ,..,,..,, ""'..,., (HI) 

It was also shown in Chapter 7, that when the central com-

posite design is used, the settings ±w of the axial points 

are dependent on the choice of whether to use the rotatability 

criterion or the orthogonality criterion. In some cases, a 

choice between the two criteria does not have to be made in 

that the value of w is the same for both. In this appendix 
... 

however, to arrive at the formulas for the estimates ~, we 

shall assume that the orthogonality criterion is chosen and 

in addition, we let q=2. 

Let us denote the observation vector y by 
#'OJ 

x= (H2) 
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where in (H2), M is the number of rows in the factorial 

portion of the design matrix and p (p=k-2) is the number of 

design variables. If the matrix ~ is defined as in (7.3.3), 

the vector W'y where y is defined as in (H2) is 
..., - .-.I 

W·y = - .., 

N 

I Yu 
u=l 

M 

cI Wul Yu + ill (YM+2 - YM+l ) 
u=l 

M 

cI WupYu + W(YM+2p - YM+2p-l) 
u=l 

M 

c
2I Yu + w

2
(YM+l + YM+2) 

u=l 

M 

c
21 Yu + W

2
(YM+2P_l + YM+2p) 

u=l 

M 

i2c2l: WulWu2Yu 
u=l 

M 

.f2c
2
\' W lW Y L up- up u 

u=l 

(H3) 

where c is the radius multiplier, Ll is a contrast of the 

observations (L1=zllY1+" ... +zlNYN)' and wui= ±l depending on 

the sign of the element in the uth row and ith column of the 

factorial portion £1 of the matrix ~. 
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A 

To get the estimates 2:. by the equation (HI), we mul-

tiply the vector in (H3) by the matrix (NfW)-l= N(W'W)-l 
N 

where the matrix N(W'W)-l is shown in (7.4.12). Note that - ..., 

the elements of the matrix N(~,~)-l are defined in (7.4.13). 

Then the formulas for the estimates ~are 

N M M+2p 
\ f 2\ 2\ 

~O = N L Yu + N[ C PL Yu + W L Yu ] 
u=l u=l u=M+l 

M 

~. = N1, [ c\ w .y ~ ~2 L u~ u 
u=l 

(l!i:i:s:p) 

N M 
A f \ 
a.ii= N L Yu 

u=l 
+ i[ c

2I Yu + W
2

(YM+2i + YM+2i-l>] 
u=l 

M M+2p 

+ ~[ c
2

(P-l)L Yu + w
2I Yu J (l~i:s:p) 

u=l u=M+l 

A M ;ij = 2N
l

, [/2c
2 

\ w .w _Y ] 
2 ~4 L u~ uJ u 

u=l 

= 

u;iM+2i 
u;lM+2i-l 

The quantities e, f, g, and h in (H4) are linear 

(H4) 

. functions of the moments of the design (see (7.4.13». If 

we replace the quantities e, f, g, h in (H4) by the equiv-

alent functions of the moments, the formulas for the esti­

mates i become 
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N M M+2p 

a O = G + A4 (p-1 l I Yu - ~~[c2pL Yu + w2I Y
u

] 

NQ u=l u=l u=M+l 

M 

a i = iA
2
[cL WuiYu + W(YM+2i - YM+2i- 1 l] (l~i~pl 
u=l 

N M 

a ii= - ~~ I Yu +(G-~ IN[c
2I Yu + W

2
(YM+2i + YM+2i-l l ] 

u=l 4 u=l 
(HS) 

2 where Q = G - A2P + A
4

(p-l). Now if we replace the moments 

in (BS) with design parameters (see (7.3.4», that is, 

w = Lc (L is explained in Table II.) 

4 
A = Mc 
4 N 

then the formulas in (HS) can be simplified to 
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22M 2 M+2p 4 N 
= 2L (L -p)\ + M(p-L ), + (2L +Mp)\ 

a O D L Yu D L Yu D L Yu 
u=l u=M+l u=M+2p+l 

M 

a. _= 12 \:' w .w .y 
1J Me L u~ uJ U 

u=l 

L 
+ 2 (YM 2· - YM+2~-l) 

(M+2L ) c + ~ -'-
(lSi$;p) 

(H6) 

(lsi<j:i:p) 

Finally, when the number of independent design vari-

1 1 abIes p=2, 4, 5(2 rep.), 6 and 6{4 rep.), the value of w is 

w = tM e 

4 which sets L = 1M, since the design is rotatable. Therefore, 

the formulas in (R6) are further simplified to 



2 (I-Ai) ~ 
= D* L Yu + 

u=1 
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M+2p 
(p-/M)\ Y + 

D* L-J u 
u=M+l 

N 
(p+2)\ 

D* L Yu 
u=M+2p+l 

(lsis:p) 

M M+2p 2 N 
(1+ /M)I (N-M-2JM)\ (M+2/M-N)\ 

a ii= c 2MD* L Yu + 2· r,M 2D* L Yu 
u=l vJ C u=M+l 

2D* Yu 
C u=M+2p+l 

+ _1_{y . + Y ) 
2/Mc2 M+21 M+2i-l 

(lsis:p) 

where D* = ~ = N(p+2) - (2+JM)2p , H* = (M+2/M)C and 

N 

Ll = LZIUYU • 
u=1 



APPENDIX I. 

MEASURING LACK OF FIT AND SUGGESTED TWO-LEVEL FACTORIALS FOR 

THE CASES OF 'rwo AND THREE CATEGORIES OF COMPONENTS. 

We have failed to mention anything about the method 

of measuring the lack of fit of the fitted models or sizes 

of the designs in terms of the number of design points. In 

Chapters 4, 5 and 6, we talked about the fitting of a first­

degree model and considered the case only where the true 

form of the response surface was at most second degree. In 

Chapter 7, we assumed that the fitting of a,second-degree 

model was adequate. Therefore, in this appendix, we are 

going to discuss the method for measuring the lack of fit 

of the model when a first-degree model in the design vari­

ables is fitted and also list some two-level factorial 

designs which can be used when q = 2, 3. 

To recapitulate, the reasons for fitting first-degree 

models are: 

(i) the experimenter is convinced that in the particular 

region of interest, a linear approximation to the 

response surface is adequate; or 

(ii) in an attempt to locate a region of maximum response 

through a sequence of small experiments, the simplest 

model is fitted initially to facilitate getting 

results. 

In both of the above cases, it should be clear that some 
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measure of model inadequacy of the first-degree model must 

be obtained. If the experimenter has some prior measure of 

the experimental error variance and can be reasonably con-

fident that this measure has not changed through time, the 

only concern then is in obtaining some measure of the lack 

of fit of the model. However, usually the experimenter does 

not have a measure of the error variance or one which he 

feels is adequate and consequently must plan to acquire, 

from the N experiments, a measure of this variation along 

with a measure of lack of fit. This is the assumption which 

we make here. 

There are basically two methods for obtaining an 

estimate of the experimental error. The first method is by 

replicating experiments at some design points or at most, 

replicating all of the N experiments. When this is done, 

the precision of the estimates of the coefficients of the 

terms in the model which are affected by the replications 

is increased. However, the measure of the lack of fit of 
-

the model is obtained only from those terms in the model of 

degree higher than 1 (for example, crossproduct terms in 

the model sometimes used when performing a two-level fac-

torial design). 

The second method which can be used for obtaining a 

measure of ,the experimental error is to run nO center point 

replicates with each compartment of D corresponding to its 
~ 

(horizontal) partitioning. Using this method, not only can 
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an estimate of error (which is based on nO-l degrees of 

freedom from each corresponding group of observations) be 

obtained but also we can acquire a measure of the lack of 

fit of the linear model. We show this with the following 

example. 3 
Let p=3, N=2 + 2nO and q=2. Write the W matrix as 

,." 

where the values of the elements w . (lsi~3) are +1 and O. 
u~ -

The columns in the left compartment of ~ correspond to the 

terms in the fitted model and the columns in the right com-

partment (last three columns) correspond to the terms omit-

ted from the model. That is, we have separated the columns 

corresponding to the pure quadratic terms to represent the 

ignored terms and at the same time included the crossproduct 

terms in the model. 

In the analysis of variance, if we write the fitted 

model as 

3 ,3 

Y = 0.0 + '\ a' w . + \' \' a .. w . w . + aLIZ Iu + € , u L ~ U~ LL ~J U~ uJ U 

i=l i<j 

then the breakdown of the sums of squares would be the 

following: 
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Due to linear terms (including mean) 

N 

L wuiYu 
u=l 

N 

\w~ L Ul. 

u=l 

Lack of fit (crossproduct terms) 

2 3 

I I ~ij 
i=l j=2 

N 

\' w .w _Y L Ul. UJ u 
u=l 

N 

\' (w . w _) 2 L Ul. uJ 
u=l 

Due to contrast term 

Error 

N 

Ll 
-N-

\ z 2 
L, lu 

u=l 

L 2 ... 
Y - a.IW·y u -,......, 

u=l 

By including the crossproduct terms in the model, we have 

removed a source of variation from the error sum of squares 

and thus can use this source of variation as a measure of 

the lack of fit of the model. 

Let us write the model now (omitting the contrast 

term) as 
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3 3 3 

Yu = a O + I a.w . + I I a. _w .w - + L a .. w ~ + e • 
~ u~ ~J U1. UJ 1.~ U1. u 

i=1 i<j i=l 

The first and (2 3 + l)st normal equations are 

3 23 N 

(2
3 + 

,. 
3 I" I Yu I 2no)ao + 2 ( a .. ) = + Yu 1.1. 

(r2) 

i=l u=l 3 u=2 +1 

3 23 
3 .... 

3 I" I Yu 2 a O + 2 ( a. .. ) = , 
1.1. 

(r3) 

i=l u=l 

where a O is the estimate of the constant term in the model, 
.... 
a .. (l~i~3) is the estimate of the quadratic effect of the 

1.1. 

ith variable, Yu (lsu~23) are the observations taken at the 

design points of the factorial design and y (23+l~u~N) are 
u 

the observations taken at the 2nO center point replicates. 

Subtract (r3) from (r2). We obtain 

and therefore, 

N 

2no&o = L Yu 

u=23+1 

= Y2n o 
(I4) 

Thus the average value of the observations taken at the 2nO 

center point replicates provides the estimate of the mean 

parameter. Now, substitute (r4) 

3 

in (r3). We obtain 

23 

3 3 I A 2 Y2 + 2 ( a .. ) 
nO 1.1. = L Yu 

i=1 u=l 
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and hence, 

y 3 - Y2n 
2 0 

(IS) 

Equation (IS) shows that the difference between the average 

value of the observations taken at the extreme points (ver-

tices of the 3-dimensional cube) of the design and the 

average value of the observations taken at the center of the 

design is equal to the sum of the estimates of the coeffi-

cients of the pure quadratic terms. Therefore, we have an 

additional measure of the lack of fit of the model by taking 

center point replicates and performing the subtraction of (IS). 

In the cases where q (the number of categories) is 

odd, we saw from the three category problem (Chapter 6) that 

center point replicates in D were necessary in order to -w 

maintain the symmetry of the halves of D as well as keep the -w 

number of observations at a minimum. When q is even, the 

design matrix consisted only of the settings of the design 

variables at the extreme points of the design. Hence, in 

order to obtain some measure of the experimental error for 

measuring the lack of fit of the first-degree model when q 

is even, we shall augment the design matrix gw with center 

point replicates because of the information gained as seen 

from equation (IS). We assumed this additional experimen-

tation was performed when we discussed the central composite 

designs in Chapter 7. 
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The two types of first-degree designs considered in 

Chapter 5 were the double-simplex and the scaled two-level 

factorial designs. The principal advantage of the simplex 

designs over the scaled two-level factorial designs is the 

economy of design points. For practical purposes however, 

the use of simplex designs is likely to be limited since 

they supply no degrees of freedom for measuring the lack 

of fit and in most cases the simplex designs are less 

convenient to work with than are the two-level factorial 

designs. This was evident in Chapter 5 when we mentioned 

that the design matrix for a simplex design could not be 

generalized but that the form of the design matrix for the 

two-level factorial design could be generalized. 

The discussion on testing lack of fit of the model 

has been directed toward performing this test after the first 

group of experiments (the top compartment of the design ma-

trix) has been completed. In the cases where q = 2, 3, the 

simplex designs offer only one degree qf freedom from the 

center point replicates for checking lack of fit, whereas 

the factorial designs offer one degree of freedom from the 

center point replicates and additional degrees of freedom 

from the terms of degree greater than 1 in the model. This 

latter number of degrees of freedom will of course depend on 

the size of the experiment (in terms of the number of design 

points) in the top half of D • -w 
Table III. on the following page lists fractional 
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Table III. 

Fractional Factorial Designs Suggested For Use in the 

Scaled Two-level Factorial Design Matrix. 

Number of Top Half of II Lack of fit" 
Categories p Dw + nO degrees of freedom 

2 2 22 + 2 1 + 1 

2, 3 3* 23 
+ 2 4 + 1 

4 4-1 2 + 2 3 + 1 

5** 5-1 
2 + 3 10 + 1 

6 26- 2 + 4 9 + 1 

7 27- 2 
+ nO 24 + 1 
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factorial designs for various p (number of design variables). 

The first number in the last column corresponds to the degrees 

of freedom associated with the terms other than the first-

degree terms in the model. The second number in the last 

column is the additional degree of freedom obtained by run-

ning center point replicates. The reader is referred to 

Davies [9J for a discussion on confounding of factorials 

since confounding will not be discussed here. 

Finally, in Table III., the single asterik means that 

I 3-1 d . in the top half of D , one cou d use a 2 es~gn but the 
""W 

main effects of the variables are aliased with the 2-factor 

interactions. Unless the interactions are assumed negligible, 

both halves of D would have to be performed to,separate the .... w 
5-2 main effects. The double asteriks mean that a 2 design 

could be run in the top half of Rw but again the 2-factor 

interactions are aliased with the main effects of the vari-

abIes. However, if the design is to be augmented to a second­

degree design, one may perform the 25- 2 in the top half of D -w 

for the first stage of experimentation. 
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WHEN THE MIXTURE COMPONENTS ARE CATEGORIZED. 

by 
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ABSTRACT 

A method is developed for experiments with mixtures 

where the mixture components are categorized (acids, bases, 

etc.), and each category of components contributes a fixed 

proportion to the total mixture. The number of categories 

of mixture components is general and each category will be 

represented in every mixture by one or more of its member 

components. 

The purpose of this paper is to show how standard 

response surface designs and polynomial models can be used 

for estimating the response to mixtures of the k mixture 

components. The experimentation is concentrated in an 

ellipsoidal region chosen by the experimenter, subject to 

the constraints placed on the components. The selection of 

this region, the region of interest, permits the exclusion 

of work in areas not of direct interest. 

The transformation from a set of linearly dependent 

mixture components to a set of linearly independent design 

variables is shown. This transformation is accomplished 

with the use of an orthogonal matrix. Since we want the 
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properties of the predictor y at a point ~ to be invariant 

to the arbitrary elements of the transformation matrix, we 

choose to use rotatable designs. 

Frequently, there are underlying sources of vari-

ation in the experimental program whose effects can be 

measured by dividing the experimentation into stages, that 

is, blocking the observations. With the use of orthogonal 

contrasts of the observations, it is shown how these effects 

can be measured. This concept of dividing the program of 

experiments into stages is extended to include second-

degree designs. 

The radius of the largest sphere, in the metric of 

the design variables, that will fit inside the factor space 

is derived. This sphere provides an upper bound on the 

size of an experimental design. This is important when one 

desires to use a design to minimize the average variance 

of y only for a first-degree model. It is also shown with 

an example how with the use of the largest sphere, one can 

cover almost all combinations of the mixture components, 

subject to the constraints. 


