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ABSTRACT 
 
     Apoptosis, or programmed cell death, is an essential process in all multi-cellular organisms. It is 
indispensable to an organism’s survival, preventing the malicious propagation of DNA damage and 
pathogenic alterations, through the clean disposal of afflicted cells. The BAD/tBID/BAK pathway is a 
portion of the apoptosis molecular pathway, albeit an important pathway since it is known to be 
deregulated and lead to pathological ailments such as cancer. 
 
     Using chemical kinetics the BAD/tBID/BAK signaling pathway is modeled as a set of (nonlinear) 
ordinary differential equations. A first-cut numerical analysis reveals a mechanism where BAD 
sensitizes a switch from tBID activation to BAK activation. The phosphorylation of BAD is shown to 
inhibit this sensitizing effect. All behaviors are supported by experimental data, thereby validating the 
model of the BAD/tBID/BAK pathway. Moreover, modeling the phosphorylation of BAD as one of 
two modes, some conflicting experimental data about BAD’s phosphorylation can be studied.   
 
     Parameter values (in this case the kinetic rate constants) are prone to error or missing altogether. 
Chemical reaction network theory, however, provides a theoretical approach to complement the initial 
numerical analysis without having to specify rate constant values. We extend the global asymptotic 
stability and robustness results in [92] to include any complex-balanced mass-action network. This 
enables us to study the BAD/tBID/BAK signaling network by breaking it into two sub-networks: one 
with BAD and tBID, and the other with tBID and BAK.  
 
     The complex-balanced BAD/tBID sub-network is shown to possess a unique steady state which is 
globally asymptotically stable. This verifies the simple and dynamically well-behaved exchange of 
BAD for Bcl-2 proteins which guard against tBID activation. The second sub-network, tBID/BAK, is 
formulated as a complex-balanced network with a perturbation representing the reaction of tBID 
catalyzing the activation of BAK. Our theoretical results produce a non-conservative, though state-
dependent, condition which can be used to prove global convergence to a neighborhood of the 
unperturbed steady state. We then illustrate the biological importance of the result for tBID/BAK sub-
network with an example design for a drug delivery system.  
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1    Introduction  
 

1.1    Introduction 
 
     Apoptosis, or programmed cell death, is an essential process in all multi-cellular organisms. It is 
indispensable to an organism’s development, adaptation, and maintenance. In particular, apoptosis 
prevents the propagation of the malicious effects of damaged DNA, free radicals, growth-factor 
deprivation, and pathogens like viruses and bacteria, so that other cells may remain healthy. There are 
two main biological pathways in apoptosis: the intrinsic pathway and the extrinsic pathway. These are 
both illustrated in Fig. 1.1. Roughly speaking, the intrinsic pathway of apoptosis is mitochondria-
dependent and the extrinsic pathway is not. Through the sequential release of proteins that are 
normally held sequestered or inactive in the cell, an apoptotic signal can flow downstream through 
one or both of these pathways. These pathways converge at a point where executioner proteins called 
caspases are activated (see Fig. 1.1). Activation of these caspases is considered the point-of-no-return 
for a cell. That is, if these caspases are activated, and no anti-apoptotic signals intervene, the cell will 
ultimately be destroyed.   
 
     Many of the molecules involved in the apoptosis pathway cannot be definitively labeled as pro- or 
anti-apoptotic since they are involved in several different reactions and/or undergo several property-
changing modifications. Sometimes these changes occur at the transcriptional level and other times at 
the post-translational level [1-3]. For example, one of the earliest discovered apoptosis proteins, Bcl-
2, an otherwise anti-apoptotic protein, becomes inert and no longer anti-apoptotic when it is cleaved 
by caspase-3 [4-6]. Furthermore, apoptosis proteins are frequently controlled by toxic organisms like 
viruses, bacteria, and parasitic protozoa, which can affect the concentrations of these proteins [9, 11-
12]. In other cases apoptosis proteins are de-regulated by the cell itself, which is what happens when a 
cell turns cancerous [7, 8, 10].  

 

FIGURE 1.1   The apoptosis signaling network illustrating the intrinsic and extrinsic pathways 
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1.2    Motivation  
 
     The BH3-only proteins, well-known signaling molecules in the intrinsic pathway of apoptosis, 
quite often become pathological targets due to their ability to trigger apoptosis responses once certain 
thresholds of activation have been compromised. Notably, abnormally high levels of BAD (Bcl-2-
associated death promoter) and BID (BH3-interacting domain death agonist)—together or acting 
singly—can cause a healthy cell to become inappropriately apoptotic [9, 13-17]. This is because 
active BAD and BID can trigger the polymerization of BAK (Bcl-2 antagonistic killer) and BAX 
(Bcl-2-associated x protein) and lead to the disintegration of the mitochondria [12, 18-20]. As shown 
in Fig. 1.1, mitochondrial disintegration precedes the activation of the executioner caspases. 
 
     Due to the complexity of the apoptosis signaling pathway, as well as the potential therapeutic value 
that can be acquired through its disentanglement, it becomes important to introduce mathematical 
models. Many processes associated with BID [85-87] have been modeled in the past, but many of 
these models have neglected or abstracted the effects of BAD [85]. What is generally missing from 
these models is a description of how pro-survival signals (sometimes arriving from outside the cell) 
lead to the partial or complete inactivation of BAD. In this paper, we propose a novel model that 
includes this inactivation of BAD and how its inactivation is accomplished through phosphorylation 
processes and molecular chaperoning. Although experimental data about BAD is still lacking, an 
initial model can be developed and an assessment of the effects of BAD on BID, as well as on 
downstream events, can be undertaken. In particular, we investigate the interactions of BAD and BID 
in conjunction with the downstream events involving BAK. This model will be known as the 
BAD/tBID/BAK network model (where tBID, or truncated BID, is the specific form of BID that must 
be incorporated into the model). 
      
     From a controls perspective, there are many ways biological systems resemble classical control 
systems, and likewise, there are many ways they differ, requiring adapted (and sometimes new) 
techniques. Techniques for the analysis of cellular processes are no different, often spanning from 
nonlinear optimization and numerical techniques to theoretical and graphical-dependent methods. 
After researching various methods of handling the BAD/tBID/BAK signaling network, always 
keeping in mind the current biological understanding of this particular network, we arrive to the 
conclusion that we require a biochemical method which exploits the network’s graphical properties 
and stoichiometry, and which more loosely depends on the particular values of the chemical kinetic 
constants, which are a cellular network’s system parameters. Mathematically, we will derive a set of 
differential equations which characterizes the static and dynamic behavior of the network, but these 
equations will include a set parameters which, according to the biological literature, are unknown or 
uncertain at best (again these are called the kinetic rate constants). Even for well-experimented and 
well-documented signaling networks this is often the case.  
 
     Hence, even though we would like to make an initial analysis of the BAD/tBID/BAK through 
selecting rate constant values and using familiar tools (simulation, bifurcation and sensitivity 
analysis), we require a more general approach to complement our work. Fortunately, certain chemical 
engineering techniques familiar to the design of chemical reactors can provide us with a way to do 
this. In fact, these techniques have already had recent success toward the analysis of several cellular 
signaling pathways [88-93]. Continuing along these lines, we are interested in knowing what these 
techniques can tell us about the BAD/tBID/BAK network.  
 
     Much of chemical reactor theory stems back to the works of Feinberg, Horn, and Jackson in the 
early 1970’s [95-100]. Their work enables a chemical reaction network designer or analyst to 
conclude the existence, uniqueness, and stability of certain chemical reaction networks provided they 
satisfy certain graphical and stoichiometric constraints. More importantly, almost all of these 
conditions do not require selection of specific rate constant values. Interestingly, part of our network 
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will satisfy the graphical and stoichiometric constraints and hence will be a straightforward 
application. However, the remaining part of our network will not and so motivates us to extrapolate 
the theory to include this part. We will find that this is possible, so not only will be able to apply the 
result to our network but we will have developed theory which applies to any given network 
satisfying similar graphical and stoichiometric constraints. 
      
 

1.3    Literature Review of Mathematical and Computer-aided Modeling of 
Biological Systems 
 

1.3.1    Computer-aided approaches 
 
     Biological systems are usually large interconnected networks consisting of several species, which 
can include proteins, genes, and transcription factors. Because of the immensity of these networks a 
modeler or designer can be faced with multi-scale aspects in time and space. Complex networks, for 
example, can induce hundreds of differential equations (called kinetic equations) and system 
parameters (called kinetic rate constants) which span several orders of magnitude, and which can 
make systems stiff and difficult to integrate without extensive computational effort [57]. Many 
software packages have been created out of the need to handle these enormous sets of biologically-
derived equations. Most of these packages share many similarities with more standard numerical 
packages, providing user-friendly environments for quick programming of simulations and sensitivity 
analyses. The biological-specific packages are generally faster, however, due to the additional 
customized programming, which can include modified integration techniques and inclusion of 
biological properties such as conservation and stoichiometry. For example, CellSim, a multi-analytic 
tool for the analysis of kinetic and spatio-temporal models, introduces automated computations of 
Jacobian and Hessian terms (as well as sparse linear algebraic computations for integration steps) to 
enhance its speed of integration [58-60]. In conclusion, biological systems can be tackled more 
efficiently and effectively, permitting a bio-analyst to focus more on functionality rather than 
numerical technique.  
 
     Biological networks often lack detailed specifications and consequently one must rely on a mixture 
of qualitative and quantitative data. In this instance, simulation and bifurcation analyses can provide a 
methodical approach to explore state and parameter spaces [61-62, 85-86]. Studies of the extrinsic 
pathway of apoptosis (depicted in Fig. 1.1) have lead [61] to investigate the mechanism with which 
extracellular signals lead directly to caspase activation. Using bifurcation and experimental data the 
work in [61] locate admissible regions of parameter space and identify a mathematical model which 
possesses the observed characteristics of the experimental model. Another example is a study on the 
intrinsic pathway, done in [85]. Again using bifurcation and experimental data, the work in [85] 
pinpoints a bistable toggle switch embedded within the BAX pathway. Many signaling pathways 
governing apoptosis have been experimentally and theoretically abstracted as bistable processes, 
generally incorporating a stable “life” steady state and a stable “death” steady state. In this case [85] 
uncovers the source of the bistability within the intrinsic pathway of apoptosis. Yet another example, 
sensitivity analysis is used to pinpoint system parameters which are responsible in deciding whether a 
cell moves predominantly along the intrinsic pathway or the extrinsic pathway shown in Fig. 1.1 [74]. 
What the researchers find is that the activation rate of caspase-8 (generally associated with the 
extrinsic pathway) in relation to the initial level of caspase-9 (generally associated with the intrinsic 
pathway) determines definitively whether the intrinsic or the extrinsic pathway of apoptosis is chosen. 
 
     Other numerical techniques to estimate biological system parameters rely on nonlinear 
optimization. Estimation is critical in study of biological system since many of the kinetic parameters 
(and even kinetic reaction rate laws) in any given biological system are uncertain or missing 
altogether. In [78], the cAMP pathway is analyzed. This pathway is an intracellular signaling pathway 
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which transmits the effects of hormones (glucagon, adrenaline) into the cell without penetrating the 
cell wall itself. One of the defining properties of the cAMP pathway is the presence of a stable limit 
cycle (when the state vector is assumed to be a vector of species’ concentrations). The researchers 
identify sets of worst-case parameters (or kinetic rate constants), which, when perturbed, destabilize 
the limit cycle. This is done by minimizing a cost function with the help of hybrid optimization tools 
(combining local and global techniques). In turn, these parameters are compared to those given in 
experimental literature.  
 
     Sensitivity analyses, in particular, are also useful to quantify properties such as robustness. 
Essential cellular processes, such as apoptosis, must be robust against variations in the environment, 
against genetic mutations, as well as against other simultaneously occurring cellular processes. For 
example, [73] applies a direct finite-time Lyapunov exponent method to a caspase-8/caspase-3/XIAP 
pathway (a model for the extrinsic pathway of apoptosis) to delineate regions of phase space which 
exhibit high sensitivity to initial conditions. Roughly speaking, they do this by differentiating final 
trajectory positions with respect to initial conditions. In this manner, a separatrix is located which 
splits the set of feasible trajectories into two qualitatively different subsets -- one which is 
fundamentally pro-apoptotic and another which is fundamentally anti-apoptotic. Naturally, the 
network’s definiteness toward one of two types of trajectories implicates a robust mechanism. 
 
     Stochastic approaches have also provided much aid in the numerical analysis of biological 
systems. External excitations through the employment of stochastic differential equations (SDEs). or 
Monte Carlo techniques, provide invaluable information regarding network structure and more 
qualitative attributes or as a way to include in vivo and in vitro statistical data (which can vary widely 
over cell lines) [66, 87]. In particular, stochastic chemical dynamics arise out of the randomness 
inherently associated with molecular collisions and the formation and destruction of chemical bonds. 
This is especially relevant in cellular networks where only a small number of molecules are known to 
exist (which is the case in many gene-transcription factor networks). The well-known Gillespie 
algorithm circumvents this problem [67]. In this method, each reaction has associated with it a 
probability that is proportional to the number of molecules of each reactant. Then discrete time 
trajectories are generated by randomly executing these reactions and randomly choosing time steps, 
where at each time step if a reaction is executed, molecules are exchanged according to the 
stoichiometry of the reaction. For example, if at some random time the reaction CBA →+  is 
executed, then both species A  and species B  lose 1 molecule and species C  gains 1 molecule. 
 
 

1.3.2    Theoretical approaches   
 
     The mathematical treatment of biological networks has instinctively turned toward a systems 
approach -- that is, toward constructing cascades and feedbacks of elementary modules. Whereas 
simulation, bifurcation analyses, and nonlinear optimization techniques are certainly useful to explore 
the state and parameter spaces of biochemical networks, technology has not yet advanced to the point 
where we can experimentally validate the kinetic rate laws or even the values of kinetic rate constants. 
Hence, a “decomposition then reconnection” approach toward the study of biochemical networks has 
begun to emerge [79]. Attempts at creating elementary modules stem back to the Goldbeter-Koshland 
switch [77]. There, the researchers characterize and support phosphorylation processes as modular 
structures, arguing that these phosphorylation reactions are ubiquitous cascading signaling pathways 
within cells. From their analyses, they coined the concept of ultrasensitivity, which is a general term 
describing any robust switch process (which, in their case, was a consequence of the saturation of 
enzymes).    
 
     More recently, modularity in biological systems has taken the form of monotone systems (whose 
flows are characterized by preservation of a partial ordering) [80-81]. In these studies, a biological re-
interpretation of the small-gain theorem has been derived using monotone theory. This can help gauge 
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the strength of naturally-occurring inhibitory feedbacks like the MAPK cascade (which is yet another 
cellular signaling pathway that uses phosphorylation to relay signals from outside the cell to inside the 
cell) [82-83]. Positive feedback connections of monotone systems can also be used to study bistability 
and bio-switches. For example, the λ phage lysis-lysogeny switch characterizes a virus which exhibits 
two distinct properties: it can either hijack a cell and burst it open (lysis), or it can lay hidden within 
the cell undetected to duplicate whenever the cell divides (lysogeny) [84]. Perhaps the most attractive 
feature of constructing cascades/feedbacks of biological systems is the theory that can be applied if 
the system comprises cascades/feedbacks of monotone subsystems. Roughly speaking, a kinetic 
system is monotone if an increasing input produces consistent increases or decreases in the states of 
the system. If a system consists of a cascade or a feedback of monotone subsystems, and there exist 
static input/output characteristics (steady state data) for each of these subsystems, then stability and 
robustness properties can be ascertained for the original system. For example, one can deduce the 
number of steady states, the stability of these steady states, and the robustness against perturbations 
from these steady states. In fact these conclusions can be made without even having to know the 
kinetic rate constants or internal kinetics.        
 
     System identification theory has become widely used in the bio-mathematical community. This 
theory can be used to identify kinetic mechanisms and interaction graphs, as well as validate 
numerical identification methods, when there is little a priori knowledge regarding internal kinetics. 
Many of these theoretical notions are adaptations of methods used for classical nonlinear control 
systems. For example, [71] considers how state accessibility conditions of nonlinear systems can be 
reinterpreted and applied to biochemical models. In situations where the exchange dynamics (the 
dynamics associated with the inputs and outputs) are known but the kinetic dynamics (the dynamics 
associated with the internal reaction network) are unknown, one can quickly infer the number of 
controllable states using the power of Lie algebras. This theory becomes important in the design of 
drug delivery systems as well as when the convergence of parameter identification algorithms needs 
to be ensured. 
 
     In situations where quantitative data is non-existent, approaches in chemical engineering as we 
mentioned earlier can provide a means to study qualitative properties of biochemical networks. The 
mathematical frameworks created out the works of Feinberg, Horn, and Jackson [95-100], known as 
chemical reaction network theory (CRNT), enable a bio-modeler or analyst to capitalize on graphical 
properties and stoichiometry of a biochemical network while being less dependent on the selection of 
specific kinetic rate constants (and in some cases even the kinetic rate laws). Although their work was 
originally applied to chemical reactors, recently, chemical reaction network theory has been extended 
to the study of cellular signaling pathways. For example, it is used (and adapted) to study the global 
asymptotical stability and robustness of a T-cell kinetic proofreading model [92]. T-cells respond 
more selectively and more quickly upon contact with an antigen-presenting cell in a lock-and-key 
manner. (Cells have a way of holding out infectious and hazardous pathogens, much like a flag, for T-
cells.) Their binding initiates a chain of reactions which modifies the T-cell receptor complex (i.e. the 
lock). This chain is modeled as a chemical reaction network, and because it satisfies certain graphical 
and stoichiometric conditions, global asymptotic stability can be proven. In addition, [92] qualifies the 
extent to which such a network can be perturbed by unmodeled dynamics before stability is no longer 
guaranteed. Such work will be continually called upon when we consider a similar situation for the 
stability and robustness of our biological network.    
 
     More control concepts such as detectability and input-to-state stability have also begun to emerge 
from chemical reaction network theory -- in particular with applications to cellular receptor-ligand 
signaling (which propagate signals from outside to inside the cell) [88-91]. For example, variations in 
temperature or concentrations of enzymes can cause kinetic rate constants in cellular signaling 
networks to slowly vary over time (such as in receptor-ligand networks). Using nonlinear input-to-
stability concepts, [90-91] sets up a formalism so that one may characterize the robustness against 
such perturbations, and applies it to a receptor-ligand network. This network, as a chemical reaction 
network, satisfies the same graphical and stoichiometric criteria as the above-mentioned T-cell kinetic 
proofreading model. Again, circumventing the troublesome problem associated with lack of 
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experimental data, the work in [91] is able to rule out bifurcations and describe the nice movement of 
steady states for these types of networks when kinetic rate “constants” vary in time.  
 
     These input-to-state stability concepts also lend themselves to extending control concepts like state 
estimation [88], which theoretically could be useful in biological experimentation and biomedical 
engineering. For example, the monitoring of proteins via fluorescent labeling of molecules could be 
considered to be a biological sensor which, at least theoretically, could be used to infer the 
concentrations of states (proteins, molecules, ions) of a kinetic signaling system. [88] looks at the 
stability of observers, and their robustness to sensor and process noise, for the same kind of chemical 
reaction networks which were mentioned above. The global stability properties inherent in such 
networks permit the design of an observer which responds significantly better than Kalman and 
Luenberger observer types.    
 
 

1.4    Contributions  
      
     What separates our work from the analyses of many of the apoptotic pathways already studied is 
the novel inclusion of BAD. In addition to illustrating the well-established switch-like signaling 
behavior from tBID to BAK, we will show how BAD acts as a sensitizer, and how this sensitivity is 
modulated via phosphorylation of BAD. Our mathematical model will validate the experimental 
model where tBID is an “activator” and BAD is an “enabler” [21]. Another distinction is our concern 
with basal operating conditions, that is, we look at conditions for the BAD/tBID/BAK network when 
the cell is perfectly healthy and non-apoptotic. Many apoptotic studies disregard this important aspect 
of a network, which, for our purposes, can be used to delineate regions of parameter space which must 
be satisfied in order to maintain these basal conditions.  
   
     The modeling of BAD is significant since, for example, BAD has the capacity to restore a 
cancerous cell to one which responds normally to apoptotic stimuli. That is, cancer cells are generally 
defined by overexpression of anti-apoptotic proteins such as Bcl-2 [10, 22] and do not respond 
appropriately to apoptotic signaling. Technology today has reached the point where man-made BID 
and BAD molecules can be fabricated as parts of a drug delivery system which can eradicate cancer 
cells through apoptosis [28, 54]. Unfortunately, the targeting of cancerous versus normal healthy cells 
is an ongoing challenge. Targeting cells with BID can inadvertently lead to the destruction of healthy 
cells which do not exhibit Bcl-2-overexpresson. On the other hand, BAD-targeting might be more 
effective since, as we will demonstrate in this paper, BAD does not have the capacity to trigger 
apoptosis, but instead lowers the threshold at which cells respond to apoptotic stimuli. In this manner, 
cancer cells would become appropriately apoptotic and healthy cells would be less likely to die 
inappropriately, thereby minimizing the effect of misguided treatments.  
 
     Our initial analysis of the BAD/tBID/BAK network, by selecting specific rate constants and using 
tools such as simulation, bifurcation analysis, and sensitivity analysis, will reveal and support the 
sensitization of BAD on the tBID-induction of BAK. Such techniques will validate our model with 
respect to experimental data as well as provide a methodical way to pose hypotheses about the 
phosphorylation of BAD, on which experimental data remains fuzzy and entangled. With our model 
we will be able to disentangle some of these discrepancies and explain why some researchers ventured 
into some potentially contradictory findings. Finally, our initial analysis will be used in conjunction 
with assumptions about basal (non-apoptotic) static operating conditions. This will lead to a constraint 
on the kinetic rate constants necessary to ensure that such basal conditions are satisfied.     
 
     We prove a novel result in the study of chemical reaction network theory, generalizing the stability 
and robustness result in [92] to include any complex-balanced chemical reaction network (which 
would include any zero-deficiency mass-action network considered in [92]). This will come in the 
form of Theorem 1 (and Lemma 1) in Chapter 5. In particular, the result states that any complex-
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balanced network is globally asymptotically stable (if there are no boundary equilibria) and 
furthermore this stability is retained against certain state-dependent perturbations which preserve the 
stoichiometric properties of the network. Moreover, the construction of the proof of Lemma 1 will 
provide an explicit formula to estimate stability-preserving perturbations.   
 
     We then apply our result to the two sub-networks of the BAD/tBID/BAK pathway, one which 
incorporates the reactions among the states of BAD and tBID (called the BAD/tBID network), and 
another which incorporates the reactions among the states of tBID and BAK (called the catalyzed 
tBID/BAK network). Straightforward application of our result will show that a complex-balanced 
BAD/tBID network is globally asymptotically stable. Application of our result to the catalyzed 
tBID/BAK network will generate a state-dependent condition under which we can also state global 
asymptotic stability. However, through further manipulation, we will be able to derive a more 
biologically-meaningful condition under which the activation of BAK, which directly activates the 
intrinsic pathway of apoptosis, is blocked. In either case, we will be able to make definitive claims 
regarding the static and dynamic behavior of the two sub-networks without actually specifying kinetic 
rate constants.    
 
 

1.5    Plan of Attack 
 
     The plan of attack will 2-pronged. First, we shall explore the behavior of the BAD/tBID/BAK 
network using simulation, bifurcation analysis, sensitivity analysis, and explicit formulations derived 
from an approximate model known as the “skeleton” model. This will be done in Chapter 3 after we 
extract from the biology our full model of the BAD/tBID/BAK pathway in Chapter 2. Analysis of the 
full and skeleton models will give us a first-cut description of the basal and transient activities of the 
network, as well as a means for model verification.    
 
     Stripping this simplistic mechanism down to a skeleton model enables us to solve it explicitly in 
terms of symbolic rate constants and, subsequently, permits us to approximate the effects of BAD on 
tBID-induced activation of BAK. These equations will also be used to motivate hypotheses explaining 
some of the inconsistencies regarding the phosphorylation of BAD. Finally, these equations will 
provide us with a concrete means to delineate regions of parameter space in which it is possible to 
maintain basal (or non-apoptotic) conditions.   
      
     Second, we will turn toward chemical reactor theory, introduced in Chapter 4, to shed more light 
on the BAD/tBID/BAK network. Although the skeleton model provides a way to circumvent the 
problem of unknown rate constants, it lacks many of the nonlinear dependencies and detailed 
interactions inherent in the BAD/tBID/BAK network. Chemical reactor theory will enable us to 
include these nonlinearities without restricting attention to specific rate constants. This will lead to the 
development of our own theorem (and lemma) in Chapter 5 to handle the BAD/tBID/BAK network 
(or any network which satisfies the same graphical and stoichiometric constraints). In Chapter 6, we 
apply our theoretical results to the BAD/tBID/BAK by splitting it into two sub-networks: the 
BAD/tBID network and the catalyzed tBID/BAK network. Finally, in Chapter 7, we will consider 
what our results mean to the biologist and what could theoretically be done to treat pathological 
deregulations of the BAD/tBID/BAK network.  
 
 



 8

2    Biology and Derivation of Kinetic Equations for the 
BAD/tBID/BAK Network 
 

2.1    Biological Network 
 
     Fig. 2.1 illustrates the biochemical reactions and processes among BAD, tBID, BAK, and Bcl-2 
considered in this paper. Below, we give a detailed description of the current biological understanding 
of the signaling pathway. (The kinetic modeling of the reactions will be handled in the next section.) 
The network shown in Fig. 2.1 will be known as the BAD/tBID/BAK pathway. It is important to 
stress that even though Bcl-2 is a specific anti-apoptotic protein, in this paper we will assume that it 
represents either Bcl-2 or Bcl-xL, the latter of which is another anti-apoptotic protein with only subtle 
differences from Bcl-2. In general, many of the behaviors of Bcl-2 and Bcl-xL are very similar in 
regards to the BAD/tBID/BAK pathway, and reference to one or either of these proteins can be 
interchanged. This is what is usually done in many apoptosis models [85-87]. In our analysis, 
however, it will be useful to expand upon one of their subtle differences -- the qualitatively different 
impacts the proteins have upon the phosphorylation of BAD. We will make explicit reference to the 
specific protein under investigation when this is considered. In a much similar manner BAK is a 
specific protein but will be used to represent either BAK or BAX.  
 
 

2.1.1    Bcl-2 heterodimerization and displacement process 
 
      In its free unbound form, the pro-apoptotic protein tBID is considered to be active since it can 
catalyze the activation of the pro-apoptotic protein BAK. tBID does this by directly inducing a 
conformational change in BAK, which drives its polymerization (that is, its formation into polymers) 
[19, 24-26]. BAK is considered to be active once the conformational change induced by tBID has 
taken place. However, Bcl-2 is an anti-apoptotic protein which prevents the activation of proteins like 
tBID and BAK through a process known as heterodimerization [22]. In heterodimerization, 1 
molecule of Bcl-2 pairs up with 1 molecule of unbound tBID (or unbound BAK) to form one 
heterodimer molecule, which will be written tBID:Bcl-2 (or BAK:Bcl-2). This process is a 
sequestration process since as heterodimers, tBID can no longer catalyze BAK, and similarly, BAK 
can no longer oligomerize into polymers. Hence, tBID and BAK are no longer considered to be active 
once they become bound to Bcl-2. 
 
     Whereas tBID:Bcl-2 is considered to be the inactive form of tBID, BAD:Bcl-2 is considered to be 
the active form of the pro-apoptotic protein BAD [21-23]. This is because BAD, unlike tBID, cannot 
directly induce the activation of BAK but instead must steer the biological network toward apoptosis 
by displacing Bcl-2 from tBID [23, 27-28]. That is, BAD works in a pro-apoptotic manner by 
preventing Bcl-2 from inactivating tBID -- so that ultimately more tBID can be active. This is why 
BAD is often referred to as a “sensitizer” or an “enabler” [21, 85].  
 
     In Fig. 2.1, we observe the Bcl-2 heterodimerization reactions and displacement process occurring 
in the mitochondria. The former are indicated by the double-headed arrows between the Bcl-2-bound 
complex and the corresponding unbound pro-apoptotic protein (BAD, tBID, BAK) and a connecting 
arrow with free Bcl-2. This type of graphical representation is common in the description of reversible 
binding reactions. The displacement process is indicated by the intersection of two arrows emanating 
from BADm and tBID:Bcl-2, where at the intersection point we have two different arrows leaving and 
moving towards BAD:Bcl-2 and tBID. Although this process is assumed reversible as well (that is, 
Bcl-2 displaced by tBID), we have only indicated in Fig. 2.1 the dominant direction, which is the 
displacement of Bcl-2 by BAD.   
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2.1.2    The phosphorylation, dephosphorylation, and mitochondria-targeting of BAD 
 
     BAD is sequestered and deactivated by phosphorylation. The phosphorylation of BAD, and how 
growth and survival signals lead to its inactivation (that is, its removal from the complex BAD:Bcl-2), 
has been given recent attention in cellular biology but remains to be clarified. Below, we review some 
of the current biological understandings regarding the phosphorylation of BAD, keeping in mind that 
many of these findings are fragmented or contradictory.  
      
     Current research has established three critical sites of phosphorylation for BAD—Ser112, Ser136, 
and Ser155 [29-32]. Although phosphorylation at any of these sites results in BAD being 
phosphorylated, as we shall discuss, there are many differences to be noted. Phosphorylation of Ser112 
or Ser136 is known to induce a conformational change in BAD such that a consensus binding site for 
14-3-3, a kind of molecular chaperone, is made available [21, 33-34]. In such cases, 14-3-3 sequesters 
BAD to the cytoplasm, preventing BAD’s interaction with Bcl-2 (who tends to be localized to the 
mitochondria). Ser155 kinases phosphorylate BAD within its BH3 domain, blocking the ability of 
BAD to effectively bind Bcl-2. In this case, the chaperoning via 14-3-3 is unnecessary since BAD is 
already secured from activation regardless of whether BAD remains in the mitochondria or not 
(though 14-3-3 binding and chaperoning can still occur if BAD is further phosphorylated at Ser112 or 
Ser136).   
      
     There are also phosphatases which can dephosphorylate BAD once it is phosphorylated. The most 
well-known is the Ca2+-stimulated phosphatase calcineurin, which can dephosphorylate any of the 
above-mentioned phosphorylation sites (as well as remove 14-3-3 from BAD) [14, 16, 34-35]. If left 
unphosphorylated, or has been recently dephosphorylated, BAD can target the mitochondria or 
cytoplasm without any help from chaperoning molecules [21].  
 
     Generally, phosphorylation of BAD occurs while BAD is in its free unbound form. However, it is 
recently suggested that whenever BAD is bound to Bcl-xL (not Bcl-2) in the mitochondria, 
phosphorylation can induce the dissociation of the BAD:Bcl-xL complex [21, 29, 31, 33, 36-37, 39]. 
However, it is unclear in what way(s) this is done. The experiments in [37] and [33] demonstrate the 
process as a simple consequence of Ser112 or Ser136 phosphorylation. On the other hand, experiments 
in [31] demonstrate the interesting experimental result that dissociation is still possible even when the 
Ser112 and Ser136 sites are replaced with unphosphorylatable mutations. In further contrast, 
experiments in [36] and [21] suggest that Ser155 phosphorylation must follow Ser136 phosphorylation 
to trigger dissociation (though, oddly in other experiments in [36], Ser155 phosphorylation is shown to 
work independently of Ser112 and Ser136 phosphorylations). Finally, at a completely different extreme, 
in vitro experiments in [40] indicate that Ser136 and Ser155 phosphorylations are not even possible 
when BAD is complexed with Bcl-xL. 
 
     Fig. 2.1 graphically depicts our assumed three routes of phosphorylation (not to be mistaken with 
the three sites of phosphorylation). These are indicated by three arrows leaving BAD, BADm, and 
BAD:Bcl-2 and terminating at pBAD. We assume that these phosphorylations are irreversible in the 
sense that phosphorylated BAD (pBAD) must first bind 14-3-3 (to form pBAD:14-3-3) prior to any 
kind of dephosphorylation. This is consistent with the findings in [21], which demonstrate that once 
pBAD binds 14-3-3 (which they hypothesize to occur in the mitochondria as well as in the 
cytoplasm), the pBAD:14-3-3 complex must first reach the plasma membrane before dissociation, and 
therefore dephosphorylation, can occur. Even though 14-3-3 binding may not always be the reaction 
which immediately follows phosphorylation (as we said before, Ser155 phosphorylation may work 
independently of 14-3-3 chaperoning) our model does serve to illustrate how the phosphorylation of 
BAD provides a temporary removal (or prevention) of BAD activation in the mitochondria. Hence, 
we incorporate this chaperoning process into our network by assuming the arrow from pBAD to 
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pBAD:14-3-3 is a single-headed arrow, that is, we assume the reaction from pBAD to pBAD:14-3-3 
is an irreversible process. Note that the reaction from pBAD:14-3-3 to cytoplasmic BAD is also 
assumed irreversible, since in a way we already incorporating the reverse reaction, which is 
phosphorylation. Finally, the cytoplasmic- and mitochondria-targeting of free unphosphorylated BAD 
is indicated with a double-headed arrow between BAD and BADm.   
 
 

2.1.3    Activation and polymerization of BAK 
 
     Active tBID induces the activation and hence polymerization of BAK (e.g., into tetramers [20, 
41]), forming pores through which lethal constituents are released into the cytosol [20, 18-19]. Since 
tBID, much like an enzyme, catalyzes the activation of BAK [19], we have drawn a dotted arrow 
leaving tBID and terminating at the double-headed arrow between BAKinac and BAK (which is the 
active form of BAK). In other words, tBID drives the reaction of inactive BAK to active BAK but is 
not consumed in the process. This process is seen more explicitly in Table 2.1 which summarizes the 
reactions of the BAD/tBID/BAK network pictorially represented in Fig. 2.1. Like BAD, active BAK 
can associate with Bcl-2 as well as displace Bcl-2 from tBID [23, 42-46]. Fig. 2.1 illustrates this 
second displacement process in a manner similar to what was done for the first one involving BAD. 
Finally, the four lines connected to the double-headed arrow between BAK and BAKpoly are used to 
indicate the polymerization process where four molecules of active BAK cluster together to form one 
tetramer molecule, BAKpoly.     
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FIGURE 2.1   BAD/tBID/BAK network. Post-translational network showing the reactions and states 
among BAD (rectangles), tBID (circles), BAK (parallelograms), and Bcl-2 (diamonds). The dotted arrow refers 
to the up-regulation of BAK via tBID. Curved arrows indicate re-localization processes between the cytosol and 
mitochondria (lumped together as one big mitochondrion). Since calcineurin triggers the release of BAD from 
sequestration, it will sometimes be thought of as the “input”. Likewise, since polymerized BAK leads to the 
disintegration of the mitochondria, it will be thought of as the “output”. 
 
 
 
 
 
 
 
 
 
 
 

(output) 

catalyze 

Akt, PKA,  

          Raf, etc.  

calcineurin (input) 

tBID 

tBID:Bcl-2 

 

BAD:Bcl-2 

   (output) 

 

BAK BAKinac 

  

BADm 

BAKpoly 

 

pBAD:

14-3-3 

BAK:Bcl-2

Bcl-2 

CYTOSOL 

MITOCHONDRIA Bcl-2 

Bcl-2 

pBAD BAD 1BADphosk

1BADphosk
2BADphosk

BADseqk
1BADrelk

in
BADτ

out
BADτ

a
2Bcl:BADk −

d
2Bcl:BADk −

a
2Bcl:tBIDk −

d
2Bcl:tBIDk −

d
2Bcl:tBIDk −

1tBIDrelk

BAKcatk
inac
BAKk

a
2Bcl:BAKk −

d
2Bcl:BAKk −

2tBIDrelk

a
BAKpolyk

d
BAKpolyk

ac
BAKk



 12

TABLE 2.1   Summary of the reactions and rate constant assignments for the BAD/tBID/BAK 
network. 
 
Reaction Forward Rate Constant Backward Rate Constant 
   

pBADBAD →  1BADphosk   
pBADBADm →  1BADphosk   

3-3-14:pBADpBAD →  BADseqk   
BAD3-3-14:pBAD →  1BADrelk   

mBADBAD ↔  in
BADτ  out

BADτ  
2-Bcl:BAD2-BclBADm ↔+  a

2Bcl:BADk −  d
2Bcl:BADk −  

2-BclpBAD2-Bcl:BAD +→  2BADphosk   
2-Bcl:BADtBID2-Bcl:tBIDBADm +↔+  1tBIDrelk  2BADrelk  

2-Bcl:tBID2-BcltBID ↔+  a
2Bcl:tBIDk −  d

2Bcl:tBIDk −  
BAKBAKinac ↔  ac

BAKk  inac
BAKk  

tBIDBAKtBIDBAKinac +→+  BAKcatk   

2-Bcl:BAK2-BclBAK ↔+  a
2Bcl:BAKk −  d

2Bcl:BAKk −  
2-Bcl:BAKtBID2-Bcl:tBIDBAK +↔+  2tBIDrelk  1BAKrelk  

polyBAKBAK4 ↔  a
BAKpolyk  d

BAKpolyk  
   

 
 

2.2    Kinetic Equations for the BAD/tBID/BAK Network 
 
     Since the (mass-action) kinetic modeling of the reactions between tBID and BAX has already been 
established in literature [85], we assimilate their kinetic equations into our BAD/tBID/BAK 
differential equations. What remains is the (mass-action) kinetics associated with the different states 
of BAD. Once defined, we will have a set of nonlinear ordinary differential equations, which by itself, 
completely defines the biochemical relationship of BAD, tBID, and BAK. This will be the model 
which is considered in this paper. 
 
 

2.2.1    Kinetic rate laws for the different states of BAD 
 
     To keep our model simple yet capable of addressing some of the phosphorylation discrepancies in 
experimental literature, we model the overall phosphorylation of BAD with two kinetics: one for the 
phosphorylation of unbound BAD (which can occur either in the cytoplasm or mitochondria); and one 
for the phosphorylation of Bcl-2-bound BAD (which induces the dissociation of BAD from Bcl-2). 
This is why in Table 2.1 we have the kinetic rate constant 1BADphosk  appearing alongside two reactions 
and 2BADphosk  appearing alongside only one reaction.   
 
     We apply the law of mass-action to the set of reactions listed in Table 2.1. A network endowed 
with mass-action kinetics is one wherein each reaction has a reaction rate which is proportional to the 
product of the reactant species’ concentrations. This is a common technique in biological model 
derivation and has origins in molecular collision theory (later when we consider the BAD/tBID/BAK 
network as a chemical reaction network, we will see exactly how our model is derived from the set of 
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reactions in Table 2.1). The result is shown in (Eqs. 1-12), which defines our BAD/tBID/BAK 
system. Note that the brackets are used to represent concentration levels.   
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EQUATIONS 1-12   Induced Differential Equations from BAD/tBID/BAK Network in Fig. 2.1 or chemical 

reaction network depicted in Table 2.1. 
 



 15

2.2.2    Kinetic rate constants and other system parameters 
 
     Although there is some published experimental data concerning some of the parameters involved 
in the BAD/tBID/BAK kinetic equations, most of these parameters are unknown or uncertain at best. 
This is the main reason we must consider a theoretical approach. However, we would first like to 
explore the behavior of this network with simulation and bifurcation technique based upon what is 
available. We may borrow values from the previous model of tBID and BAX as well as from another 
model incorporating tBID [85-86]. For the remaining, such as the reactions associated with BAD, we 
must estimate values from kinase and phosphatase assays, binding assays, and fluorescence 
polarization experiments in several various publications. Table 2.2 summarizes our chosen values 
alongside their references.   
 
     As (Eqs. 1-12) depict a conservative system, which frequently occurs in the modeling of biological 
systems, we define the following system parameters regarding total concentration levels:   
 

][BADtotal 2]-Bcl:[BAD][BAD3]-3-14:[pBAD[pBAD][BAD] m ++++  
][tBIDtotal 2]-Bcl:[tBID[tBID]+  
][BAKtotal ][BAK42]-Bcl:[BAK[BAK]][BAK polyinac ⋅+++  
]2-[Bcl total 2]-Bcl:[BAK2]-Bcl:[tBID2]-Bcl:[BAD2]-[Bcl +++  

 
Inspection of equations (1-12) show that the total concentration levels will remain constant over time 
for any defined solution. With the kinetic equations in (1-12), the rate constant assignments in Table 
2.2, and definitions of total concentrations, we are ready to simulate and proceed with an initial 
numerical analysis of the BAD/tBID/BAK network. This is done in the next chapter.   
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TABLE 2.2   Rate constant values 
 
Rate constant values used for the BAD/tBID/BAK model. 1BADphosk  (unbound phosphorylation rate) and 1BADrelk  
(dephosphorylation rate) are 1st-order estimations to the kinetic plots in [49] and [17], respectively. The value of 

2BADphosk  (bound phosphorylation rate) is estimated to be an order of magnitude smaller than 1BADphosk  to account 

for unmodeled dynamics. Values of the Bcl-2 association rates for tBID and BAK, a
2Bcl:tBIDk −  and a

2Bcl:BAKk − , 
respectively, were borrowed from [85]. It is assumed that bound Bcl-2 dissociates from BAD, tBID, or BAK at 
the same rate, .002s-1 (close to the value used in [85]). Association/dissociation rate constants also reflect a 
BAD/Bcl-xL dissociation constant of less than 1 nM [53] and BAD’s 5-times greater affinity for Bcl-2 than that 
of tBID [23]. The reaction rate for tBID displacement, 1tBIDrelk , was set to 25% of the association rate constant 

a
2Bcl:BADk − . d

BAKpolyk  was assumed small to reflect the irreversibility property in [85] and then a
BAKpolyk  was adjusted 

to match (qualitatively) the bifurcation plots of ( ) ][BAK/][BAK4[BAK] totalpoly+=BAKr  and time response curves 
in [85] for when there is no expression of BAD. The value of BADseqk  reflects the association constant between 
BAD and the 14-3-3ζ isoform in [21] for when 14-3-3ζ is assumed to have a fixed concentration of 10nM. 
Finally, the values of in

BADτ  and out
BADτ  were estimated to reflect the liposome-binding assay data in [21]. 

 
Rate constant Value Reference(s)
 

1BADphosk  .001 s-1 [48-50] 
2BADphosk  .0001 s-1 Est. 

BADseqk  .001 s-1 [21] 

1BADrelk  .00087 s-1 [17, 51-52] 
in
BADτ  .01 s-1 [21] 
out
BADτ  .002 s-1 [21] 
a

2Bcl:BADk −  15 µM-1s-1 [23] 
d

2Bcl:BADk −  .002 s-1 Est. 
a

2Bcl:tBIDk −  3 µM-1s-1 [85] 
d

2Bcl:tBIDk −  .002 s-1 Est. 

1tBIDrelk  5 µM-1s-1 [23] 
2BADrelk  .001 µM-1s-1 [23] 

ac
BAKk  .001 s-1 Est. 

BAKcatk  .5 µM-1s-1 [85] 
inac
BAKk  .1 s-1 [85] 
a

2Bcl:BAKk −  2 µM-1s-1 [85] 
d

2Bcl:BAKk −  .002 s-1 Est. 

2tBIDrelk  2 µM-1s-1 [85] 
1BAKrelk  .001 µM-1s-1 [85] 

a
BAKpolyk  2000 µM-3s-1 Est. 
d
BAKpolyk  5E-5s-1 Est. 
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3    Initial Analysis of the BAD/tBID/BAK Network 
 
 
     In this chapter we provide a first-cut numerical analysis of the BAD/tBID/BAK network through 
simulation, sensitivity, and bifurcation analysis of the kinetic equations in (1-12). This analysis will 
validate the kinetic full model by comparison to experimental data. We will also design a “skeleton” 
model which captures the fundamental behavior of the BAD/tBID/BAK network and provide 
mathematical formulae to explore the state and kinetic parameter space.  
 
     What we find is that the tBID induction of BAK resembles a robust switch not unlike what is seen 
in many other cellular signaling pathways. The effect of BAD is one which sensitizes, and hence 
alters the robustness of, a switch from the activation of tBID to the activation of BAK. Roughly 
speaking, there is a simple one-to-one correspondence between the amount of BAD bound to Bcl-2 
and the amount of Bcl-2 remaining to sequester tBID. Using this approximation in creating the 
skeleton model, we will be able to express the sensitizing and triggering relationship between BAD, 
tBID, and BAK as a simple bilinear function. Moreover, the skeleton model will be used in 
conjunction with basal (non-apoptotic) operating conditions to derive a necessary constraint on the 
kinetic rate constants. Finally, turning our attention to the novel kinetic modeling of BAD, the 
skeleton model (as well as further bifurcation and a sensitivity analysis) are used to qualify the 
behaviors of the two modes of phosphorylation of BAD (of Bcl-2-bound BAD or of unbound BAD), 
as well as decipher some of the experimental discrepancies concerning the phosphorylation of BAD.         
 
 

3.1    Simulations and Bifurcation Analysis of tBID-induction of BAK 
 

3.1.1    Simulations      
 
     Before we explain the sensitizing properties of BAD [21, 23, 28, 54], it is useful to first observe 
how tBID is an activator of BAK. Apoptosis signaling evolves through the BAD/tBID/BAK network 
as the activation of tBID provokes the activation of BAK. In particular, this signaling is enhanced by a 
positive feedback loop which exists between tBID and BAK since active BAK can displace tBID 
from the tBID:Bcl-2 complex (as well as drive down the level of free Bcl-2 through 
heterodimerization). Refer back to Figs. 2.1 and Table 2.1. Figs. 3.1a-b and 3.1c-d illustrate some 
example time response behaviors of the full model (1-12) for two different total concentrations of 
tBID—one that is too low to drive the auto-activation of BAK (Fig 3.1a-b) and another that is 
sufficiently high to drive the auto-activation (Fig. 3.1c-d). These simulations suggest that only when 
free Bcl-2 is nearly exhausted do we witness tBID activating BAK (that is, 0[BAK] > ). Moreover, we 
only observe polymerization of BAK (that is, 0][BAK poly > ) after Bcl-2 exhaustion. 
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(a)      (b) 

  
(c)      (d) 

FIGURE 3.1  Representative time response curves for two different levels of total tBID. (a)-(b) 
BAK inactivation when 018.][tBIDtotal = µM and;  (c)-(d) BAK activation when 023.][tBIDtotal = µM. At time 

0=t , the following constraints are assumed to be satisfied: ][BAD3]-3-14:[pBAD total= , 
][tBID2]-Bcl:[tBID total= , ][tBID]2-[Bcl2]-[Bcl totaltotal −= , and ][BAK][BAK totalinac = , where 

025.][BADtotal = µM, 1.]2-[Bcl total = µM, and 2.][BAKtotal = µM. All rate constants have been set to the values in 
Table 2.2. 
 
 

3.1.2    Bifurcation analysis reveals BAD as a sensitizer to tBID-induced activation of BAK 
 
     Another way to observe the switch-like behavior between tBID and BAK is using bifurcation 
diagrams with ][tBIDtotal  as the bifurcation parameter. A bifurcation diagram of a given system 

),( pxfx =& , where the scalar p  is the bifurcation parameter, reveals important changes in the 
number and stability of equilibrium points as p  is varied. Usually, the x -axis is the parameter p  and 
y -axis is a particular state. Also, solid lines are usually used to indicate stable steady states, thinner 

(or dotted) lines are used to indicate unstable steady states, and big dots are used to indicate values of 
p  where stability changes (known as bifurcation points). In particular, a saddle-node bifurcation 

point is a value of p  where stability changes from that of a saddle point to a node (or vice versa). In 
the case below, a saddle-node bifurcation occurs whenever the number of steady states changes.   
 
     Fig. 3.2 is a bifurcation plot showing how steady state [BAK] varies with the bifurcation parameter 

][tBIDtotal  for certain fixed levels of ][BADtotal . For each level of total BAD, our system exhibits 
bistability in a small interval between two saddle-node bifurcation points (with a maximum interval 
when there is no BAD), wherein two different stable steady state values of free BAK can be obtained 
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depending on where the system is initialized. A point on the smaller width line represents the third 
unstable steady state for that particular value of total tBID.   
 

 
 

FIGURE 3.2  BAD sensitizes the activation of BAK induced by tBID. 1-parameter bifurcation 
diagram with total tBID as the bifurcation parameter for various fixed levels of total BAD. Here, we have set 

1.]2-[Bcl total = µM and 2.][BAKtotal = µM. 
 
     For each level of total BAD, we take particular interest in the rightmost saddle-node bifurcation 
point in Fig. 3.2 since it represents the biologically meaningful threshold past which an initially 
inactive BAK is guaranteed to become active. That is, for any level of total tBID beyond this point, 
our system will move towards activation (or greater levels of active BAK), no matter what the initial 
condition is. We refer to this corresponding value of total tBID as the (total) tBID triggering level.  
      
     A 2-parameter bifurcation diagram of a system ),,( 21 ppxfx =& , with parameters 1p  and 2p , is a 
a bifurcation diagram where both 1p  and 2p  are allowed to vary. However, instead of a 3-D plot, 
usually a 2-parameter bifurcation diagram shows only the evolution of the bifurcation points projected 
onto the 1p - 2p  plane. 
   
     The 2-parameter bifurcation diagram in Fig 3.3 illustrates how the tBID triggering level (rightmost 
line of each pair) evolves as a function of total BAD. Fig 4 also roughly depicts how it evolves as a 
function of total Bcl-2. Clearly, the tBID triggering level decreases in a nearly linear fashion as total 
BAD is increased. That is, an increase in total BAD corresponds to a proportional decrease in the total 
tBID triggering level. Thus, BAD sensitizes tBID-induction of BAK by lowering the threshold at 
which tBID can activate BAK. 
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FIGURE 3.3  BAD lowering the threshold mechanism between tBID and BAK. This 2-parameter 
diagram shows the evolution of both saddle-node bifurcation points as a function of total tBID and total BAD 
for various fixed values of total Bcl-2. The rightmost line of each pair is the triggering threshold for BAK 
activation in response to increasing tBID. 
 
 

3.2    Validating the Effects of BAD on tBID-induction of BAK with 
Experimental Data 
 
     We consider studies that have analyzed the impact of various synthetic peptides derived from the 
BH3 domains (the pro-apoptotic parts) of BAD and BID. These are usually called BADBH3 and 
BIDBH3, respectively. In these studies, the peptides are injected into cells or isolated mitochondria 
and their effects compared in regards to how well they induce apoptosis. Naturally, these studies are 
used to hypothesize the behaviors of endogenous BAD and tBID. For our purposes, however, we will 
use these studies to validate the bifurcation results in Fig. 3.3 concerning the effects of BAD on tBID-
induced activation of BAK.   
 
     These studies demonstrate three basic facts about BAD and tBID. First, BAD is incapable of 
triggering apoptosis by itself [23, 28, 54]. Second, the presence of both peptides, even at sublethal 
doses, are shown to behave synergistically, affecting cells more than would be predicted through 
additive stoichiometry [28, 54]. Stated another way, these two findings indicate that BAD can only 
lower the threshold at which tBID can activate BAK. And third, without some form of Bcl-2-like 
expression (e.g., Bcl-2 or Bcl-xL), this synergy between BAD and BID is absent [23, 54]. The first and 
third facts are simple consequences of the network structure itself (refer back to Fig. 2.1), since the 
primary activity of BAD is to displace Bcl-2 and not directly activate tBID or BAK. Indeed, the 
absence of tBID or Bcl-2 would preclude the activation of BAD having any downstream impact on 
this network. 
  
     The “synergy” recognized between BAD and tBID is easily seen in Fig. 3.3. Consider any point on 
any of the rightmost lines in Fig. 3.3, such that total BAD and total tBID are non-zero. Then consider 
this point’s projection on the x - and y - axes. The former corresponds to a level of total tBID which 
is incapable of triggering BAK since it would be to the left of the line. The latter corresponds to a 
level of total BAD which is incapable of triggering BAK because, again, it would be to the left of the 
line. (In fact, even if total BAD was increased significantly, triggering would still not occur.) On the 
other hand, the point itself corresponds to a combining of those same levels of total BAD and total 
tBID, and hence corresponds to a situation where the activation of BAK is triggered. 
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3.3    Designing a Skeleton Mechanism to Model the BAD/tBID/BAK 
Network  
 
     In Figure 3.3 we see that the relation between tBID, BAD and Bcl-2 required to trigger BAK 
activation is approximately linear. Therefore, we propose a skeleton description of the effects of BAD 
on the tBID-induced activation of BAK. In this manner we will be able to derive formulae which are 
functions of the rate constants and dispense with the cumbersome challenges associated with selecting 
specific rate constant values.  
 
     At the coarsest level of approximation, we could assume that all BAD gets sequestered by Bcl-2, 
whether it was previously bound or unbound (e.g., bound to tBID or BAK). Any remaining Bcl-2 
would then bind tBID to prevent it from activating BAK. Hence, with this approximation, only when 

][tBIDtotal  becomes greater than ][BAD]2-[Bcl totaltotal −  would we see tBID activating BAK. 
 
     The high affinity of BAD for Bcl-2 justifies the approximation that any BAD in the mitochondria 
would bind Bcl-2 (refer back to parameter values in Table 2.2), but the lower affinity of tBID for Bcl-
2 requires a somewhat finer approximation than the one above to determine the amount of free tBID 
needed to trigger BAK activation. We consider this below. 
 
 

3.3.1    Model derivation  
 
     Consider the simple binding reaction between tBID and Bcl-2.  
 

          2-Bcl:tBID2-BcltBID ↔+  (3.1)
 
If no other reactions are considered, the steady state level of free tBID can be computed as a function 
of the three parameters 
 

2]-Bcl:tBID[[tBID]][tBIDtotal +=  
2]-Bcl:[tBID2]-[Bcl]2-[Bcl total +=  

a
2:BcltBID

d
2:BcltBIDtBIDD kkK −−= /.  

 
the latter parameter being the ratio of the association and dissociation rate constants. From (3.1) the 
steady state level of free tBID is constrained to the quadratic equation,  

 
          ( ) 0][tBID[tBID]][tBID]2-[Bcl[tBID] total.totaltotal.

2 =−−++ tBIDDtBIDD KK  (3.2)
 
(3.2) has only one positive root which is the unique steady state level of free tBID. Setting the level of 
free tBID to the level required for BAK activation, say this is denoted ][tBIDact  (which will be 
assumed constant), we can solve for the level of total tBID necessary to trigger the activation of BAK:    
 

          
]2-[Bcl

][tBID
][tBID

][tBID][tBID

total
act.

act

acttotal

+
+

=

tBIDDK
 (3.3)

 
To account for the fact that total available Bcl-2 is reduced by the amount of BAD in the 
mitochondria we replace ]2-[Bcl total  with ][BAD]2-[Bcl totaltotal 2Bcl:BADr −− , resulting in 
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           ( )]BAD[]2-[Bcl
][tBID

][tBID
][tBID][tBID

totaltotal
act.

act

acttotal

2Bcl:BAD
tBIDD

r
K −−

+
+

=
 (3.4)

 
The coefficient ]1,0[∈−2BclBAD:r  accounts for the percentage of total BAD which is BAD:Bcl-2. 
Shown in Appendix A, we can find an expression for 2Bcl:BADr −  by setting a portion of the kinetic 
equations (Eqs. 1-5) to zero and solving for  

 

2Bcl:BADr − =
]BAD[
2]-Bcl:BAD[

total

 

          ( ) ( )( )γβαβαα 11212 1111
1

++++++
 

 

(3.5)
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The assumption that γ  is small is reasonable when the level of total tBID has yet to surpass the 
triggering level. This is because we do not expect to see much free tBID until this occurs, making 

2]-Bcl:[tBID  relatively large. Consequently, we make the approximation that  
 

         ( ) 212 11
1

βαα +++
=−2Bcl:BADr  (3.6)

 
which makes the ratio 2:BclBADr −  a function of kinetic rate constants only. Finally, substituting this 
value of 2:BclBADr −  back into (3.4) we arrive to the skeleton approximation of the tBID triggering 
levels: 

 

( ) ][BAD
11
1

][tBID
][tBID

]2-[Bcl
][tBID

][tBID
][tBID][tBID

total
212act.

act
total

act.

act

acttotal

βαα ++++
−

+
+

=

tBIDDtBIDD KK
 (3.7)

 
 

3.3.2    Comparison of triggering mechanisms between skeleton model and full Model 
 
     We check the accuracy of our skeleton approximation in (3.7) to the triggering mechanism of the 
BAD/tBID/BAK network depicted in Fig. 3.3. To do this, we first need to compute the coefficients 
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for ]2-[Bcl total  and ][BADtotal  in (3.7). Using one of the x -intercepts in Fig. 3.3 (e.g., 
0267.][tBIDtotal = µM and 1.]2-[Bcl total = µM) we can use (3.2) to solve for ][tBIDact , which in this case 

comes out to be 4
act 104.2][tBID −×= µM. Other x -intercepts in Fig. 3.3 produced similar values for 

][tBIDact  (verifying our assumption that it remains approximately constant). With the set of rate 
constant values in Table 2.2 we can compute tBIDDK . , 1α , 2α , and 2β . Finally, substituting all values 
into (3.7), we obtain our approximation specific to the triggering levels in Fig. 3.3:   

 
          ].18[BAD0]2-[Bcl26.0M00024.0][tBID totaltotaltotal −+= µ  (3.8)

 
     We first take note of the coefficient 0.26. According to (3.7), this coefficient is dependent on the 
values of the dissociation constant tBIDDK .  and the free triggering level ][tBIDact  and can range 
anywhere from zero to unity. The stronger the affinity between tBID and Bcl-2, the larger the 
coefficient and the greater the amount of tBID that is needed to induce triggering. In particular, a 
coefficient of unity implies that total tBID must reach at least the same level of total Bcl-2 before 
triggering can ensue. So a coefficient of 0.26 means that tBID need only reach approximately a 
quarter of total Bcl-2 to trigger BAK (of course this is assuming no BAD is present).  
    
     According to (3.7) the magnitude of the second coefficient is the same as that of the first 
coefficient but off by a factor of 2:BclBADr − . For our example 70.0≈−2Bcl:BADr , meaning approximately 
70% of total BAD makes it into the mitochondria as the complex BAD:Bcl-2. Note that if all BAD 
were to make it into the mitochondria, then we would expect to see the second coefficient be the 
negative of the first coefficient.  
 
     We replot the bifurcation curves from Fig. 3.3 but now include with them our linear 
approximations predicted by (3.8) (shown in red). Note that each red line approximates the evolution 
of the rightmost saddle-node (or tBID triggering level) for some fixed level of total Bcl-2. The 
approximation is accurate with one exception. If total BAD is small and total Bcl-2 is large, then 
triggering will occur for a larger level of total tBID than what is predicted by our skeleton model. This 
is because, with a smaller amount of BAD, a surplus of Bcl-2 has the capacity to target BAK upon 
any attempted activation by tBID. Hence, this necessitates a slightly larger level of tBID. Of course, 
modeling of the dynamics of BAK was not factored into the skeleton model. 
    
     Recapitulating, our approximation demonstrates two important facts of the BAD/tBID/BAK 
network: first, the impact of BAD on the tBID-induction of BAK is much like a titration process 
where the activation of BAD reflects the amount of Bcl-2 which is sequestered away from tBID; and 
second, the level of BAD activation, interpreted as a ratio of Bcl-2-bound BAD to total BAD, is a 
function of rate constants only. 
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FIGURE 3.4  Approximation (3.8) to the rightmost saddle-nodes in Fig. 3.3 (shown in red). 
 
 

3.4    Using Bifurcation Analysis to Decipher the Role of Phosphorylation 
and Experimental Data 
 
     The phosphorylation and dephosphorylation processes determine the proportion of BAD that is 
available to displace Bcl-2, and hence drive the sensitization of tBID-induced activation of BAK. 
Phosphatases like calcineurin drive the activation of BAD through the release of BAD from 
cytoplasmic sequestration while kinases inhibit this activation through phosphorylation (refer back to 
Fig. 2.1).  
 
     In order to address how phosphorylation and dephosphorylation affect the activation of BAK, 2-
parameter bifurcation diagrams will once again be generated but this time we will be using the 
phosphorylation and dephosphorylation rates as the parameters. Furthermore, two specific cases will 
be considered: one where the phosphorylation rate associated with the bound form of BAD (that is, 

2BADphosk ) is nonzero; and another where 2BADphosk  is instead zero. One of the reasons for doing this is 
the observed experimental differences between the phosphorylation of Bcl-2-bound BAD and the 
phosphorylation of Bcl-xL-bound BAD (where now we are distinguishing between the proteins Bcl-2 
and Bcl-xL). Whereas the latter generally results in the dissociation of BAD from the anti-apoptotic 
protein, the former generally does not [27, 33, 37]. We can study these two cases by letting 2BADphosk  
be non-zero and then zero, respectively. 
 
     The first case is motivated by the experimental data in [27, 33, 37], which show that the 
extracellular survival factor, interleukin-3 (IL-3), can stimulate the phosphorylation-induced 
dissociation of BAD:Bcl-xL in Bcl-xL-expressing FL5.12 cells. The way we analyze such behavior 
with our model is to use a single phosphorylation parameter, BADphosk , where   
 

21 100 BADphosBADphosBADphos kkk ×== , 
 
as one of our bifurcation parameters. The remaining bifurcation parameter is chosen to be 1BADrelk , 
which is the rate constant associated with the dephosphorylation rate (refer back to Table 2.1). The 
results of the bifurcation analysis are shown in Fig. 3.5. Like Fig. 3.3, Fig. 3.5 shows bistability and a 
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threshold mechanism. In general, sufficiently low phosphorylation rates ( 1s02. −<BADphosk ) are seen to 
activate BAK (brought on, of course, by the accumulation of mitochondrial BAD); and sufficiently 
high phosphorylation rates ( 1s06. −>BADphosk ) are seen to keep BAK inactivated. The former is 
consistent with some studies that have shown that growth-factor-withdrawal can cause cells to 
become apoptotic merely from lack of BAD phosphorylation [27, 29-30, 33-34, 37]. The latter is 
consistent with studies which show that the pathological upregulation of BAD phosphorylation can 
lead to the survival and proliferation of several types of pre-cancerous and cancerous cells by shutting 
off the apoptosis mechanism [7, 32, 39, 55].  
 
     Of particular interest in Fig. 3.5 are the saddle-node lines partitioning the bistable and monostable 
regions. They are relatively vertical for dephosphorylation rates above .005s-1. (Recall in our previous 
bifurcations we were operating near 1

1 s01. −=BADrelk ). This means that for certain phosphorylation 
rates, no matter how strongly we drive the release of BAD through dephosphorylation, we can never 
activate BAK. In other words, there is a certain maximum impact that dephosphorylation can impart 
to the network. Inspection of the network in Fig. 2.1 reveals that because we modeled the 
phosphorylation and sequestration processes of BAD such that phosphorylated BAD must first be 
sequestered by 14-3-3 before it can be dephosphorylated, 14-3-3 sequestration becomes a rate-limiting 
step. In particular, because 1s001. −=BADseqk , it is clear that dephosphorylation loses its incremental 
effectiveness at approximately 5 times the sequestration rate.   

 

 
 

FIGURE 3.5  Effect of simultaneous unbound and bound forms of phosphorylation on the 
stability of BAK activation. Here, we have set 05.][BADtotal = µM, 1.]2-[Bcl total = µM, 2.][BAKtotal = µM, and 

015.][tBIDtotal = µM (chosen close to a triggering point). Other rate constants have been set to the values in Table 
2.2. 
 
     There is also a large amount of experimental data that would suggest the absence of 
phosphorylation-induced dissociation of the BAD complex. For example, [37] shows that IL-3-
stimulated Bcl-2-expressing FL5.12 cells are incapable of dissociating the BAD:Bcl-2 complex 
(where, in this case, Bcl-2 denotes the actual protein Bcl-2 and not Bcl-xL). Moreover, the 
experiments in [36] would suggest that it is necessary Ser136 and Ser155 phosphorylations work 
concomitantly to dissociate the BAD complex. If this is the case, then any survival signals relying 
solely on stimulation via Akt, predominantly a Ser136 kinase (and not a Ser155 kinase), would be 
limited to the unbound form of phosphorylation only. 
  
     We can use our model to address these situations by assuming       
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0, 21 == BADphosBADphosBADphos kkk  

 
     Producing bifurcation plots for this second case (Fig. 3.6) much like we did for the previous case, 
we see the plot shifting to the right. This means that a higher demand upon the phosphorylation rate is 
required to prevent triggering. Nonetheless, sufficient phosphorylation is still capable of inhibiting the 
dephosphorylation signaling of BAD to activation, despite the absence of the capacity for 
phosphorylation-induced dissociation of BAD:Bcl-2. This could explain why in some cells, certain 
kinases (such as Akt), without any evidence of inducing dissociation, can still inhibit the activation of 
BAD and apoptosis [29-32, 34, 39].  
 
     Because of the shifting to the right, we can say the dephosphorylation rate becomes more effective 
in triggering BAK. That is, there exist more phosphorylation rates where dephosphorylation could still 
potentially trigger BAK. Conversely, given a certain dephosphorylation rate, the demand upon 
phosphorylation for cell viability has increased approximately two-fold. Since kinase levels may vary 
from experiment to experiment, this may explain why Akt works as an inhibitor in one case but fails 
to do so in another. That is, unlike the experiments just mentioned in which Akt restores cell viability, 
[36] argues in their mutation experiments that Akt restoration of cell viability when phosphorylation-
induced dissociation of BAD:Bcl-xL is blocked is impossible.     

 

 
 

FIGURE 3.6  Increased demand upon phosphorylation when phosphorylation-induced 
dissociation of BAD:Bcl-2 is blocked. Like before, 05.][BADtotal = µM, 1.]2-[Bcl total = µM, 

2.[BAK]m.total = µM, and 015.][tBIDtotal = µM. Other rate constants have been set to the values in Table 2.2. 
 
 

3.5    Assumptions of Basal Operating Conditions Place Constraints on 
Kinetic Rate Constants  
 
     In most healthy cells, we do not expect to see any expression of BAD or tBID. This would be 
equivalent to assuming 0][BADtotal =  and 0][tBIDtotal = . This is trivial and not at all interesting. 
However, there might be certain situations where we find the expression of one or the other (or both) 
and yet their presence still does not admit an apoptotic response. Such “basal” situations are certainly 
interesting from a biological standpoint since they impose certain necessary constraints on the kinetic 
rate constants which must be satisfied in order to maintain a non-apoptotic response. One of particular 
interest is when it is presumed   
 

]BAD[2]-Bcl:BAD[ total<<   
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and 
]tBID[tBID][ total<<  

 
at steady state. Such would be the case if there was a presence of tBID (bound to Bcl-2) but in 
amounts less than the tBID triggering level and a presence of BAD not in its active state (that is, not 
bound to Bcl-2). Such a situation is certainly observed in experimental data [13, 19, 34], observed in 
our model in the previous sections, and is expected to occur since otherwise the BAD/tBID/BAK 
network would not be robust (and every cell would lose their mitochondria!).   
 
     Using the skeleton model equations (3.7), it is shown in Appendix A that in order for 

]BAD[2]-Bcl:BAD[ total<<  and ]tBID[tBID][ total<<  to be satisfied, we necessarily must have   
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     One way we can interpret (3.9) is that in order for the BAD/tBID/BAK network to be operating 
under the assumed conditions, it is necessary that one or both of the phosphorylation rate constants be 
sufficiently large compared to one or more of the rate constants associated with 14-3-3 sequestration 
( BADseqk ), dephosphorylation ( 1BADrelk ), and translocation ( in

BADτ ). Clearly, the Bcl-2-bound form of 

phosphorylation ( 2BADphosk ) is independently more effective towards the removal of BAD from the 

mitochondria than the unbound form of phosphorylation ( 1BADphosk ), which seems to require 
cooperation from the other form of phosphorylation or a significant reduction in translocation. In 
addition, (3.9) implies that if there is a larger presence of BAD than Bcl-2, then this puts a larger 
demand on the phosphorylation rate constants. This is obvious since with little Bcl-2 safeguarding 
tBID, it is necessary that almost all free BAD be removed from the cytoplasm, lest it move to the 
mitochondria and displace tBID.   
 
 

3.6    Sensitivity of Trajectories with Respect to Variations in the 
Phosphorylation Rate Constants 
 
     We extend our study on the phosphorylation of BAD by studying the effects of variations in the 
phosphorylation rate constants. To do this, we calculate the partial derivative of )(2]-Bcl:BAD[ t  
with respect to the two phosphorylation rate constants and evaluate these derivatives along the two 
reference solutions simulated and depicted in Figs. 3.1a-b and 3.1c-d (the former being a trajectory 
which does not trigger BAK and the latter being a trajectory which triggers BAK). 
 
     Suppose that  
 

),( pxfx =&  
 
represents a set of biochemical kinetic equations and which models some biological network (such as 

the BAD/tBID/BAK network). Here, [ ]′= mxxxx ...21  is a vector of species’ concentrations and 

[ ]′= rpppp ...21  is a vector of kinetic rate constants. Then the set of sensitivity coefficients, 
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for mi ...,,2,1= . Each set of partial derivatives, )(t
p
x
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∂
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 for mi ...,,2,1= , represents the 

difference in nearby trajectories from the reference solution );( ∗∗ ptx  at time t  whenever a small 

change is made in the parameter jp . (3.10) has initial conditions given by 0)0( =
∂
∂
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 for 

mi ...,,2,1= .     
 

     For the BAD/tBID/BAK network we assume [ ]′= 21 BADphosBADphos kkp , );( ∗∗ ptx  is one of the 

two reference solutions depicted in Fig. 3.1, and ∗p  is given by the values of 1BADphosk  and 2BADphosk  
in Table 2.2. We simulate the set (3.10), concomitantly with the kinetic equations (1-12), to compute 
the log-normalized sensitivity coefficients 
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     Fig. 3.7a shows the evolutions of these two coefficients when the reference solution is a non-
triggering response. For at least an hour the trajectory is more sensitive to a variation in unbound 
phosphorylation ( 1BADphosk ) than Bcl-2-bound phosphorylation ( 2BADphosk ), while for subsequent times 
we have the opposite behavior. Looking back at Figs. 3.1 we see that it takes a little over an hour for 
any transient signaling to die down and hence any species’ concentrations to be stationary. Therefore, 
whereas Bcl-2-bound phosphorylation is more effective toward the removal of BAD from the 
mitochondria at steady state (which was concluded with the skeleton model), the unbound form of 
phosphorylation is more effective during the transient.  
 
     Fig. 3.7b shows the evolutions of these coefficients when the reference solution is a triggering 
response. Up to the time of the activation of tBID (which is about an hour again), we see little 
difference in Fig. 3.7a and 3.7b. However, at activation, we see sharp decreases in the magnitude of 
the sensitivity coefficients. This is especially true for the unbound form of phosphorylation. Such a 
behavior is explained by γ  below (3.5). This is because the value of γ  is no longer negligible once 
tBID is released from Bcl-2 sequestration. As a result of Bcl-2 binding to both tBID and BAK, 
naturally we should find more unbound BAD, making the unbound mode of phosphorylation more 
effective than usual. However, the inactivation of BAD becomes pointless if the level of tBID moves 
beyond its triggering level.       
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(a)        (b) 

FIGURE 3.7  Evolution of log-normalized sensitivity coefficients 
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−∂  (red) with respect to: (a) a trajectory which does not trigger BAK; and (b) a 

trajectory which triggers BAK.  
 
 

3.7    Concluding Thoughts Regarding Simulation, Bifurcation, Sensitivity, 
and Skeleton Studies 
 
     BAD acts as a sensitizer by displacing Bcl-2 from tBID. This lowers the threshold amount of tBID 
guaranteed to induce the activation of BAK. In a sense, the addition of BAD can be thought of a 
titration system, in which BAD molecules pick off Bcl-2 molecules one-by-one until activation of 
BAK occurs.   
 
     It should be noted that whereas bistability of BAK as a function of tBID occurs within a subset of 
the parameter space, weaker affinities between Bcl-2 and the three pro-apoptotic proteins (BAD, 
tBID, or BAK) in our model suffice to entirely remove the bistable region (similarly in the case of 
[85]’s BAX activation module). In this analysis, the affinities of tBID/Bcl-2 and BAK/Bcl-2 were set 
relative to a rather tight BAD/Bcl-xL affinity which was less than 1nM [53]; however, there is 
experimental data which support looser binding affinities by up to two orders of magnitude [23, 87]. 
Fortunately, even though the bistable region disappears, the highly sigmoidal behavior from an 
initially inactive BAK to an active BAK induced by tBID still remains; and the sensitization due to 
BAD (and its inhibition by phosphorylation) still remains. So despite the apparent uncertainty in our 
parameters, our results remain qualitatively correct. 
 
     An important question to ask is if the bifurcation plots in Figs. 3.2 and 3.3 tell us everything we 
need to know about the dynamic behavior of this network. From a nonlinear systems perspective, 
making general statements about the behavior of the BAD/tBID/BAK model, based upon specific rate 
constants, is insufficient. Our bifurcation diagrams cannot, for example, preclude the existence of 
nonlinear behaviors such as periodic orbits. And even though the skeleton model was independent of 
selecting specific kinetic rate constants, it neglected several nonlinearities, particularly in the BAK 
pathway, and does not tell us everything about the dynamic behavior of the BAD/tBID/BAK network. 
Therefore, in the next chapters we call upon the works of Feinberg, Horn, and Jackson to make more 
definitive claims regarding the existence and uniqueness of steady states, and stability, with less 
approximation. 
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4    Introduction to Chemical Reaction Network Theory 
 
 
     This chapter is an introduction to the theory of chemical reaction networks, invented by Feinberg, 
Horn, Jackson, et al [95-100]. We do not claim any novelty in this chapter whatsoever but the 
theoretical formulations and some of the main results will be useful for our theoretical contributions in 
the next chapter. Our aim in the next chapter, which will dictate the discussion in this chapter, is to 
prove the global asymptotic stability and study the robustness of any given mass-action network 
which satisfies a property known as “complex-balancing”. In particular, this will enable us to study 
the stability and robustness of the BAD/tBID/BAK network without having to specify rate constants.   
 
     In Chapter 6, we will break up our analysis of the BAD/tBID/BAK network into two sub-
networks: one with BAD and tBID and the other with tBID and BAK. The BAD/tBID sub-network 
possesses a graphical property known as “weak reversibility”. From the theory developed in the next 
chapter, it will be straightforward to make claims about the global asymptotic stability of the 
BAD/tBID sub-network. The tBID/BAK sub-network is not weakly reversible, and, in fact, we should 
not expect global asymptotic stability (as we observed multiple steady states and/or bistability in the 
tBID induction of BAK in the previous chapter). However, we will be able to re-organize the 
tBID/BAK network as a weakly reversible network operating under a certain dynamic perturbation. 
Then, we will be able to apply our theoretical results to the tBID/BAK network and assess dynamic 
features such as robustness against apoptotic stimuli.    
   
     Throughout the chapter we will continually refer to two sub-networks (known as the BAD/tBID 
network and the un-catalyzed tBID/BAK network, which is the tBID/BAK network without the 
perturbation) as illustrative examples. These are depicted in Figs. 4.1 and 4.2, respectively. Note that 
the union of the two sub-networks contain every reaction in the BAD/tBID/BAK network listed in 
Table 2.1 with the exception of one: the catalyzing reaction of tBID on BAK.    
 
     In this chapter we formally define a “chemical reaction network endowed with mass-action 
kinetics”. Roughly, a chemical reaction network consists of 3 sets: a set of reacting species, a set of 
“complexes” (which are linear combinations of species which appear before and after each reaction 
arrow), and a set of reactions. A chemical reaction network endowed with mass-action kinetics is one 
in which every reaction rate is proportional to the product of its reactant species’ concentrations. With 
such a rule, a set of differential equations (like (Eqs. 1-12)) is induced that governs the dynamic 
behavior of a mass-action network. 
 

4.1    Looking at a Biological Network as a Biochemical Network 
      
     Suppose in some volume we have a mixture of chemical species. This mixture could be any 
ensemble of atoms, molecules, ions, or molecular fragments, in which each species is chemically 
different from the others. We presume that this mixture remains spatially homogeneous for all time. In 
general, the chemical composition of this mixture will not remain constant, but rather species will be 
consumed and generated. We wish to describe how this composition evolves over time. We will 
denote the instantaneous molar concentrations of the species by the vector )(tx . The chemical 
reactions within this mixture are what change the chemical composition over time.  
 
     It is generally accepted that the rate of reactions in this chemical network are dependent on the 
concentrations of its contents, that is, )(tx . We presume there exists a non-negative real-valued rate 
function for each reaction which characterizes the reaction rate. A collection of reactions endowed 
with a certain kinetics means that each reaction has been assigned a rate function. Quite often, 
chemical networks are assumed to be endowed with mass-action kinetics, where each rate function is 
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the product of the concentrations of the reactants multiplied by a constant of proportionality called the 
rate constant.   
 
     What we just assumed for a chemical network is similar to what we said about the 
BAD/tBID/BAK network in Chapter 2. That is, the BAD/tBID/BAK network, though a biological 
system, is also a mass-action chemical network which comprises a mixture of molecules (usually 
proteins), which are assumed to be spatially homogeneous, and whose concentrations we wish to track 
over time. The only difference is that we do not necessarily know the values of the rate constants. 
Fortunately, the same problems with rate constants appear in the study of chemical networks. In fact, 
much of the theory revolving around chemical reaction networks is based on the assumption that these 
rate constants are fixed, but arbitrary, values.  
 
 

4.2    Defining a Chemical Reaction Network 
 
     Now, we review the formal definition of a chemical reaction network, which consists of 3 sets 
describing the topology. A chemical reaction network is defined by the triple },,{ , where 
  
(1)  is a set of species 
(2)  is a set of complexes 
(3)  is a set of reactions 
 

 is a set of m  species which comprise the chemical composition, and whose concentrations we 
wish to track over time. For example, the set of species for the BAD/tBID network in Fig. 4.1 is 
 

2}-Bcl2,-Bcl:tBIDtBID,2,-Bcl:BAD,BAD3,-3-14:pBADpBAD,BAD,{ m

=
 

 
For analysis we will assume }...,,2,1{ m= , that is, we will assume that the species are labeled 
species 1, species 2, up to species m . Let )(,...),(),( 21 txtxtx m  denote the instantaneous 
concentration levels of species 1, species 2, … , up to species m , respectively, and denote the full 

concentration vector as )(tx ′])(...)()([ 21 txtxtx m . Naturally, we can associate the vector space 
m  with  by letting mtx ∈)(  wherever it is defined and letting the elements of 

}...,,2,1{ m=  index the components of x  in the obvious manner.  
 
      is the set of “complexes”, or the non-negative combinations of species appearing before and 
after reaction arrows. For example, in the BAD/tBID network the displacement reaction   
 

2-Bcl:BADBID2-Bcl:BIDBADm +→+ tt  
 

is a reaction from the complex 2-Bcl:BIDBADm t+ , a combination of the species mBAD  and 
2-Bcl:BIDt , to the complex 2-Bcl:BADBID +t , a combination of the species BIDt  and 
2-Bcl:BAD . In other instances we may find more than one of the same species. For example, in the 

un-catalyzed tBID/BAK network in Fig. 4.2, the reaction 
  

polyBAKBAK4 →  
 



 32

necessitates that we have the complex BAK4 , a combination of 4 of the species BAK . Because 
complexes comprise combinations of species, another definition for a complex will be a vector y  in 

the non-negative orthant m
0≥  where the k th component is the number of molecules of species k  

needed to create the complex. In other words, y  is a vector representing the stoichiometry of a 
complex. For example, if we label the species in  for the BAD/tBID network as species 1 to 
species 8=m  (according to the order in which the species are shown above), then the vector 

′= ]01001000[y  is another way to represent the complex 2-Bcl:BIDBADm t+  and 

the vector ′= ]00110000[y  is another way to represent the complex 
2-Bcl:BADBID +t . It is assumed that the components of the complexes are always non-negative 

integers (but there may be situations where non-integer values are of use in chemical reaction network 
theory, e.g., see [95]).  
 

 

FIGURE 4.1  BAD/tBID Chemical Reaction Network 

 

FIGURE 4.2  Un-catalyzed tBID/BAK Chemical Reaction Network 
 
     For analysis we will suppose that there are a total of n  complexes. We arbitrarily label the 
complexes nyyy ...,,, 21 , so }...,,,{ 21 nyyy= . In order to maintain consistency with the 
notation in [92], we label the components of each complex in the following manner: if jy  is some 
complex in , then ]...[ 21 ′= mjjjj yyyy . Here, kjy  is the number of species k  needed to 
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create complex jy . This is done with the intention of creating a matrix ]...[ 21 ′= nyyyY , a 
matrix whose columns are the complexes and which satisfies kjkj yY =)( .  
 
     Much like we did for the species set, we can associate the vector space n  with . Similar to that 

for the species set, where a point in m  can have the meaning of a concentration vector mtx ∈)(  or 

a complex m
jy ∈ , a point in n  can represent a vector of “total currents”, that is, a vector where 

the component associated with complex jy  is the sum of all reaction rates going to and leaving jy , 
or the total current at jy . This will be made clearer below. In order to also maintain some consistency 
with Feinberg’s notation (which avoids issues with the artificial ordering of species, complexes, and 
reactions), the complexes in  will be used to index the components of a given vector ng ∈ . That 
is, the complexes nyyy ...,,, 21  themselves will be used as the subscripts. For example, jyg  

represents that component of g  associated with complex jy  (which may or may not be the j th 
component depending on one’s choice of ordering).  
 
     },:{ ∈→= jiij yyyy  is the set of reactions defined among the complexes. In a similar 

manner, we will associate the vector space r  with the set of r  reactions in . For example, each 
reaction has associated with it precisely one rate constant, so we can think of rk +∈  (positive 
orthant) as a vector of rate constants. Like , the elements in the reaction set  will be used as 
subscripts to represent components of vectors in r . For example, ij yyk →  is the component of 

rk +∈   which is associated with ij yy → , the reaction of complex jy  reacting to complex iy . 
 
 

4.3    Preliminary Notation 
 
     It will be useful to introduce some preliminary notation. First, define the exponential and logarithm 
functions to be functions of vectors in the following component-wise manner: Let 1>p  be an integer 

and px ∈  where ′]...[ 21 pxxx . Then, define  
 

xe ′]...[ 21 pxxx eee  
 
If px +∈  , define  
 

xln ′]ln...lnln[ 21 pxxx  
 
We also define multiplication and division of two vectors in a component-wise manner: Let 

pzw ∈, . Then, define 
 

wz ′]...[ 2211 pp zwzwzw  

zw / ′]/...//[ 2211 pp zwzwzw  
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the latter of which is defined as long as no component of z  is zero. Finally, we define a “vector raised 
to another vector” in a component-wise manner: Let pzw 0, ≥∈ . Then define   
 

zw pz
p

zz www ⋅⋅⋅21
21  

 
     Consider a collection of complexes denoted . Define n

0≥∈ ω  to be the characteristic vector 
whose components have 1’s in the entries corresponding to complexes in  and 0’s in all remaining 
entries. That is, for all ∈jy  such that ∈jy , 1)( =

jyω , and for all ∈jy  such that ∉jy , 

0)( =
jyω . In the special case that }{ jy=  is a singleton, we write jyω  instead of }{ jyω  for 

simplicity. In this manner, the set ∈jj yy }{ω  becomes the standard basis for n . 

 
 

4.4    A Chemical Reaction Network Endowed with Mass-Action Kinetics 
 
     The law of mass-action originates from collision theories, with the understanding that the 
probability of a reaction taking place in some small interval about a time t  is proportional to the 
product of the reactant concentrations, and is proportional to the length of the interval. Hence, a 
reaction which abides by the law of mass-action has the property that the reaction rate is the product 
of the concentrations of the reactants times a constant of proportionality called the rate constant. For 
example, if in the BAD/tBID network the reaction 
 

2-Bcl:BADBID2-Bcl:BIDBADm +→+ tt  
 
abides to the law of mass-action, then its reaction rate would be 

 
2]Bcl:][tBID[BADm2Bcl:BADtBID2Bcl:tBIDBADm

−−+→−+k  
 
where 2Bcl:BADtBID2Bcl:tBIDBADm −+→−+k  is the rate constant.  
  
     A chemical reaction network endowed with mass-action kinetics is defined by the quadruple 

},,,{ k  where },,{  is a chemical reaction network, rk +∈   is the vector of rate 
constants, and where it is understood that for each reaction ∈→ ij yy , the reaction rate is given by 

mjjj
ij

j
ij

y
m

yy
yy

y
yy txtxtxktxk )()()()( 21

21 ⋅⋅⋅= →→ . 

 
. 

4.5    Induced Differential Equations of a Chemical Reaction Network 
 
     We are now ready to define the differential equations induced by a network endowed with mass-
action kinetics. For the vector, mx 0≥∈  , of all species concentrations we can write  
 

))(()( txftx =&  

       ∑
∈→

→ −
ij

j
ij

yy
ji

y
yy yyxk )(  (4.1) 
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Using this we can also express the rate of change for species k  as 
 

))(()( txftx kk =&  

         ∑
∈→

→ −
ij

j
ij

yy
kjki

y
yy yyxk )(  

(4.2) 
 

 
 

Example 4.5.1 
     The sum in the right-hand-side of (4.1) is indexed over the set of reactions  in which each term, 

e.g., the reaction ij yy → , is given by the product of the scalar j
ij

y
yy xk →  with the vector ji yy − . 

The scalar j
ij

y
yy xk → , that is mjjj

ij

y
m

yy
yy xxxk ⋅⋅⋅→

21
21 , is the reaction rate (or rate function) assumed by 

the law of mass-action and the vector ji yy −  provides the information as to how this reaction rate 
enters into the differential equations. So consider the BAD/tBID network as an example. The term in 
(4.1) which would correspond to the reaction 
 

2-Bcl:BADBID2-Bcl:BIDBADm +→+ tt  
is   

′−−−−+→−+ ]01111000[2]Bcl:][tBID[BADm2Bcl:BADtBID2Bcl:tBIDBADm
k  

 
(Note according to Fig 4.1 this can also be written as ′−−→ ]01111000[7487

xxk yy .) 
Looking back at (Eqs. 1-12), our kinetic equations for the BAD/tBID/BAK network, we see that the 
reaction rate  
 

2]Bcl:][tBID[BADm1 −tBIDrelk  
 

(in this case, 2Bcl:BADtBID2Bcl:tBIDBAD1 m −+→−+= kktBIDrel ) appears in four different locations. The reaction 

vector ′−− ]01111000[  indicates in which state derivative this reaction rate appears and 
how it is introduced (e.g., positively or negatively). In particular, one molecule of species 4 ( mBAD ) 
combines with one molecule of species 7 ( 2-Bcl:BIDt ) to form one molecule of species 5 
( 2-Bcl:BAD ) and one molecule of species 6 ( BIDt ). Hence, according to the definition of the 
induced differential equations for a chemical reaction network, the reaction rate 7487

xxk yy → , that is, 
2]Bcl:][tBID[BADm2Bcl:BADtBID2Bcl:tBIDBADm

−−+→−+k , is defined to appear negatively (with a scale of unity) 
in the rates of change of the concentrations for species 4 and 7, and positively (with a scale of unity) 
in the rates of change of the concentrations for species 5 and 6. Clearly this is shown in (Eqs. 1-12), 
and this is how the kinetic equations for the BAD/tBID/BAK network were derived. 
 
 

Remark 4.5.2 

     mmf  →≥0:  is defined as a polynomial vector field, and hence is locally Lipschitz. According 
to [94], this means that there exists a maximal forward trajectory )(⋅x  in some maximal interval 

),0[ σ  when mx 0)0( ≥∈  . Note that (4.1) is only defined for mx 0≥∈   since concentrations must 

remain non-negative. However, it can be shown that m
0≥  is forward-invariant for system (4.1). To 

see this, consider any reaction ∈→ ij yy . If there exists }0:{ ≠∈ ljylk  such that 0=kx , then 
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the reaction rate 021
21 =⋅⋅⋅= →→

mjjj
ij

j
ij

y
m

yy
yy

y
yy xxxkxk . From repetitive use of this property, it is 

immediate that whenever 0=kx , we must have 0≥kx& . Therefore, the solution )(⋅x , with 
mx 0)0( ≥∈  , remains in the nonnegative orthant as long as it is defined there.  

 
 

Definition 4.5.3 

     For any chemical reaction network },,{ , the stoichiometric subspace mD ⊂  is defined 
by  

D }:{span ∈→∈− ij
m

ji yyyy   
 
 

Remark 4.5.4 
     (4.1) depicts f  as a non-negative linear combination of all vectors ji yy −  such that 

∈→ ij yy . Observe that any composition )(tx , which exists on some interval ],[ 21 tt , must 

satisfy Dtxtx ∈− )()( 12 . That is, mDtxtx 012 ))(()( ≥+∈ I , where the coset Dx + }:{ Dx ∈+ γγ . 

In fact, any maximal solution )(⋅x  with mx 0)0( ≥∈   is forced to reside in its coset Dx +)0(  for all 
time in its interval of existence ),0[ σ . These cosets, which will generally be denoted with the letter 

S , partition the non-negative orthant m
0≥  into stoichiometric classes. That is, for each mx 0≥∈  , 

mDx 0)( ≥+ I  is the stoichiometric class which contains x . Of course, any other mx 0≥∈′   such that 

Dxx ∈−′  is “compatible” with x , and hence mDxx 0)( ≥+∈′ I . If there is no particular value of x  

in mind, mDx 0)( ≥+ I  will be denoted mS 0≥I , where S  is some coset Dx + . We define a positive 
stoichiometric class to be a stoichiometric class whose intersection with the positive orthant is non-
empty, that is, φ≠+

mS I . There may exist stoichiometric classes which are not positive (these, of 

course are restricted to the boundary m
0≥∂ ), and there may also exist positive stoichiometric classes 

which may intersect the boundary m
0≥∂ . 

 
 

4.6    Interpreting Network Structure and Stoichiometry 
 
     We are interested in what happens to )(⋅x  in each stoichiometric class. We presume that the vector 

rk +∈   is fixed but unknown and we would like to describe the qualitative behavior of )(⋅x  relying 
on the network structure and stoichiometry.  
 
     The network structure, such as those in Figs. 4.1 and 4.2, suggests a partition of  into linkage 
classes l...,,, 21  where each θ  consists of complexes which are “linked” together but 
which are not “linked” to complexes in other linkage classes. In other words, jy  and iy  are directly 
linked together if either ∈→ ij yy  or ∈→ ji yy  (or both). This rule can be thought of as an 
equivalence relation, and applying it repetitively results in the linkage classes for a chemical reaction 
network. For example, the BAD/tBID network consists of four linkage classes as shown in Fig. 4.1, 
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which we have labeled ,,, 321 and 4 . Similarly, the un-catalyzed tBID/BAK network in 
Fig. 4.2 consists of five linkage classes. We reserve the symbol l  for the number of linkage classes. 
 
     A complex jy  is said to ultimately react to another complex iy  if their exists a directed path from 

jy  to iy , that is, if there exists a sequence of complexes }...,,,{
21 Nhhh yyy  with jh yy =

1
 and 

ih yy
N

=   such that 
Nhhh yyy →⋅⋅⋅→→

21
. Two complexes, jy  and iy , are strongly linked if both 

jy  ultimately reacts to iy , and iy  ultimately reacts to jy . Once again, repetitive use of this “strong 
linking” operation creates another equivalence relation on , partitioning the set of complexes into 
strong linkage classes. Finally, a terminal strong linkage class Λ  is a strong linkage class such that no 
member of Λ  reacts to a complex outside of Λ . For example, each of the linkage classes in both the 
BAD/tBID network and the un-catalyzed tBID/BAK network are terminal strong linkage classes.       
 
 

Definition 4.6.1 
     A chemical reaction network is said to be weakly reversible if for each }...,,2,1{ l∈θ  and each 

θ∈ij yy , , with ij yy ≠ , there exists a set of complexes }...,,,{
21 Nhhh yyy  with jh yy =

1
 and 

ih yy
N

=  such that 
Nhhh yyy →⋅⋅⋅→→

21
. In other words, we can travel in any linkage class θ , 

and in a directed manner, from any complex in θ  to any other complex in θ .  
 
 

Definition 4.6.2 
     A network is said to be a l=t  network if the number of terminal strong linkage classes (we 
reserve the symbol t  for this number), is equal to the number of linkage classes, l . Equivalently, a 

l=t  network is one in which there exists precisely one terminal strong linkage class in each linkage 
class. 
 
 

Remark 4.6.3 
     In the terminology above, a weakly reversible network is one where each linkage class is a 
terminal strong linkage class (and hence a l=t  network). In other words, a weakly reversible is a 
network in which each terminal linkage class coincides with the linkage class itself. Looking at the 
networks in Figs. 4.1 and 4.2, we see that both the BAD/tBID and un-catalyzed tBID/BAK networks 
are not only l=t  networks but also weakly reversible networks.  
 
 

4.7    Three Useful Mappings    
 
     It will be useful in several instances to reformulate (4.1). This will give us the ability to segregate 
the differential equations’ dependency on rk +∈   from the dependency on its graphical structure and 
stoichiometry. Reformulation requires the introduction of three mappings from [95]. First, 

mnY  →:  is the linear transformation defined by the left-multiplication of the matrix of 

complexes Y  discussed earlier. Second, nm
00: ≥≥ → ψ  is defined by )(xψ ∑

∈j
j

j

y
y

yx ω , which is 
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a vector of “reaction rates without the rate constants”. )(xψ  is clearly dependent on the stoichiometry. 

Second, for each rk +∈  , we let nn
kA  →:  be the linear transformation defined by 

)( pAk ∑
∈→

→ −
ij

jijij
yy

yyyyy pk )( ωω . Using these three mappings, we see that a network endowed with 

mass-action kinetics can be written more compactly as 
 

          )(xYAx kψ=&  (4.3)
  
 

4.8    Equilibrium Points and their Relationship with kerYAk  
 
     Relying exclusively on the network structure and stoichiometry, we would like to extract as much 
information as possible about the equilibrium points in mass-action kinetic networks. In the next 
couple of sections we will see that a lot can be derived based on the fact that the network is either 

l=t  or weakly reversible. As discussed earlier, the two networks in Figs. 4.1 and 4.2, the BAD/tBID 
network and the un-catalyzed tBID/BAK network, are weakly reversible. Furthermore, because any 
weakly reversible network is also a l=t  network, we will be able to be utilize all these properties in 
our analyses of these networks.   
 
     Define  
 

+E }0)(:{ =∈ + xfx m  
and 

0E }0)(:{ 0 =∂∈ ≥ xfx m  
 
to be the set of interior and boundary equilibrium points for system (4.1), respectively.  
 
 

Remark 4.8.1 
     Because (4.3) is equivalent to (4.1), and because we wish to seek information about equilibrium 
points, we are interested in n

kYA 0ker ≥I  and n
kA 0ker ≥I . That is, any equilibrium point mx 0≥

∗ ∈   

must satisfy kYAx ker)( ∈∗ψ . The stronger inclusion, that is kAx ker)( ∈∗ψ , which may or may not 
be the case for any given equilibrium point, represents what will soon be defined as a complex-
balanced point.  
 
 
     We first examine what it means for an equilibrium point mx 0≥

∗ ∈   to satisfy 
n

kYAx 0ker)( ≥
∗ ∈ Iψ . To aid in this analysis, it is useful to define the set 

 
∆ }:{ ∈→− ijyy yy

ji
ωω  

 

Remark 4.8.2 
     It can be shown that ∆= spanimage kA  for any l=t  network [95]. Hence, we see a potential 
complication associated with the value of k  for mass-action networks being removed once l=t . 
Because any equilibrium point mx 0≥

∗ ∈   must satisfy kYAx ker)( ∈∗ψ , we must have 
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kk AYxA imageker)( I∈∗ψ . Hence, whenever l=t , we must have ∆∈∗ spanker IYg , where 

)( ∗∗ = xAg kψ . This gives us the following two constraints on the vector ∗g , which can be thought of 
as a vector of “total currents”: 
 

          0=∑
∈

∗

j

j
y

jy yg  (4.4)

 

          0=∑
∈

∗

θ
j

j
y

yg  (4.5)

 
Another, but more meaningful, way to derive the first condition (4.4) above is to re-group the mass-
action system (4.3) at an equilibrium point as 
 

          0)( =−∑
∈

∗
→

∗
→

j

jj
y

jyy yκκ  (4.6)

 

where ∗
→ jyκ ∑

∈

∗
→

k

kjk
y

yyy xk )(ψ  and ∗
→jyκ ∑

∈

∗
→

k

jkj
y

yyy xk )(ψ  are the “currents” flowing into and 

out of each complex jy  at ∗= xx . The “total current” for a complex is simply the current flowing in 

minus the current flowing out, that is, ∗
→

∗
→

∗ −=
jjj yyyg κκ . Consequently (4.6) becomes 

0=∑
∈

∗

j

j
y

jy yg , like before. 

 
 

4.9    Complex-balanced Points and Relationship with Weakly Reversible 
Networks 
 
     A lot more can be said about an equilibrium point mx 0≥

∗ ∈   which satisfies n
kAx 0ker)( ≥

∗ ∈ Iψ  

(which because kk YAA kerker ⊂  must also satisfy n
kYAx 0ker)( ≥

∗ ∈ Iψ ). From the terminology in 
[100], such a point will be called “complex-balanced”. As we shall see, a network must be weakly 
reversible in order to admit any complex-balanced point in the positive orthant m

+ . In fact, the 
BAD/tBID and un-catalyzed tBID/BAK, endowed with certain mass-action kinetics, will not only 
admit a complex-balanced equilibrium point but will only have complex-balanced equilibria. It turns 
out that complex-balanced points have nice dynamic properties, which will be furthered explored in 
the next section. For now, however, we provide the theory which will enable us to prove the existence 
of complex-balanced points in any given weakly reversible network.      
 
 

Definition 4.9.1 
     A chemical reaction network, endowed with mass-action kinetics, is said to be complex-balanced 
at a point mx 0≥

∗ ∈   if kAx ker)( ∈∗ψ .  
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Remark 4.9.2 
     We can derive a more physical understanding of what a complex-balanced point is by doing the 
same thing we did in Remark 4.8.2 with the more general equilibrium point. To do this, consider 

0)( =∗xAkψ . This is the same as   
  

0)()( =−∑
∈→

∗
→

ij

jijij
yy

yyyyy xk ωωψ  

 
The left-hand-side can be re-grouped so that  
 

          0)( =−∑
∈

∗
→

∗
→

j

jjj
y

yyy ωκκ  (4.7)

 

where ∑
∈

∗
→

∗
→ =

k

kjkj
y

yyyy xk )(ψκ  and ∑
∈

∗
→

∗
→ =

k

jkjj
y

yyyy xk )(ψκ , again, are the sum of all reaction 

rates entering and leaving complex jy , respectively. Once again, these sums can be thought of as 
currents entering and leaving each complex. Hence, in order for (4.7) to be satisfied, each term in the 
summand must be zero. Hence, ∗

→
∗
→ =

jj yy κκ  for all ∈jy . Therefore, an equilibrium point 
mx 0≥

∗ ∈   at which kAx ker)( ∈∗ψ , that is, a complex-balanced point, must be such that the current 
flowing into each complex is “balanced” by the current flowing out of the complex. This is the same 
as saying that every component of ∗g  in (4.4) and (4.5) is zero.  
 
 
     To make further progress toward what it means for an equilibrium point to be complex-balanced, 
we will need the following useful result regarding kAker : 
 

Theorem 4.9.3 

     For l=t  (and hence for weakly reversible) networks, }...,,,{spanker 21 lpppAk =  where 

}...,,,{ 21 lppp  is a particular basis satisfying the following property: 0>θ
jyp  for all θΛ∈jy  and 

0=θ
jyp  for all θΛ∉jy , for each }...,,2,1{ l∈θ , where θΛ  is the unique terminal strong linkage 

class within the linkage class θ .  
 
Proof:  
See [100] 
 
 

Corollary 4.9.4 
     Because of Theorem 4.9.3 and the coincidence of the terminal strong linkage classes with the 
linkage classes in a weakly reversible network, it is easily shown that n

kA +Iker  is non-empty if 
and only if the network is weakly reversible [95].   
 
 
     A more meaningful (and interesting) corollary to Theorem 4.9.3 is stated and proved below as 
Corollary 4.9.5 (taken from [95]). Unlike Remark 4.9.2, κ  in this corollary is not a function of some 
equilibrium point, though it still possess the interpretation of “currents”. However, the result will 
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enable us to tie together our first relationship between weakly reversible networks and complex-
balanced points.   
 

Corollary 4.9.5 

     A chemical reaction network is weakly reversible if and only if there exists r
+∈ κ  such that 

 

          0)( =−∑
∈→

→

ij

jiij
yy

yyyy ωωκ  (4.8)

 
Proof: 
Suppose a network is weakly-reversible. Then for any rk +∈   there exists a np +∈   such that 

0=pAk  (simply use ∑=
θ

θpp , where }{ θp  is the basis described in Theorem 4.9.1). Then,  

 
0)( =−∑

∈→
→

ij

jijij
yy

yyyyy pk ωω  

 
Set jijij yyyyy pk →→ =κ  and the first half follows. 

Now suppose that there exists r
+∈ κ  such that 0)( =−∑

∈→
→

ij

jiij
yy

yyyy ωωκ . Then, 01 =
r

κA  (where 

n
01 ≥∈ 

r
 is the vector of all ones) since 

 
0)()(1 =−=− ∑∑

∈→
→

∈→
→

ij

jiij

ij

jijij
yy

yyyy
yy

yyyyy ωωκωωκ
r

 

 
Hence, there exists a positive vector, in this case 1

r
, which resides in κAker . Hence we have found a 

value of rk +∈  , in this case κ=k , such that n
kA +Iker  is non-empty. According to Remark 

4.9.2, this means that the network must be weakly reversible. 
□  

 
 

Remark 4.9.6 

     The above property suggests that for weakly reversible networks any mx +∈   can be made a 
complex-balanced equilibrium point by proper choice of the mass-action kinetics (to see this, choose 

)(/ xk
jijij yyyyy ψκ →→ = , where r

+∈ κ  is the vector which satisfies (4.8)). Conversely, it can be 

shown that for weakly reversible networks (as long as 0)spandim(ker >∆IY ) there exists a value of 
rk +∈   such that the corresponding mass-action network is nowhere complex-balanced in the 

positive orthant [100]. Fortunately, there is a condition derived in [95] and repeated in Appendix B, 
which will help us distinguish those kinetics which admit complex-balanced points from those 
kinetics which do not.  
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Theorem 4.9.7 
     Consider any weakly-reversible network endowed with mass-action kinetics. Let 

nppp 0
21 },...,,{ ≥⊂ l  be a basis for kAker  which satisfies the following property: for each 

l...,,2,1=θ , 0>θ
jyp  for all θ∈jy  and 0=θ

jyp  for all θ∉jy . Then, there exists an 
mx +

∗ ∈   such that kAx ker)( ∈∗ψ  if and only if  
 

          +∈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑

=

TYp image
l

1

ln
θ

θ  (4.9)

 
where TY  is the transpose of Y  and }...,,,{span 21 lωωω .  
 
Proof:  See Appendix B or [95]. 

□  
 

Remark 4.9.8 
     The condition (4.9) in Theorem 4.9.7 will be used to prove the existence of complex-balanced 
points in the BAD/tBID and un-catalyzed mass-action networks. As the next section will reveal, the 
existence of one complex-balanced point for a given mass-action network is sufficient to ensure that 
all other interior equilibrium points in the same mass-action network are complex-balanced.    
 
 

4.10    Stability of Equilibrium Points 
 
     In this section we introduce the concepts of quasi-thermostatic (QTS) and quasi-thermodynamic 
(QTD), from the works of [98-99] to study the stability of complex-balanced points (as well as more 
general equilibrium points). We will find that a QTD mass-action network is a network in which each 
positive stoichiometric class has a unique interior equilibrium point that is locally asymptotically 
stable relative to its class (and globally if there are no boundary equilibria). That is, any solution of a 
QTD mass-action network which is initialized sufficiently close to some unique (and stable) 
equilibrium point will converge to that point. In fact, in the next chapter we will show that any mass-
action network which contains a complex-balanced point is also a QTD mass-action network and 
therefore exhibits the same well-behaved dynamic behavior. Hence, many of the concepts below 
regarding QTS and QTD networks will be fundamental to how we must approach the stability and 
robustness of the BAD/tBID and un-catalyzed tBID/BAK networks. 
 
 

Definition 4.10.1 
     A network endowed with mass-action kinetics exhibits normal statics (NS) if there exists one and 
only one interior equilibrium point mx +

∗ ∈   in each positive stoichiometric class mS 0≥I . 
 
 

Definition 4.10.2 
     A network endowed with mass-action kinetics exhibits normal dynamics (ND) if the mass-action 
network exhibits NS, and additionally, each interior equilibrium point mSx +

∗ ∈ I  is asymptotically 
stable within its positive stoichiometric class (that is, for all 0>ε  there exists 0>δ  such that 
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ε<− ∗ |)(| xtx  for all 0≥t  whenever δ<− ∗ |)0(| xx , with mSx 0)0( ≥∈ I , and ∗→ xtx )(  as 
∞→t .   

 
 

Remark 4.10.3 
     We shall see that normal statics and dynamics can be obtained globally for a mass-action network 
which is quasi-thermodynamic and does not possess any boundary equilibria. Quasi-thermostaticity 
(QTS) and Quasi-thermodynamicity (QTD) are defined below:  
 
 

Definition 4.10.4 
     A network endowed with mass-action kinetics is quasi-thermostatic (QTS) with respect to 

mx +
∗ ∈   if 

   
}lnln:{ ⊥∗

++ ∈−∈= DxxxE m  
 
where +E  is the set of interior equilibrium points defined in Section 4.8. 
 
 

Definition 4.10.5 
     A network endowed with mass-action kinetics is quasi-thermodynamic (QTD) if there exists an 

mx +
∗ ∈   such that   

 

          0)ln(ln)( ≤−⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
− ∗

∈→
→∑ xxyyxk

ij

j
ij

yy
ji

y
yy  (4.10)

 
for all mx +∈   with equality holding if and only if µ ⊥∗ ∈− Dxx lnln .  
 
 

Remark 4.10.6 

     In general, for each mx +
∗ ∈  , the set }lnln:{ ⊥∗

+ ∈−∈ Dxxx m  meets each positive 

stoichiometric class in the interior (i.e. m
+ ) at precisely one point [97]. Such a result is proven in 

[101], whose proof amounts to exploiting the strictly monotonic nature of the )ln(⋅  function and the 

following property: for any mba +∈ , , there exists a unique ⊥∈ Dµ  such that Dbae ∈−µ . (This is 

similar to the fact that each vector v  in any inner product space ⊥⊕= WWV , with respect to some 
subspace VW ⊂ , has the unique representation ⊥+= wwv  where Ww∈  and ⊥

⊥ ∈Ww .) 

Nonetheless, a mass-action network which is QTS with respect to some ∗x  has the property that each 
positive stoichiometric class contains precisely one interior equilibrium point, and hence exhibits 
normal statics. Moreover, it is immediate that ∗x  is an equilibrium point and the mass-action network 
is QTS with respect to any other interior equilibrium point. Hence we may talk of a network which is 
QTS without respect to any particular point.  
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Remark 4.10.7 

     There exists a very nice relationship between the set }lnln:{1
⊥∗

+ ∈−∈= DxxxZ m  and the set 

}0)(:{2 =∈= + xAxZ k
m ψ  of interior complex-balanced points whenever φ≠2Z  and 2Zx ∈∗ , 

where ∗x  is the point used to create 1Z . In fact, we must have 21 ZZ = . That is, given some mass-

action network, if there exists at least one complex-balanced point, then }lnln:{ ⊥∗
+ ∈−∈ Dxxx m  

is equivalent to the set of all complex-balanced points and furthermore, because 
}lnln:{ ⊥∗

+ ∈−∈ Dxxx m  meets each positive stoichiometric class in precisely one point, there 
exists precisely one complex-balanced point in each positive stoichiometric class. This is thoroughly 
proven in [101], but the reasoning is as follows: Let mx +

∗∗ ∈   be any point in 1Z . Then, we must 

have 0)()ln(ln =−⋅− ∗∗∗
ji yyxx  for all ∈→ ij yy , that is, 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅ ∗

∗∗

∗

∗∗

x
xy

x
xy ij lnln  

or 
ij yy

x
x

x
x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∗

∗∗

∗

∗∗

 

 

for all ∈→ ij yy . In particular, this means that 
j

j

y

y

x
x

)(
)(

∗

∗∗

 is constant on each linkage class θ . 

More precisely, for each l...,,1=θ  there exists a constant 0>θη  such that θη=
∗

∗∗

j

j

y

y

x
x

)(
)(

 for all 

θ∈jy . Now because ∗x  is also a complex-balanced point, we must have 0)( =∗xAkψ , or 

∑=∗

θ

θ
θλψ px )(  for some set l,...,1}{ =θθλ  of positive numbers and where l,...,1}{ =θ

θp  is the particular 

basis of kAker  discussed in Theorem 4.9.3. So, this means for each l...,,1=θ , 
θ

θθθ ληη
j

jj
y

yy pxx == ∗∗∗ )()(  for all θ∈jy . Hence, ∑=∗∗

θ

θ
θθ ληψ px )(  and therefore 2Zx ∈∗∗  

must be a complex-balanced point. These arguments are easily reversed and so 21 ZZ = .     
 
 

Remark 4.10.8 
     Although we can precisely describe the set of all interior complex-balanced points (if they exist) 
by the set 1Z , it remains to be unfolded whether such a mass-action network is even QTS. That is, 
how do we know that there are no other interior equilibrium points which are not complex-balanced? 
To do this, we need to take a look at QTD networks. 
 
 

Remark 4.10.9  
     A QTD mass-action network is one which exhibits both normal statics and dynamics. Roughly 
speaking, condition (4.10) provides the negative semi-definiteness condition of a Lyapunov function, 
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and the “only if” condition in (4.10) ensures that all interior equilibria are precisely given by the set 
}lnln:{ ⊥∗

+ ∈−∈ Dxxx m . The reader is referred to [99] for details of the stability proof. 

Moreover, if one can find an mx +
∗ ∈   satisfying the requirements of QTD, it can be shown that ∗x  is 

an interior equilibrium point [98-99]. And if those requirements are satisfied by one interior 
equilibrium point, then they are satisfied by all other interior equilibria [98-99]. Hence, like the QTS 
property, we can talk of a mass-action network which is QTD without respect to any particular point.  
 
 

Remark 4.10.10 

     We defer until the next chapter that any complex-balanced point mx +
∗ ∈   satisfies (4.10) (and also 

do not explain the QTD proof in [99]) since we would like to extend the stability results in [95] for 
mass-action networks which possess a complex-balanced point and which include certain state-
dependent perturbations. Nonetheless, any mass-action network which contains at least one complex-
balanced point must be a QTD mass-action network and therefore exhibits normal statics and 
dynamics. In particular, this ensures that not only do 1Z  and 2Z  coincide, but that there are no other 
interior equilibria which are not complex-balanced. In conclusion, any mass-action network which 
contains at least one complex-balanced has the property that in each positive stoichiometric class 
there exists one and only one interior equilibrium point, and that point is locally asymptotically stable 
with respect to its class (and globally if there are no boundary equilibria). Like before, we may talk of 
a complex-balanced mass-action network without respect to any particular point.   
 

Remark 4.10.11 
     To show that there exists a complex-balanced point in any given weakly reversible we need only 
check the condition (4.9) in Theorem 4.9.7. This is what we will do for the BAD/tBID and un-
catalyzed tBID/BAK networks. This is thoroughly pursued in Appendix B.  
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5    Stability of Complex-Balanced Mass-Action Networks 
under Perturbations 
 
     In this chapter we prove the global asymptotic stability of any complex-balanced network under 
state-dependent perturbations which preserve stoichiometric classes and satisfy a certain magnitude 
constraint. This is a novel result which generalizes the contributions made by Sontag in 2001 for 
deficiency-zero networks (which comprise a subset of complex-balanced networks) [92]. Our 
theoretical contributions in the study of chemical reaction networks can be summarized by Lemma 1 
and Theorem 1 shown below. 
 
     We will look at equations of the form  

 
          )(xfx =& )()( xgxf +  (5.1)

 

where )(xf ∑
∈→

→ −
ij

j

ij
yy

ji
y

yy yyxk )(  is the vector field associated with a complex-balanced 

network and )(xg )()( ji
yy

yy yyx
ij

ij
−∆∑

∈→
→  is a locally Lipschitz vector field on m

0≥  representing 

perturbations. The introduction of perturbations, of course, brings up the discussion of whether or not 
we are even dealing with a chemical reaction network anymore. Consequently, we will be introducing 
a few mild assumptions (A.1-A.3). In particular, we will be using the same type of class-preserving 
perturbations which were studied by Sontag in [92].  
 
Lemma 1 
     Consider the perturbed system (5.1) and suppose that assumptions (A.1), (A.2), and the persistence 
property (A.3) (to be defined below) are satisfied. Let mS 0≥I  be some positive stoichiometric class. 

Denote mSx +
∗ ∈ I  to be the unique interior equilibrium point of the complex-balanced mass-action 

network represented in (5.1) when 0≡g . Then, there exists a set of continuous functions l,...,1}{ =θθδ S , 

such that whenever )()( 2 xx S

yy
yy

ij

ij θδ
θ

≤∆∑
∈→

→  for all mSx +∈ I  and for all θ , where 

θ },:{ θ∈→ jiij yyyy , then 

0)ln(ln)( <−⋅ ∗xxxf  
 

for all mSx +∈ I  such that ∗≠ xx . 
 
Theorem 1 
     Suppose that the conditions of Lemma 1 are satisfied, so that 0)ln(ln)( <−⋅ ∗xxxf  for all 

mSx +∈ I  such that ∗≠ xx . Then for each mS 0≥∈ Iξ  there exists a unique solution )(⋅x  to (5.1) 
with ξ=)0(x , defined for all 0≥t , and where     
 

∗∗→ 0}{ Exx U  
 

where ∗
0E }0)(:{ 0 =∂∈ ≥ xfx m  is the set of boundary equilibria for (5.1). If, in addition, φ=∗

0E , 

then ∗x  is a globally asymptotically stable point relative to mS 0≥I . 
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     Lemma 1 and Theorem 1 proves stability and permits the study of robustness for certain perturbed 
chemical reaction networks, providing an upper bound on perturbations below which global 
asymptotic stability is guaranteed. In Chapter 6 we will apply our result to the BAD/tBID and 
tBID/BAK sub-networks. The global asymptotic stability of the complex-balanced BAD/tBID sub-
network will follow immediately by setting all perturbations to zero. This is because 0≡g  will be 
assumed to be an admissible perturbation. On the other hand, we will apply the result to the un-
catalyzed tBID/BAK network in the following sense: We treat the missing reaction of tBID catalyzing 
the activation of BAK as a perturbation to the un-catalyzed tBID/BAK network, an otherwise 
complex-balanced network. We then derive the upper bound as stipulated by our robust stability 
result. Further consideration of the upper bound will enable us to make definitive claims about the 
dynamic behavior of the full catalyzed network, without having to specify numerical values for the 
kinetic rate constants.  
 
 

5.1    Definition of a Perturbed Complex-Balanced Network 
 
     Below, f  will take the form of a mass-action network, defined earlier as (4.1), and g  will be 

described by a collection of locally Lipschitz functions }:{ 00 ≥≥→ →∆ m
yy ij , one for each reaction 

∈→ ij yy , and where each function will enter into the perturbed differential equation as the 
product ))(( jiyy yyx

ij
−∆ → .  

 
 

Definition 5.1.1 
     We define our perturbed system,  

 
)()()( xgxfxfx +==&  

               ∑∑
∈→

→
∈→

→ −∆+−
ij

ij

ij

j
ij

yy
jiyy

yy
ji

y
yy yyxyyxk ))(()(  (5.1)

 
with the following assumptions:  
 
(A.1) mmf  →≥0:  is a vector field induced by a complex-balanced mass-action network; and 

(A.2) Each 00: ≥≥→ →∆ m
yy ij  is a locally Lipschitz vector field satisfying the following property: 

If there exists }0:{ ≠∈ ljylk  such that 0=kx , then 0)( =∆ → x
ij yy . (Physically, this means 

that the perturbation is zero whenever one or more of the reactant species’ concentrations are 
zero.) 

 
Similarly, each component in (5.1) may be expressed as 

 
)()()( xgxfxfx kkkk +==&  

                  ∑∑
∈→

→
∈→

→ −∆+−
ij

ij

ij

j
ij

yy
kjkiyy

yy
kjki

y
yy yyxyyxk ))(()(  (5.2)
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Remark 5.1.2 

     Because each )(⋅∆ → ij yy  is locally Lipschitz, )(⋅f  is locally Lipschitz, and so there exists a unique 

forward-evolving maximal solution )(⋅x  with mx 0)0( ≥∈   and with maximal interval ),0[ σ . (A.2) 
requires that the perturbation )(⋅∆ → ij yy , corresponding to the reaction ∈→ ij yy , behaves like the 

monomial mjjjj y
m

yyy xxxx ⋅⋅⋅= 21
21 . That is, the perturbation is zero whenever one or more of the 

reactant species’ concentrations are zero.  
 
 

Remark 5.1.3 
     Of particular importance is to define perturbations which keep any solution of (5.1) within the non-
negative orthant m

0≥  as well as in the stoichiometric coset S . It follows from (A.2) that any solution 

cannot escape m
0≥ . To see this, suppose that 0=kx  and consider the term  

 
kjyykiyykjkiyy yxyxyyx

ijijij
)()())(( →→→ ∆−∆=−∆  

 
If 0=kjy , then this term is nonnegative because 0)( ≥∆ → x

ij yy  and 0≥kiy . If 0≠kjy , then 

}0:{ ≠∈ ljylk  and therefore 0)( =∆ → x
ij yy  since 0=kx . Again, the term is non-negative. It 

follows that 0=kx  implies 0)( ≥xgk . Combining this with the fact that 0=kx  implies 0)( ≥xfk  

(because m
0≥  is forward-invariant for the differential equations induced from mass-action networks), 

it follows that 0=kx  implies 0)( ≥xfk . The invariance of S  is ensured by the fact that 
))(( jiyy yyx

ij
−∆ →  lies point-wise in }:{span ∈→−= ijji yyyyD . In conclusion, (5.1) 

preserves the forward-invariance of the stoichiometric class mS 0≥I .  
 
 

Remark 5.1.4 

     Because we have 0)( ≥xfk  whenever 0=kx , we can use the same proof as in [92] for our 
perturbed system to show that if )(⋅x  is some forward maximal solution, with an initial condition such 

that 0)0( >kx , then 0)( >txk  for all definable times 0≥t . In other words, +  is forward-invariant 

for each of the components described by (5.2). Naturally, this means m
+  is forward-invariant for 

(5.1). 
 
 

5.2    The Behavior of Complex-Balanced Networks Operating on the 
Boundary 
 
     Below we introduce a reformulation of (5.2) from [92] and derive a couple useful properties, 
whose proofs are based loosely on those used in [92]. These properties will enable us to better 
understand the significance and effects of boundary equilibria and boundary solutions of (5.1) which 
will be needed in the proof of Theorem 1.         
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     The k th component of )(xf , that is )(xfk , satisfies )()()( xgxfxf kkk +=  where )(xf k  is the 
k th component of )(xf  and )(xgk  is the k th component of )(xgk . According to [92], 
  

          )()()()( xgxxxxf kkkkk ++= βα  (5.3)
 

where  →≥
m

k 0:α  and  →≥
m

k 0:β  are defined by 
 

)(xkα ∑ ∑
∈

−

∈→
→ ⋅⋅⋅⋅⋅⋅⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

1,

21 1
21)(

k

mjkjjj

ij

ij
Jj

y
m

y
k

yy

yy
kjkiyy xxxxyyk  

and  

)(xkβ ∑ ∑
∈ ∈→

→ ⋅⋅⋅⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

0,

21
21

k

mjjj

ij

ij
Jj

y
m

yy

yy
kiyy xxxyk  

 
where 1,kJ }0:{ ≠kjyj  indicates those complexes which contain at least one molecule of species 
k , and 0,kJ }0:{ =kjyj  indicates those complexes which do not contain any number of 
molecules of species k . By partitioning the set of complexes  according to these sets, we are 
equivalently partitioning  into 
 

1) All reactions such that the reactant complex is represented in 1,kJ ; and 
2) All reactions such that the reactant complex is represented in 0,kJ . 

 
With this interpretation, )(xkα  and )(xkβ  have been defined as sums over the first and second set, 
respectively. As shown in (5.3), such definitions enable us to factor out an kx  from all those reaction 
rates which include this factor or a multiple thereof.   
 
 

Lemma 5.2.1 
     Consider the perturbed system (5.1), along with (A.1) and (A.2). Suppose that for all jSl ∈ , 

0>lx , where jS  }0:{ ≠kjyk . Then for each complex iy  such that 0≠→ ij yyk , we have the 

property that for all iSk ∈ , either 0>kx  or 0)( >xfk . 
 
Proof: 
Suppose we have a reaction ij yy →  such that the above condition is satisfied. Let iSk ∈  and 

suppose that 0=kx . Since we know that 0≥lx  for any l  by the forward-invariance of m
0≥  for 

(5.1), it suffices to show that 0)( >xfk . By assumption and because 0=kx , k  cannot be an index 
which is in jS . That is, the complex jy  cannot contain the k th species. In terms of the sets defined 

above this means 0,kJj ∈ .  So, 
 

)()()()( xgxxxxf kkkkk ++= βα  
          )()( xgx kk += β  
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          )(
0,

21
21 xgxxxyk k

Jj

y
m

yy

yy
kiyy

k

mjjj

ij

ij
+⋅⋅⋅⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑ ∑

∈ ∈→
→  

          )(21
21 xgxxxyk k

y
m

yy

yy
kiyy

jmjj

ij

ij
+⋅⋅⋅⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
≥ ∑

∈→
→   

          )(21
21 xgxxxyk k

y
m

yy
ikyy

jmjj

ij
+⋅⋅⋅≥ →  

 
where we have first discarded all members of 0,kJ  except j  and then, second, discarded all reactions 
except ij yy →  itself. This can be done since every component of every complex is non-negative and 

0≥jyx  for any ∈jy . Note that 0>→ ij yyk . Also note that because iSk ∈  by assumption, we must 

have 0>iky . Finally, because 0>lx  for all jSl ∈ , we must have 021
21 >⋅⋅⋅= jmjjj y

m
yyy xxxx . Hence,   

 
0)()( ≥> xgxf kk   

 
since 0)( ≥xgk  whenever 0=kx  (see Remark 5.1.3).  

□ 
 
 

Corollary 5.2.2 
     Consider the perturbed system (5.1), along with assumptions (A.1) and (A.2). Suppose that at time 

∗t , 0)( >∗txl  for all 
0j

Sl ∈ , where 0j  corresponds to some complex θ∈
0j

y . Then 0)( >jytx  for 

all θ∈jy  for ∗> tt . (In other words, whatever species comprise one or more complexes in the 

linkage class θ , these species will have positive concentrations for all definable times ∗> tt .)     
 
Proof: 
Consider any complex θ∈jy  which is not 

0j
y . Because the network is weakly reversible, there 

exists a finite sequence of complexes }...,,,{
10 Njjj yyy  in θ  with jj yy

N
=  such that 

Njjj yyy →⋅⋅⋅→→
10

. Application of Lemma 5.2.1 shows that either 0)( >∗txk  or 0))(( >∗txf k  

for all 
1j

Sk ∈ . Consider one such 
1j

Sk ∈ . If 0)( >∗txk , then the invariance of +  for (5.2) implies 

0)( >txk  for ∗> tt . In the other case if 0))(()( >= ∗∗ txftx kk& , with 0)( =∗txk , then it follows that 

0)( >txk  for ∗− tt  small enough and so by + -invariance again 0)( >txk  for ∗> tt . So because 
0)( >txl  for all 

1j
Sl ∈  for ∗> tt , we can continue this process to 

2j
S  (again applying Lemma 5.2.1), 

and then on up to jj SS
N

= . Hence, 0)( >txk  for all jSk ∈  for ∗> tt . Since jy  was any arbitrary 

complex in θ , this means 0)( >jytx  for all θ∈jy  for ∗> tt .        
□ 
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Remark 5.2.3 

     What Corollary 5.2.2 roughly tells us is that if any monomial jyx  is “on”, that is if 
0)())(( >= ∗∗ j

j

y
y txtxψ  for some θ∈jy  at time ∗= tt , then every monomial in the linkage class 
θ  turns “on” for all definable times ∗> tt .  

 
 

5.3    Persistence Property 
 
     In deriving a result concerning the global asymptotical stability of (5.1), we will need some form 
of “persistence” preventing trajectories from remaining on the boundary m

0≥∂ . In this instance, we 
presume that any trajectory of (5.1), initialized on the boundary but which are not equilibrium 
solutions, must immediately move into the interior m

+  for greater times. More precisely, we require: 
 
(A.3) Any forward maximal solution )(⋅x  with ∗

≥∂∈ 00 \)0( Ex m  defined on the maximal interval 

),0[ σ  must be such that mtx +∈ )(  for all ),0( σ∈t . Here ∗
0E }0)(:{ 0 =∂∈ ≥ xfx m  is the 

set of boundary equilibrium points for the perturbed network defined in (5.1).  
 
 

Remark 5.3.1 
     Assumption (A.3) will not preclude the consideration of boundary equilibria in Theorem 1; nor 
will it preclude the consideration of solutions initialized on the boundary; however, it will preclude 
consideration of forward solutions evolving nontrivially on the boundary for any length of time. 
Fortunately, the persistence assumption does not greatly hinder generality. As outlined in Appendix C 
it is shown that, in situations where the persistence property does not hold we can always decompose 
a perturbed network into two sub-networks, one which is a perturbed network satisfying the 
persistence property and another which has a trivial solution. Then, we may proceed as before, 
analyzing the first sub-network as one which satisfies (A.3). The disadvantage to this approach is of 
course that all various combinations of sub-networks must be investigated. Fortunately in the case of 
the BAD/tBID and catalyzed tBID/BAK networks, we do not even need to do this because (A.3) is 
already satisfied as long as the total concentrations (total BAD, total tBID, total Bcl-2, and total BAK) 
are all non-zero (this is also shown in Appendix C). 
  
 

5.4    Lemma 1 and its Proof 
 
     To prove Lemma 1 we first need to slightly extend Lemma VIII.1 in [92]. The result is stated 
below, and proof is provided at the end of Appendix B. 
   

Lemma 5.4.1 
     Consider any weakly-reversible mass-action network. Define for each linkage class the function 
 

)(ηθQ ∑
∈→

→ −
θ

ηη
ij

jiij
yy

yyyyk 2)(  
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for θη n∈ , where },:{ θθ ∈→= jiij yyyy  and 2≥θn  is the total number of complexes in 
θ . Then, for each l...,,2,1=θ , there exists 0>θκ  such that  

 

          ∑
∈

−≥
θ

ηηκ

θ

θ
θ

ji

ji
yy

yyn
Q

,

2)(
4  (5.4) 

 
for all θη n∈ . 
 
Proof: 
See Appendix B. 
 
 

Lemma 1  
     Consider the perturbed system (5.1) and suppose that (A.1), (A.2), and the persistence property 
(A.3) are satisfied. Let mS 0≥I  be some positive stoichiometric class. Denote mSx +

∗ ∈ I  to be the 
unique interior equilibrium point of the complex-balanced mass-action network when 0≡g . Then, 

there exists a set of continuous functions l,...,1}{ =θθδ S , such that whenever )()( 2 xx S

yy
yy

ij

ij θδ
θ

≤∆∑
∈→

→  

for all mSx +∈ I  and all θ ,  
 

0)ln(ln)( <−⋅ ∗xxxf  
 

for all mSx +∈ I  such that ∗≠ xx . 
 
Proof: 
Note that  

)ln(ln))()(()ln(ln)( ∗∗ −⋅+=−⋅ xxxgxfxxxf  
 
(here ۟٠ represents the standard dot product)  
 
We first consider )ln(ln)( ∗−⋅ xxxf  

∑ ∗∗⋅
→ −⋅−−⋅= ))ln(ln)ln(ln(ln xxyxxyek ji

xy
yy

j
ij  

∑ −= ⋅
→ )(ln

ji
xy

yy qqek j
ij  where iq )ln(ln ∗−⋅ xxyi   

( ) ),()1(ln ∗−⋅
→ ++−−= ∑ xxeqqek jij

ij

qq
ji

xy
yy   

( ) ),()1(ln ∗−⋅
→ ++−−= ∑∑ xxeqqek jij

ij

qq
ji

xy
yy 

θ θ

 

   ),(
)(4

)(
2

2
ln ∗⋅

→ +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+
−

−≤ ∑∑ xx
qq

qq
ek

ji

jixy
yy

j
ij


θ θ

 (5.5) 

 
where we have added and subtracted 
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),( ∗xx ∑ −−⋅
→ )1(ln jij

ij

qqxy
yy eek  

 

and made use of the fact that 2

2

4
1

h
heh h

+
−≤−+  for any ∈h  (refer to [93]). In this case we used 

ji qqh −= . Again, we have also made use of the fact that },:{ ∈→= jiij yyyy  can be 

partitioned into the sets },:{ θθ ∈→= jiij yyyy , for l...,,2,1=θ . Since (5.1) is assumed to 

be complex-balanced at ∗= xx , it follows that  
 

),( ∗xx  

∑ −= −⋅
→ )1(ln jij

ij

qqxy
yy eek  

∑ −=
∗⋅

→ )(ln jij
ij

qqxy
yy eeek  

⎥
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⎢
⎢
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⎡
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∑∑

∈

⋅
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∗
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xy
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[ ]
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⎤

⎢
⎢
⎣

⎡
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∈

∗
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h
h

y
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k exA ωψ )(  

0=  
 
Define  

)(xcθ
xy

Ryy

j

ij

e lnmin ⋅

∈→ θ  

),( ∗xxθδ 2))ln(ln)((max ∗

∈→
−⋅− xxyy ji

yy ij
θ

 

),( ∗xxθδ ∑
∈→

∗−⋅−
θ

ij yy
ji xxyy 2))ln(ln)((  

),( ∗xxθδ ∑
∈

∗−⋅−
θ

ji yy
ji xxyy

,

2))ln(ln)((  

 
Note that 22 )())ln(ln)(( jiji qqxxyy −=−⋅− ∗ . Continuing with the right-hand-side of (5.5), we 
find that  
 

)ln(ln)( ∗−⋅ xxxf  

∑∑ −+
−

−≤ ⋅
→

θ θ
2

2
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)(4
)(

ji
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where the last inequality is a result of Lemma 5.4.1. Because for each θ , 0>θκ  and 

0min)( >=
∈→

j

ij

y

yy
xxc

θθ  whenever mx +∈  , the right-hand-side of (5.6) is zero only when 0=θδ  for 

all θ . Suppose this is the case. That is, suppose the right-hand-side of (5.6) is zero for some 
mSx +∈ I . From the definition of θδ  this means that ∗− xx lnln  is orthogonal to all ji yy −  such 

that ij yy → . In other words, ⊥∗ ∈− Dxx lnln . But as discussed in Remark 4.10.6, the set 

}lnln:{ ⊥∗
+ ∈−∈ Dxxx m  meets each positive stoichiometric class in the interior at precisely one 

point. So since mSx +∈ I  this means ∗= xx .  
 
We note the similarity of the negative-definiteness of (5.6) with respect to ∗x  and the quasi-
thermodynamic condition in (4.10). In fact, this is why any complex-balanced network is QTD.   
 
Now consider 
 

)ln(ln)( ∗−⋅ xxxg   

∑
∈→

∗∗
→ −⋅−−⋅∆=

ij

ij
yy

jiyy xxyxxyx ))ln(ln)ln(ln)((  

∑ −∆= → ))(( jiyy qqx
ij  

∑∑ −∆= →
θ θ

))(( jiyy qqx
ij  

∑ ∑∑ −∆≤ →
θ θθ

22 )()( jiyy qqx
ij (by re-use of Cauchy-Schwartz inequality) 

 
Combining our results, we see that   
 

)ln(ln)( ∗−⋅ xxxf  

             )ln(ln))()(( ∗−⋅+= xxxgxf  

           ∑∑ ∗
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⎟
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where, in this case, θ||)(|| x∆ ∑
∈→

→∆
θ

ij

ij
yy

yy x 2)(  is the point-wise Euclidean norm of )(x∆  over 

the set of reactions },:{ θθ ∈→= jiij yyyy . We need the right-hand-side of (5.7) to be 

negative for all mSx +∈ I  such that ∗≠ xx . It is clear that there exists a set of continuous functions 

l,...,1}{ =θθδ S , with 0: ≥+ → mS S Iθδ , which can be defined so that whenever )(||)(|| xx S
θδθ ≤∆  for 

all θ  and all mSx +∈ I , the right-hand-side of (5.7) is negative whenever ∗≠ xx . For example, one 

could define the set l,...,1}{ =θθδ S  by      
 

          )(xS
θδ

)(4
)()(

41 x
xxc

nN
N

θ

θθ

θ

θ

δ
δκ

++
 (5.8) 
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where N  is some arbitrarily chosen large number. It is clear that each )(⋅S
θδ  is well-defined, 

continuous, and non-negative for each value of mSx +∈ I . To show that it works, we plug each 

)(xS
θδ  in (5.8) back into (5.7):  
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nN             (5.9) 

 

where we have made use of the fact that ),(),(),( ∗∗∗ ≤≤ xxxxxx θθθ δδδ . Moreover, using the same 

logic as we did for (5.6) (that ∗x  is unique) the right-hand-side of (5.9) must be negative for all 
mSx +∈ I  such that ∗≠ xx .  

□ 
 
 

5.5    Theorem 1 and its Proof 
 
     Because of the persistence property (A.3), any forward maximal solution )(⋅x  which does not 
belong to some positive stoichiometric class must necessarily be an equilibrium trajectory. In that 
case, )(⋅x  is obviously defined for all time 0≥t  and trivially we have ∗∈≡ 0)( Etx ξ . This is why 
Theorem 1 below considers stability relative to some positive stoichiometric class S . It shows that 
any forward trajectory in some positive stoichiometric class converges to the set ∗∗

0}{ Ex U , where ∗x  
is the unique interior equilibrium point associated with the complex-balanced mass-action network 
and ∗

0E  is the set of boundary equilibria for the perturbed system (which may or may not be 
equivalent to the set of boundary equilibria for the complex-balanced mass-action network). 
Nonetheless, we are able to describe forward trajectories initialized from any point in m

0≥ . 
 
 

Theorem 1 
     Consider the perturbed system (5.1) and suppose that (A.1), (A.2), and the persistence property 
(A.3) are satisfied. Let mS 0≥I  be some positive stoichiometric class. Denote mSx +

∗ ∈ I  to be the 
unique interior equilibrium point of the complex-balanced mass-action network when 0≡g . Suppose 

that the conditions of Lemma 1 are satisfied, so that 0)ln(ln)( <−⋅ ∗xxxf  for all mSx +∈ I  such 

that ∗≠ xx . Then for each mS 0≥∈ Iξ  there exists a unique solution )(⋅x  to (5.1) with ξ=)0(x , 
defined for all 0≥t , and where     
 

∗∗→ 0}{ Exx U  
 
as ∞→t . If, in addition, φ=∗

0E , then ∗x  is a globally asymptotically stable point relative to 
mS 0≥I . 
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Proof: 
Define the Lyapunov function  

 
)(:: 0 xVxV m a →≥  

 
according to the following two rules: 
 

(1) If m
mxxxx +∈= ),...,,( 21 , then ∑=

i
ii xVxV )()( , where 

 
 ∗∗

+ +−−=→ iiiiiiiiii xxxxxxxVxV lnln)(:: a  

 
(2) If mx 0≥∂∈  , we extend for each k  such that 0=kx  the definition of )(⋅kV  to include the point 

0=kx  by defining ∗= kk xV )0(  (permitting some abuse of notation).  
 

Then we can say ∑=
i

ii xVxV )()(  for any m
mxxxx 021 ),...,,( ≥∈=  . Note that each )(⋅iV  is 

continuously differentiable on + , and each extended )(⋅iV  is continuous on 0≥  since 
∗

→
=

+ iii
x

xxV
i

)(lim
0

.  

 
Since the natural logarithm )ln(⋅  is a strictly concave function, we have the well-known property 
regarding tangent and secant lines: 
 

i

ii
ii x

xxxx
∗

∗ −
≥− lnln  for all +∈ix  with equality if and only if ∗= ii xx  

 
This implies that 0lnln)( ≥+−−= ∗∗

iiiiiiii xxxxxxxV  for all +∈ix  with equality if and only if 
∗= ii xx . Moreover, since 0)0( >= ∗

ii xV  for all i , we can conclude that   
 

0)()( ≥= ∑
i

ii xVxV   for all mx 0≥∈   with equality if and only if ∗= xx  

 
In particular, we have positive-definiteness of V in mS 0≥I  relative to ∗x  (that is, 0)( =∗xV  and 

)(xV  positive elsewhere). Since )(xV  is continuous on mS 0≥I  and ∞→iV  whenever ∞→ix , 

})(:{ 0 LxVSx m ≤∈ ≥I , for each 0>L , must be a compact subset of mS 0≥I . In other words, V  

is proper in mS 0≥I .  
 
Let )(⋅x  be any forward maximal solution with interval ),0[ σ  and with mSx 0)0( ≥∈= Iξ . If 

∗∈ 0Eξ  or ∗= xξ , then the trajectory is obviously defined for all 0≥t  and converges trivially to 
∗∗
0}{ Ex U . So suppose ∗∗∉ 0}{ Ex Uξ . Then, mStx +∈ I)(  for ),0( σ∈t , by (A.3) and invariance of 

m
+  for (5.1).  
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Next consider the gradient of the Lyapunov function: ∗−=∇ xxxV lnln)(  for mx +∈   . Hence, the 

conclusions of Lemma 1 imply 0)()( <⋅∇ xfxV  for all mSx +∈ I  such that ∗≠ xx . This means 

that 0))(())(())(( ≤⋅∇= txftxVtxV&  for all ),0( σ∈t  and therefore V  is nonincreasing along the 

solution (in fact it is decreasing since ∗≠ xtx )(  for any ),0[ σ∈t , which is due to the fact that )(xf  

is locally Lipschitz at ∗x ). Nonetheless, this means that )(⋅x  must remain in the compact set 

)}()(:{ 0 ξVxVSx m ≤∈ ≥I . According to Proposition C.3.6 in [94], )(⋅x  is defined for all time 
0≥t . Furthermore because ))(( txV  is nonincreasing and bounded below by zero, ))(( txV  must 

approach some finite limit as ∞→t . So continuity and LaSalle’s Invariance Principle imply that 
)(tx  must approach some invariant limit set, that is, 

  
)()( ξ+Ω→tx  

  
as ∞→t , or, more precisely, )(ξ+Ω  is the forwardω -limit set of )(⋅x . )(ξ+Ω  is a subset of 

})(:{ 0 axVSx m =∈ ≥I , for some 0≥a , since mS 0≥I  is closed. Let )(⋅z  be the forward solution 

with initial condition )(ξζ +Ω∈  at time 0=t . If ∗∗∈ 0}{ Ex Uζ , then, like before, we are done. So 

suppose not. Much like )(⋅x , )(⋅z  must be defined for all time 0≥t  and furthermore mStz +∈ I)(  

for all 0>t . Since ∗≠ xtz )(  for any 0≥t , ))(( ⋅zV  must at some time be below a  since 0))(( <tzV&  

for all 0>t . This contradicts the fact that })(:{)( 0 axVSxtz m =∈∈ ≥I  for all 0≥t .  
 
Therefore, ∗∗+ =Ω→ 0}{)( Exx Uξ  as ∞→t . 

□ 
 
 

Remark 5.5.1 
     Theorem 1 gives us global asymptotic stability of any appropriately-perturbed complex-balanced 
mass-action network as long as there are no boundary equilibria. We will see that both the BAD/tBID 
and the catalyzed tBID/BAK network do not possess any boundary equilibria as long as their total 
concentrations remain non-zero (i.e., 0][BADtotal > , 0][tBIDtotal > , 0][BAKtotal > , and 

02]-[Bcl > ). Proof is provided in Appendix C.   
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6    Application of Theorem 1 to the BAD/tBID and 
Catalyzed tBID/BAK Networks 
 
 
     Theorem 1 in Chapter 5 proves global asymptotic stability of complex-balanced mass-action 
networks as well as a way to measure robustness, providing an upper bound on perturbations below 
which Lyapunov stability is maintained. In this chapter we will use Theorem 1 to conclude global 
asymptotic stability of the complex-balanced BAD/tBID network as well as to derive under what 
conditions the complex-balanced catalyzed tBID/BAK sub-network is globally asymptotically stable. 
The former is a straightforward application of the stability result since there are no perturbations, that 
is, 0≡g . On the other hand, the latter network is a perturbed complex-balanced network, 
incorporating the missing tBID catalysis reaction as a perturbation to the un-catalyzed tBID/BAK 
network. As we shall see, the application of our theoretical results leads to a state-dependent 
condition, which if satisfied, ensures that the perturbed network, in this case the catalyzed tBID/BAK 
network, is globally asymptotically stable. In particular, the condition will reveal how large the 
catalysis reaction rate of tBID activating BAK can get before convergence to a non-apoptotic steady 
state is no longer ensured by Theorem 1. In fact, simulations will show that any catalysis reaction rate 
beyond this level will lead to polymerization of BAK, indicating that the magnitude constraint, in this 
case, is not conservative. Finally, through further consideration of the magnitude constraint, we will 
deduce a more satisfying and biologically-meaningful condition which ensures global convergence to 
a neighborhood of any “non-apoptotic” steady state. This will remove the ugliness of the state-
dependent condition and give us a way to make logical hypotheses about how to design certain drug 
delivery systems.   
 
     The BAD/tBID network is re-illustrated in Fig. 6.1. The catalyzed tBID/BAK network, and how it 
is created, is illustrated in Fig. 6.2. We show the un-catalyzed tBID/BAK network being combined 
with its perturbation, the catalyzing reaction tBIDBAKtBIDBAK inac +→+ . Their combination now 
includes every reaction associated with the different states of tBID, BAK, and Bcl-2 which comprised 
our original network in Fig. 2.1. The full network is referred to as the catalyzed tBID/BAK network, 
and the robustness results in Chapter 5 will be used to study the full network. Looking back at 
equation (5.1), this means that f  is the induced differential equations from the network shown at the 
top of Fig. 6.2 and g  is the induced differential term derived from the network shown at the bottom 
of Fig. 6.2.  
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FIGURE 6.1  BAD/tBID Chemical Reaction Network 

 

FIGURE 6.2   Creating the Catalyzed tBID/BAK Chemical Reaction Network 
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6.1    Applying the Stability Results to the BAD/tBID Network 
 
     For the BAD/tBID chemical reaction network, we label the species, complexes, and linkage classes 
according to how they are depicted in Fig. 6.1. Recall from Chapter 4 that a mass-action network may 
be represented in the form )(xYAx kψ=& . For the BAD/tBID network,   
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     The BAD/tBID chemical reaction network depicted in Fig. 6.1 is clearly weakly reversible. To 
show complex-balancing, we must use Theorem 4.9.7. In Appendix B we show that the needed 
property of complex-balancing is satisfied in a region of parameter space (and further we show how 
this region can be expanded). In Appendix C, it is further shown that, as long as 0BADtotal >][ , 

0]BID[t total > , and 0]2-Bcl[ total > , the BAD/tBID mass-action network contains neither boundary 
equilibria nor trajectories evolving on the boundary. These properties are relegated to the appendices 
to conserve space and maintain the focus on the current topic. According to Theorem 1 (with 0≡g ), 

for each positive stoichiometric class mS 0≥I , there exists a unique steady state mSx +
∗ ∈ I  which 

is globally asymptotically stable relative to mS 0≥I . In conclusion, given any initial condition in the 
non-negative orthant, the corresponding forward trajectory of the complex-balanced BAD/tBID 
network will be dynamically well-behaved and converge toward a unique and stable steady state. In 
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the next chapter, we will consider the biological importance of this result. Nonetheless, it is clear that 
chemical reaction network theory has bought us some information and mathematical sturdiness about 
the dynamic behavior of the interactions between BAD and tBID, which would be absent from 
numerical techniques alone.  
 
 

6.2    Applying the Stability Results to the tBID/BAK Network 
 
     In this section, we formulate the catalyzed tBID/BAK network as a perturbed chemical reaction 
network using the terminology from Chapter 5. We then construct the robustness bound as was done 
in the proof of Lemma 1 in order to guarantee the conditions of Theorem 1.  
 
     The first step is to formulate the un-catalyzed tBID/BAK as a chemical reaction network. Again, 
we label the species, complexes, and linkage classes according to what is shown in Fig. 6.2. We have 
for the un-catalyzed chemical reaction network   
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1000000000

0010100000

0401001000

0000010100

0001000010

0010000001

0000010001

Y  

 
and  

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

5

4

3

2

1

0000

0000

0000

0000

0000

k

k

k

k

k

k

A

A

A

A

A

A  

 
where  
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

−−

−−

d
2Bcl:tBID

a
2Bcl:tBID

d
2Bcl:tBID

a
2Bcl:tBID

k
kk

kk
A 1 , 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

inac
BAK

ac
BAK

inac
BAK

ac
BAK

k
kk

kk
A 2 , 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

−−

−−

d
2Bcl:BAK

a
2Bcl:BAK

d
2Bcl:BAK

a
2Bcl:BAK

k
kk

kk
A 3 , 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

12

12

4

BAKreltBIDrel

BAKreltBIDrel

k
kk

kk
A , and 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

= d
BAKpoly

a
BAKpoly

d
BAKpoly

a
BAKpoly

k kk
kk

A 5 . 

 
 
     The un-catalyzed tBID/BAK chemical reaction network depicted at the top of Fig. 6.2 is clearly 
weakly reversible. To show complex-balancing, we must use Theorem 4.9.7. Again, this is shown in 
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Appendix B. In Appendix C, it is further shown that, as long as 0]BID[t total > , 0BAK total >][ , and 
0]2-Bcl[ total > , the catalyzed tBID/BAK mass-action network contains neither boundary equilibria nor 

trajectories evolving on the boundary.  
 
     To study the full catalyzed tBID/BAK network, we associate the catalysis reaction 

tBIDBAKtBIDBAK inac +→+  with the perturbation g  in (5.1). First, we introduce to the un-
catalyzed tBID/BAK network the perturbation    
 

          )(xg ))(( 3443
yyxyy −∆ →  (6.1) 

 
where ]tBID][[BAK)( inac43 BAKcatyy kx =∆ →  is the reaction rate of the reaction 

tBIDBAKtBIDBAK inac +→+ ; and where the vector 34 yy −  is included because in the reaction 
tBIDBAKtBIDBAK inac +→+ , 1 molecule of BAKinac is exchanged for 1 molecule of BAK and no 

tBID is consumed. In this manner we are creating an admissible perturbation which satisfies 
assumption (A.2). Of course, we assume 0)( ≡∆ → x

ij yy  for all }{ 43 yyyy ij →−∈→ , that is, we 

assume that all other perturbations are identically zero.  
 
     In the proof of Lemma 1, we were able to construct a magnitude constraint on the perturbations 
which ensured the negative-definiteness of the Lyapunov function used to prove Theorem 1. In a 
similar manner, we use (5.7) to derive a bound for the perturbation )(

43
xyy →∆ . In particular, it can be 

shown that for the complex-balanced catalyzed tBID/BAK network if   
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for all mSx +∈ I  such that ∗≠ xx , then the negative-definite condition in (5.7) is satisfied, and the 
conditions of Theorem 1 are satisfied. Recall that  
 

)(xθδ ∑
∈→

∗−⋅−
θ

ij yy
ji xxyy 2))ln(ln)((  

)(xcθ
j

ij

y

yy
x

θ∈→
min  

θκ  is the constant in Lemma 5.4.1, and 

θn  is the number of complexes in linkage class θ . 
 
(Note that )(2 xδ  appears in the denominator of the right-hand-side of (6.2) since 2

43, ∈yy ). So, 
if (6.2) is satisfied, then the conditions of Theorem 1 are satisfied, and therefore Theorem 1 tells us 
that ∗x  is globally asymptotically stable relative to mS 0≥I . In fact, satisfaction of (6.2) applies to 
any positive stoichiometric class since the )(⋅θδ ’s can also be thought of as functions of the steady 

state ∗x .  
 
     However, the unfortunate aspect of (6.2) is that even if the right-hand-side of (6.2) converges to 
zero as the system converges to the steady state ∗x , the left-hand-side cannot do this (this is due to the 
fact that ]tBID[  and ][BAKinac  must remain positive for all time because there are no boundary 
equilibria). However, what we can say is that if BAKcatk  is sufficiently small, then we can talk about 
convergence to a region of state space. That is, the only way that (6.2) is violated for sufficiently 
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small BAKcatk , and hence when Theorem 1 is not applicable, is if the right-hand-side of (6.2) 
approaches zero. So, suppose the right-hand-side of (6.2), as a function of x , approaches zero. This 
can only happen if ∗→ xx  or at least one component of x  go to zero (that is, 0→kx  for some k ). 
This can be seen as follows: If 0)(2 →xδ , then it is necessary that 0)( →xθδ  or 0)( →xcθ  for 
each 2≠θ . This must occur since otherwise the right-hand-side will explode. So we either have 

∗→ xx  (since 0)( =xθδ  for all θ  if and only if ∗= xx ) or at least one 0→kx . If instead )(2 xδ  

does not get arbitrarily small, then the positive term )(4
)()(

4 2

22

2

2

x
xxc

n δ
δκ

+
 in the right-hand-side of (6.2) 

can only go to zero if 0)(2 →xc  or ∞→)(2 xδ  (this is because the positive function 
h

h
+4

 for 

0>h , converges to zero only if 0→h  or ∞→h ). Because of conservation, both of these cases 
imply that at least one 0→kx . With this in mind, we can prove the following theorem. 
 
 

Theorem 6.2.1 
     For all 0>ε  there exists 0>BAKcatk  sufficiently small such that for any trajectory )(⋅x , with 

mx 0)0( ≥∈= ξ , of the catalyzed tBID/BAK network,  
 

ε<− ∗ |)(| xtx  
 

for all time Tt ≥ , where 0>T . 
 
Proof: 
By the persistence property, it follows that mtx +∈ )(  for all 0>t . Suppose that one of the 
components of )(tx  converges to zero, that is, suppose that the trajectory )(⋅x  is such that 0)( →txk  
as ∞→t . Note that we keep decreasing BAKcatk  so that the trajectory satisfies the conditions of 
Theorem 1 for any given interval ),0[ σ  with ∞<σ . Since there are no boundary equilibria of the 
catalyzed tBID/BAK network and further because the network satisfies the persistence property (see 
Appendix C), we must have 0))(( 0 >→ ftxf k . This means that −∞→− ∗ )ln)())(ln(( kkk xtxtxf , 
while for any other component of )(tx , say )(txl , which does not converge to zero, 

)ln)())(ln(( ∗− lll xtxtxf  remains bounded (due to conservation and Lipschitz). So, 

−∞→−= ∑ ∗

i
iii xtxtxftxV )ln)())(ln(())((&  as BAKcatk  is decreased to zero. But, for a sufficiently 

large interval ),0[ σ , with ∞<σ , there exists a time ),0[1 σ∈t  such that 

}min)(:{)( 1
∗≤∈ ii

xxVxtx  since ))(( txV&  continues to grow more negatively. This contradicts the 

fact that each component of the Lyapunov function possesses the property that ∗

→
=

+ iii
x

xxV
i

)(lim
0

 (see 

proof of Theorem 1). Hence, we cannot have both }min)(:{)( ∗≤∈ ii
xxVxtx  for 1tt ≥  and some 

component 0)( →txk  as ∞→t . Therefore, the only way that (6.2) is violated for sufficiently small 

BAKcatk  is if ∗→ xx .   
 
Because ]tBID[][tBID total≤  and ]BAK[][BAK totalinac ≤ , this means that  
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defines a “region of violation” VR  which can be made sufficiently close to ∗x  by a sufficiently small 

choice of BAKcatk . So choose 0>BAKcatk  and 01 >c  such that )(})(:{ 1
∗⊂≤⊂ xBcxVxRV ε , where 

)( ∗xBε  is the ε -neighborhood of ∗x . Then for sufficiently small BAKcatk , Theorem 1 tells us that any 

)(⋅x , with mx 0)0( ≥∈= ξ , ends up in })(:{ 1cxVx ≤  at some time 0>T . Moreover, it remains 

there for all Tt ≥  because 0)ln(ln)( * <−⋅ xxxf  for any VRx ∉  which is also on the boundary of 
the level set })(:{ 1cxVx ≤ , forcing the level set to be invariant.  
 
Therefore, )()( ∗∈ xBtx ε  for all time Tt ≥ . 

□ 
 

Remark 6.2.2 
     Theorem 6.2.1 demonstrates how the addition of the reaction tBIDBAKtBIDBAK inac +→+  can 
be thought of as a “stable” network addition to the network which is the un-catalyzed tBID/BAK 
network. In other words, for sufficiently small 0>BAKcatk , the impact of the catalysis reaction does 
not drastically change the behavior of the un-catalyzed tBID/BAK network. Moreover, this property is 
global, applying to any trajectory. Although this may appear to be a trivial result, adding in reactions, 
even when rate constants are set small, can significantly alter the behavior of any given network (refer 
to [95] for many examples).  
 
   

6.3    Interpreting the State-Dependent Bound with Simulation  
 
     We would like to know if the right-hand-side of (6.2), as a dynamic perturbation, roughly 
approximates where the asymptotic behavior of the un-catalyzed network is deregulated when ∗x  is 
presumed to be a non-apoptotic steady state (that is, when there is no evidence of BAK activation or 
polymerization). We simulate a perturbed tBID/BAK network when the right-hand-side of (6.2) is 
substituted into the differential equations and another time when the right-hand-side, scaled by a 
factor of 3, is substituted. The results are illustrated in Figs. 6.3 and 6.4, respectively. The response in 
Fig. 6.3 is similar to the response of the un-catalyzed network when the perturbation is not included 
(data not shown). Nonetheless, this is evident by the negative-definiteness of )(xV&  and the small 
deviations in the different states of BAK. Hence, the dynamic perturbation caused by the right-hand-
side of (6.2) is absorbed by the network and asymptotic behavior to the non-apoptotic steady state is 
retained.  
 
     The second case in Fig. 6.4, however, is significantly different. Here, we see the states of BAK 
converging to different levels and furthermore observe the polymerization of BAK. Moreover, the 
negative-definiteness of )(xV&  is clearly violated. Consequently, we conclude that the right-hand-side 
of (6.2) roughly approximates a dynamic perturbation which deregulates asymptotic stability of the 
un-catalyzed tBID/BAK network and, in addition, leads to BAK being triggered. Therefore, not only 
does the right-hand-side of (6.2) provide us with a sufficient condition but also roughly approximates 
a necessary condition for global asymptotic stability of the complex-balanced catalyzed tBID/BAK 
network.         
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(a)      (b) 

FIGURE 6.3    Time simulations for when the right-hand-side of (6.2) is used to perturbed the 
un-catalyzed tBID/BAK network. (a) Showing the concentration levels of BAKinac, BAK, BAK:Bcl-2, 
and BAKpoly; and (b) Showing the derivative of the Lyapunov function (defined in Chapter 5). 

 
 

  
(a)      (b) 

FIGURE 6.4    Time simulations for when the right-hand-side of (6.2), scaled by a factor of 3, is 
used to perturbed the un-catalyzed tBID/BAK network. (a) Showing the concentration levels of 
BAKinac, BAK, BAK:Bcl-2, and BAKpoly; and (b) Showing the derivative of the Lyapunov function (defined 
in Chapter 5). 

 
 

6.4    Attaching Biological Meaning to the Results for the Catalyzed 
tBID/BAK Network 
 
     We attach biological meaning to the results of Theorem 6.2.1 by looking at steady states of the un-
catalyzed network, depicted above as ∗x , which are defined to be non-apoptotic. Although we no 
longer have asymptotic behavior to a point, we can talk of asymptotic behavior to a neighborhood of 

∗x , that is, a neighborhood of a non-apoptotic point -- a non-apoptotic region. This will enable us to 
make logical hypotheses about the design of certain drug delivery systems.  
 
     So suppose ∗x  is chosen to be a non-apoptotic steady state. Then, according to Theorem 6.2.1, for 
sufficiently small values of BAKcatk  (the kinetic rate constant associated with the catalysis reaction of 
tBID activating BAK), the catalyzed tBID/BAK network is guaranteed to evolve toward a non-
apoptotic region. So, consider the hypothetical design of a drug delivery system, in particular, one 
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which works by re-regulating pathological deregulations of apoptosis. More specifically, suppose the 
goal of the design is to block the intrinsic pathway of apoptosis. Then, it may be worthwhile to 
identify or fabricate molecules which could be used as inhibitors to sufficiently lower the catalysis 
reaction rate of tBID activating BAK (or even the kinetic rate constant BAKcatk ). In this manner, if the 
reaction rate is decreased enough, then we would be ensured, at least mathematically, that the intrinsic 
pathway of apoptosis is shut off (through inhibition of BAK polymerization). Moreover, the design 
would be a logical one since we did not first specify rate constants and the mathematical conclusions 
are independent of the values of the other rate constants.   
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7    Conclusions 
 

7.1    Initial Analysis of the BAD/tBID/BAK Network Using Simulation, 
Bifurcation Diagrams, and a Skeleton Model 
 
     We first selected specific rate constants for the BAD/tBID/BAK network and used computer-aided 
tools such as simulation, bifurcation analysis, and sensitivity analysis to provide us with an initial 
understanding of the BAD/tBID/BAK network. The study revealed and validated the experimentally-
observed sensitization of BAD on the tBID-induction of BAK. The tBID-induction of BAK resembles 
a robust switch not unlike what is seen in many other cellular signaling pathways. The effect of BAD 
is one which sensitizes the switch from the activation of tBID to the activation of BAK. In particular, 
the total concentration of tBID triggers the activation of BAK in an all-or-none fashion, where the 
total concentration of BAD modulates the location of the triggering point.  
 
     We then derived an approximating model, known as the skeleton model, by stripping away the 
dynamics of BAK and making certain assumptions on the behavior of BAD. Ultimately, the skeleton 
model expressed the relationship among BAD, tBID, and BAK at an apoptotic triggering point as   
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where ][BADtotal  and ][tBIDtotal  represent total concentration levels of BAD and tBID, respectively, 
and ][tBIDact  represents the (assumed constant) level of free tBID required to activate BAK. The 
remaining parameters are functions of rate constants only (see (3.5) for details).  
 
     The skeleton model in (7.1) approximates the behavior of the full BAD/tBID/BAK model 
accurately. Qualitatively, the skeleton model reveals two new facts about the BAD/tBID/BAK 
network: first, the impact of BAD on the tBID-induction of BAK is much like a titration process 
where the level of BAD:Bcl-2 reflects the amount of Bcl-2 which is sequestered away from tBID; and 
second, the level of BAD:Bcl-2, with respect to the total level of BAD, is a simple function of rate 
constants (phosphorylation, dephosphorylation, sequestration, and translocation rate constants). 
 
     Then, turning our attention to the novel kinetic modeling of BAD, we delineated differences 
between the two modes of phosphorylation of BAD (that is, phosphorylation of Bcl-2-bound BAD 
and phosphorylation of free unbound BAD). Not yet fully exhausting what the skeleton model could 
tell us, we combined the equation in (7.1) with “basal” or non-apoptotic steady state assumptions on 
the network. The assumptions are that ]BAD[2]-Bcl:BAD[ total<<  and ]tBID[tBID][ total<< . In this 
manner we were able to derive an explicit constraint on the phosphorylation rate constants, necessary 
to maintain these conditions. In conclusion, what we found concerning the phosphorylation of BAD 
was that the Bcl-2-bound form of phosphorylation is independently more effective toward the removal 
of BAD from the mitochondria compared to the unbound form of phosphorylation, which seems to 
require cooperation from the other form of phosphorylation or a significant reduction in translocation. 
Interestingly, however, the unbound form of phosphorylation is more effective when the network is in 
transient. And finally, both modes work together synergistically to remove BAD from the 
mitochondria.     
   
    We then considered what our results about the phosphorylation of BAD meant, and in particular, 
what they meant in regards to the many experimental discrepancies. In general, we witnessed a 
potentially large deviation in the average removal of BAD from the mitochondria, depending on what 
mode(s) of phosphorylation were operating as well as the level of phosphatase present (that is, the 
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dephosphorylation rate). Moreover, there is no predefined mode or combination of modes of 
phosphorylation that is occurring in any given cell, since any given cell may either have Bcl-2 or Bcl-
xL expression (or both) (which determine if the phosphorylation-induced dissociation of BAD:Bcl-2 is 
possible). In conclusion, with such potentially large swings in the removal of mitochondrial BAD, 
experimental results could become unpredictable if the mode(s) and phosphatase level are not taken 
into account. As an example, we pointed out that Akt, a BAD kinase, could be mistaken as an 
inhibitor of apoptosis in one case and not in another merely from the variation as a result of the 
phosphatase level. Nonetheless, the abnormally high variation in regards to the removal of BAD could 
indicate why experimental data has come across unpredictable.  
         
 

7.2    Proving the Stability of Perturbed Complex-Balanced Mass-Action 
Networks 
 
     In Chapter 5 we proved the global asymptotic stability of any complex-balanced network under 
state-dependent perturbations which preserve stoichiometric classes and satisfy a certain magnitude 
constraint. The result, stated as Lemma 1 and Theorem 1, extended the study of robustness of 
chemical reaction networks beyond zero-deficiency networks to any arbitrary deficiency network 
which is complex-balanced. Moreover, the proof of Lemma 1 provides a way to write out an explicit 
function for the magnitude constraint, which, though a function of states, possesses a nice form 
incorporating the graphical and stoichiometric properties of the unperturbed network.  
 
     Following along the same lines as in [92] we were able to describe the behavior of networks at 
boundary points (points where at least one state concentration level is zero) and not neglect the impact 
that such behaviors on the boundary can have on our theoretical results. In past years, much of 
chemical reaction network theory has been kept peripheral to boundary equilibria and boundary 
solutions. However, there are many instances where investigation of the boundary is warranted. For 
example, even the simple reaction network, BA → , contains boundary equilibria. The stability and 
robustness results in Chapter 5 were derived with these issues in mind. For example, our stability 
result can be applied to networks which have initial conditions on the boundary or to networks which 
have boundary equilibria. Finally, in Appendix C, we showed how a network can be decomposed into 
more manageable sub-networks to deal with periodic orbits evolving on the boundary.   
 
 

7.3    Applying Our Theoretical Results to the BAD/tBID and Catalyzed 
tBID/BAK Networks 
 
     Upon showing that a complex-balanced BAD/tBID network satisfies the requirements of Theorem 
1, we were able to immediately conclude global asymptotic stability. In this case, we showed that for 
each positive stoichiometric class mS 0≥I , there exists a unique steady state mSx +

∗ ∈ I  which is 

globally asymptotically stable relative to mS 0≥I . In other words, for each values of ]BAD[ total , 
]tBID[ total , and ]2-Bcl[ total , all trajectories in the stoichiometric class converge to a unique and stable 

steady state. Furthermore, this rules out the possibility of any periodic orbits or chaotic behavior. 
Finally, we know that this stability comes with a certain degree of robustness, which, if desired, can 
be represented in an explicit form.  
 
     Upon showing that a complex-balanced un-catalyzed tBID/BAK network satisfies the 
requirements of Theorem 1, we made similar conclusions about the catalyzed tBID/BAK network, 
when the perturbation reaction upholds its magnitude constraint. The perturbation used in this paper 
was the catalyzing reaction of tBID activating BAK. Unfortunately, Theorem 1 could not apply 
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everywhere. However, we were still interested in knowing whether the addition of the reaction was a 
“stable” network addition, that is, whether the addition of a new reaction causes any drastic changes 
in behavior despite what we make the value of the rate constant. We found that the un-catalyzed 
tBID/BAK is stable in this sense if the rate constant is set sufficiently small.  
 
     More biologically meaningful, the conclusion above enables us to understand under what 
conditions the interactions between tBID and BAK are such that we would be left with a non-
apoptotic response. With Theorem 6.2.1, we are able to definitively conclude that for sufficiently 
small values of BAKcatk  (the kinetic rate constant associated with the catalysis reaction of tBID 
activating BAK), the trajectory of the catalyzed tBID/BAK network is guaranteed to evolve toward a 
region which is local to the steady state of the un-catalyzed tBID/BAK network. And if the steady 
state of the un-catalyzed tBID/BAK network is one which could be considered “non-apoptotic”, then 
we know that any trajectory of the catalyzed tBID/BAK network will be a “non-apoptotic” response.      
 
 

7.4    Importance of the Results 
 
     What separates our work from many of the analyses of apoptotic pathways already studied is the 
novel inclusion of BAD. We showed how BAD acts as a sensitizer to the tBID-induction of BAK. We 
further showed that the sensitivity can be mediated by either of two experimentally-observed modes 
of phosphorylation of BAD which provide mediation in varying degrees, depending on whether these 
modes work together. The modeling of the phosphorylation of BAD is important since it helps clarify 
some of the discrepancies observed in experiments. In fact, our results suggest to experimenters 
whom are testing the BAD signaling response that not only should the kinase and phosphatase levels 
be measured (enzymes responsible for phosphorylation and dephosphorylation, respectively), the 
mode(s) of phosphorylation should be monitored (in particular, whether or not the Bcl-2-bound form 
of phosphorylation is taking place). In conclusion, our mathematical model of BAD provides a first 
attempt at matching a mathematical model with the experimental model of BAD, and provides some 
logical answers.   
 
     Our novel modeling of BAD is significant since, as a therapeutic target, BAD has the capacity to 
restore regulation of a cell’s ability to respond appropriately to apoptotic stimuli. For example, a 
cancer cell is sometimes defined by an overexpression of Bcl-2 [10, 22] and hence the cell’s 
appropriate apoptotic response is blocked. As we have seen, an abundance of Bcl-2 subverts the 
ability of the mitochondrial intrinsic pathway of apoptosis to be engaged. Recently, man-made BAD 
and BID peptides resembling their endogenous counterparts have been fabricated with the intent of 
delivering these peptidomimetics to tumor cells and restoring mitochondrial sensitivity with respect to 
apoptotic signaling [28, 54]. Unfortunately, targeting tumor cells and avoiding healthy cells is an 
ongoing challenge in the design of drug delivery systems. However, where BID (and other similar 
BH3-only) peptidomimetics would inadvertently lead to the destruction of healthy cells, BAD 
peptidomimetics would not, and may prove to be a more reliable therapeutic. This is because BAD 
generally does not have the capacity to trigger apoptosis; instead, BAD lowers the threshold at which 
cells respond to apoptotic stimuli. And since tumor cells have an increased threshold for apoptosis, 
BAD peptidomimetics could restore this threshold without actually triggering apoptosis. This would 
permit tumor and pre-cancerous cells to respond appropriately with apoptosis, while healthy cells 
would be less likely to die inappropriately.  
 
     Having proved the global asymptotic stability of any complex-balanced network under certain 
perturbations, we have contributed to the theory of chemical reaction networks. Unlike our initial 
analysis of the BAD/tBID/BAK pathway where we first selected rate constant values and then 
observed the static and dynamic properties, chemical reaction network theory provides a means to 
categorize static and dynamic properties as functions of the rate constants. This buys a mathematical 
sturdiness which would otherwise be absent from numerical analysis alone. That is, just because 
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certain behavior is observed for a specific set of rate constants does not mean it applies in general to 
all rate constants (or even to a neighborhood of parameter values). This is especially important when 
dealing with biological pathways where a lot of the time only qualitative data in the form of network 
structure and stoichiometry is available. Moreover, approaches with chemical reaction network theory 
prove to be more logical in making hypotheses toward future biological experimentation.    
 
     The complex-balanced BAD/tBID network is a good example of a network which is globally 
asymptotically stable, which can be stated without specifying rate constant values a priori. The un-
catalyzed tBID/BAK network is a good example of a network which shows how the magnitude 
constraint on the perturbation level, which we derived, can be used to study the effects of dynamic 
perturbations, which in the case of the un-catalyzed tBID/BAK network, is a reaction. The magnitude 
constraint depends nicely on the original network’s graphical and stoichiometric properties.     
 
     Basing hypotheses off of results from chemical reaction network theory could provide a more 
logical approach to designing therapeutics. The robustness result for the tBID/BAK network enables 
us to definitively conclude when we could expect to see a non-apoptotic response. Pathological 
deregulations which modulate the activation of tBID are known to be detrimental to a cell’s survival. 
For example, SARS is caused by a virus which up-regulates the processing (and therefore activation) 
of tBID, inducing cell death in lung and intestinal tissue cells [9]. However, such deregulation of the 
cell’s apoptosis machinery would be negated if the activation of tBID (or more generally the 
activation of BAK) is systematically blocked. One way an experimental biologist could test this is to 
identify molecules which inhibit the reaction rate of tBID activating BAK. Then, at least 
mathematically, one would be ensured that the polymerization of BAK would be blocked, and could 
hypothetically obstruct any pathological deregulation. This is a logical design since the design is 
based off of a general approach, not one from a specific set of rate constants which will invariably be 
uncertain and vary from cell to cell.    
 
     Toward a different end, the robustness result from Lemma 1 and Theorem 1 could be used to 
locate where (and in what manner) a disturbance undermines a network’s stability. Moreover, the 
robustness result could be used to hypothesize new reactions or other unmodeled dynamics, in 
particular, if theoretical results do not align well with experimental data. The latter application 
illustrates again the importance of studying qualitative properties over quantitative properties since 
biological systems tend to be very uncertain systems, even structurally. 
 
 

7.5    Future Work 
 
     The modeling of BAD is novel but many specifics were neglected to simplify the model and 
extract the overall mechanistic behavior of the two modes of phosphorylation. Future models for BAD 
should provide a means to differentiate among the three sites of phosphorylation, i.e., at Ser112, Ser136, 
and Ser155. Such analysis could help distinguish once and for all whether cooperation between these 
sites is needed to engage the Bcl-2-bound form of phosphorylation, which is apparently a hot topic for 
experimenters looking at BAD. 
 
     As discussed in Appendix B, we suggested how one could look at stability and robustness of quasi-
thermodynamic networks, more general than complex-balanced networks. Future work may include 
extension of our results to include quasi-thermodynamic networks or other networks. This would 
enable the development of an even bigger parameter space in which to conclude global asymptotic 
stability and robustness, such as for the BAD/tBID and tBID/BAK networks (some of this has already 
been undertaken in Appendix B). However, as also discussed in Appendix B, the stability of QTD 
leads to state-dependent issues and networks could potentially need to be handled in an ad hoc fashion 
(though, as shown in Appendix B, local stability results can still be concluded in the case of the 
BAD/tBID network). However, any given network may not be as simple as the BAD/tBID network. 
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On the other hand, general stability and robustness theory may more readily extend into a subset of 
deficiency-one networks (which may not necessarily be complex-balanced), in particular those 
studied by Feinberg, since properties of these networks are more numerous and available.  
 
     One of the reasons robustness of chemical reaction networks is so difficult to deal with is because 
parameter variations sometimes cause the steady state(s) to move and because robustness can lead to 
state-dependent conditions. However, as suggested in our work, analyzing convergence to 
neighborhoods is a possible way to study stability and robustness and lead to making better 
experimental hypotheses. Future work could include a conclusion like Theorem 6.2.1 which can be 
applied to any given network of a certain type as well as a way to find maximum rate constant values 
which lead to “acceptable” responses. To do this, one would need to estimate the smallest Lyapunov 
level set which encloses the region of violation in order to guarantee that trajectories of the perturbed 
system would evolve to (and stay within) the level set. Applied to the tBID/BAK network this would 
entail finding the largest BAKcatk  which can be tolerated before an “apoptotic” response is observed. 
Such estimates would undoubtedly be dependent on experimental observations in order to categorize 
regions which are “non-apoptotic” and “apoptotic”, but theoretically it could be done.    
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A    Appendix A 
 
     In this Appendix we first derive the full form of 2:BclBADr −  which was stated in (3.5), and then prove 
the necessary constraint in (3.9) for when the BAD/tBID/BAK is operating under certain basal 
conditions as discussed in Chapter 3.  
 
 

A.1    Derivation of BAD:Bcl-2 Ratio 
 
     Setting (Eqs. 2-3) in the full model to zero gives 
 

pBAD][]3-3-14:pBAD[1 BADseqBADrel kk =  
                                  ( ) 2]-Bcl:BAD[]BAD[BAD][ 2m1 BADphosBADphos kk ++=  
 
Substituting the result into (Eq. 1), and setting (Eq. 1) to zero, gives  
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and substituted (A.1). Hence,   
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which, upon simplifying, is equivalent to  
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We consider (A.2) and (A.3) to be two equations in the two unknowns ]BAD[ m  and 2]-Bcl:BAD[ . 
Solving for ]BAD[ m  in (A.2) and substituting into (A.3), we obtain  
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Then solving for 
]BAD[

2]-Bcl:BAD[

total

, we finally arrive to the full form of (3.5):  

 

          
21

1
Λ+Λ

=− γ2Bcl:BADr  (3.5) 

 
where  
 

γ
2]-Bcl:[tBID2]-[Bcl

[tBID]

1

22

tBIDrel
a

2Bcl:BAD

BADrel
d

2Bcl:BADBADphos

kk
kkk

+

++

−

−  

 
 



 74

A.2    Proof of Necessary Constraint on Kinetic Parameters Under Basal 
Conditions 

Theorem A.2.1 
      If ]BAD[2]-Bcl:BAD[ total<<  and ]tBID[tBID][ total<<  is satisfied at steady state, then, according 
to the skeleton model,    
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Proof: 
According to the definition of 2Bcl:BADr − , ]BAD[2]-Bcl:BAD[ total<<  is equivalent to 1<<−2Bcl:BADr . 

Using the skeleton approximation for 2Bcl:BADr − , that is, ( ) 212 11
1
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Now consider the solution to the quadratic equation (3.2), which is also a defining characteristic of the 
skeleton model:  
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which upon squaring both sides and simplifying, is equivalent to, 
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Combining (A.4) and (A.5) gives us the desired result. 

□ 
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B    Appendix B 
 
     Appendix B includes the proof of Theorem 4.9.7 which provides a “rank” condition equivalent to 
guarantee the existence of a complex-balanced point for any given weakly reversible mass-action 
network. This proof is then applied to the BAD/tBID and un-catalyzed tBID/BAK networks to derive 
under what conditions these networks, when endowed with mass-action kinetics, are complex-
balanced. We then discuss how such conditions can be relaxed in regards to our theoretical results in 
Chapter 5. Finally, we prove Lemma 5.4.1 (restated as Lemma B.2.1), which is needed to prove 
Lemma 1. The proof of Lemma 5.4.1 follows along the same lines as Lemma VIII.1 in [92].  
 
 

B.1    Complex-balancing Property and Application to the BAD/tBID and 
Un-catalyzed tBID/BAK Networks 

Theorem B.1.1 
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In turn, this statement is equivalent to:  
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This can be done since any real number can be expressed as the natural logarithm of a positive 
number. In the situation that the last statement is satisfied,  
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Theorem B.1.2 
     For a certain region of parameter space, the BAD/tBID network is complex-balanced.  
 
Proof: 
Let ∗∗ = jy gg
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(the condition for the existence of complex-balanced points) if and only ⎟
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and the BAD/tBID network is complex-balanced (and hence QTD). Moreover, if 
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1  is within a neighborhood of 1, then the mass-action network, though no 

longer complex-balanced, remains QTD (this can be seen by continuity of the steady states and 
(5.10)).   
 
     We can apply the results of Lemma 1 and Theorem 1 to certain mass-action networks which are 
not complex-balanced but are QTD. This will enable us to look at an even bigger region in the 
parameter space than that which produces complex-balancing. More precisely, as long as 

),( ∗xx ∑ −−⋅
→ )1(ln jij

ij

qqxy
yy eek  in (5.10) is non-positive, then the results of Lemma 1 and 

Theorem 1 remain valid. Not surprisingly, [98] shows that 0),( ≤∗xx  (with equality if and only if 
⊥∈ Dµ ) is a sufficient condition for a mass-action network to be QTD. [98] further shows that 

0),( ≤∗xx  is equivalent to ∑ ≤∗ 0j
j

y
y xg . Applying this latter condition to the BAD/tBID network, 

and simplifying, we are left with the condition  
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( ) 02]-Bcl:[BAD2]-Bcl:[tBID ≤−α  
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and where the * superscript denotes steady state concentration levels, whenever 1][BADtotal << , 

1][tBIDtotal << , and 1]2-[Bcl total << . For example, if 0>α  then as long as 
2]-Bcl:[BAD2]-Bcl:[tBID ≤ , we are guaranteed a mass-action network which is QTD. In a sense 

we have traded off a kinetic rate constraint for a state space constraint. Practically, one would not deal 

with the above state-dependent constraint unless d
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a
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1  is far from unity. In that 

case, however, one could use the constraint to conclude local asymptotic stability. That is, if a steady 
state of the BAD/tBID network is such that 0>α  and ∗∗ ≤ 2]-Bcl:[BAD2]-Bcl:[tBID  (or 0<α  
and ∗∗ ≤ 2]-Bcl:[tBID2]-Bcl:[BAD ), then the corresponding steady state is locally asymptotically 
stable. This is because we may still apply the same Lyapunov function and show, at least locally, that 
its derivative is negative-definite sufficiently close to the steady state. Furthermore, using the 
Lyapunov function and the explicit formula above, one could infer a basin of attraction estimate. We 
leave this for future work.   
 
 

Theorem B.1.3 
     For a certain region of parameter space, the un-catalyzed tBID/BAK network is complex-balanced.  
 
Proof: 
Similar to that in the proof of Theorem B.1.2, we have that  
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θp  if and only if the un-catalyzed tBID/BAK network is complex-balanced. 

In this case, we get   
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Again, define θp [ ]′θθ
21 pp  for each θ  (which can be done since there are two complexes in every 

linkage class). Similarly, (B.2) can be expanded and simplified to  
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−−  is within a neighborhood of 1, then the mass-action 

network remains QTD. We can also consider further relaxation of this constraint much like we did for 
the BAD/tBID network (see discussion above). 
 
 

B.2    Helpful Result for Lemma 1 

Lemma B.2.1 
     Consider any weakly reversible mass-action network. Define for each linkage class the function 
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for θη n∈ , where },:{ θθ ∈→= jiij yyyy  and 2≥θn  is the total number of complexes in 

θ . Then for each l...,,2,1=θ , there exists 0>θκ  such that  
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for all θη n∈ . 
 
Proof: 
Consider a single linkage class θ . For convenience we re-label and re-order the complexes so that 

}...,,2,1{ θ
θ n= . Define  
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Note that 
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Clearly, 0≥θP  and )...,,,()0,...,,,( 121121 −− =

θθ
ηηηηηη θθ nn PQ . We wish to show that θP  is 

positive definite. So we suppose that 0=
θ

ηn  and 0)0,...,,,( 121 =−θ
ηηηθ nQ . The latter implies that 

ji ηη =  for each ji,  such that 0≠→ijk . Consider any complex θ∈0j  that is not θn . Since the 
network is weakly reversible, there exists an ordered set of indices from 0j  to θn , say 
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}...,,,{ 10 Njjj , where θnjN = , such that Njjj →→→ ...10 . Hence, 
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In other words, in our usual notation where }...,,,{ 21 θ

θ
nyyy=  
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Moreover, this process can be repeated for each l...,,2,1=θ . 

□ 
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C    Appendix C 
 
     In the first half of this Appendix, we study and discuss boundary solutions of complex-balanced 
mass-action networks. Complex-balanced networks which possess such behaviors can be decomposed 
into two sub-networks, one which is a perturbed network satisfying the persistence property and 
another which has a trivial solution. In the second half of this appendix, we prove that both the 
BAD/tBID and full tBID/BAK networks satisfy the persistence property as long as their total 
concentrations remain non-zero. Under the same conditions, we additionally show that both the 
BAD/tBID and the full tBID/BAK networks cannot possess boundary equilibria. 
 
 

C.1    Decomposing Boundary-Evolving Mass-Action Networks into Two 
Sub-Networks 
 
     Suppose that we take a look at what happens when a perturbed complex-balanced network does 
not satisfy (A.3). So suppose there exists a maximal solution )(⋅x  of (5.1), with ∗

≥∂∈ 00 \)0( Ex m , on 

some interval ),0[ σ , and where mtx 0)( ≥∂∈   for ),0[ Tt ∈ , for some ),0( σ∈T . Then there exists 
}...,,,{ 21 Mkkk  such that 0)(...,,0)(,0)(

21
>>> txtxtx

Mkkk  for all ),0( Tt ∈ , and furthermore, 
there exists }...,,,{ 21 mMM kkk ++  such that 0)()()(

21
==⋅⋅⋅==

++
txtxtx

mMM kkk  for all ),0[ Tt ∈ . 

This is due to the fact that +  is forward-invariant for (5.2). For convenience, we reorder the species 
so that 0)(...,,0)(,0)( 21 >>> txtxtx M  for all ),0( Tt ∈  and 0)()()( 21 ==⋅⋅⋅== ++ txtxtx mMM  
for all ),0[ Tt ∈ . (We also assume that we are not dealing with the trivial case 0)0( =x .)   
 
     Consider the union of linkage classes, denoted 2 , where for each linkage class 2⊂θ , there 

exists θ∈jy  and an index }...,,2,1{ mMMk ++∈  such that jSk ∈ . In other words, consider 
all linkage classes which have at least one complex which contains one or more of the species 

mMM ...,,2,1 ++  (which are those species that have concentrations identically zero on ),0[ T ).  
 
     We claim that 0)( =jytx  for ),0[ Tt ∈  and for all 2∈jy  (of course this implies that all “total 
currents” in these linkage classes are zero). So, suppose not. Then there exists some complex jy  in 

some linkage class 2⊂θ  and at some time ),0(1 Tt ∈  where 0)( 1 >jytx . So 0)( 1 >txl  for all 

jSl ∈ . According to Corollary 5.2.2, this means 0)( >jytx  for all complexes θ∈jy  for 1tt > . 

But this contradicts the fact that 2⊂θ , that is, the fact that θ  contains at least one complex 
which contains at least one of the species which is identically zero on the interval ),0[ T . Therefore, 

0)( =jytx  for ),0[ Tt ∈  and for all 2∈jy . Furthermore, we must also have 0))(( =∆ → tx
ij yy  for 

),0[ Tt ∈  and for all reactions in the set },:{ 2∈→ jiij yyyy . This of course is a result of (A.2).   
 
     We partition  into two sets, 2  and 1 2\ . Note that φ≠1  since otherwise, 

0)( =jytx  for all ∈jy  for ),0[ Tt ∈ , and so, according to (5.1), )(tx  would be an equilibrium 

solution and necessarily ∗∈ 0)0( Ex . This contradicts our assumption that ∗∉ 0)0( Ex .  
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     Because in a sense we can segregate the set of species and complexes, we define the mass-action 
sub-network }ˆ,ˆ,ˆ,ˆ{ k  where ˆ }...,,2,1{ M , ˆ  is the set of complexes jŷ , one for each 

1∈jy , and such that kjkj yy =ˆ  for Mk ...,,2,1= , and ˆ }ˆˆ,ˆ:ˆˆ{ ∈→ jiij yyyy  and k̂  are 
defined in the obvious manners. Defining x̂ ]...[ 21 ′Mxxx , we must have    
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jiyy
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yy yyxxkx&  (C.1) 

 
for ),0( Tt ∈ , which are the induced differential equations by the mass-action sub-network 

}ˆ,ˆ,ˆ,ˆ{ k . Here, 00ˆˆ :ˆ
≥≥→ →∆  M

yy ij
 is defined by 

0
ˆˆ

1
)()ˆ(ˆ

==⋅⋅⋅=
→→

+

∆=∆
mM

ijij xx
yyyy xx . Note 

that each )(ˆ
ˆˆ ⋅∆ → ij yy  is locally Lipschitz and satisfies (A.2). Also note that (A.1) and (A.3) are satisfied 

by (C.1). The latter follows because we must have 0)(...,,0)(,0)( 21 >>> txtxtx M  for all 
),0( Tt ∈ .  

 
     The sub-network (C.1) is completely self-contained as a mass-action network and we can analyze 
its behavior independently, and further we have that (A.3) is satisfied. If it is not known a priori that 
boundary solutions exist, then the procedure above could be used as a starting point to prove or 
disprove their existence (we leave this for future work). However, for the BAD/tBID and catalyzed 
tBID/BAK networks, we need not be concerned with this since we can prove that no boundary 
solutions exist. This is undertaken in the next section.     
 
 

C.2    Showing that the BAD/tBID and Catalyzed tBID/BAK Networks 
Have No Boundary Solutions 
 

Theorem C.2.1 
     If 0BAD total >][ , 0]BID[t total > , and 0]2-Bcl[ total > , then any maximal solution )(⋅x  of the 

BAD/tBID network, with initial time 0=t , must be in the positive orthant m
+  for all definable times 

0>t . In particular, this means that the BAD/tBID network has no boundary equilibria, that is, 
φ=0E .   

 
Proof: 
Due to m

+ -invariance for (5.1), it suffices to consider only those maximal trajectories which emanate 

from the boundary m
0≥∂ . So consider some maximal solution, defined on ),0[ σ , which has been 

initialized on m
0≥∂ . Suppose that the conditions of Theorem C.1 are satisfied. 0BAD total >][  implies 

that there exists at least one state of BAD which is positive at time 0=t . With this in mind, we 
consider the two following cases:  (i) 0)0(2-Bcl:BAD >][  and (ii) 0)0(2-Bcl:BAD =][ . For each of 
these cases, we show that all states of BAD and tBID (and free Bcl-2) must be positive for all 

),0( σ∈t . 
 
case (i) 0)0(2-Bcl:BAD >][  
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Due to + -invariance for (5.2), it immediately follows 0)(2-Bcl:BAD >t][  for all ),0( σ∈t . 
Because in the second linkage class we have 2-BclBAD2-Bcl:BAD m +↔ , application of Corollary 
5.2.2 at time 0=t  means that 0)(BAD m >t][  and 0)(2-Bcl >t][  for all ),0( σ∈t . Repeating this 
process for the first linkage class (since BADBAD m → ), it can be shown that all states of BAD are 

positive for ),0( σ∈t . The reason Corollary 5.2.2 applies for 0=∗t  (and not at some greater time) is 
because for any chosen t  in the interval ),0( σ , we can always find a smaller time tt <1  such that 

0)(BAD 1m >t][ , which, through the application of Corollary 5.2.2 at time 1tt =∗  and to the first 
linkage class, forces the remaining states ][BAD , ][pBAD , and ][p 3-3-14:BAD  to be positive at time 
t . . 
 
We note the following property concerning the states of tBID (tBID and tBID:Bcl-2): If 0]tBID[ total > , 
and if there is any material initialized in the Bcl-2-bound form, that is, 0)0(2-Bcl:tBID >][ , then 
through the application of Corollary 5.2.2, we can conclude that all states of tBID are positive for all 

),0( σ∈t  as well as 0)(2-Bcl >t][  for all ),0( σ∈t . . 
 
Hence, case (i) is completed unless 0)0(2-Bcl:tBID =][ , that is, 0]tBID[)0(]tBID[ total >= . Of course, 
by invariance, this means 0)(tBID >t][  for all ),0( σ∈t . But because we also have 0)(2-Bcl >t][  for 
all ),0( σ∈t , application of Corollary 5.2.2 implies that 0)(2-Bcl:tBID >t][  for all ),0( σ∈t . 
 
case (ii) 0)0(2-Bcl:BAD =][  
Because there must exist BAD material initialized in at least one of the other states of BAD, by 
similar reasoning to that used in case (i), all other states of BAD must be positive for ),0( σ∈t . In 
particular, we must have 0)(BAD m >t][  for all ),0( σ∈t . This means that if 0)0(2-Bcl >][ , then 

0)(2-Bcl:BAD >t][  for all ),0( σ∈t  and we may proceed as in case (i). So suppose instead that 
0)0(2-Bcl =][ . Because 0]2-Bcl[ total > , this means that  

 
]2-Bcl[0 total<  

   )0(2-Bcl:)0(2-Bcl:BAD)0(2-Bcl ][tBID][][ ++=  
   )0(2-Bcl:tBID ][=  
 
So because 0)0(2-Bcl:tBID >][  all states of tBID are positive for all ),0( σ∈t  as well as 

0)(2-Bcl >t][  for all ),0( σ∈t . So because 0)(BAD m >t][  and 0)(2-Bcl >t][  for ),0( σ∈t , 
0)(2-Bcl:BAD >t][  for all ),0( σ∈t .    

□ 
 

Theorem C.2.2 
     If 0]BID[t total > , 0]BAK[ total > , and 0]2-Bcl[ total > , then any maximal solution )(⋅x  of the 

catalyzed tBID/BAK network, with initial time 0=t , must be in the positive orthant m
+  for all 

definable times 0>t . In particular, this means that the catalyzed tBID/BAK network has no 
boundary equilibria, that is, φ=∗

0E .   
 
Proof: 
In a similar manner as was done for Theorem C.1, 0]BAK[ total >  implies that there exists at least one 
state of BAK which is positive at time 0=t . With this in mind, we consider the following two cases:  
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(i) 0)0(2-Bcl:BAK >][  and (ii) 0)0(2-Bcl:BAK =][ . For each of these cases, we show that all states 
of tBID and BAK (and free Bcl-2) must be positive for all ),0( σ∈t . 
 
case (i) 0)0(2-Bcl:BAK >][  
Again, Corollary 5.2.2 implies that 0)(BAK >t][  and 0)(2-Bcl >t][  for all ),0( σ∈t , and repeating 
for the second and fifth linkage classes (since inacBAKBAK →  and polyBAK4BAK → ), it is easily 
shown that all states of BAK are positive for ),0( σ∈t .   
 
Like before, we still retain the property concerning the states of tBID (tBID and tBID:Bcl-2). Hence, 
case (i) is completed unless 0)0(2-Bcl:tBID =][ , that is, 0]tBID[)0(]tBID[ total >= . Of course, 

0)(tBID >t][  for all ),0( σ∈t . But because 0)(2-Bcl >t][  for all ),0( σ∈t , it follows that 
0)(2-Bcl:tBID >t][  for all ),0( σ∈t .      

 
case (ii) 0)0(2-Bcl:BAK =][  
Because there must exist BAK material initialized in at least one of the other states of BAK, by 
similar reasoning to that used in case (i), all other states of BAK must be positive for ),0( σ∈t . In 
particular, we must have 0)(BAK >t][  for all ),0( σ∈t . This means that if 0)0(2-Bcl >][ , then 

0)(2-Bcl:BAK >t][  for all ),0( σ∈t  and we may proceed as in case (i). So suppose instead that 
0)0(2-Bcl =][ . Because 0]2-Bcl[ total > , this means that  

 
]2-Bcl[0 total<  

   )0(2-Bcl:BAK)0(2-Bcl:tBID)0(2-Bcl ][][][ ++=  
   )0(2-Bcl:tBID ][=  
 
So because 0)0(2-Bcl:tBID >][  all states of tBID are positive for all ),0( σ∈t  as well as 

0)(2-Bcl >t][  for all ),0( σ∈t . So because 0)(BAK >t][  and 0)(2-Bcl >t][  for ),0( σ∈t , 
0)(2-Bcl:BAK >t][  for all ),0( σ∈t .    

□ 
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