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Extending the Geometric Tools of Heterotic String
Compactification and Dualities

Mohsen Karkheiran

(ABSTRACT)

In this work, we extend the well-known spectral cover construction first developed
by Friedman, Morgan, and Witten to describe more general vector bundles on ellipti-
cally fibered Calabi-Yau geometries. In particular, we consider the case in which the
Calabi-Yau fibration is not in Weierstrass form but can rather contain fibral divisors
or multiple sections (i.e., a higher rank Mordell-Weil group). In these cases, gen-
eral vector bundles defined over such Calabi-Yau manifolds cannot be described by
ordinary spectral data. To accomplish this, we employ well-established tools from
the mathematics literature of Fourier-Mukai functors. We also generalize existing
tools for explicitly computing Fourier-Mukai transforms of stable bundles on elliptic
Calabi-Yau manifolds. As an example of these new tools, we produce novel examples
of chirality changing small instanton transitions. Next, we provide a geometric for-
malism that can substantially increase the understood regimes of heterotic/F-theory
duality. We consider heterotic target space dual (0,2) GLSMs on elliptically fibered
Calabi-Yau manifolds. In this context, each half of the “dual” heterotic theories
must, in turn, have an F-theory dual. Moreover, the apparent relationship between
two heterotic compactifications seen in (0,2) heterotic target space dual pairs should,
in principle, induce some putative correspondence between the dual F-theory geome-
tries. It has previously been conjectured in the literature that (0,2) target space
duality might manifest in F-theory as multiple K3-fibrations of the same elliptically
fibered Calabi-Yau manifold. We investigate this conjecture in the context of both
6-dimensional and 4-dimensional effective theories and demonstrate that in general,
(0,2) target space duality cannot be explained by such a simple phenomenon alone.
In all cases, we provide evidence that non-geometric data in F-theory must play at
least some role in the induced F-theory correspondence while leaving the full de-
termination of the putative new F-theory duality to the future work. Finally, we
consider F-theory over elliptically fibered manifolds, with a general conic base. Such
manifolds are quite standard in F-theory sense, but our goal is to explore the extent
of the heterotic/F-theory duality over such manifolds.



Extending the Geometric Tools of Heterotic String
Compactification and Dualities

Mohsen Karkheiran

(GENERAL AUDIENCE ABSTRACT)

String theory is the only physical theory that can lead to self-consistent, effective
quantum gravity theories. However, quantum mechanics restricts the dimension of
the effective spacetime to ten (and eleven) dimensions. Hence, to study the con-
sequences of string theory in four dimensions, one needs to assume the extra six
dimensions are curled into small compact dimensions. Upon this “compactification,”
it has been shown (mainly in the 1990s) that different classes of string theories can
have equivalent four-dimensional physics. Such classes are called dual. The advan-
tage of these dualities is that often they can map perturbative and non-perturbative
limits of these theories. The goal of this dissertation is to explore and extend the
geometric limitations of the duality between heterotic string theory and F-theory.
One of the main tools in this particular duality is the Fourier-Mukai transformation.
In particular, we consider Fourier-Mukai transformations over non-standard geome-
tries. As an application, we study the F-theory dual of a heterotic/heterotic duality
known as target space duality. As another side application, we derive new types
of small instanton transitions in heterotic strings. In the end, we consider F-theory
compactified over particular manifolds that if we consider them as a geometry dual
to a heterotic string, can lead to unexpected consequences.
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Chapter 1

Introduction

1.1 Motivation and overview

Since the 1980s, string theory has been considered as an area of fundamental physics
that possibly could explain our four-dimensional universe. Even though it has been
proven that string theory can provide i) a large family of phenomenological models
for particle physics and cosmology [6, 56, 94, 127, 150], ii) it can be used to study field
theories in various dimensions,1 and iii) has led to important dialogs in mathematics,2
there are still many open questions. During the 1980s and early 1990s, five anomaly
free formulations of string theory in ten dimensions were known [1, 95], Type I
SO(32), Type IIA, Type IIB, Heterotic E8 × E8 and Heterotic SO(32). Some of
these theories were known to be related through so-called “T-duality” [60, 64]. In
1995, E. Witten introduced M-theory in eleven dimensions [111, 115, 157], and it
has been shown that all of the five theories are related to various limits of M-theory
through a chain of dualities.

Almost a year later, C. Vafa introduced F-theory [151], which is a twelve-
dimensional geometric theory. It has been one of the central topics of string theory
studies in the past twelve years. One reason is that various limits of different string
theory models are dual to F-theory compactified over certain complex manifolds.

1The literature on this is really huge, for one of the interesting aspects we refer the reader to
[107].

2This is also a huge field itself, for some interesting aspects the reader can look at [101, 113] for
topological strings and mirror symmetry, and [3] for moonshine.

1



2 Chapter 1. Introduction

In other words, M-theory compactified over a smooth Calabi-Yau manifold X̂m can
be realized as the Coulomb branch of F-theory compactification over the singular
limit of the same Calabi-Yau Xm times a circle S1. At the same time, it can be
considered as the geometrization of the strong coupling limit of type IIB string
theory compactified over Bm−1 (the base of the Calabi-Yau manifold Xm). Also,
if Xm is also a K3 fibration, this F-theory model also has a Heterotic dual model
[131, 132].

Heterotic/F-theory duality has proven to be a robust and useful tool in
the determination of F-theory effective physics as well a remarkable window into
the structure of the string landscape. The seminal work on F-theory [89, 131, 132]
appealed to Heterotic theories, and ever since, many new developments and tools
have been built on or inspired by, the duality. Despite the important role that this
duality has played, however, it has remained at some level limited by the geometric
assumptions that have been frequently placed on the background geometries in both
the Heterotic and F-theory compactifications.

We will relax these geometric assumptions and will try to study the new
consequences and applications Heterotic/F-theory duality in slightly more general
setups. We organized this dissertation as follows.

In chapter 2, we aim to broaden the consideration of background geometry
of manifolds/bundles arising in Heterotic compactifications with an aim towards ex-
tending the validity and understanding of Heterotic/F-theory duality. In particular,
we will focus on elliptically fibered Calabi-Yau geometries arising in Heterotic the-
ories in the context of the so-called Fourier Mukai transforms of vector bundles on
elliptically fibered manifolds (see e.g., [117] for a review).

In the context of Heterotic/F-theory duality, a range of geometries are
possible in the elliptic and K3-fibered manifolds appearing in (1.71) and (1.72) (with
many possible Hodge numbers, Picard groups, etc. appearing). However, thanks to
the work of Nakayama [133], the existence of an elliptic fibration guarantees the
existence of a particular minimal form for the dual CY geometries – the so-called
Weierstrass form in which all reducible components of the fiber not intersecting the
zero-section have been blown down.

It has been argued [151] that from the point of view of F-theory, Weierstrass
models are the natural geometric point in which to consider/define the theory. In
order to make sense of the axio-dilaton from a type IIB perspective, we require the
existence of a section to the elliptic fibration, and for all reducible components of
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fibers not intersecting this zero section to be blown-down to zero size. This choice
provides a unique value of the axio-dilaton for every point in the base geometry.
Once it is further demanded that the torus fibration admits a section, it is guaranteed
that the Weierstrass models are available and obtainable form the originally chosen
geometry via birational morphisms [61].

If the F-theory geometry also admits a K3-fibration, then the choice of
Weierstrass form described above also imposes the expected form of the Heterotic
elliptically fibered geometry in the stable degeneration limit [30, 70, 90]. As a result,
in much of the literature to date, it has simply been assumed that the essential
procedure of Heterotic/F-theory duality must be to place both CY geometries, Xn

and Yn+1 into Weierstrass form from the start.

However, this Weierstrass-centric procedure overlooks the fact that while
the CY manifolds can be naturally transformed into Weierstrass form, the data of a
vector bundle in a Heterotic theory may crucially depend on the geometric features
that are “washed out” in Weierstrass form. In particular, due to a theorem of Shioda,
Tate and Wazir [145, 146, 152], it is known that the space of divisors of an elliptically
fibered CY threefold may be decomposed into the following groups:

1) Pull-backs, π∗(Dα) of divisors, Dα, in the base Bn−1,
2) Rational sections to the elliptic fibration (i.e. elements of the Mordell-Weil group
of Xn), and
3) So-called “fibral divisors” corresponding to reducible components of the fiber (i.e.
vertical divisors not pulled back from the base).

As a result of the above decomposition, it is clear that the topology (i.e.
Chern classes), cohomology (i.e. H∗(X3, V )) and stability structure (i.e. stable
regions within Kähler moduli space) of a stable, holomorphic bundle V on an el-
liptically fibered manifold can depend on these “extra” divisors (and elements of
h1,1(X3)) which are not present in Weierstrass form. In addition, if Xn contains
either a higher rank Mordell-Weil group or fibral divisors, the associated Weierstrass
model is singular, leading to natural questions as to how to interpret the data of gauge
fields/vector bundles over such spaces. As a result, in the processing of attempting
to map the Heterotic CY manifold into Weierstrass form, important topological and
quasi-topological information – and its ensuing physical consequences – could be lost.

It is the goal of this work to investigate Fourier-Mukai transforms of vector
bundles over elliptically fibered manifolds not in Weierstrass form as a necessary first
step in extending Heterotic/F-theory duality beyond the form considered in [89].
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The key results of this work include:

• A generalization of the topological formulae for bundles described by smooth
spectral covers to the case of Calabi-Yau threefolds involving fibral divisors
and multiple sections (i.e., a higher rank Mordell-Weil group associated to the
elliptic fibration).

• We generalize the available computational tools to explicitly construct the
Fourier-Mukai transforms of vector bundles on elliptically fibered geometries.
That is, given an explicit vector bundle constructed on an elliptic threefold
(for example, built using the monad construction or as an extension bundle),
we provide an algorithm to produce the spectral data (a key ingredient in de-
termining an explicit F-theory dual of a chosen Heterotic background). This
extends/generalizes important prior work in this area [36, 67, 122].

• We apply the generalized results for spectral cover bundles to the particular
application of so-called “small instanton transitions” in Heterotic theories (i.e.,
M5-brane/fixed plane transitions in the language of Heterotic M-theory [111]).
We find more general transitions possible than those previously cataloged in
[135].

In chapter 3 work, we aim to explore the consequences of a conjectured du-
ality between Heterotic string theories, i.e., the so-called target space duality (TSD)
in the context of yet another duality – that between Heterotic string compactifica-
tions and F-theory. As has been observed since the first investigations into TSD
[41, 52], this non-trivial duality of distinct Heterotic backgrounds could potentially
also lead to an entirely new duality structure within F-theory. Since Heterotic and
F-theory vacua consist of two of the most promising frameworks for string model
building within 4-dimensional string compactifications, it makes sense to search for
such novel and unexplored dualities to better understand redundancies within the
space of such theories. In addition, if new dualities exist, they could also provide
deep insights into the structure of the effective physics, or perhaps even new com-
putational tools (as has manifestly proved to be the case with mirror symmetry in
Type II compactifications of string theory, see e.g., [112]).

Heterotic target space duality was first observed in [65] and further explored
in [5, 40, 41, 42, 140]. The basic premise is simple to state: two distinct (0, 2) GLSMs3

sharing a non-geometric (i.e., Landau-Ginzburg or Hybrid) phase can be found to
3(0, 2) GLSMs are two dimensional linear (canonical kinetic term) gauge theories with (0, 2)
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have apparently identical 4-dimensional, N = 1 target space theories. In these
cases, the GLSMs are distinct, and the geometric phases of the two theories lead to
manifestly different Calabi-Yau manifolds and vector bundles over them. However,
the ensuing 4-dimensional theories, arising as large volume compactifications of the
E8×E8 Heterotic string, contain at least the same gauge symmetry and 4-dimensional
massless particle spectrum. Although not yet understood as a true string duality,
this phenomenon has been referred to as (0,2) Target Space Duality (TSD) [65]. A
more recent “landscape” survey of such theories [42, 140] showed that it is not just
in special cases that such dualities can occur, but rather the vast majority of (0, 2)
GLSMs contain non-geometric phases that can be linked to other (0, 2) GLSMs in this
way. Moreover, recent work [5] demonstrated that in some cases, TSD also seems
to preserve the form of non-trivial D- and F-term potentials of the 4-dimensional
theory to a remarkable degree.

In chapter 4 we consider the geometry of K3-fibered Calabi-Yau manifolds
in compactifications of F-theory [35, 89, 90, 131, 132]. As mentioned, and will be
reviewed in some detail later, within the context of F-theory, the (n+1)-dimensional
Calabi-Yau compactification geometry, Yn+1 is constrained to be elliptically fibered.
That is, there exists a surjective map πf : Yn+1 → Bn with elliptic fiber, E. Moreover,
in the case that the geometry is also compatibly K3-fibered over a base Bn−1, the
base to the elliptic fibration must be P1-fibered and the following relationships hold:

Yn+1 Bn

Bn−1 Bn−1

K3

E

P1 (1.1)

Given a K3-fibered manifold as shown above, the effective physics of F-theory com-
pactified on Yn+1 is known to be dual to that of the E8 × E8 Heterotic string com-
pactified on an elliptically fibered Calabi-Yau n-fold, πh : Xn → Bn−1, where the
base to the Heterotic elliptic fibration is the same as the base to the K3 fibration
shown above.

Heterotic/F-theory duality has long been a useful tool in the study of the
resulting effective theories and has been extensively studied. Moreover, the structure
of the base geometry to the F-theory elliptic fibration shown in (3.42) above – namely
that Bn is a P1-fibration – has proven to be a tractable starting point in efforts to
classify possible base manifolds for elliptically fibered Calabi-Yau 4-folds [7, 89, 103].
supersymmetry, which can have various phases. In some phases, it becomes a Landau-Ginzburg
model, in other phases, its vacuum configuration becomes a Calabi-Yau manifold (geometric phase).
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The goal of chapter 4 is to generalize the construction of elliptically fibered
Calabi-Yau manifolds with a P1-fibered base considered in the literature to date and
to study their consequences for Heterotic/F-theory duality. To begin, it is important
to note that P1-fibrations can be simply divided into two classes:

• Those that are nowhere degenerate (i.e. P1-fibrations that are in fact P1-
bundles) and

• Those that do degenerate over a higher co-dimensional discriminant locus.

1.2 Heterotic string compactification

In this section, we review the ten-dimensional Heterotic supergravity, derived as the
effective theory of the ten-dimensional Heterotic string theory. Then we focus on the
dimensional reduction of this theory over Calabi-Yau manifolds.

The ten-dimensional field theory we are considering is a N = 1 supergravity
coupled to a Yang-Mills theory. The bosonic field content of this theory consists of
the metric gµν , the two form field Bµν , dilaton scalar Φ and the gauge fields Aµ with
a gauge group G. The (minimal) Lagrangian of this theory, in string frame, up to
the first order of α′ is given by [126],

S10 ≃
1

2κ210

∫
M10

√
−ge−2ϕ

[
R + 4(∂φ)2 − 1

2
H2 +

α′

4
trR2 − α′

4
trF 2 + . . .

]
+ (Fermionic Terms) (1.2)

where the field H, which usually defined as H = dB, have to be modified when one
couples the supergravity theory to the super Yang-Mill theory,

H = dB − α′

4

(
ωYM3 − ωL3

)
, (1.3)

where ωYM3 is the Chern-Simons three form with the property dωYM3 ∼ tr(F ∧ F ),

ωYM3 = tr

(
A ∧ F − 1

4
gYMA ∧ A ∧ A

)
. (1.4)

Similarly, one can define a corresponding Chern-Simons term for the Lorentz spin
connection.
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Due to the existence of chiral fermions, this ten-dimensional field theory
is generally anomalous. The source of the anomaly is coming from hexagonal loops
of chiral fermions, where the six external legs can all be gravitons (gravitational
anomaly), or all gauge fields (gauge anomaly), or a mixture of them (mixed anomaly).
It turns out that if one adds a nonminimal term to the above Lagrangian of the form

α′2
∫
M10

B ∧X8, (1.5)

where X8 is a degree four polynomial in terms of F and R two-forms. Note that this
term is the second order in α′. The addition of such terms can be justified if one
considers the Heterotic supergravity as effective theory of Heterotic strings. After
adding this term, it turns out that anomaly can be canceled only if the dimension
of the gauge group G is 496. Also, the field strength must satisfy a certain group
theoretical conditions [96]. The only solutions are G = SO(32) and G = E8 × E8.

One can also reach the same conclusion about G from the string worldsheet
theory. From this view, in order to have an N = 1 superstring theory coupled with
the Yang-Mills theory, one needs, in addition to the ten bosonic fields corresponding
to the coordinates of M10, to have sixteen right moving bosons over the worldsheet
with values inside an even self-dual lattice. The number sixteen comes from the
conformal anomaly on the worldsheet, and the properties of the sixteen-dimensional
lattice are the result of the modular invariance of the torus partition functions [93].

Finally, to have an N = 1 theory, every correlation function < · · · > must
be invariant under supersymmetry variations,

δϵ < · · · >= 0. (1.6)

In particular, this requires the following equations of motions [96],

0 = δψM =
1

κ
DMε+

1

8
√
3κ
e−ϕ

(
ΓM

NPQ − 9δNMΓPQ
)
εHNPQ, (1.7)

0 = δχa = − 1

2
√
2g
e−

ϕ
2ΓMNF a

MNε, (1.8)

0 = δλ = − 1√
2
(Γ · ∂φ) ε+ 1

4
√
6κ
e−ϕΓMNP εHMNP , (1.9)

where ε is 16-component, 10-dimensional (Majorana-Weyl) spinor parameterizing the
supersymmetry transformations. For the moment, we assume H = 0, and let φ to



8 Chapter 1. Introduction

be constant. So the equations of motion reduce to,

0 = δψM =
1

κ
DMε, (1.10)

0 = δχa = ΓMNF a
MNε, (1.11)

0 = δλ. (1.12)

Now, the purpose is to compactify the ten-dimensional space on a compact manifold
Md,

M10 = Xd ×M10−d. (1.13)

The equations of motion mentioned above imply Md must be a complex and Kahler
manifold. To see this, note that we can construct the Kahler and the almost complex
structure as follows

Jij̄ = ε̄Γij̄ε, (1.14)
J ij = gīiJīj. (1.15)

Since ε is a covariantly constant spinor, DMε = 0

dJ = Dε̄Γε+ ε̄ΓDε = 0. (1.16)

In addition, one can show J ij satisfies the Nijenhuis tensor condition [96], so it must
be a complex structure. Therefore Xd is a complex Kahler manifold, in particular
the (real) dimension d must be even, d = 2n, and the structure group of the manifold
reduces from SO(d) to U(n). Furthermore, since ε is covariantly constant, the holon-
omy group of the manifold must be contained in SU(n) [48, 96]. This is satisfied
if and only if the manifold M2n has vanishing first Chern class i.e., it is Ricci flat.
Such manifolds are called Calabi-Yau [159].

The equation DMε = 0 also implies the effective non-compact spacetime
M10−2n must be flat. To see this choose M to be a direction tangent to M10−2n (we
denote them by greek letters µ, ν, etc.). Then

Γµν [Dµ, Dν ]ε = 0⇒ R10−2n = 0. (1.17)

The only maximally symmetric flat space is the Minkowski space. To sum-
marize, M2n must be a Calabi-Yau manifold, and the effective spacetime must be
Minkowski.
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Finally, let us see what the second equation of motion implies about the
gauge fields living over the Calabi-Yau n-fold Xn. One can use the definitions in
(1.15) to show that the equation of motion ΓMNFMNε = 0 is equivalent to the
following conditions (Hermitian Yang-Mills equation),

Fab = Fāb̄ = 0, (1.18)
gab̄Fab̄ = 0. (1.19)

These equations are tough to solve. However, we can identify F with the curvature
of a vector bundle over Xn. The first equation means that the connection of the
vector bundle is holomorphic, and the second equation one means the vector bundle
is stable [85, 96, 149] (see Appendix A for definitions). These conditions (stability
and holomorphicity) are of algebraic geometric nature rather than being differential
equations, and they are easier to check.

The Bianchi identity of the field H (1.3), gives another (topological) con-
straint,

dH =
α′

4
(trF ∧ F − trR ∧R) .

Taking the cohomology of both sides,

[trF ∧ F ]− [trR ∧R] = 0. (1.20)

But ch2(V ) = 1
4π2 [trF ∧ F ], so we can write the above equation as,

ch2(V )− ch2(Xn) = 0. (1.21)

To summarize, to compactify the Heterotic string over Calabi-Yau n-fold Xn, we
need to define a holomorphic stable vector bundle over Xn subject to the topological
constraint (1.21) to cancel the anomaly. Note that in case of the E8 × E8 Heterotic
string the vector bundle V is a direct sum of two bundles V1 ⊕ V2, one bundle for
each E8. The equation (1.21) becomes,

ch2(V1) + ch2(V2)− ch2(Xn) = 0. (1.22)

1.3 Heterotic M-theory

What has briefly explained in the last section was true only in the limit of the
weak string coupling gs → 0. The strong coupling limit can be realized as an M-
theory setup compactified on a manifold with a boundary [115]. More precisely,
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the idea is to consider M-theory on an eleven (real) dimensional manifold of the
form M11 = M10 × S1/Z2. If S1 is a circle of radius R, and parameterized with
x11 ∈ [0, 2πR), then Z2 acts as x11 → −x11. So there are two fixed points at x11 = 0
and x11 = πR.

The low energy limit of M-theory is an eleven-dimensional N = 1 super-
gravity theory. The supergravity multiplet consists of the graviton gµν , three-form
field Cµνρ, and gravitino ψµ (which is a spin 3/2 Rarita-Schwinger field). There are
also solitonic solutions to the field equations which correspond to a two-dimensional
brane (M2-brane) and a five-dimensional brane (M5-brane), and the three form field
couples to them electrically and magnetically respectively.

As usual, one needs to check whether the effective theory is anomaly free.
Anomalies4 can be traced back to loop diagrams with chiral fermions inside the loop,
where the regularization methods can ruin the symmetries of the theory. So as long
as M11 is smooth, the eleven-dimensional supergravity is anomaly free (there are
not any chiral fermions in eleven dimensions). However for the case considered here,
there are singularities over the fixed hyperplanes x11 = 0 and x11 = πR (which are
isomorphic to M10), and Kaluza Klein reduction of ψµ induces massless chiral spin
3/2 fields in the ten-dimensional fixed hyperplanes (which are gravitinos in M10). So,
in principle, there are gravitational anomalies due to these reduced ten-dimensional
degrees of freedom over x11 = 0, πR [115].

To cancel the anomaly, one can use a generalized version of the Green-
Schwarz mechanism [115]. In other words, note that the three-form field induces
two-form B fields inside the fixed hyperplanes,5

B′
µν := C11µν |x11=0,

B′′
µν := C11µν |x11=πR. (1.23)

The purpose is to use the nonminimal coupling of these two-form fields (as in ten-
dimensional string theory), to cancel the gravitational anomaly. But, this is impos-
sible unless we couple the induced ten-dimensional supergravity theories with super
Yang-Mills theories i.e., we need to consider gauge degrees of freedom (vector multi-
plets) only over the fixed hyperplanes. One can think of these as something similar
to the twisted sector states that show up in the ordinary orbifold compactification
of string theory [115].

4We only consider local anomalies.
5Note that one cannot have a three-form inside M10 since a three-form with all legs inside M10

is odd under the orbifold action x11 → −x11 [115].
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Again, similar to the ten-dimensional Heterotic string, the Green-Schwarz
mechanism works only when the gauge group is 496 dimensional. Since the gauge de-
grees of freedom must be distributed evenly between the fixed hyperplanes, the gauge
group in each hyperplane must be 248 dimensional. Therefore in each hyperplane,
we must have a E8 theory.

Furthermore, as in the perturbative theory, to have N = 1 supersymme-
try in each hyperplane, the three form fields strengths of B′, B′′ must be modified.
Consequently, the four-form field strength (G) of the three-form field in eleven di-
mensions must be modified,

G11µνρ = (dC)11µνρ + 4
√
2π(

κ

4π
)2/3

[
δ(x11)

(
ω1
3Y −

1

2
ω3L

)
µνρ

+ δ(x11 − πR)
(
ω2
3Y −

1

2
ω3L

)
µνρ

]
, (1.24)

where ω3L is the Lorentz Chern-Simons three-form of M10, ω1,2
3Y are the Chern-Simons

three-forms which correspond to the gauge fields in the fixed hyperplanes, and κ is
the eleven-dimensional Newton constant. The Bianchi identity becomes,

(dG)11µνργ = 4
√
2π(

κ

4π
)2/3

[
−δ(x11)

(
tr(F 1 ∧ F 1)− 1

2
tr(R ∧R)

)
µνργ

− δ(x11 − πR)
(
tr(F 2 ∧ F 2)− 1

2
tr(R ∧R)

)
µνργ

]
. (1.25)

After integrating over x11 one get the same equation as (1.22). So it seems the M-
theory set up considered above, has the same degrees of freedom as the Heterotic
E8×E8 string theory. By comparing the effective theory of Heterotic E8×E8 string
with the eleven-dimensional M-theory set up, one can identify R (the radius of S1)
with the Heterotic string coupling [157]. So when R is large, this M-theory set up,
which we call Heterotic M-theory, can be identified with the strong coupling limit of
the Heterotic E8 × E8.

Before continuing to F-theory, since later we explore some new features of
small instanton transitions, we should also review the effect of M5-branes in Heterotic
M-theory. As mentioned before, M5-branes are magnetic sources of the three-form
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field.6 This means if there are k M5-branes located at points x111, . . . , xk11,7 then the
Bianchi identity must be modified to [126],

(dG)11µνργ = 4
√
2π
( κ
4π

)2/3(
−δ (x11)

(
tr
(
F 1 ∧ F 1

)
− 1

2
tr (R ∧R)

)
µνργ

− δ (x11 − πR)
(
tr
(
F 2 ∧ F 2

)
− 1

2
tr (R ∧R)

)
µνργ

)

+
1

2

k∑
i=1

[
J iµνργ

(
δ
(
x11 − xi11

)
+ δ

(
x11 + xi11

))]
, (1.26)

where J i’s are four-forms dual to (complex) codimension two cycles in M10 which we
denote as [Wi]. This means the anomaly condition (1.22) becomes

c2(V1) + c2(V2) +
k∑
i=1

[Wi]− c2(X) = 0. (1.27)

In addition, the M2-branes that are stretched between these M5-branes, or between
M5-branes and fixed hyperplanes at x11 = 0, πR, appear as strings in the worldvol-
ume of M5-branes. Since the tensions of these strings are proportional to the distance
of these M5-branes (or between M5-branes and the fixed hyperplanes), when these
distances approach zero, the six-dimensional worldvolume theory will be a N = (1, 0)
SCFT which contains non-perturbative tensionless strings [107].

1.4 F-theory compactification

There are many ways to “define” F-theory. As mentioned above, it can be defined
as a limit of M-theory or as the strong coupling limit of type IIB string theory. Here
we don’t go through all the details; instead, we briefly mention the basics and then
focus on the properties that are most relevant to the duality between Heterotic and
F-theory.

6We should also mention in the effective Heterotic string theory, these M5-branes correspond to
magnetic sources of the two-form field B. Such sources are called NS5 branes in the ten-dimensional
string theory context.

7M5-branes cannot wrap around S1/Z2, because it is inconsistent with the symmetry of the
three-form filed under the orbifold symmetry.
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1.4.1 F-theory as the strong limit of type IIB string theory

We begin by recalling the massless bosonic field content of type IIB:

Supergravity: Bµν , gµν , φ,

RR fields: C0, C2, C
+
4 ,

where B is the Kalb-Ramond 2-form, g is the metric, and φ is the dilaton. On the
other hand, C0, C2 and C+

4 are the Ramond-Ramond scalar, 2-form and the self dual
four form respectively.8 Due to supergravity, there are also fermionic superpartners of
these fields, which include two gravitinos and two dilatinos, which we don’t mention
here. Generally, there are D1 and D3 branes which couple electrically to C2 and
C+

4 respectively, and D5 and D7 branes which couple magnetically to C2 and C0

respectively.9

The action of these effective fields (in Einstein frame) is given by [138, 144],

SIIB =
1

2κ210

∫
d10x(−g)1/2

(
R− ∂µτ̄ ∂

µτ

2(Imτ)2
− Mij

2
F i
3 · F

j
3 −

1

4
F̃5 ∧ ∗F̃5

)
− εij
8κ210

∫
C4 ∧ F i

3 ∧ F
j
3 , (1.28)

where

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3, (1.29)

M =
1

Imτ

(
|τ |2 −Reτ
−Reτ 1

)
, (1.30)

τ = C0 + ie−Φ, F 1
3 = F3, F 1

3 = H3. (1.31)
(1.32)

The important property of this action is the manifest SL(2,Z) symmetry 10 defined
8C+

4 has self dual field strength, i.e. ∗dC+
4 = dC+

4 .
9In case that there are D9 branes, one needs a stack of O9-planes to cancel the charge of the D9

branes (i.e., tadpole cancellation), this leads to the type I string theory. We are not going to deal
with such situations in the following.

10The symmetry of this action is SL(2,R). However, the symmetry of the full non-perturbative
type IIB string theory is SL(2,Z). To extend this symmetry to the fermionic fields, we need to lift
this to MP (2,Z) [136].
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in the following way, (
C2

B2

)
→
(
a b
c d

)(
C2

B2

)
, (1.33)

τ → aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z). (1.34)

The rest of the bosonic fields remain invariant.

We briefly list some of the important consequences of this symmetry.

1. The string coupling is defined as gs = eΦ. This means under the transformation
τ → aτ+b

cτ+d
the string coupling can change generally.

2. The two forms B2 and C2 couple electrically to the fundamental and D1-brane,
respectively. Therefore the SL(2,Z) symmetry mixes the two forms into a lin-
ear combination pB2 + qC2, and the corresponding string that couples electri-
cally to this mixed two form is neither the fundamental string nor the D1-brane.
Instead, it is a general (p, q)-string, which is a BPS string for coprime (p, q)
[158].

3. The two form pB2 + qC2 and the scalar τ also magnetically couple to (p, q) 5-
branes and 7-branes respectively. Such branes induce a SL(2,Z) monodromy
on strings, and it can be shown that a (p, q) string is invariant under the
monodromy of (p, q)-branes [154].

Now we arrive at the main point, F-theory. F-theory is a way to compactify
the type IIB theory on a sphere S2 to derive an effective eight-dimensional N = 1
theory. This means we demand the ten-dimensional spacetime manifold for type IIB
string must be a product,

M10 =M2 × R1,7, M2 ≃ S2. (1.35)

Note that without turning on the two forms, self-dual four forms and/or scalars, i.e.,
without including the branes, the metric of the manifold M2 has to be Ricci flat. But
S2 is not. Hence, one must include (p, q)-branes. In F-theory, the two forms fields
B2 and C2 are frozen to zero on S2, to get a SL(2,Z) invariant solution. Then the
only other option is to include the (p, q) 7-branes. Moreover, the Poincare symmetry
in R1,7 should remain unbroken, so the 7-branes must fill the noncompact spacetime
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i.e., they are point-like sources from the view of the internal space S2. It can be
shown that τ satisfies the following equation of motion [97],

∂̄∂τ +
∂̄τ∂τ

τ̄ − τ
= 0, (1.36)

and the most general solution of this is of the form,

j(τ(z)) =
P (z)

Q(z)
, (1.37)

where z is the complex coordinate on S2, P and Q are holomorphic functions of z,
and j is the Jacobian function that maps the fundamental domain of the SL(2,Z)
to the sphere. For example in the case P ∼ z and Q = 1, one can see in the limit
|z| → 0,

τ(z)→ lnz

2πi
. (1.38)

In particular, as arg(z)→ arg(z)+2π, the axiodilaton field τ changes as τ → τ +1.
By comparing with the general SL(2,Z) monodromy of τ , we see that the source
sitting at z = 0, must be a (1, 0) 7-brane, in another words a D7-brane.

It is also shown in [97] that, far away from z = 0, the metric takes the form
(z̄z)−1/12dz̄dz, and hence there will be a deficit angle 11 −π

6
. To have a compact

solution, the total deficit angle must be 4π. So one needs to include 24 separate
7-branes.

1.4.2 Elliptic fibration

Since the axio-dilation field τ has all of the properties of the complex structure of
a torus, the idea of F-theory [151] to study all such solutions is to lift the internal
space S2 to an elliptic fibration over S2. In other words, we consider a twelve-
dimensional theory compactified over a four-dimensional (two complex dimension)
space X2 which admits an elliptic fibration, i.e. a map like

π : X2 −→ S2 ≃ CP1, (1.39)
11To see this, [97] change the variable to v = Z1−1/12, so the metric will be flat in v coordinate.

But as z → e2πz, v transforms as v → e−
π
6 v. So there is a deficit angle −π/6 for each D7-brane.
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where the fibers of π are elliptic curves (torus), and the complex structure of these
curves are identified with the field τ .

There are many ways to define an elliptically fibered manifold, but one of
them, the so-called Weierstrass model, is particularly important. Since any ellip-
tically fibered manifold with a section is birationally equivalent to the Weierstrass
model. So we briefly explain it here.

A Weierstrass model defined as a hypersurface in an ambient space as,

A := P
(
L3 ⊕ L2 ⊕OP 1

)
, (1.40)

where L is a line bundle over P1 ≃ S2, and therefore A is a fibration of the weighted
homogeneous projective space WCP3,2,1.12 The coordinates of the fiber are given by
(y, x, z), and the elliptic fibration is defined by,

y2 + x3 + f(u, v)xz4 + g(u, v)z6 = 0, (1.41)

where (u, v) are coordinates of the base manifold P1, and the polynomials f and g
are global sections of H0(P1,L4) and H0(P1,L6). There is a holomorphic one form
Ω1 associated to the elliptic curves defined in this way,

Ω1 =
dx

y
, (1.42)

and the complex structure of the fibers is defined as,

τ =

∫
A
Ω1∫

B
Ω1

, (1.43)

where A and B are the independent 1-cycles of the torus. Generically the elliptic
fibers are smooth, and the singular locus can be found by the discriminant of the
defining (degree three) equation,

∆ := 4f 3 + 27g2 = 0. (1.44)

Finally one can show,

j(τ(u, v)) ∼ f 3

∆
. (1.45)

12We denote will this space as P321 in the rest of this dissertation.
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We see that over the singularity locus ∆ = 0, the complex structure τ goes to infinity.
In addition, assuming the zeros of ∆ are of order one, one can see that locally around
one of the zeros, τ behaves in the same way as the axio-dilaton fields around a D7-
brane mentioned before. Hence we must identify the zeros of the discriminant ∆ = 0
with the 7-branes, and since we must have 24 7-branes, the degree of ∆ must be 24
too. So f must be degree 8, and g must be degree 12. With these properties, one
can easily show that X2 must be a K3 i.e., a complex, Kähler surface with holonomy
inside SU(2).

However, since the total monodromy due to the 7-branes are zero, we see
even though every 7-brane locally behaves as a D7-brane, globally, not all of them
can be D7-brane, rather they should be general (p, q) 7-branes. Therefore n reaches
a condensate state of 7-branes [151].

Since every singular fiber of X2 corresponds to a 7-brane, one may expect
that the effective eight-dimensional gauge theory must be U(1)24. But note that
there are scalars on the world-volume of the 7-branes which are charged under the
U(1) in the world-volume, and their vev controls the fluctuations of the 7-brane in
the normal directions. The global reparameterization symmetry of the sphere S2 is
SL(2,C), and using this one can fix the position of three 7-branes i.e., fix the vev of
six real scalar field, which Higgs, the gauge group down to U(1)18. In addition, the
Kaluza-Klein reduction of the metric (remember we turned off the two form fields
inside the sphere S2) gives another U(1)2 which can be interpreted as the overall
(rigid) shift of the 7-branes center of mass position inside the S2. Consequently, the
effective gauge group is 13 U(1)20.

One may expect that, as in the perturbative D-brane setups, in the limit
that several 7-brane coincide, the effective gauge group enhances to a non-abelian
group. Indeed, due to the existence of (p, q) BPS strings, one can show it is possible to
have setups of coincident 7-brane stacks, that their eight-dimensional world-volume
theory corresponds to N = 1 super Yang-Mills theory with general ADE group14 [92].
One can also compute the monodromy of strings around such stack of 7-branes and
compare it with the monodromy of the vanishing 1-cycles of the elliptic fibers [63],
and conclude that a stack of 7-branes with an ADE gauge group corresponds to a K3
manifold with ADE singularity.15 This means by classifying the possible singularities

13The reduction of U(1)24 to U(1)18 is the sign of the fact that we have a condensate state of
7-branes, rather than 24 independent 7-branes [151].

14Note that in perturbative type IIB theory one can only get SO(n), Sp(n) and SU(n) gauge
groups, while in F-theory we can every ADE gauge group.

15By ADE singularity we mean a type of singularity such that after blowing up (replacing the
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ord(f) ord(g) ord(∆) Singularity Gauge Group
≥ 0 ≥ 0 0 none none
0 0 n An−1 SU(n)
≥ 1 1 2 none none
1 ≥ 2 3 A1 SU(2)
≥ 2 2 4 A2 SU(3)
2 3 n+ 6 Dn+4 SO(2n+ 8)
≥ 2 ≥ 3 6 D4 SO(8)
≥ 3 4 8 E6 E6

≥ 3 5 9 E7 E7

≥ 4 5 10 E8 E8

Table 1.1: Kodaira classification of singularities of elliptically fibered K3.

of K3 surfaces we can classify all of the possible (from type IIB theories) eight-
dimensional N = 1 supergravity theories with ADE gauge groups! The singularities
of K3 were classified by Kodaira in the 1960s [119, 120].

1.4.3 Compactifying to lower dimensions.

It is possible to compactify F-theory to lower dimensions either by fibering the K3
over another manifold (this is the case that generally relates to Heterotic string
theory) or by compactifying over the more general elliptically fibered manifold. In
either case, the manifold on which we compactify F-theory, must be Calabi-Yau and
elliptically fibered (or at least genus one fibration),16

π : Xn+1 −→ Bn, (1.46)

where n is the (complex) dimension of the base. The reason that Xn+1 must be a
Calabi-Yau manifold can be seen either by the supersymmetry requirement of the
dual M-theory (which is explained later) or by studying the anomaly as before [141].
Again similar to the eight dimensional case, elliptic fibers becomes singular over
a complex codimension one locus (divisors) in the base, and the singularity type

singularity with 2-cycles), the intersection form of the cycles becomes negative of the Cartan matrix
of ADE Lie Groups.

16It is not necessary to require the elliptic fibration to have a section, we can rather work with
genus one fibration. By section we mean an inclusion σ : Bn ↪→ Xn+1, such that π ◦ σ = idBn

.
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determines the gauge group in the effective theory. However, there are some novel
features that can appear in lower dimensions.

• First of all, in this case the 7-branes wrap around the divisors in Bn, and
gauge fields can live over divisors that can reduce the effective gauge group
to something “smaller.” As is explained later, information about these fields is
necessary to “count” the zero modes [33, 37]. We will briefly explain this in
the following subsection.

• Second, the divisors can intersect, and over the intersection locus (i.e., over the
intersection locus of 7-branes) matter fields live as in the case of intersection
D-branes [33, 35]. Again the information about gauge fields living over the
divisors is necessary to count the number of various matter fields in the effective
theory. Also, if n ≥ 3, it is possible to have triple self-intersections in the
discriminant, and such things correspond to Yukawa couplings in the effective
theory.

• Third, it is possible to have non-trivial Mordel-Weil group, genus one fibra-
tion, or torsional section,17 which respectively corresponds to extra U(1) gauge
groups, discrete groups, or dividing the gauge with a discrete group in the
effective theory [28, 44, 98].

• Fourth, it is also possible to have monodromy around the singularity locus that
can reduce the effective gauge group to some non-simply laced gauge group [37].

1.4.4 Higgs bundle

In this subsection, we briefly describe the fields living over the divisors following
[33], since they are more relevant to the main topic of this dissertation. To make the
connection between the geometrical features of the Calabi-Yau compactification of
F-theory and the (lower-dimensional) effective field theories inside the world-volume
of 7-branes, [33] considered a local Calabi-Yau compactification. In other words, it is
possible to first consider a compact elliptically fibered Calabi-Yau Xn+1 (n ≥ 2) with
discriminant locus ∆ ⊂ Bn which the 7-branes wrap. The purpose here is to “zoom”
on these 7-branes, such that we only consider a C2 patch of the normal directions.
The Calabi-Yau condition and the ADE singularity, require the C2 fiber over ∆ to be

17A torsional section is a divisor σt in Xn+1 such that it intersects every fiber once. However, it
is a torsion element of the Mordel-Weil group.
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a non-compact K3 with ADE singularity [33] (note that ∆ is still a compact, Kahler
n− 1 dimensional manifold).

An y2 = x2 + zn+1

Dn y2 = x2z + zn−1

E6 y2 = x3 + z4

E7 y2 = x3 + xz3

E8 y2 = x3 + z5

Table 1.2: Algebraic equations of non-compact K3 with ADE singularities.

To get a non-compact Calabi-Yau manifold, one can fiber the non-compact
K3 in table 1.2 over a complex Kahler manifold S. Demanding that the total space
be Calabi-Yau, requires the affine coordinates (x, y, z) to be fibers of line bundles
(Ka

S, K
b
S, K

c
S) for particular rational numbers (a, b, c). For more details, look at [33]

and references there. Since Xn+1 is non-compact (i.e., infinite volume), the gravity
is decoupled in the effective theory. But ∆ is still compact, and therefore there are
still dynamical modes inside the 7-branes wrapping on ∆.

Let us begin by recalling the massless modes inside a 7-branes worldvolume
(N = 2 super Yang-Mills theory on R1,7) first. The symmetries are SO(1, 7) Lorentz
group, U(1) R-symmetry, and gauge symmetry. The super Yang-Mills multiplet
consists of a gauge field A, two complex scalar fields φ, φ̄ with opposite U(1) charge
±1 (corresponding to the fluctuations of the 7-brane in the normal directions to
the worldvolume), and finally two adjoint spinors ψ± with opposite chirality and
opposite U(1) charges ±1

2
. Similarly, the supersymmetry generators Q± transform

in the same way as the spinors. Upon compactification of this eight-dimensional
space over the complex Kahler surface S := ∆ = 0, the Lorentz group breaks as
SO(1, 7)→ SO(1, 3)⊗SO(4), where SO(4) ≃ SU(2)⊗ SU(2) is the structure group
of S viewed as an orientable, Riemannian manifold. The massless modes in the
effective four-dimensional theory are shown in table 1.3.
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Field/SUSY generator U(1) R-Charge Type Rep. under SO(4)× SO(1, 3)
Aµ 0 1-form [(2, 2), (1, 1)]⊕ [(1, 1), (2, 2)]
φ -1 scalar [(1, 1), (1, 1)]
φ̄ 1 scalar [(1, 1), (1, 1)]
ψ+

1
2

Spinor [(2, 1), (2, 1)]⊕ [(1, 2), (1, 2)]
ψ− -1

2
Spinor [(2, 1), (1, 2)]⊕ [(1, 2), (2, 1)]

Q+
1
2

Spinor [(2, 1), (2, 1)]⊕ [(1, 2), (1, 2)]
Q− −1

2
Spinor [(2, 1), (1, 2)]⊕ [(1, 2), (2, 1)]

Table 1.3: Fields and the supercharges of the worldvolume theory of 7-branes.

The idea in [33] was to preserve the effective supersymmetry in four di-
mensions, and we must twist the structure group of S such that only one of the
supersymmetry generators are scalars over S. This can be done by noting that since
S is a Kähler manifold, the structure group reduces to U(2). Hence one can embed
the U(1)R inside the U(2).

Jtop = J ± 2R, (1.47)

where R is the generator of the R-symmetry and J is the center of U(2). One
can choose either plus or minus sign for twisting. Under the reduction of SO(4) ≃
SU(2)× SU(2) to U(2) the representations (2, 1) and (1, 2) break as 20 and 1+⊕ 1−
respectively. Therefore after twisting, fields transform differently under the “new”
Lorentz transformation. We summarize this in the following table (as in [33] we
choose Jtop = J + 2R),

Field/SUSY generator Before twist After Twist Section
Aµ, [(2, 2), (1, 1)] 2+1 ⊗ (1, 1)⊕ 2−1 ⊗ (1, 1) 2+1 ⊗ (1, 1)⊕ 2−1 ⊗ (1, 1) Ω̄1(S)⊗ ad(G)⊕ Ω1(S)⊗ ad(G), Am̄, Am
Aµ, [(1, 1), (2, 2)] 1⊗ (2, 2) 1⊗ (2, 2) ad(G), Aµ
φ, [(1, 1), (1, 1)] 1⊗ (1, 1) 1−2 ⊗ (1, 1) Ω2(S)⊗ ad(G), φmn
φ̄, [(1, 1), (1, 1)] 1⊗ (1, 1) 1+2 ⊗ (1, 1) Ω̄2(S)⊗ ad(G), φ̄m̄n̄
ψ+, [(2, 1), (2, 1)] 20 ⊗ (2, 1) 2+1 ⊗ (2, 1) Ω̄1(S)⊗ ad(G), ψαm̄
ψ+, [(1, 2), (1, 2)] (1+1 ⊕ 1−1)⊗ (1, 2) (1+2 ⊕ 10)⊗ (1, 2) (Ω̄2(S)⊕ 1)⊗ ad(G), ψα̇m̄n̄, ψα̇
ψ−, [(2, 1), (1, 2)] 20 ⊗ (1, 2) 2−1 ⊗ (1, 2) Ω1(S)⊗ ad(G), ψα̇m
ψ−, [(1, 2), (2, 1)] (1+ ⊕ 1−)⊗ (2, 1) (10 ⊕ 1−2)⊗ (2, 1) (1⊕ Ω2(S))⊗ ad(G), ψα, ψαmn

Table 1.4: Representation of the worldsvolume fields before and after the “topologi-
cal” twist.

In particular, the fields φ and φ̄ transform as adjoint valued two forms i.e.,
they are sections of the bundles KS ⊗ ad(G) and K̄S ⊗ ad(G) respectively (where
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KS is the canonical bundle of S, and G is the gauge group living on S). Moreover,
by comparing the various Casimir invariants of φ, and the deformations of the ADE
singularities, one confirms [33] that φ indeed corresponds to the fluctuations of the
7-brane inside Bn. This was, of course, a well-known feature of perturbative D7-
branes.

Finally by considering the BPS equations of the eight-dimensional world-
volume theory over S×R1,3, or equivalently the F-term and the D-term equations of
the effective four-dimensional theory, one finds the equation of motion for the bosons
in the super Yang-Mills multiplet [33], the F-term equation is,

F (0,2) = F (2,0) = 0, (1.48)
∂̄Aφ = ∂Aφ̄ = 0, (1.49)

where ∂A is the covariant derivative with connection A over S. The D-term equations
are,18

ω ∧ F (1,1) +
i

2
[φ, φ̄] = 0, (1.50)

where ω is the Kahler class of S. In the mathematics literature, the doublet (E, φ),
where E is a vector bundle with curvature given by the (1, 1) form F , is called
the Higgs bundle, and the D-term and F-term equations above are analog of the
Hitchin system equation for surfaces [109]. Indeed the F-term equations correspond
to the fact that vector bundle E is a holomorphic bundle, and the D-term equation
means E is a stable bundle [85, 149]. To study the solutions of these equations, [110]
introduced the idea of “abelianization” or the spectral cover construction. Briefly,
the idea is as follows. Since φ transforms as ad(E), one can view the Higgs field as
an element of H2(S,E∗ ⊗ E ⊗ ad(E)) i.e. a rank(E) × rank(E) matrix. Then one
defines the spectral cover Sp as,

Sp = {det (λI − φ) = 0}, (1.51)

where λ = 0 is the zero section of the total space Tot(KS). Note that Π : Sp → S is
a finite morphism of degree rank(E) i.e. it is a cover of S with rank(E) number of
sheets. Now consider a line bundle L on Sp, then it is shown that the pushforward
Π∗L is a vector bundle of rank(E) over the surface S, and it is also both holomorphic

18here it is assumed that the volume of S is large. Otherwise, these equations receive non-
negligible quantum corrections. Also, in the case of intersection 7-branes, these equations have a
source term on the right-hand side.
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and stable, so it satisfies the Hitchin equations. Indeed, one can show Π∗L ≃ E⊗KS.
So it means there is a correspondence,

(E, φ)↔ (Sp,L). (1.52)

We summarize the main physical significance of these Higgs bundles,

• Given a solution (E, φ), one can find the particle spectrum of the effective
theory. For example from the table above, one can see the (fermionic) spectrum
of the effective theory is given by,

H0(S,E)⊕H1(S,E)⊕H2(S,E), (1.53)

which correspond to φα̇, ψαm̄ and ψα̇m̄n̄ respectively.

• In the case of intersecting brane models, the discussion above generalizes, and
one needs explicit information about the flux induced over the intersection
locus to find the matter spectrum of the effective theory, similarly, for Yukawa
couplings (intersection of three branes).

• Suppose the singularity of the Calabi-Yau geometry corresponds to a gauge
group of G0. This means the effective gauge symmetry is G0 only if the back-
ground gauge field in the 7-brane stack is zero, i.e., F = 0 in the Hitchin
equations above. Otherwise, the unbroken gauge group H is the commutant
of the group G inside G0 [14].

One of the main points of this dissertation is to build the tools necessary to study
more general examples (relative to the current examples) of (Sp,L). To do that,
we use the duality between Heterotic string theory and F-theory, and spectral cover
construction of vector bundles.

1.4.5 F-theory as the singular limit of M-theory

Here we briefly review the M-theory “derivation” of F-theory. We don’t use this
picture in this dissertation, but we briefly review it here since it is somewhat more
intuitive. First consider F-theory on Calabi-Yau π : Xn+1 → Bn as before. This
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corresponds to the strong coupling limit of the type IIB on Bn. Then after com-
pactifying over another circle S1, so it is possible to apply T-duality over this circle
[151],

F-theory on Xn+1 × S1 ↔ type IIB on Bn × S1 ↔ type IIA on Bn × S̃1

R ↔ α′

R′ (1.54)

where R and R′ are the radii of the circles. On the other hand, M-theory on a
circle corresponds to the strong coupling limit of the type IIA string theory, where
the string coupling in type IIA is matched with the radius of the M-theory circle,
therefore

M-theory on Bn × S̃1 × S1
M ∼ Bn × T 2 ↔ F-theory on Xn+1 × S1.

In particular, one can generalize Bn×T 2 to an elliptic fibration, and it is shown [144]
that the complex structure of the elliptic fiber on M-theory equals to the complex
structure of the elliptic fiber of Xn+1. However, note that in the decompactification
limit R→∞, the volume of T 2 in M-theory must vanish. Therefore one can consider
F-theory as the limit of the M-theory where the volume of the elliptic fibers vanish.19

Now, let us see where the gauge groups in the effective theory are coming
from. Recall first that M-theory contains a three form C3, which couples magnetically
to M5-branes and electrically couples to M2-branes. Let us assume that M-theory
is compactified over a smooth Calabi-Yau X̂n+1. On the other hand, by Poincare
duality for every divisor (i.e., a complex codimension one cycle) D, there is a corre-
sponding holomorphic two form ω. Then one can expand the three form C3 relative
to ω (see [154] and references there),

C3 = A ∧ ω, (1.55)

where A is a one form in the effective theory.20 On the other hand, since C3 couples
electrically with the M2-brane, one gets the following coupling in the effective theory,∫

WV (M2)

C3 −→
∫
C

ω ×
∫
WL(P )

A ∼ q

∫
WL(P )

A, (1.56)

19Indeed, the volume of the fiber is not a degree of freedom in F-theory.
20Equation of motion of C3 is (in the absence of M2-brane) ∆11C3 = (∆n+1 + ∆9−2n)C3 = 0.

Since ω is a holomorphic form, this means ∂2A = 0. So A is a U(1) gauge field.
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where WV (M2) is just the world-volume of the M2-brane, C is a curve dual to D in
X̂n+1

21 where M2-brane wraps around it. In the effective theory, the wrapped M2-
brane appears as a particle (P) moving one a world-line WL(P ). So the coupling
above shows the corresponding particle in the effective theory is charged under U(1)
with charge q =

∫
C
ω. In addition, the mass of this particle is proportional to the

volume V ol(C).

Now, note that not every gauge field in M-theory corresponds to a gauge
field in F-theory. As mentioned, the effective theory of M-theory is related to the
Kaluza-Klein reduction of the effective theory of F-theory. Therefore the anti-self-
dual two forms in F-theory, that are due to the reduction of the self-dual four forms
over the divisors in Bn can give U(1) gauge fields In M-theory after Kaluza Klein
reduction. Since the self-dual four forums in the IIB theory is related to C3 in type
IIA (and therefore in M-theory), we can see these gauge fields can also give rise by
reducing the C3 on the base divisors. On the other hand, the U(1) gauge fields coming
from the reducing the C3 over the zero-section of X̂n+1, corresponds to Kaluza-Klein
reduction of the metric over S1 [154]. In conclusion, only the divisors that don’t
intersect the zero section, and are not the pullback of a divisor in the base, give rise
to gauge fields in F-theory.

After resolving ADE singularities, the exceptional divisors satisfy the con-
ditions of the last paragraphs, and the effective gauge fields correspond to the Cartan
subalgebra of the ADE Lie algebra. But as mentioned in the type IIB picture, the
effective gauge group must be a non-abelian group dictated by the type of the sin-
gularity. So, where are the non-Cartan generators of the gauge groups. The answer
is since the manifold X̂n+1 is a Calabi-Yau, for every divisor that gives a U(1) in the
effective field theory, there is a dual rational curve (which is a P1) in the fiber, and
therefore the M2-branes can wrap around them. One can check (see [154] and the
references there) the charge of the corresponding states in the effective theory is the
same as the root lattice of the ADE Lie algebras. However, since X̂n+1 is smooth,
the volume of these rational curves are non-zero, so the states corresponding to the
non-Cartan generators are massive in the M-theory limit. On the other hand, since
F-theory is the limit where the volume of the fibers vanishes, these states become
massless, and the gauge group enhances to the full non-abelian group dictated by
the singularity.

21Since X̂n+1 is Calabi-Yau, the space of the 2-cycles and complex codimension one cycles are
isomorphic.
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1.5 Heterotic/F-theory duality

In this section we briefly review the duality between Heterotic E8×E8 string theory
and F-theory.

1.5.1 Basic duality

In [151], the basic duality between Heterotic a torus T 2 and F-theory on an elliptically
fibered K3 was conjectured. Later in [131, 132] for six-dimensional theory, and in
[89] for general situations, the duality was confirmed. Here we review [151].

First, consider the Heterotic string on T 2. By turning on all of the Wilson
lines over the T 2, the Lie algebra breaks into its Cartan subalgebra i.e., U(1)16. On
the other hand, recall, we also have the two forms and metrics. The Kaluza Klein
reduction of these fields gives four other U(1)’s (two from metric and two from the
two-form). So the eight-dimensional effective gauge group is U(1)20. Now recall that
this is precisely the effective gauge group of F-theory on K3. So this is the first sign
of the duality.

Next, consider moduli space of a worldsheet theory (corresponding to Het-
erotic string) on a torus. In this case, one gets a four-dimensional momentum lattice
Γ2,2 [134, 138]. There is also a 16 dimensional negative definite, even, and self-
dual lattice related to the root lattice of the gauge group. These two combine (by
T-duality [39]) into a Γ2,18 lattice. Hence the moduli space of this theory becomes,

O(Γ2,18)\O(2, 18)/O(2)×O(18). (1.57)

On the other hand, it is well known [26] that the complex structure moduli of a
smooth, elliptically fibered K3, is given by the same space. Since the Kahler structure
and complex structure of a K3 are not independent, and the complex structure
controls the position of 7-branes in F-theory (and hence the effective gauge theory),
the moduli space of F-theory on a K3 is again the same space above. This is the
second sign of duality.

Finally, there is one more (real) parameter left in Heterotic, and that one
is the string coupling gs. Note that on the F-theory side also only one parameter
left, which is the volume of the base of the K3 (remember that the volume of the
elliptic fibers vanishes in F-theory). So we must identify the volume of the base P1

of the K3 with the dual Heterotic string coupling constant.
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1.5.2 Stable degeneration and Heterotic/F-theory duality in
eight dimensions

In this section, we restrict ourselves to the E8×E8 gauge theory, and try to elaborate
more on the basic duality of the last subsection by briefly reviewing the methods in
[30, 68, 89]. The advantage of this method is that it makes the connection with
Heterotic M-theory clear. The duality for general elliptically fibered Calabi-Yau’s is
left for the next subsection.

The purpose here is to consider a Weierstrass elliptically fibered K3
π−→ P1,

y2 + x3 + f(u, v)xz4 + g(u, v)z6 = 0,

and fiber this K3 over a disc (a complex affine line) parameterized by a complex
number t to get family of K3 manifolds χ,

K3 χ

D

Π (1.58)

One can demand χ to be a semistable degeneration i.e., the fiber over generic t
Π−1(t) be a smooth K3, but the central fiber can have normal crossing singularity.
This means

Π−1(0) = X0 ∪X1 ∪ · · · ∪XN , (1.59)

where the components Xi’s are all reduced irreducible two-dimensional complex va-
rieties. In addition, we demand that Kχ = 0 (called a Kulikov model [121, 137]).
Both of these conditions can be fulfilled after a series of birational transformations.
So these assumptions are not too restrictive.

We can get a Kulikov model for our elliptically fibered K3 as follows. First,
remember that f and g are degree 8 and 12 polynomials, respectively. So generally,

f = u8f0 + u7vf1 + · · ·+ v8f8, (1.60)
g = u12g0 + u11vg1 + · · ·+ v12g12. (1.61)

We construct an initial fibration χ0 as,

f 0
t = t4u8f0 + t3u7vf1 + · · ·+ u4v4f4 + · · ·+ v8f8, (1.62)
g0t = t6u12g0 + t5u11vg1 + · · ·+ u6v6g6 + · · ·+ v12g12. (1.63)
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Note the terms f4 and higher in f 0
t , and g6 and higher g0t are independent of t.

Obviously, χ0 is not a semistable degeneration. Over a generic point t, we have a
smooth K3t, and over t = 0, we have a highly singular irreducible K3. To get a
semistable degeneration one, apply the following birational transformation,

t→ et, v → ev, (1.64)
x→ e2x, y → e3y. (1.65)

After this birational transformation, the previous locus t = 0 is replaced by t = 0 and
e = 0. Note that the coordinates (u, e) cannot be zero at the same time, similarly
(v, t) have the same property. One gets the new family χ given by the equation,

0 = y2 + x3 + f 1(u, e; v, t)xz4 + g1(u, e; v, t)z6, (1.66)
f 1(u, e; v, t) = t4u8f0 + t3u7vf1 + · · ·+ u4v4f4 + eu3v5f5 + · · ·+ e4v8f8, (1.67)
g1(u, e; v, t) = t6u12g0 + t5u11vg1 + · · ·+ u6v6g6 + eu5v7g7 + · · ·+ e6v12g12.(1.68)

Then we can see over generic point of D, where e · t ̸= 0, the fibers of χ and χ0 are
isomorphic, but the central fiber e · t = 0, replaced by two two-dimensional varieties
e = 0 and t = 0. Over e = 0, one gets,

f 1(1, 0; v, t) = t4f0 + t3vf1 + · · ·+ v4f4, (1.69)
g1(1, 0; v, t) = t6g0 + t5vg1 + · · ·+ v6g6. (1.70)

This the equation of an elliptically fibered surface with c2 = 12 (and of course c1 ̸= 0).
Such surfaces are known as dP9, and they correspond to blowing up P2 at nine points.
In the elliptic fibration language, the ten generating divisors correspond to the anti-
canonical divisor (which is an elliptic curve), the section of the Weierstrass fibration,
and eight other (−1)-curves. The intersection of the generators of the effective cone
is the same as the (negative) Cartan matrix of E8, and their intersections with the
anticanonical divisor corresponds to non-trivial degree zero line bundles over that
elliptic curve. In other words, they correspond to the Wilson lines E8 gauge group
over the elliptic curve. It is well known [89] that the complex structure of the dP9

(keeping the anticanonical divisor fixed) parameterizes the E8 vector bundle moduli
over the corresponding elliptic curve.

Similarly, one can see the locus t = 0 is also a dP9 surface, and the inter-
section e = t = 0 is an elliptic curve given by f4 and g6. Then the duality between
Heterotic E8 × E8 over a torus, and F-theory over K3 is just given by identifying
the complex structure of the elliptic curve e = t = 0 with the complex structure of
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the torus in Heterotic string, and the complex structure of each dP9’s (leaving the
elliptic curve fixed) are identified by the moduli space of either E8’s of Heterotic on
the torus [89].

Note that this picture is very similar to that of Heterotic M-theory, and this
is not an accident [131, 131]. By comparing the original of the K3 (1.60) with the
central fiber of the family χ, one notes the e = t = 0 corresponds to the limit where
fi for i ̸= 4 and gi for i ̸= 6 vanish. Intuitively this corresponds to stretching the
base P1 of the original K3. In this limit, one gets E8 singularities over each end of
the P1. By identifying the volume of the base in this limit with the radius of S1/Z2,
the authors of [131, 131] get to the Heterotic M-theory picture.

1.5.3 Heterotic/F-theory duality in lower dimensions

In this subsection, we briefly review the generalization of the eight-dimensional dual-
ity mentioned before. The technical details are left for the next chapter. Consider the
compactifications of the E8×E8 Heterotic theory on an elliptically fibered Calabi-Yau
n-fold,

πh : Xn
E−→ Bn−1 . (1.71)

This will lead to the same effective physics as F-theory compactifications on a K3-
fibered Calabi-Yau n+ 1-fold,

πf : Yn+1
K3−→ Bn−1 . (1.72)

Here the base manifold Bn−1 appearing in (1.71) and (1.72) is the same Kähler man-
ifold (thus inducing a duality fiber by fiber over the base from the 8-dimensional
correspondence of [151]). Within the Heterotic theory, as discussed before, the ge-
ometry of the slope stable, holomorphic vector bundle, π : V → Xn, must also be
taken into account. In particular, to be understood in the context of the fiber-wise
duality (induced from 8-dimensional correspondence), the data of the vector bundle
must also be presented “fiber by fiber” in Xn over the base Bn−1.

To this end, the work of Friedman, Morgan, and Witten [89] introduced
the tools of Fourier-Mukai Transforms into Heterotic theories. In this context, the
data of a rank N , holomorphic, slope-stable vector bundle π : V → X is presented
by its so-called “spectral data,” loosely described as a pair

(S,LS) (1.73)
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consisting of an N -sheeted cover, S, of the base Bn−1 (the “spectral cover”) and a
rank-1 sheaf LS over it. Very loosely, this encapsulates the restriction of the bundle
to each fiber (given by the N points on the elliptic curve over each point in the base)
and the data of a line bundle, LS encapsulating the “twisting” of this decomposition
over the manifold.

Generally, one should “match” the spectral data in the Heterotic side to
the spectral data of the Higgs bundle (1.52) in the F-theory side. This doesn’t
mean they are isomorphic. However, they are closely related. In [70], the Heterotic
spectral cover was embedded into the F-theory geometry in the stable degeneration
limit. There will be a P1 fiber over the spectral cover in each dP9. This called
the cylinder map in [70]. In six-dimensional compactification, one can pull back
the non-trivial flat line bundles over the spectral cover using this cylinder mapping,
and construct flat three-form fields in F-theory. In four-dimensional theories, there
are not any non-trivial flat line bundles over the spectral cover (for generic smooth
spectral cover). There are some “discrete” degrees of freedom in the connection of
LS. These non-trivial connections can be pulled back using the cylinder mapping
to get no trivial four-form fluxes in F-theory. Both of the flat three-form and four-
form flux can be defined as the “remnants” of the M-theory three-form and its field
strength in the F-theory limit. There are important attempts to compute such fluxes
from the M-theory point of view [38]. The drawback of this approach is that all fluxes
that one can get are abelian (direct sum of line bundles). However, starting from the
Heterotic dual picture, one can get general no abelian fluxes.

The mathematical tool that enables us to do this is the Fourier-Mukai
transform, and in the following, we review it. As usual, the details are left for the
next chapter. A Fourier-Mukai transform is a relative integral functor acting on the
bounded derived category of coherent sheaves Φ : Db(X)→ Db(X̂) (where X̂ is the
Altman-Kleinman compactification of the relative Jacobian of X). Let E• ∈ Db(X)
and define,

X ×B X̂

X B X̂

π1 ρ π2

E → Φ(E•) := Rπ2∗(π
∗
1E• ⊗ P), (1.74)

with X ×B X̂ is the fiber product and P is the “relative” Poincare sheaf and the
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so-called “kernel” of the Fourier-Mukai functor,

P := I∆ ⊗ π∗
1OX(σ)⊗ π∗

2OX̂(σ)⊗ ρ
∗K∗

B, (1.75)

and where I∆ is the ideal sheaf of the relative diagonal divisor,

0 −→ I∆ −→ OX×BX̂
−→ δ∗OX −→ 0,

δ : X ↪→ X ×B X̂, (1.76)

and finally, KB is the canonical bundle of the base B. This functorial/category-
theoretic viewpoint proves to be a powerful tool as we examine and define the con-
cepts above more carefully in the Sections to come and consider their generalizations.



Chapter 2

Heterotic Spectral Cover
Constructions and Generalization

This chapter is based on the paper [21], written in collaboration with L.B. Anderson
and X. Gao. The outline of the chapter is as follows. In Section 2.1 we review the
basic tools and key results of Fourier-Mukai transforms and spectral cover bundles
in the case of Weierstrass models. We then generalize these results to the case of
elliptically fibered manifolds with fibral divisors in Section 2.2 and geometries with
additional sections to the elliptic fibration in Sections 2.3 and 2.4. In Section 2.5 we
provide explicit examples of Fourier-Mukai transforms by beginning with a bundle
defined via some explicit construction (e.g. a monad or extension bundle) and then
computing its spectral data directly. In Section 2.6 we apply our new results to the
problem of chirality changing small instanton transitions. In Section 2.7 we illustrate
the distinctions and obstructions that can arise between smooth and singular spectral
covers. Finally in Section 5.1 we summarize this work and briefly discuss future
directions. The appendices contain a set of well-known but useful mathematical
results on the topics of derived categories and Fourier-Mukai functors. Although
the material contained there is well-established in the mathematics literature, it is
less commonly used by physicists and we provide a small overview in the hope that
readers unfamiliar with these tools might find a brief and self-contained summary of
these results useful.

32
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2.1 A review of vector bundles over Weierstrass el-
liptic fibrations and Fourier-Mukai transforms

In this section we provide a brief review of some of the necessary existing tools and
standard results of Fourier-Mukai transforms arising in elliptically fibered Calabi-
Yau geometry. Since the literature on this topic is vast (see for example [89, 90]) and
applications [24, 25, 58, 59, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 106], we make no
attempt at a comprehensive review, but instead aim for a curated survey of some of
the tools that will prove most useful in later Sections. Moreover, we hope that this
review is of use in making the present paper somewhat self-contained. However, the
reader familiar with this literature could skip straight on to Section 2.2. For more
information about the applications of Fourier-Mukai functors in studying the moduli
space of stable sheaves over elliptically fibered manifolds, the interested reader is
referred to [32].

2.1.1 Irreducible smooth elliptic curve

To set notation and introduce the necessary tools let us begin by considering the
case of n = 1 in (1.71), a one (complex) dimensional Calabi-Yau manifold – that is
X is a smooth elliptic curve, E. In the case of a smooth elliptic curve, there is a
classical result due to Atiyah [31] (which can generalized to abelian varieties [32])
which states that any (semi)stable coherent sheaf, V , of rank N and degree zero over
E is S-equivalent1 to a direct sum of general degree zero line bundles,

V ∼
⊕
i

L⊕Ni
i , ΣiNi = N, deg(Li) = 0. (2.1)

In the context of the moduli space of semi-stable sheaves on an elliptic curve, one
can introduce an integral functor

ΦP
E→E : Db(E) −→ Db(E) (2.2)

(note that here Ê the Jacobian of E is simply isomorphic to E and thus we do
not make the distinction). This functor admits a canonical kernel, P , the so-called

1For any semistable vector bundle (or torsion free) V with slope µ(V ), there is a filtration – the
Jordan-Holder filtration [88]) of the form 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F k−1 ⊂ F k = V , where F i/F i−1 is
stable torsion free with µ(F i/F i−1) = µ(V ). Associated with this filtration there is a graded object
gr(V ) = ⊕k

i=0F
i/F i−1, and V and gr(V ) are said to be S-equivalent.
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Poincare sheaf,

P := I∆ ⊗ π∗
1OE(p0)⊗ π∗

2OE(p0) (2.3)

where π1, π2 are the projection of E×E to the first and second factor respectively, p0
is the divisor corresponding to the zero element of the abelian group on the elliptic
curves, and ∆ is the diagonal divisor in E×E (and also δ is the diagonal morphism).
It is not hard to prove that P satisfies the conditions due to Orlov and Bondal ([32],
see Appendix B) that guarantee that ΦP

E→E is indeed a Fourier-Mukai transform (i.e.
it is an equivalence of derived categories).

To illustrate how this specific Fourier-Mukai functor acts on coherent sheaves
of degree zero, it is useful to highlight its specific behavior in several explicit cases.
To begin, consider the simplest possible case of V = OE(p−p0), i.e. a generic degree
zero line bundle over E. Here,

ΦP
E (OE(p− p0)) = Rπ2∗ (π

∗
1OE(p− p0)⊗ P) .

To compute this explicitly, consider the following short exact sequence induced by
the morphism δ : E −→ E × E,

0 −→ P −→ π∗
1OE(p0)⊗ π∗

2OE(p0) −→ δ∗OE(2p0) −→ 0. (2.4)

Twist in the sequence above with OE(p − p0), and then applying the (left exact)
functor Rπ∗ to that yields the following long exact sequence (to see the properties of
derived functors refer to Appendix B),

0 Φ0 (OE(p− p0)) (R0π2∗π
∗
1OE(p))⊗OE(p0) OE(p0)⊗OE(p)

Φ1 (OE(p− p0)) (R1π2∗π
∗
1OE(p))⊗OE(p0) 0.

(2.5)

To determine the the FM transform, it is necessary to understand the
sheaves appearing in the middle column, and to that end, it is possible to apply
the base change formula for flat morphisms,

E × E E

E p

π1

π2

P

P

Rπ2∗π
∗
1 ≃ P ∗RP∗, (2.6)
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where P is just a projection to a point. Therefore,

Rπ2∗π
∗
1OE(p) = P ∗RΓ(E,OE(p)) = OE. (2.7)

Consequently, it follows that OE(p− p0) must be a WIT1, and it is supported2 on p,

ΦP(OE(p− p0)) = Op[−1]. (2.8)

In summary, the Fourier-Mukai transform of any direct sum degree zero line bundles
on an elliptic curve, is a direct sum of torsion sheaves supported on the corresponding
points of the Jacobian.

As another simple example, consider the non-trivial extension of two trivial
line bundles,

0 −→ OE −→ V2 −→ OE −→ 0. (2.9)

Applying Φ on this short exact sequence yields

0 Φ0(OE) Φ0(V2) Φ0(OE)

Φ1(OE) Φ1(V2) Φ1(OE) 0.

(2.10)

From the previous discussion we have reviewed that ΦP(OE) = Op0 [−1], so the first
row must be zero (i.e. Φ0(V2) = 0), and

0 −→ Op0 −→ Φ1(V2) −→ Op0 −→ 0, (2.11)

but this cannot be a non-trivial extension of the torsion sheaves, and one concludes,

ΦP(V2) = (Op0 ⊕Op0)[−1]. (2.12)

Note that V2 is S-equivalent to O⊕2
E but not equal, however, Fourier-Mukai of both

of them is the same. These results can be generalized to general semistable vector
bundles of degree zero over elliptic curves.

2Note that there is a more intuitive way of getting the same result. The presheaf of the Fourier-
Mukai transform of OE(p− p0) over any point q is related to Hi(E,OE(p− q)), and for i = 0, 1 it
is zero unless p = q, so naively, both Φ0(OE(p− p0)) and Φ1(OE(p− p0)) are some torsion sheaves
supported over the point p. However, note that since OE(p − p0) is a locally free sheaf, and the
projections are flat morphisms, Φ0(OE(p− p0)) cannot be a torsion sheaf, so only Φ1(OE(p− p0))
is non-zero, and the only possibility is the skyscraper sheaf Op.
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2.1.2 Weierstrass elliptic fibration

With the results above in hand for a single elliptic curve, they can now be extended
fiber-by-fiber for a smooth elliptic fibration. We begin with the simplest case, that
of a smooth Weierstrass elliptic fibration π : X −→ B. This fibration admits a holo-
morphic section σ : B → X and every fiber Xb = π−1(b) is integral, and generically
smooth for b ∈ B. Note that from here onward we will mainly work with smooth
Calabi-Yau threefolds and since there exists an isomorphism, X̂ ≃ X, we will ignore
the distinction between X and its relative Jacobian.

In general, on a fibered space, it is possible to define a relative integral
functor Φ in almost the same way it was defined for a trivial fibration (i.e. E × B,
see Appendix C for more information on integral functors). So for any V • ∈ Db(X)
there exists the following:

X ×B X

X B X

π1 ρ π2

Φ(V •) := Rπ2∗(π
∗
1V

• ⊗L K•), (2.13)

with X ×B X is the fiber product and the kernel is chosen as K• ∈ Db(X ×B X). In
the case at hand, the kernel is required to be the “relative” Poincare sheaf,

P := I∆ ⊗ π∗
1OX(σ)⊗ π∗

2OX(σ)⊗ ρ∗K∗
B, (2.14)

where I∆ is the ideal sheaf of the relative diagonal divisor,

0 −→ I∆ −→ OX×BX −→ δ∗OX −→ 0,

δ : X ↪→ X ×B X, (2.15)

and KB is the canonical bundle of the base B (which is chosen to make the restriction
P|π∗

1σ1
≃ OX , and similarly for σ2).

From this relative integral functor, it is possible to define “absolute” integral
functor with kernel j∗P , where j : X ×B X ↪→ X ×X is a closed immersion. Note
that Φ(V •) ≃ Φj∗P

X→X(V
•) for any V •. It can be proved [32] that this kernel is indeed

strongly simple, so the corresponding integral functor is fully faithful. Moreover,
since X is a smooth Calabi-Yau manifold, it follows that this integral functor is
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indeed an equivalence, i.e. a Fourier-Mukai functor. Look at Appendix B, references
there.

It should also be noted that there exist simple formulas for base change
compatibility (see Appendix C), and it can be readily verified that the restriction
of this Fourier Mukai functor over a generic smooth elliptic fiber is the same as the
absolute integral functor that was reviewed briefly in the last Subsection with p0
being the point chosen by the section.

2.1.3 Spectral cover

It is proved in [128] that the restriction of a stable coherent sheaf on a generic fiber
is (semi)stable. As we have seen, the relative Fourier-Mukai transform defined in
the last subsection, is compatible with base change, and hence its restriction on
generic fibers, is the same as the Fourier-Mukai transform on elliptic curves defined
in Section 2.1.1. On the other hand, the Fourier-Mukai transform of a (semi)stable
degree zero sheaves of rank N over the elliptic curves is a torsion sheaf of length N
(roughly speaking, the support of a torsion sheaf is a set of N points, these points
can be infinitesimally close).

These set of N points over generic fibers define a surface S ⊂ X and a finite
morphism, πS : S −→ B, of degree N . This surface S is called a spectral cover,3 and
is the support4 of Φ1(V ).

On the other hand, the restriction of the torsion sheaf Φ1(V ) over its sup-
port (which is S), is a rank one coherent sheaf. This can be seen from the fiberwise
treatment (note that ch0(Φ1(V )) = 0, and ch1(Φ

1(V )) = N = Rank (V ) when re-
stricted over a generic fiber, since S is actually an N -sheeted cover of the base). As
a result, the rank of the torsion sheaf over its support must be one (for the cases
the support is a non-reduced scheme this argument should be modified a little, and

3Depending on the choice of gauge group, there are constraints on the position of the points.
For example for SU(n) bundles (to which we will restrict our focus in this chapter) the sum of these
points under the group law of the elliptic curve must be zero. This implies that the spectral cover
must be given by a holomorphic function on that torus. For other gauge groups refer to [89], and
[84].

4Note that spectral cover can wrap around some elliptic fibers. This is a symptom of the fact
that the restriction of the vector bundle over those elliptic fibers is unstable. The restricted Fourier-
Mukai transform on these fibers returns non-WIT objects (see Appendix B for definitions), and
yet, if V is a vector bundle, the global Fourier-Mukai still returns a WIT1 object. This is due the
flatness of the morphisms and the kernel involved in defining the integral functor.
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it is possible to show that the numerical rank of the spectral sheaf is one, see [32]).
The rank one sheaf L := Φ1(V )|S is referred to as the spectral sheaf, and the doublet
(L, S) is called the spectral data.

If in addition, if the spectral cover is smooth, the spectral sheaf L is in fact,
a line bundle. In the seminal paper [89] some restrictions on the topology of L are
derived, with the assumption that spectral cover S is an integral scheme (reduced
and irreducible). We turn to these now, before generalizing them in later sections.

2.1.4 Topological data

A goal of this work is to generalize the results of [89] and [57] for the topology of a
vector bundle associated to a smooth spectral cover in the following sections. As a
result, it is useful to briefly review the derivation of constraints on the topological
data (i.e. the relations between the topology of L and ch(V )). In the following we
will assume that the spectral cover is an integral scheme, V is a WIT1, locally free
sheaf (vector bundle) of rank N with vanishing first Chern class, c1(V ) = 0, and that
the Chern character of V can be written generally as,

ch(V ) = N − c2(V ) +
1

2
c3(V ),

c2(V ) = ση + ω[f ],

where η is the pullback of a base divisor, [f ] is the fiber class (ω is an integer).

We will derive the form of the Chern classes of a smooth spectral cover
bundle using a slightly different method than that employed in [57, 89], using tools
that are well known in mathematics literature (see for example, [91]) and generalize
more readily to the geometries studied in later sections.

Recall that Φ(V ) = Rπ2∗(π
∗
1V ⊗ P). Thus, we can begin by computing

the Chern characters of Φ(V ), using the (singular5) Grothendieck-Riemann-Roch
theorem [91] for π2:

ch (Φ(V )) = π2∗
(
π∗
1ch(V )ch(P)td(TX/B)

)
, (2.16)

where td(TX/B) is the Todd class of the virtual relative tangent bundle of π : X −→
B. In addition, it is also necessary to compute the Chern character of the relative

5Note that X ×B X is singular over the discriminant of X, even though X is smooth.
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Poincare sheaf, and for that, one needs to compute ch(I∆). This latter is straight-
forward to find by applying GRR to the diagonal morphism δ,

0 −→ I∆ −→ OX×BX −→ δ∗OX −→ 0,

ch(I∆) = 1− δ∗
(

1
td(TX/B)

)
. (2.17)

With these results in place, it remains simply to compute the pullback and
push forward of cycles by using the following identities:

π2∗π
∗
1D = 0, D ∈ Div(B), (2.18)

π2∗π
∗
1f = 0, f fiber class, (2.19)

π2∗(π
∗
1c · δ∗d) = c · d, c, d ∈ A•(X), (2.20)

π2∗(π
∗
1(σ) · b) = b, b ∈ A•(B). (2.21)

The first two identities are the result of the fact that if the dimension of the image
of a cycle has a lower dimension the corresponding push forward will be zero as a
homomorphism between the cycles in the Chow group. The last two follow from
the definition of the diagonal morphism and the section (together with projection
formula for cycles).

After putting all of these together, the result is as follows,

ch0(Φ(V )) = 0, (2.22)

ch1(Φ(V )) = −(Nσ + η), (2.23)

ch2(Φ(V )) = (Nσ + η)

(
c1(B)

2

)
+

1

2
c3(V )f, (2.24)

ch3(Φ(V )) = −1

6
Nc1(B)2 + ω. (2.25)

On the other hand, it should be recalled that V is WIT1, i.e. Φ(V ) = iS∗L[−1],
where iS : S ↪→ X, is the closed immersion of S into X, and L is the spectral sheaf
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(or spectral line bundle in this case). Therefore one can write,

ch(Φ(V )) = −ch(iS∗L), (2.26)

ch(iS∗L) = iS∗

(
ec1(L)

1

TX/S

)
= [S] + [S] ·

(
c1(L)−

1

2
[S]

)
+ [S] ·

(
c1(L)2

2
− 1

2
c1(L) · [S] +

1

6
[S]2

)
,

(2.27)

where in the second line the GRR theorem can be applied for the morphism iS∗,
and TX/S is the virtual relative tangent bundle. Importantly, in the third line it
is assumed c1(L) can be written in terms of the divisors of X, restricted to S, by
writing [S] · c1(L) instead of iS∗L (we’ll return to this point in Section 2.2).

In summary then, by comparing these two ways of calculating the Chern
character of the Fourier-Mukai transform, it is possible to obtain the constraints origi-
nally calculated in [57, 89]. The first equation (2.22) yields simply thatRank(Φ0(V ))−
Rank(Φ1(V )) = 0, and since we have restricted ourselves to WIT1 sheaves, Φ0(V ) =
0 (see Appendix C for definitions), so this means that Rank(Φ1(V )) = 0 i.e. Φ1(V ))
is a torsion sheaf (which is not surprising). From the first Chern character, the
divisor class of the spectral cover can be read (noting the relative minus sign),

[S] = Nσ + η. (2.28)

The next comparison puts non-trivial constraints on c1(L),

− [S] ·
(
c1(L)−

1

2
[S]

)
= (Nσ + η)

(
c1(B)

2

)
+

1

2
c3(V )f. (2.29)

Therefore the general form of the first Chern class must be of the form,

c1(L) =
1

2
(−c1(B) + [S]) + γ, (2.30)

[S] · γ = −1

2
c3(V )f. (2.31)

The only solution for the second equation above is

γ = λ (Nσ − η +Nc1(B)) , (2.32)
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where λ is a constant which can be half integer or integer. So the general solutions
for the c1(L) and c3(V ) are,

c1(L) =
1

2
(−c1(B) + [S]) + λ (Nσ − η + nc1(B)) , (2.33)

c3(V ) = 2λη (η −Nc1(B)) , (2.34)
where in general, λ must satisfy constraints (i.e. be either integer or half integer) in
order for c1(L) to be integral [89]. Note that there is sign difference between (2.33),
and the similar formula in [89]. This arises because either P∨ or P may be used
as the kernel of the Fourier-Mukai functor. Finally it is possible to obtain ω from
(2.25),

−1

6
Nc1(B)2 + ω = −[S] ·

(
c1(L)
2
− 1

2
c1(L) · [S] +

1

6
[S]2

)
. (2.35)

By plugging (2.33) and (2.28) into this one gets,

ω = −c1(B)2N3

24
+
c1(B)2N

24
+

1

8
c1(B)ηN2 − η2N

8
− 1

2
c1(B)ηλ2N2 +

1

2
η2λ2N.

(2.36)
As a result, we arrive finally at the following well-known formulas for the Chern
classes of a bundle corresponding to a smooth spectral cover within a Weierstrass
CY 3-fold:

c1(V ) = 0, (2.37)

c2(V ) = ησ − N3 −N
24

c1(B2)
2 +

N

2

(
λ2 − 1

4

)
η · (η −Nc1(B2)) , (2.38)

c3(V ) = 2λση · (η −Nc1(B2)) . (2.39)
This is identical with the result of [89]. Having reproduced this classic result, we turn
in the next section to our first generalization: Fourier-Mukai transforms and spectral
cover bundles for elliptically fibered CY 3-folds exhibiting reducible fibers over co-
dimension 1 loci in the base (i.e. the 3-folds contain so-called “fibral” divisors).

2.2 Elliptically fibered manifolds with fibral divi-
sors

In this section we extend the classic results of Section 2.1.4 and consider the Fourier-
Mukai transform of a vector bundle over a smooth elliptically fibered Calabi-Yau
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threefold π : X −→ B with a (holomorphic) section σ and so-called fibral divisors
– divisors DI , I = 1, . . .m, which project to a curve in the base B2. In the absence
of any additional sections to the elliptic fibration, we have a simple decomposition
of the Picard group of X into a) a holomorphic section b) Divisors pulled back from
the base, B, and c) fibral divisors. Hence, h1,1(X3) = 1+h1,1(B2)+m. Moreover, as
a result of the fibral divisors, it is clear that there will be new contributions to the
Picard group of S, Pic(S), compared to a Weierstrass model. These new geometric
integers clearly affect the Heterotic theory (and could potentially change the G4 flux
present in an F-theory dual geometry).

Our first effort will be to derive topological formulas for the topology of a
bundle over an X3 of the form described above and compare these to the standard
case (i.e. (2.1.4) in Section 2.1). We will demonstrate that although the new divisors
in X3 do in general effect the topology of possible smooth spectral cover bundles
defined over X3, they do not contribute to the chiral index.

In general, the form of the fibral divisors (at codimension 1 in B2) will be
of the form expected by Kodaira-Tate [118, 147] and a rich array of possibilities is
possible. For simplicity, here we will consider the case of In-type reducible fibers
only. It should be noted that even in this simple case, it is clear that the intersection
numbers of divisors in X3 and the topology of a spectral cover bundle π : V → X3

will be more complicated than in the simple case of Weierstrass models considered
in Section 2.1. For instance, although some triple intersection numbers of X3 can be
simply parameterized in terms of the intersection structure of B2, not all can (see
e.g. [99] for a list of the triple intersection numbers of an elliptic manifold which
are currently known in general). For instance, it is not currently known how to
generally parameterize triple intersection numbers involving only fibral divisors in a
base-independent way.

Since generic fibers in X3 are still irreducible smooth elliptic curves, we
will begin by briefly considering what happens over fibers with “exceptional curves,”
taking the case of I2 fibers for simplicity. For more details the interested reader is
referred to [46, 47, 108].

2.2.1 (Semi) stable vector bundles over I2 elliptic curves

The I2 degeneration of an elliptic fiber is a union of two rational curves C1∪C2 with
two intersection points. We assume the section of the elliptic fibration intersects
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transversely with C1 at a point p0. In general any locally free sheaf V of rank N over
such a reducible fiber can be characterized by its restriction over the components
[124],

0 −→ V −→ VC1 ⊕ VC2 −→ T −→ 0, (2.40)

where T is a torsion sheaf supported over the intersection points of I2. Now consider
a torsion free rank one sheaf L of degree zero (it is useful to recall that here the
notions of degree and rank are defined by the Hilbert polynomial). If L is strictly
semistable, the restrictions LC1 and LC2 are OC1(−1) and OC2(+1) or the other way
around. In any case the graded object (defined by the Jordan-Holder filtration) is
[124],

Gr(L) = OC1(−1)⊕OC2(−1). (2.41)

On the other hand the graded object of the stable ones are,

Gr(L) = OC1(p− p0)⊕OC2 . (2.42)

Therefore the graded object of any semi stable bundle over I2 is a direct sum of the
cases mentioned above. One can also note that the compactified Jacobian of I2 is
a nodal elliptic curve in which all of the semistable line bundles (2.41), map to the
singular node, and the line bundles map uniquely to the smooth points as in the
smooth elliptic curve [108, 124].

It is proved in [46, 47] that the integral functor ΦP0
I2→I2

defined by the usual
Poincare sheaf P0 = I∆ ⊗ π∗

1OI2(p0), satisfies the criteria mentioned in Appendix
C, and therefore it is a Fourier-Mukai functor. The action of this functor over the
stable line bundles (2.42) is the same as that defined in Section 2.1,

ΦP0
I2→I2

(L) = Op[−1]. (2.43)

It remains, then, to compute the other case. Assume L = OC1(−1). As before, by
using the exact sequence for I∆ and base change formula, one can compute,

0 −→ ΦP00
I2→I2

(OC1(−1)) −→ π∗π∗OC1 −→ OC1 →
→ ΦP01

I2→I2
(OC1(−1)) −→ π∗R1π∗OC1 −→ 0, (2.44)

since π∗Rπ∗OC1 = OI2 , and the third map in the first row is surjective, we conclude,

ΦP0
I2→I2

(OC1(−1)) = IC1 . (2.45)
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In the same way one finds,

ΦP0
I2→I2

(OC2(−1)) = OC2(−1)[−1]. (2.46)

Therefore, the Fourier-Mukai transform of a strictly semistable rank one torsion free
sheaf (2.41) is,

ΦP0
I2→I2

(L) = IC1 ⊕OC2(−1)[−1]. (2.47)

In contrast to the stable line bundles, we see the Fourier-Mukai of (2.41) is non-WIT.
However as mentioned before, in the case of elliptic fibration, the Fourier-Mukai
transform of a vector bundle can be WIT1 as long as it is stable (and of course flat
over the base).

Note that contrary to the case in Section 2.1, the “Fourier transform” of
stable degree zero sheaves over an elliptic fibration X with fibral divisors cannot live
in the Jacobian J(X) of X. This is because J(X) is indeed a singular variety, and
as reviewed in Appendix C, Fourier-Mukai functors are sensitive to singularities, i.e.
a singular and a smooth variety cannot be Fourier-Mukai partners. This means if
someone tries to “parameterize” the stable degree zero vector bundles over X by
some “spectral data” in J(X) some important information will be lost. We will
return to this in Section 2.2.3. However, as we will see, it is possible to uniquely
“parameterize” the stable degree zero vector bundle moduli in terms of the resolution
of J(X), i.e. X itself.

2.2.2 Topological data

The results of the previous section give us the tools to extend the Fourier-Mukai
transform discussed in previous Sections to the singular/reducible fibers present in
the case of an elliptic threefold with In reducible fibers. In this subsection, the same
tools used for Weierstrass models are employed to determine the topology (i.e. Chern
classes) of smooth spectral cover bundles on elliptic Calabi-Yau manifolds with fibral
divisors. As in Section 2.1 we define the an integral functor with Poincare sheaf as
the kernel, and as discussed above, it will be Fourier-Mukai again. So it is still
possible to use (2.16) to derive some topological constraints.

The only geometric difference within the CY 3-fold is the existence of new
fibral divisors DI ∈ Div(X) (I = 1, . . . r) which in general will not intersect the
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holomorphic zero section, and in every “slice” π∗D (with D a divisor pulled back
from the base) in the intersection DI · π∗D is a (−2)-curve.6

With these information, the essential non-zero intersections of divisors are,

σ2 = −c1 · σ, (2.48)
σ ·DI = 0, for I = 1, . . . , r, (2.49)
hαβ := σ ·Dα ·Dβ hαβ is a symmetric, invertible, integral matrix, (2.50)
Dα ·DI ·DJ = −CIJS ·Dα, (2.51)
For In: CI,I = 2, CI,I+1 = −1. (2.52)

With the above constraints we can write the second Chern class of the tangent bundle
as,

c2(X) = 12σ · c1 + c2 + 11c21 +
∑

ξIDI . (2.53)

Let us turn now to the computation of the topology of a smooth spectral cover
bundle. The general form of the Chern character of a bundle π : E → X can be
expanded as

ch(V ) = N − (ση + ωf +
∑

ζIDI) +
1

2
c3(V ), (2.54)

where ζ and η are Q-Cartier divisors pulled back from the base B. Similar to the
Weierstrass case, we can compute the Chern character of ΦP

X→X(V ),

ch0(Φ(V )) = 0, (2.55)
ch1(Φ(V )) = − (Nσ + η) , (2.56)

ch2(Φ(V )) = (Nσ + η)
c1(B)

2
+

1

2
c3(V )f +

∑
ζIDI , (2.57)

ch3(Φ(V )) = ω − 1

6
nc1(B)2. (2.58)

As explained before, since V is locally free, Φ(V ) must be WIT1. If, as in
[89], we assume the support of Φ1(V ), which is the spectral cover S , is a generic
integral scheme, then

Φ(V ) = iS∗L[−1], (2.59)
iS∗ : S ↪→ X, (2.60)

6From now on, in this section, we define the base divisor D as D := 1
S·SS, where S is the

“image” of the fibral divisors in the base.
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where L must be a line bundle over S as long as V is given by a smooth spectral
cover. After using GRR for the surface S, the following results obtained,

[S] = nσ + η, (2.61)

c1(L) =
1

2
(−c1 + [S]) + γ +

∑
βiIeiI , (2.62)

[S] · γ = −1

2
c3(V )f, (2.63)

where eiI ’s are the fibral (-2)-curves intersecting the spectral cover. I labels the
generator of the algebra, i labels the number of the isolated curves (determined by
η). Note that the number of such curves with the spectral cover can be determined
by computing the intersection number [S] · D2

I and dividing by −2. Furthermore,
these (-2)-curves intersect as,

eiI · ejJ = −δijCIJ . (2.64)

After proceeding as before, we obtain the following solutions,

γ = λ (nσ − η + nc1(B)) , (2.65)
c3(V ) = 2λη (η − nc1(B)) , (2.66)

ω = ωstd −

(
−
∑
i,I

β2
iI +

∑
i,I

βiIβi,I+1

)
, (2.67)

where ωstd is the same as (2.36). However not all parameters βiI are free, instead
they should satisfy the following equations,

k∑
i

βiID ·DI = −ζI ·DI , for each I, (2.68)

where k is the number of the “sets” of (−2)-curves inside the spectral cover,

k = η · S. (2.69)

Therefore the only contribution of the (−2)-curves will appear in c2(V ) via the
correction to (2.36).7

Unlike the case of Weierstrass models explored in the previous subsection,
here it is difficult to write a fully general expression for the Chern classes of V due

7Note that similar results were derived in [77, 80].
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to the incomplete knowledge of triple intersection numbers within the CY geometry.
In order to make this explicit, we turn to the case of a single fibral divisor here –
that is a CY 3-fold with resolved SU(2) singular fibers.

In this case I=1 and the correction to the second Chern class is of the form,

ω = ωstd +
k∑
i

β2
i . (2.70)

The condition on βi is, (
k∑
i=1

βi

)
S
S · S

·D1 = −ζ1D1. (2.71)

This is equivalent to (by multiplying with D1),

k∑
i=1

βi = −ζ1 · S. (2.72)

Therefore the correction would be,

ω = ωstd +

(
ζ1 · S +

k∑
i=2

βi

)2

+
k∑
i=2

β2
i . (2.73)

It should be noted that this correction term will contribute to anomaly cancellation
in the Heterotic theory and to the G-flux in the dual F-theory geometry. We’ll return
to this point in later sections. In summary then,

c2(V ) = σ · η + ωstd +

(
ζ1 · S +

k∑
i=2

βi

)2

+
k∑
i=2

β2
i + ζ1 ·D1, (2.74)

c3(V ) = 2λη (η − nc1(B)) , (2.75)

and λ is subject to the same integrality conditions as [89].

2.2.3 What is missing in the singular limit

There is a common belief in the literature that if one need to find the F-theory dual
of a perturbative Heterotic model on a non-Weierstrass elliptically Calabi-Yau with
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fibral divisors, then one should shrink the exceptional divisors first, and try to find
the F-theory dual by working with spectral data in the singular Weierstrass limit.
Here we will comment on this from the Heterotic string point of view, and explain
what will be missed if one uses the naive spectral data in the singular limit.

As it should be clear by now, the naive spectral data in the singular limit
are not in a one to one correspondence with the bundles in the smooth limit where
the exceptional divisors have non-zero size i.e. the integral functor is not going to be
an equivalence. Hence, if one use the “singular spectral data” to find the F-theory
dual, some information will be lost.

More concretely, as mentioned before, the actual spectral cover in the
smooth elliptic fibration will generically wrap around a finite number of (−2)-curves,
and the spectral sheaf may or may not be dependent on them. So in the blow down
limit, the (−2)-curves shrink into double point singularities. These singularities are
located at the points where the double points of the branch curve intersect with the
singularity locus of the Weierstrass model. In other words, if we look at their image
on the base, Fig (2.1), they correspond to the points where the double point singu-
larity of the branch curve hits the singularity locus of the elliptic fibration on the
base. On the other hand, locally near these singularities, two sheets of the spectral
cover meet each other, and one can use a local model in C3 as,

S = z2 − xy = 0, (2.76)

where x, y, z are the coordinates of the C3. Here S is a cone, and can be viewed as
the double cover of the x− y plane with branch locus on the lines x = 0 and y = 0.
The double point singularity is located on the vertex of the coin i.e. x = y = 0. Now,
as it is well known (see for example [104] example 6.5.2), the generator of the curve
will be a Weil divisor. So instead of the original Cartier (−2)-curves on the smooth
spectral cover, one gets Weil divisors in the singular limit, and any line bundles on the
singular spectral cover will be independent of them. Now lets look at the situation
the other way around. Suppose we naively choose a generic n-sheeted cover of B2 in
the singular Weierstrass limit, and a line bundle over that, and use these to find the
F-theory dual or study the moduli space of the Heterotic string. First of all, for any
choice of complex structure of this generic spectral cover, it contains a finite number
of double point singularities. To see this, restrict the elliptic fibration over a singular
locus where the Weierstrass equation factors as (in the patch Z = 1),

Y 2 = (X − b0)2(X − b1), (2.77)

where b0 and b1 are suitable polynomials. In addition a generic n-sheeted cover can
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Figure 2.1: Branch locus and singularity locus near the singularity of the spectral
cover.

be written as,

S = gn−4(Y )X2 + gn−2(Y )X + gn(Y ), (2.78)

where gn−4, gn−2 and gn are polynomial in terms of Y and appropriate local co-
ordinates on base, and the subscripts determine the degree in tems of Y .8 After
eliminating X in these to equation we get the following interesting degree n polyno-
mial in terms of Y ,(

b20gn−4 + b0gn−2 + gn
)2 (

b21gn−4 + b1gn−2 + gn
)
+ Y 2Gn−2(Y ), (2.79)

where Gn−2 is polynomial in terms Y (of degree n− 2) and base coordinates which
we don’t need to know the details. Zeros of this polynomial (with multiplicity) are
the points where the n-sheeted cover hits the (singular) elliptic curve. Now, note
that if

b21gn−4(Y = 0) + b1gn−2(Y = 0) + gn(Y = 0) = 0, (2.80)

or

b20gn−4(Y = 0) + b0gn−2(Y = 0) + gn(Y = 0) = 0. (2.81)

However from the above equation it is clear that the zeros of (2.81) are order two,
this means the over these points the n-sheeted cover is locally like (2.76) (for suitable

8For example Y itself is of degree 3.
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x, y, z) i.e. a double point singularity. The conclusion from the above calculations
that we want to emphasize, is that the ubiquitous double point singularities of the
n-sheeted covers in the singular Weierstrass limit, signals the necessity of working in
the blown up limit.

The second problem with “parameterizing” the vector bundle moduli with
the singular data is that since the line bundle in the singular limit doesn’t depend
on the (−2)-curves, the vector bundle that is constructed will not land on some
specific components of the moduli space. In particular, physically, at least one con-
sequence of this is missing some new possibilities for the small instanton transitions
through exchanging 5 branes in the Heterotic M-Theory picture. In the context of
Heterotic/F-theory duality, we expect that (−2)-curves inside the spectral cover cor-
respond to new G4-fluxes in the F-theory dual, consistent with the Fourier-Mukai
calculations above, and if one considers only the singular spectral cover such possi-
bilities could be missed.

2.3 Non-trivial Mordell-Weil group with a holo-
morphic zero section

In this section we continue our generalization away from Weierstrass elliptic fibrations
by considering a Fourier-Mukai transform of vector bundles on elliptically fibered ge-
ometries in which the fibration admits more than one section – that is a higher rank
Mordell-Weil group (the group of rational sections to the elliptic fibration [125, 155]).
In the case that the zero section is strictly holomorphic (rather than rational) the def-
inition of the Fourier-Mukai transform introduced in [89, 90] can actually be applied
directly. In this case there are also isolated reducible fibers, but as we saw before
one can still define a Poincare sheaf, and the corresponding integral functor will be
a Fourier-Mukai transform.9 Therefore, the new Fourier-Mukai functor required for
this case is the same as that introduced for fibral divisors in Section 2.1. We defer to
later the more generic case of geometries with higher-rank Mordell-Weil group and
only rational sections (see Section 2.4).

In the case of a holomorphic section and additional (possibly rational) sec-
9Note that if there exists more than one holomorphic section, there is a redundancy in the choice

of the “zero section.” The Fourier Mukai functors defined by different choices will be equivalent to
each other, and can be written in terms of each other, so we fix the zero section throughout the
calculations in this section.
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tions, it is clear that the CY 3-fold X3 contains new elements in its Picard group and
as a result, their restriction to the spectral cover and Pic(S) will lead to generaliza-
tions of the formulas, (2.1.4), derived in Weierstrass form. We will compute these
generalized Chern character formulas directly in the following subsections and inde-
pendently compare these results to those found in explicit examples in Section 2.1
(the latter will be obtained by direct computation of the Fourier-Mukai transforms
of a set of simple bundles).

To set notation, note that we will consider the case of multiple sections
to the elliptic fibration and consider the case where the zero section (denoted σ) is
holomorphic. In addition, there are σm with m = 1, . . . rk(MW ) (in general rational)
sections present. Here we take Pic(X) of the CY 3-fold to be generated by generated
by,

σ the zero section, (2.82)
Sm = σm − σ − π∗π∗σmσ − c1(B), (2.83)
Dα, α = 1, . . . h1,1(B), (2.84)

where Sm is the Shioda map of the rational section. Since σ, there exists a general
relation of the form,

σ · Sp =
r∑

m=1

Dm,pSm, (2.85)

where Dm,p are specific divisors in Pic(B). This is because,

σ2 · Sm = −c1(B) · σSm = 0, (2.86)
σ ·Db · Sm = 0. (2.87)

2.3.1 Topological data

As in the case of Weierstrass models considered in Section 2.1, we begin by asking
what topological formulas can be derived (in as much generality as possible) for a
bundle, V on the manifold above, defined by a smooth spectral cover.

On an elliptic CY 3-fold as described above, the general form of the Chern
character of a degree zero vector bundle can be written as

ch(V ) = N − (ση +
∑r

i=1 Siηi + ωf) + 1
2
c3(V ), (2.88)
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where N is the rank of the bundle, Si are the image of the Shioda map [145, 146] of
the generators of the Mordell-Weil group, r is the rank of the Mordell Weil group,
and σ is the zero section we chose. With the help of GRR theorem, one gets the
topology of the Fourier-Mukai transform of this bundle.

ch(Φ(V )) = − (Nσ + η) + (Nσ + η)
c1(B)

2
+

r∑
i=1

Siηi +
1

2
c3(V )f +

(
ω − 1

6
Nc1(B)2

)
.

(2.89)

Since V is locally free, it must be WIT1 and Φ1(V ) will be a torsion sheaf. If the
support of this torsion sheaf is a generic smooth surface, then,

Φ1(V ) = iS∗L,

where L is line bundle.10 So by applying GRR to iS, topological constraints we are
looking for can be obtained,

[S] = Nσ + η, (2.90)

c1(L) =
1

2
(−c1(B) + [S]) +

r∑
i

βiSi + λ (Nσ − η +Nc1(B)) , (2.91)

r∑
i,j=1

Sj (βi (ηδi,j +NDj,i) + ηjδi,j) = 0, (2.92)

c3(V ) = 2λη (η −Nc1(B)) , (2.93)

ω = ωstd −
1

2

∑
m,n,p

βmβn (ηδp,m +NDp,n)SkSj, (2.94)

where the third equation is a constraint on the βm’s, and clearly they contribute
in Chern characters of V only through the corrections in ω, and there is not any
correction in c3(V ), i.e. the chirality of the effective theory is unchanged.

10Recall that smoothness of V implies the smoothness of L on S.
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2.3.2 Rank one Mordell-Weil group

In this section, we derive explicit correction to the formulas in Section 2.1.4 in the
case rk(MW ) = 1. The formulas above can be rewritten as,

c1(L) =
1

2
(−c1(B) + [S]) + β1S1 + λ(Nσ − η +Nc1(B)), (2.95)

σ · S1 = D11 · S1, D11 is a specific base divisor, (2.96)

ω = ωstd −
1

2
β2(η +ND11)S

2
1 , (2.97)

β1(η +ND11)S1 + η1 · S1 = 0. (2.98)

Note that σ1 induces an integral divisor in S, so the coefficient of σ1 in c1(L), i.e. β1
must be integer,

β ∈ Z. (2.99)

This condition fixes η1 in terms of η. More precisely, if one expand η and η1 in terms
of the base divisor,

η = ηαDα, (2.100)
η1 = ηα1Dα, (2.101)

(2.102)

then we get the following,

ηα1 = −β1(ηα +NDα
11), (2.103)

where β1 is an integer. Therefore the Chern classes of V in this case is given by,

c2(V ) = σ · η − β1 (η +ND11) · S1

+

(
ωstd −

1

2
β2
1(η +ND11)S

2
1

)
f, (2.104)

c3(V ) = 2λη (η −Nc1(B)) . (2.105)

2.4 Non-trivial Mordell-Weil group with rational
generators

In this section we consider the last piece that will allow us to compute the Fourier-
Mukai transform of vector bundles (or even any coherent sheaf) over any smooth
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elliptically fibered Calabi Yau variety π : X −→ B. In the previous Section we
considered the case in which the elliptic threefold with a non-trivial Mordell-Weil
Group and (importantly) the zero section was holomorphic. But this is far from the
general case, in which all sections to the fibration are birational (i.e. the locus σ = 0
for such a section is birational to B2 rather than equal to it).

Here we will consider the moduli space of vector bundles over these more
general elliptic fibrations. We emphasize again that such information is potentially
very important to the study of both the Heterotic theory and its F-theory dual.
Below, we demonstrate that it is possible in principle for the chirality of the effective
theory to change compared to the computation in Weierstrass form. So this case is
distinct from those studied in previous Sections.

What makes this situation a little more complicated is that to define a
Poincare sheaf one needs a “true” section (i.e. an inclusion iB : B ↪→ X such that
π ◦ iB = idB). In that case the section is holomorphic. The key property is that
a holomorphic section intersects every fiber at exactly one point. However if the
section is rational, this is not satisfied for finitely many fibers containing reducible
curves. As a result, the Poincare sheaf will not be a good kernel for the Fourier-Mukai
functor. It is not clear at this moment how to deal with this in general, but there are
cases which after a flop transition, the zero rational section becomes holomorphic.
We restrict ourselves to this in the following, and general case will be studied in a
future work.

The key point is that one can see that derived categories stay “invariant”
under flop transitions.11 So if after a finite number of flop transition one of the
sections becomes holomorphic, then it is possible to reduce the problem to one of the
cases described before. The disadvantage to this approach is that it is not guaranteed
that such flops exists generally.

2.4.1 Flop transitions

Suppose C ⊂ X be a rational curve in the Calabi-Yau threefold X, and NCX is
the corresponding normal bundle (obviously, with rank 2) over C. In general one
can always blow up X around this curve p : X̃ −→ X, and the corresponding
exceptional divisor E ∈ Div(X̃) will be isomorphic to P(NCX), which is therefore a
P1 bundle over C ≃ P1. If NCX ≃ OC(−1) ⊕OC(−1), then one can show that the

11This is the theorem of Bondal and Orlov (see [117]Theorem 11.23, and the references therein).
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exceptional divisor is just a trivial P1 bundle over another P1, i.e. e ≃ P1 × P1 (see
e.g. [117]). In any case, after blowing X up, one can decide to blow the rational curve
C down to get another threefold variety q : X̃ −→ X ′. Such geometric birational
transformations are called standard flip transitions, and depending on the normal
bundle NCX, they can change the canonical bundle of the variety. So in general X ′

is not a Calabi-Yau variety. However in the special case which is described above,
NCX ≃ OC(−1)⊕OC(−1), the canonical bundle will remain unchanged (X ′ will be
Calabi-Yau), this is called the standard flop transition.

For a general flip transition, the functor Rq∗Lp∗ : Db(X) −→ Db(X ′), is a
fully faithful functor, and its image can be characterized by using the semi-orthogonal
decomposition [117]. But here we restrict ourselves to the standard flop transitions,
and in this case Rq∗Lp

∗ will be an equivalence. To be more clear, consider the
following diagram,

X̃

X X ′
p

q (2.106)

To compute the topological data, we start with a bundle with most general Chern
character as before,

ch(V ) = N −

(
ση +

∑
i

Siηi + ωf

)
+

1

2
c3(V ),

where σ is the rational zero section of X, and the Chern character of the object
F• := Rp∗q

∗V is needed,

ch(Rp∗q
∗V ) = p∗

(
ch(q∗V )

Td(X̃)

Td(X ′)

)
, (2.107)

then, since the zero section is holomorphic in X ′, we will be able to compute the
Chern characters of F• in X ′ as in the last section. To compute (2.107), we can find
the relations between the Chern characters of TX̃ and TX. To see this, consider the
following diagram,

E := P(NcX) X̃

c X

g

j

p

i

(2.108)
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One can prove [91] the following short exact functors,

I. 0 Og(−1) g∗NCX G 0,

II. 0 TE j∗TX̃ Og(−1) 0,

III. 0 TX̃ p∗TX j∗G 0,

(2.109)

where the first one is the relative version of the famous Euler sequence,12 the second
one is the adjunction, and the third sequence is proved by noting that TX̃ and TX
are isomorphic almost everywhere (for details see [91], Chapter 15). In addition if
the divisor in the fiber of g is t, and we denote the hyperplane in C as d then one
can show,

t2 = 2, t · d = 1. (2.110)

By using this information, and the GRR theorem, one can compute the Chern classes
of X̃. The result is the following,

c1

(
X̃
)
= −E, (2.111)

c2

(
X̃
)
= p∗c2 (X

′) + j∗
(
t− g∗c1

(
P1
))
. (2.112)

Using these data we can get the Chern characters in X ′,

ch (Rp∗q
∗V ) = N −

(
σ′η +

∑
i

S ′
iηi + ωf

)
+

1

2
c3(V ). (2.113)

The next part of the calculations will be the same as the previous section, but with
intersection numbers in X ′ not X. So is is possible to employ the same formulas in
Section 2.3.1, but the intersection formulas are in X ′ rather than X.

Carrying out the flops explicitly The discussion above is somewhat abstract
in nature, and as a result, it’s helpful to illustrate these geometric transitions in an
explicit Calabi-Yau geometry.

12Therefore, G is the relative tangent bundle times O(−1), i.e. Tg ⊗O(−1)
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We can illustrate the results stated above with the following simple rank 2
bundle defined by extension:

0 OX(−σ1 +Db) V2 OX(σ1 −Db) 0 . (2.114)

For the Calabi-Yau threefold, we will take the anti-canonical hypersurface of the
following toric variety,

x1 x2 x3 e u1 v1 u2 v2 −K
0 0 0 0 1 0 1 0 2
0 0 0 0 0 1 1 1 3
1 1 1 0 0 2 3 0 8
1 1 0 1 0 1 2 0 6

(2.115)

In this manifold, the flop transition described above (which converts a rational section
to a holomorphic one) corresponds simply to a different triangulation of the toric
polytope. Each triangulation corresponds to a specific Stanley Reisner ideal,

ISR1 = {u1u2, x3v1, v1v2, ev2, x1x2x3, x1x2e} , (2.116)
ISR2 = {eu1, u1u2, v1v2, ev2, x1x2x3, x1x2e, x3v1u2} . (2.117)

In both cases the sections are,

σ1 = (1, 0, 0, 0), (2.118)
σ2 = (−1, 1, 2, 2). (2.119)

However, in the first triangulation, both section are rational, and in particular, σ1
wraps around two (−1)-curves. After the flop transition, in the second triangulation,
the section σ1 becomes holomorphic, and the section σ2 remains rational, but it wraps
around two more (−1)-curves (which are the flop transition of the initial ones).

To fix notation, we denote the sections in the initial geometry as σ1, σ2 and
the sections in the second geometry as σ′

1, σ′
2 respectively.13 To find out the corre-

sponding cycles the that σ1 wraps around them, we should compute the intersection
formulas. So for the first geometry,

σ2
1 = −c1(B) · σ1 + σ1 · E, (2.120)

σ1 · E = D · E − 1

4
D · S − 2f, (2.121)

σ2
2 = −c1(B) · σ2 +

19

4
D · S +D · e+ 38f. (2.122)

13Also note that both geometries contain an exceptional divisor E, and D as the hyperplane in
the base P2, which are common to both geometries.
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The corresponding intersection formulas after the flop transition are,

σ′
1
2
= −c1(B) · σ′

1, (2.123)
σ′
1 · E = 0, (2.124)
σ′
2
2
= −c1(B) · σ′

2 + 5D · S ′ + 40f. (2.125)

It is clear that the codimension two cycle that is disappearing from the first geometry
in the flop transition is,

[C] = D · e− 1

4
D · S − 2f, (2.126)

and the codimension two cycle appearing in the new geometry is,

[C ′] = −D · e+ 1

4
D · S ′ + 2f. (2.127)

In particular, note that σ′
1 · [C ′] = +2.

It is also possible to compute the explicit Fourier-Mukai transform of the
vector bundle given in (2.114). The details of such a computation are outlined
in Section 2.5. Here we simply state the following result to illustrate the general
arguments above.

The Chern characters before and after the flop transition are given by

Ch (V ) = 2−
(
(2Db + c1 (B))σ1 +

1

4
D · S −D · e−

(
D2
b − 2f

))
,(2.128)

Ch (Rp∗q
∗V2) = 2−

(
(2Db + c1 (B))σ′

1 −D2
b + [c′]

)
. (2.129)

By substituting the formula for the codimension two class [C ′] we see V2 and p∗q∗V2
have the same Chern class in accordance with the general result of the previous
subsection.

2.4.2 Comment on the chirality of the effective theory

Here we want to study the effect of the (−1)-curves in the rational zero section in
the spectrum of the effective theory. We will fix notation as,

F• := Rp∗q
∗V,

L• := ΦP
X′→X′ (F•) . (2.130)
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The goal then is to compute the zero-mode spectrum (i.e. bundle-valued cohomology
groups) of V in X. Suppose the support of L• takes the most general form,14 this
task reduces to computation of R1π∗V by using Leray spectral sequence. To find
this, first notice that inverse functor of Rq∗Lp∗ is given by,15

V = Rp∗ (Lq
∗F• ⊗OX̃ (e)) . (2.131)

Therefore we get,

Rπ∗V = Rπ′
∗ (F• ⊗Rq∗OX̃ (e))

= Rπ′
∗ (F•) , (2.132)

where we used Rq∗OX̃(e) = OX′ . Next, one can use the same techniques as before
to compute the Rπ′

∗F• in terms of the “spectral data” in X ′,

Rπ∗V = Rπ′
∗F• = Rπ′

∗ (L• ⊗Oσ′) . (2.133)

Naively the above result is the same as in the standard cases. But notice that L•

is the Fourier-Mukai transform of a (may be non-WIT or singular) object F• in
Db(X ′), and it may receive new contributions from the original (−1)-curve in X. In
the example computed before, the component [C ′

2] doesn’t intersect with the zero
section, so the only contribution to the spectrum of the effective theory is through
the line bundle over the component S.

2.5 Examples of explicit Fourier-Mukai transforms

The power of a Fourier-Mukai transform (and its inverse) is that in principle we
can move freely between descriptions of stable vector bundles on elliptically fibered
manifolds and the spectral data that we have been studying in Sections 2.1, 2.2,
and 2.3 . In this section we now utilize this potential to explicitly compute FM
transforms of stable bundles defined by the monad construction or by extension (see
e.g. [53]). Several explicit realizations of this type have been accomplished before in
the literature [36] and we will provide some generalizations. In particular, we will
develop general tools that are applicable away from Weierstrass 3-folds.

14The restriction of the support on the generic irreducible fiber is a set of points such that none
of them are coincident.

15Remember that this is Fourier-Mukai functor so it has an inverse.
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In these examples, we shall also observe that although we have derived
general formulas for bundles defined via smooth spectral covers, this proves to be too
limited to describe the explicit bundles we consider in the majority of cases. We will
return to this point – namely that there remain important gaps in our description of
general points in the moduli space of bundles – in Section 2.5.2.

Beginning with the simplest possible elliptic CY 3-fold geometry – i.e.
Weierstrass form, we will illustrate the ideas that can be generalized to compute
the Fourier-Mukai transform of sheaves which are defined by extension sequences or
monads.

2.5.1 Bundles defined by extension on Weierstrass CY three-
folds

To illustrate the techniques of taking explicit FM transforms, we begin with the
simplest possible extension bundle – a rank two vector bundle defined by extension
of two line bundles:

0 −→ L1 −→ V2 −→ L∨
1 −→ 0. (2.134)

We require V2 to be stable, and c1(V2) = 0. Note that a necessary (though not
sufficient) constraint on the line bundles appearing in this sequence is that L1 must
not be effective (i.e. have global sections). For such a stable bundle the restriction
of V2 over Et = π−1(t) for a generic t ∈ B is one of the following cases [31],

V2|Et = OEt ⊕OEt ,

V2|Et = V2 ⊗F , deg(F) = 0, (2.135)
V2|Et = OEt(−p− p0)⊕OEt(p− p0).

In the first case, the support of the Fourier-Mukai sheaf (i.e. spectral cover), will
be a non-reduced scheme (supported over the the section σ). In the second case
V2 is the unique non-trivial extension of trivial line bundles, and F = OEt(p − p0)
for some p (here p0 is the point on Et chosen by the section), but for Weierstrass
fibration, p = p0 for generic fibers, and V2|Et = V2. So again the spectral cover will
be non-reduced and supported over the zero section. In the final case, the spectral
cover can be non-singular. So it is clear that in the majority of cases, we do not
expect the FM transform of V2 to be in the same component of moduli space as a
smooth spectral cover of the form described in Section 2.1. We will illustrate this
effect with two choices of L1 below.
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Applying the Fourier-Mukai functor to (2.134) produces a long exact se-
quence involving the FM transform of the line bundles defining V2. Thus, we can
compute Φ(V2) if we can compute Φ(L1). To begin, the definition of the Poincare
sheaf, (2.1.2) and (2.1.2), allows us to write the following short exact sequence:

0 −→ π∗
1L1 ⊗ P −→ π∗

1 (L1 ⊗OX(σ))⊗ π∗
2 (OX(σ)⊗ π∗K∗

B)

−→ δ∗ (L1 ⊗OX(2σ)⊗ π∗K∗
B) −→ 0. (2.136)

Now, by applying, Rπ2∗ to the above sequence, we can compute Φ(L1),

0 −→ Φ0 (L1) −→ R0π2∗π
∗
1 (L1 ⊗OX(σ))⊗ (OX(σ)⊗ π∗K∗

B) −→ (L1 ⊗OX (2σ)⊗ π∗K∗
B)→

−→ Φ1 (L1) −→ R1π2∗π
∗
1 (L1 ⊗OX(σ))⊗ (OX(σ)⊗ π∗K∗

B) −→ 0. (2.137)

With these general observations in hand, we will first consider the case where L1 =
OX(Db) with Db a divisor pulled back from the base, B2. To use (2.137), in this
case, Rπ2∗π∗

1(L1 ⊗ OX(σ)) must be computed. To accomplish this, we can use the
base change formula (see Appendix C), which relates the following push-forwards,

X ×B X X

X B

π1

π2 π

π

Rπ2∗π
∗
1 ≃ π∗Rπ∗. (2.138)

Therefore Rπ2∗π∗
1(L1 ⊗OX(σ)) = (π∗Rπ∗OX(σ))⊗OX(Db). On the other hand, by

Koszul sequence for the section (σ) we have,

0 −→ OX −→ OX(σ) −→ Oσ(KB) −→ 0. (2.139)

It is well-known for Weierstrass CY elliptic fibration π : X −→ B, R0π∗OX =
OB, R1π∗OX = KB (see e.g. [87]). So the above sequence implies Rπ∗OX(σ) = OB
and hence Rπ2∗π∗

1(L1 ⊗ OX(σ)) = OX . Plugging this into (2.137), we see that this
sequence is just Koszul sequence again which is twisted OX(σ)⊗ π∗K∗

B,

Φ(L1) = Oσ(Db)[−1]. (2.140)

We can apply this result then to obtain the FM transform of V2 for this
chosen line bundle to find

0 −→ Oσ(Db) −→ Φ1(V2) −→ Oσ(−Db) −→ 0 . (2.141)
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In this case by the arguments given above, Φ1(V2) is supported over the section16 and
its rank (when restricted over the support) is two (the rank is one when restricted
to the modified support). As a result, from the arguments above, we do not expect
the topology of this bundle to match the formulas given in (2.16) (and indeed they
do not though we will not yet make this comparison explicitly).

Let us not contrast this with another (non-generic) choice of line bundle,

L1 = OX(−σ +Db). (2.142)

In this case

Φ (OX(σ +Db)) = OX(−σ +KB +Db), (2.143)
Φ(OX(−σ +Db)) = OX(σ +Db)[−1]. (2.144)

For the choice of line bundle in (2.142), the extension bundle V2 is defined by a
non-trivial element of the following space of extensions:

Ext1(L∨
1 ,L1) = H1(X,L2

1) = H0 (B,OB (2Db + c1(B))⊕OB (2Db − c1(B))) ,
(2.145)

(note that the last equality follows from a Leray spectral sequence on the elliptic
threefold (see (B.42)), and Rπ∗OX(−2σ) = Kb ⊕K−1

b . As a brief aside, we remark
here that the form of this space of extensions gives us some information about the
form of the possible FM dual spectral cover.

It is clear from the expression above that if 2Db + c1(B) is not effective,
then there exists no non-trivial extension, and the vector bundle is simply a direct
sum L1 ⊕ L∨

1 (and therefore not strictly stable). If 2Db + c1(B) = 0 there is only
one non-zero extension. On the other hand, if the degree of Db is large enough
to make 2Db − c1(B) effective then for any generic choice of extension there are
(2db + c1(B)) · (2Db − c1(B)) isolated curves which the spectral cover must wrap.

Returning to our primary goal of computing the FM transform of V2, it
can be observed that there is enough information in (2.143) and (2.144) to compute
Φ(V2) explicitly.

0 −→ Φ0(V2) −→ OX(−σ +KB −Db)
F−→ OX(σ +Db) −→ Φ1(V2) −→ 0. (2.146)

By fully faithfulness of Fourier-Mukai functor, one can show

F ∈ Ext0(OX(−σ +KB −Db),OX(σ +Db)) ≃ Ext1(L∨
1 ,L1).

16It is also possible to have vertical components, depending on the degree of the divisor Db
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Therefore it is necessary 2Db−c1(B) be effective to have a non-zero F , and Φ0(V2) = 0
(and hence stability of V2). Assuming that this is satisfied, we can find the Fourier-
Mukai transform of V2 as

Φ(V2) = O2σ+2Db−KB
(σ +Db). (2.147)

At last we are in a position to compute the topological data, and directly compare
the bundle constructed here with what would be expected from the formulas derived
in [57, 89] and reviewed in Section 2.1. The Chern character of V2 is,

ch(V2) = 2−
(
σ(2Db + c1(B)) +D2

b

)
. (2.148)

Therefore from (2.28), the divisor class of spectral cover must be

[S] = 2σ + 2Db + c1(B). (2.149)

This is the same as the divisor class of the support of the torsion sheaf in (2.147),
In addition, since we require [S] to be the divisor class of a algebraic surface it must
be the case that 2Db + c1(B) is effective. This was exactly the requirement for the
non-trivial extension discussed above.

For this example, the general algebraic formula for S takes the form

S = f1x+ f2z
2, (2.150)

div(f1) = 2Db − c1(B),

div(f2) = 2Db + c1(B).

So we see if 2Db + c1(B) is effective, but 2Db − c1(B) is not effective, then the
coefficient f1 vanishes, and the locus f2 = 0 is the position of the vertical components
mentioned above. Moreover, when 2Db− c1(B) is effective then the position of those
vertical fibers is given by the points where f1 = f2 = 0, again as discussed before.
Comparing this with the sequence before (2.147), we see the map F is indeed given
by S, and therefore S uniquely determines an element in the extension group.

Now from equation (2.33), c1(L) = σ +Db + λ(2σ + 2Db + c1(B)). This is
compatible with (2.147) if we choose λ = 0. With λ = 0 and N = 2, the equation
(2.36) produces

ω = D2
b , (2.151)

and also from (2.34) it follows that c3(v2) = 0, in agreement with the Chern character
computed directly above. Also note that the divisor class of the matter curve must
be σ · [S] = 2Db − c1(B) [89]. So the FM transform of this vector bundle is indeed a
smooth spectral cover and agrees with the topological formulas found in [57, 89] as
expected.
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2.5.2 FM transforms of monad bundles over 3-folds

In the following section we will provide an explicit construction of the spectral data
a bundle defined via a monad. This construction is somewhat lengthy, but is useful
to present in detail to demonstrate that FM transforms can be explicitly constructed
for bundles that appear frequently in the Heterotic literature.

Over a Weierstrass CY 3-fold of the form studied in Section 2.1 consider a
bundle defined as a so-called “monad” (i.e. as the kernel of a morphism between two
sums of line bundles over X3):

0 −→ V −→ ⊕li=1OX(niσ +Di)
F−→ ⊕kj=1OX(mjσ +Dj) −→ 0, (2.152)

where Rank(V ) = N = l− k, and the divisors Di are pulled back from the base, B2.
To compute the Fourier-Mukai transform V we will see that it is necessary to begin
with the transform of line bundles of the form OX(niσ+Di), as well as the morphism
Φ(F ). With that information, we can compute Φ(V ). We should point out that for
the geometry in question, none of the ni’s nor mj’s are allowed to be negative. This
is necessary for stability of the bundle.17 Upon applying the FM functor to (2.152),
we get a sequence of the following form,

0 Φ0(V ) ⊕′l
i=1Φ

0(OX(niσ +Di)) ⊕′k
j=1Φ

0(OX(mjσ +Dj))

Φ1(V ) ⊕′′l
i=1Φ

1(OX(niσ +Di)) ⊕′′k
j=1Φ

1(OX(mjσ +Dj)) 0.

Φ(F0)

(2.153)

In the diagram above we employ the sign ⊕′ to refer to the direct sum over the line
bundles with positive definite relative degree, and use ⊕′′ to mean the direct sum
over the line bundles with with relative degree zero (i.e. pull back of line bundles in
the base). So to compute the Fourier-Mukai transform of V we need to compute the
Fourier-Mukai transform of the line bundles in (2.152). To do this, one can simply
use the defining sequence of the diagonal divisor in Section 2.1. Combining this with

17Actually if we naively compute the Fourier-Mukai of such sheaves (with some ni’s being nega-
tive), the result is either non-WIT1 or Φ1(V ) is not a torsion sheaf. But we know V is stable if and
only if it is WIT1 respect to Φ, and Φ1(V ) is a torsion sheaf. In practice, this is a way to check the
stability of a degree zero vector bundle over elliptically fibered manifolds.
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the sequence above, give the following diagram,

0 0

. . . ⊕′l
i=1Φ

0(OX(niσ +Di)) ⊕′k
j=1Φ

0(OX(mjσ +Dj)) . . .

0 K1 A⊗OX(σ + c1(B)) N ⊗OX(σ + c1(B)) Q1 0

0 K2 ⊕′l
i=1OX((ni + 1)σ +Di)⊗OX(σ + c1(B)) ⊕′k

j=1OX((mj + 1)σ +Dj)⊗OX(σ + c1(B)) Q2 0

0 0

Φ(F0)

ev

F0

ev

F0

(2.154)

Each column in the diagram is defines the Fourier-Mukai transform of the
(direct sum of) line bundles by means of the resolution of the Poincare sheaf. There-
fore in the second row A and N are the sheaves generated by the “fiberwise” global
sections of the sheaves ⊕′OX((nj+1)σ+Dj) and ⊕′OX((mj+1)σ+Dj), respectively.
The evaluation maps simply takes the global section, and evaluates the sheaf at each
point. Finally, the map F0 is simply the map induced by the monad map F itself
(from (2.152)) on the line bundles with positive definite relative degree (which also
acts on the “fiberwise” global sections too).

The most important parts of this diagram are the induced maps between
the kernels and co-kernels, K1, Q1 and K2, Q2, respectively. The kernel and co-kernel
of these maps give a rather explicit presentation of the spectral data, so we will give
them specific names,

0 −→ L̄ −→ K1 −→ K2 −→ L −→ 0, (2.155)

0 −→M −→ Q1 −→ Q2 −→ 0. (2.156)

(Note that the final map in the second line above must be surjective, otherwise it will
be in contradiction with the commutativity of the middle two columns in (2.154)).

Now, by careful diagram chasing, one can prove that the Fourier-Mukai
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transform of V can be given by the following (more consise) diagram,

0

L

0 J Φ1(V ) ⊕′′l
i=1Φ

1(OX(niσ +Di)) ⊕′′k
j=1Φ

1(OX(mjσ +Dj)) 0

M

0

(2.157)

This construction is similar in spirit to the spectral data derived for monads in [67]
and we will return to this in Section 2.5.2.

To make this abstract formalism more concrete, it is helpful to consider an
explicit example. Let us take X3 to be a Weierstrass elliptically fibered threefold
over P2, realized as a hypersurface in a toric variety, given by the following “charge
data” (i.e. in GLSM notation):

y x z x0 x1 x2 p
3 2 1 0 0 0 6
9 6 0 1 1 1 18

Here the holomorphic zero section is determined by the divisor z = 0. As an explicit
monad bundle over this manifold, consider the following short exact sequence:

0 −→ V −→ OX(2, 3)⊕OX(1, 6)⊕OX(0, 1)⊕3 F−→ OX(3, 12) −→ 0. (2.158)

We first need to find the Fourier-Mukai of the line bundles. This can be done using
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the tools outlined in before and we simply summarize the results here:

Φ(OX(D)) = Oσ(KB +D)[−1], (2.159)

0 −→ Φ0(OX(2σ −KB)) −→ OX(σ − 2KB)⊕OX(σ)⊕OX(σ +KB)
ev−→ OX(4σ − 2KB) −→ 0,

(2.160)
0←− Φ0(OX(σ − 2KB)) −→ OX(σ − 3KB)⊕OX(σ −KB) −→ OX(3σ − 3KB) −→ 0,

(2.161)
0 −→ Φ0(OX(3σ − 4KB)) −→ OX(σ − 5KB)⊕ · · · ⊕ OX(σ −KB)

ev−→ OX(5σ − 5KB) −→ 0,

(2.162)

where the middle bundles in the each of the short exact sequences above are the
“fiberwise” global section of the line bundles in (2.152) denoted as A and N (twisted
with O(σ + c1(B))). With this we have determined the columns of (2.154). By
explicitly performing the fiber restrictions it can also be verified that

⊕′′l
i=1Φ

1(OX(niσ +Di)) = Oσ(−2)⊕3,

⊕′′l
i=1Φ

1(OX(miσ +Di)) = 0,

and the map F0 is a “part” of the monad map F ,

OX(2, 3)⊕OX(1, 6) OX(3, 12)
F0 ,

F0 =

(
zf9

x+ f6z
2

)
. (2.163)

Obviously F0 is singular on {f9 = 0} ∩ {x+ f6z
2 = 0}.

The final task will be determining the explicit kernels and co-kernels: K1,
K2, Q1 and Q2. This is local question, so we can assume we are in a affine patch
with y ̸= 0 and x1 ̸= 0 for example. Then it is not too hard to show that free part
of K1 is generated by

K1 ∼ αz

(
x+ f6z

2

−f9z

)
. (2.164)

Naively, it may look like that over f9 = 0, the kernel K1 jumps, but this is at the
presheaf level, one can actually show that

K1 ≃ π∗OP 2(−3). (2.165)
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Similarly, one can compute the K2,

K2 =

(
(x+ f6z

2) 1
l3,3

−zf9 1
l2,6

)
(2.166)

where 1
l3,3

and 1
l2,6

are the local generators of the line bundles OX(3, 3) and OX(2, 6).
By checking the degrees, K2 is fixed to be the line bundle OX(1,−3). Again naively
it might appear that K2 jumps over {f9 = 0} ∩ {x+ f6z

2 = 0}, but this is at the
presheaf level as before, and K2 is indeed free.

With this information in hand, we can determine L and L̄ in (2.154),

0 L̄ OX(0,−3)⊗OX(1, 3) OX(1,−3)⊗OX(1, 3) L 0.
Ψ0

(2.167)

By computing the induced map Ψ0, one finds

L̄ = 0, (2.168)
L = Oσ(−6). (2.169)

As the next step, it remains to determine Q1 and Q2. For the former, one should
note that the morphism on the “fiberwise” global sections i.e. A F0−→ N is generically
rank 4, so it is surjective unless f9 = 0. Over this locus, we obtain the following
“defining” sequence for Q1,

0 → (OX ⊕OX(0, 6))|f9 ⊗OX(1, 3)

↪→ (OX ⊕OX(0, 3)⊕OX(0, 6)⊕OX(0, 12))|f9 ⊗OX(1, 3)→ Q1 → 0.

(2.170)

This turns out to be,

Q1 ≃ (OX(0, 12)⊕OX(0, 3))f9=0 ⊗OX(1, 3). (2.171)

On the other hand, Q2 can be identified easily with OX(4, 12)|{f9=0}∩{x+f6z2=0} ⊗
OX(1, 3). So M will be given by,

0 M (OX(0, 12)⊕OX(0, 3))f9=0 ⊗OX(1, 3)

OX(4, 12)|{f9=0}∩{x+f6z2=0} ⊗OX(1, 3) 0.
(2.172)
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Therefore,M will be a torsion sheaf supported on f9 = 0 with rank 2 when restricted
on the support. So J in (2.154) can be given explicitly as,

0 −→ Oσ(−6) −→ J −→M −→ 0, (2.173)

and we can see the support of J is in the divisor class σ+18D where the 18D is the
support of the sheafM. Finally the support of the Φ1(V ), i.e. the spectral cover, is
in the class

[S] = 4σ + 18D. (2.174)

Explicitly we find that the spectral cover is reducible and non-reduced and given by
the algebraic expression

S : (f9)
2z4 = 0. (2.175)

With this spectral data in hand we are now in a position to compare to the well-
known results for the topology of smooth spectral cover bundles derived in Section
2.1. Before beginning this computation we must first observe that from the definition
of the monad in (2.158), the Chern class of V is given by,

c(V ) = 1 + 18σD + 48f − 162w, (2.176)

where f is the fiber class, and w is the class of a point. Now if one compares this to
the topological constraints reviewed in (2.16), it follows that η = 18D and hence

[S] = 4σ + 18D, (2.177)
c3(V ) = 2λη(η − 4c1(B)). (2.178)

The first one is always true whether or not the spectral cover is degenerate or what
spectral sheaf we choose, so it is not surprising to get a correct answer. The second
equation however implies that λ = −3

4
. If we then insert this value into the formula

for the c2(V ) given in (2.16), it yields

c2(V )expected = 18σD + 45f, (2.179)

which is obviously wrong. This discrepancy has arisen because the chosen monad
bundle manifestly does not correspond to a smooth spectral cover (and must corre-
spond to a different component of the moduli space of bundles over X3).
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A comparison to existing techniques for FM transforms of monad bundles
It should be noted that several existing papers in the literature [36, 67] have laid out
useful algorithms for explicitly computing the FM transforms of monad bundles of
the form

0 V F N 0,F (2.180)

where F and N are direct sum of line bundles as mentioned before.

In particular, [36] utilizes the simple and useful observation that the “fiber-
wise” global sections of the twisted vector bundle V ⊗ OX(σ) contain information
about the spectral cover. Specifically, the zeros of these sections along the fiber are
coincident with the points where the spectral cover intersects the fibers. So one can
consider the kernel of the map F in the following sequence,

0 π∗π∗(V ⊗OX(σ)) π∗π∗(F ⊗OX(σ)) π∗π∗(N ⊗OX(σ)) 0,F

(2.181)

where the morphism π is the usual projection of the elliptic fibrations.18 Therefore
wherever the rank of the kernel drops, must be the position of the spectral cover.

This approach, though explicit and computationally tractable, has some
drawbacks. The obvious one is that it cannot immediately provide information about
the spectral sheaf. The other problem is that it is possible and quite common that
the spectral cover may wrap components of some non-generic elliptic fibers (i.e. when
the restriction of the vector bundle on those non-generic fibers is unstable). In such
cases it is possible that the number of global sections of the twisted vector bundle
on these fibers jump instead of dropping, and since the algorithm sketched above is
designed to detect where the kernel drops, it cannot find these vertical components
of the spectral cover.19

To solve the first problem in [67], it was conjectured that the cokernel, L,
of the following evaluation map can provide a defining relation for the spectral sheaf,

0 π∗π∗(V ⊗OX(σ)) V ⊗OX(σ) L 0.ev (2.182)

18To derive this sequence the flatness of π and stability of V are necessary.
19As long as one wants to find the spectral cover only, it is still possible to use this algorithm,

but with other twists to find the missing components. We have employed this technique in recent
work [20], but in practice it can be very slow for Calabi-Yau threefolds.
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However, although L is supported over the spectral cover, it is not the spectral sheaf
generally (in particular when some of the line bundles in the monad have zero relative
degree zero).

In our approach, we simply use the resolution of the Poincare sheaf to
compute the Fourier-Mukai transforms directly, and is clear from (2.154) that this
yields something very similar in spirit to the approaches mentioned above.

2.5.3 An extension bundle defined on an elliptic fibration
with fibral divisors

In a similar spirit to the previous sections, it should be noted that a generic bundle
chosen over an elliptic threefold with fibral divisors will unfortunately not necessarily
correspond to a smooth spectral cover with the topology we derived in Section 2.2.
However, we can verify that in some simple cases the explicit examples we construct
do produce smooth spectral covers with the expected form. Moreover, the techniques
outlined in the previous subsections for explicitly computing FM transforms carry
over smoothly into this new geometric setting.

For simplicity, we will fix the Calabi-Yau geometry explicitly from the start
to be given by an anticanconical hypersurface in the following toric variety:

X Y Z E x1 x2 x3 p
3 2 1 0 0 0 0 6
9 6 0 0 1 1 1 18
8 5 0 1 0 1 1 16

(2.183)

Note that here we denote the single exceptional (i.e. fibral) divisor in this
geometry as E and the divisor class of x1 is D − E with D being the hyperplane
divisor in the base, B2 = P2. The image of E on the base is a line homologous to the
hyperplane, here denoted D. Over D all of the fibers are degenerate of the Kodaira
type I2. Also one can show that E satisfies

E2 = −2σ ·D + 7D · E − 6f. (2.184)

To illustrate a Fourier-Mukai transform here we can begin by choosing the simple
rank two bundle defined by extension of two line bundles chosen in (2.142) (there in
the case of a Weierstrass threefold)

0 −→ OX(−σ +Db) −→ V2 −→ OX(σ −Db) −→ 0.
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The calculation follows along exactly the same lines as outlined in previous sections,
the only interesting point here is the existence of the (-2) curves. As we saw in the
Weierstrass case, requiring a non-degenerate spectral cover, implies that 2Db−c1(B)
must be effective. So in the present case, the Fourier-Mukai transform of V2 is given
by,

Φ(V2) = O2σ+2Db+c1(B)(σ +Db).

In this case, the number of (−2)-curves in the spectral cover induced by the excep-
tional divisor is κ := D ·B2 (2Db+ c1(B)). So clearly the line bundle over the spectral
cover is trivial with respect to the (−2)-curves, since c1(L) = σ +Db.

From this starting point though, it is clear that we choose a new spectral
sheaf with some of these exceptional divisors “turned on,” and apply the inverse
Fourier-Mukai transform. This will allow us to see how to modify a simple vector
bundles line the one above so that its Fourier-Mukai transform will have some non-
trivial dependence on the fibral (−2)-curves.

To this end, recall that the Fourier-Mukai transform above is given by a
short exact sequence,

0 −→ OX(−σ +Kb −Db) −→ OX(σ +Db) −→ Φ(V2) −→ 0.

Now if we twist the above sequence with the OX(E), then we obtain a Fourier-Mukai
transform of a new stable rank two bundle Ṽ2 with spectral line bundle,

c1(L) = σ +Db +
κ∑
i=1

ei. (2.185)

So twisting with OX(E) turns on all of the exceptional divisors with multiplicity one.

Now it is possible to apply an inverse Fourier-Mukai transform. We will
omit the details here from brevity and simply state the result, namely a defining
sequence for a new bundle Ṽ2,

0 −→ OX(−σ +Db) −→ Ṽ2 −→ OX(σ −Db +D − E)
−→ OD−E(−σ +Db +D +KB) −→ 0. (2.186)

Note that D−E is an effective divisor. We can easily compute the Chern character
of Ṽ2 from the exact sequence above (and using GRR),
ch(Ṽ2) = 2− σ (2Db + c1(B)) + E · (2Db + c1(B))−D2

b +D · (KB − 2Db) .

(2.187)
This is in agreement with the topological equations derived above with βi = 1,
κ = D · (2Db + c1(B)) and ζ = −(2Db + c1(B)).
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2.5.4 A bundle defined via extension on a CY threefold with
rk(MW)=1

Once again in the case of an elliptic manifold with more than one section (and a
holomorphic zero-section) we can illustrate the techniques of an FM transform via a
simple rank two vector bundle defined via an extension,

0 −→ OX(−σ − S1 +Db) −→ V2 −→ OX(σ + S1 −Db) −→ 0, (2.188)

where here S1 is the Shioda map (see Section 2.3) associated to the second section
to the elliptic fibration.

Following the same pattern as in the Weierstrass case, we first compute the
extension group,

Ext1(OX(σ + S1 −Db),OX(−σ − S1 +Db)) = H1(X,OX(−2σ − 2S1 + 2Db)).

(2.189)

To use the Leray spectral sequence we need to know the derived direct images of
OX(−2σ1). With the help of Koszul sequence for σ1 one obtains

Rπ∗OX(−2σ1) = (KB ⊕K−1
B )[−1]. (2.190)

So we see that the extension group decomposes into two subgroups,

Ext1(OX(σ + S1 −Db),OX(−σ − S1 +Db)) =

H0(B,OB(2Db + c1(B))⊕OB(2Db + 3c1(B))). (2.191)

We expect that these two subgroups determine the complex structure of the spectral
cover, and if we choose a generic element (assuming 2Db + 3c1(B) is effective), the
spectral cover must be smooth, and the topological formulas derived in Section 2.3
must be valid.

Before computing the Fourier-Mukai transform of this bundle, it is useful
to consider the Chern character of the bundle given in (2.188),

ch(V2) = 2− (3c1(B) + 2Db)σ − (3c1(B) + 2Db)S1 +D2
b − 2c1(B)2. (2.192)

From this form, we expect that if the topological formulas given in Section 2.3 are
satisfied, the divisor class of S must be 2σ + 2Db + 3c1(B), and c1(L) = σ − S1 +
c1(B) +Db.
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Now we can compute the Fourier-Mukai explicitly (along the same lines as
in previous sections) and obtain

Φ(OX(σ + S1 −Db)) = OX(−σ − S1 − 2c1(B)−Db), (2.193)
Φ(OX(−σ − S1 +Db)) = OX(σ − S1 + c1(B) +Db)[−1]. (2.194)

Therefore the Fourier Mukai transform of V2 is simply given by the following torsion
sheaf,

Φ(V2) = O2σ+2Db+3c1(B)(−σ − S1 + c1(B) +Db)[−1]. (2.195)

In this carefully engineered example then, we are once again able to confirm the
results derived in Section 2.3, but we emphasize again that the topological formu-
las derived will not generally satisfied by a randomly chosen bundle on the elliptic
threefold.

2.6 Small instanton transitions and spectral cov-
ers

An application of the tools we have developed in Sections 2.2 is to consider small
instanton transitions [135] (i.e. M5-brane/Fixed plane transitions in the language
of Heterotic M-theory [111]) involving spectral cover bundles. This subject was first
explored in depth in [45, 135] and there a simple form for such transitions were found
for smooth spectral covers within Weierstrass models. Within that geometric setting,
the authors categorized possible small instanton transitions involving spectral covers
as a) Gauge group changing or b) Chirality changing depending on which components
of the effective curve class

W = WBσ + aff (2.196)

(wrapped by the 5-brane) are “absorbed” into the bundle on the a boundary brane.
Here σ is the holomorphic section of the Weierstrass 3-fold, WB is a curve within the
base B2 and f the fiber class. The authors concluded that in the case that a part
of the 5-brane wrapping the fiber class is absorbed into the bundle this can result
in case a) above while if a curve in the base is involved (i.e WB above) then the
transition will induce a chirality change in the Heterotic effective theory, while in
the case of purely “vertical” transitions (involving detaching a part of af above) the
chirality is unchanged.
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In the following section we will demonstrate that the generalized geometric
setting for elliptically fibered CY 3-folds and spectral covers that we have found in
Sections 2.2 provides new possibilities for such 5-brane transitions. In particular,
we will illustrate these possibilities in the case of a transition involving a 5-brane
wrapping a curve that is part of a fibral divisor (in the geometric setting of Section
2.2).

2.6.1 New chirality changing small instanton transitions

Consider for simplicity the case that X3 contains a single fibral divisor class, D1.
Suppose that the small instanton is localized on a component of the I2 fibers, C1 (as
defined in Section 2.2) with class,

[C1] = (D −D1) ·D (2.197)

where D is a divisor pulled back from the base, B2 and D1 is the fibral divisor.
Recall that in the case of a CY 3-fold of the type described in Section 2.2 we can
parameterize the topology of a general bundle V as

ch(V ) = N −
(
ση + ωf +

∑
ζD1

)
+

1

2
c3(V ) . (2.198)

As described in [135], if the 5-brane is moved to touch the E8 fixed plane in a small
instanton transition, this geometrically results first in a torsion sheaf VC1 supported
over C1, which can be combined with the initial smooth SU(N) bundle V to make
a torsion free sheaf Ṽ :

0 Ṽ V iC1∗F 0, (2.199)

where iC1 : C1 ↪→ X is the inclusion of the curve mentioned above, and F is the
sheaf supported over the curve C1, wrapped by the 5-brane. The specific order of
the sheaves in (2.199) is chosen to describe the absorption of the 5-brane.

The final step in the process of the small instanton transition is to con-
sider, for specific choices for F , whether it is possible to “smooth out” Ṽ , to a final
smooth/stable vector bundle, V̂ as in [135]. To this end, we consider choices of sheaf
F above (corresponding to parts of the 5-brane class which can be “detached” and
absorbed into Ṽ ) and ask whether the resulting bundle can be smoothed. In the
case of the single fibral divisor we are considering (i.e. I2 fibers as in Section 2.2),
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the curve being wrapped by the 5-branes is topologically a P1 and we can take the
sheaf supported over the 5-brane to be simply a line bundle. Below we explore two
choices of this line bundle.

Case 1: F = OC1(−1) From (2.199), the total Chen character of Ṽ is,

ch(Ṽ ) = ch(V )− [C1] = ch(V ) +D ·D1 − f. (2.200)

In addition, recall that the Fourier-Mukai transform of OC1(−1) is IC1 = OC2(−2).
So one can apply the Fourier-Mukai functor to (2.199) to obtain,

0 iC2∗O(−2) iS̃L̃ iSL 0, (2.201)

where Φ(V ) = iSL[−1] and Φ(Ṽ ) = L̃ are Fourier-Mukai transforms of V and Ṽ
which are torsion sheaves supported over the N-sheeted covers of the base, S and
S̃ respectively. Taking the case that S is integral, and C2 is one of the (−2)-curves
which S wraps, then S̃ = S, and we get,

c1(L̃) = c1(L) + e1. (2.202)

Note that L̃ is singular over C2 (= e1), as may be expected,20 however, in the process
of deforming Ṽ to a smooth bundle, L̃ may also be smoothed out to a line bundle L̂
with the same topology. In this case we can say from the topological data derived
earlier in this section that the corresponding (hypothetically) smooth vector bundle
V̂ must have the following topology (see (2.198) above)

ζ(V̂ ) = ζ(V )−D, (2.203)

ω(V̂ ) = ω(V ) + f, (2.204)

ch(V̂ ) = ch(V ) +D ·D1 − f. (2.205)

For these choices, ch(V̂ ) is the same as ch(Ṽ ). So we conclude this transition is
topologically unobstructed. In this case we can see that the third Chern character
doesn’t change in this transition (also γ remains unchanged), therefore neither the
chiral index or zero-mode spectrum are changed.

Case 2: F = Oc1(−2) As above, from (2.199) we compute the Chern character of
Ṽ as

ch(Ṽ ) = ch(V )− [C1] + 1w, (2.206)
20Due to the flatness of the projection and the Poincare bundle in the definition of the FM functor

we use here, singularity of the “vector bundle” and the spectral sheaf are closely correlated.
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where w is dual to the zero cycles. Note that if Ṽ can be smoothed, we expect
ch(Ṽ ) = ch(V̂ ) for the final smooth bundle after the small instanton transition.
Thus it is clear that both the second Chern class and chirality can change in this
case,

c2(V̂ ) = c2(V ) +D · (D −D1), (2.207)
1

2
c3(V̂ ) =

1

2
c3(V ) + 1. (2.208)

To address the question of smoothing, we simply apply the Fourier Mukai functor to
(2.199) for the chosen iC1∗F and assume V is already WIT1,

0 iS̃∗L̃ iS∗L iC1∗OC1 0, (2.209)

and we noted that Φ(iC1∗OC1(−2)) = iC1∗OC1 [−1].

Now it must be observed that as long as the above short exact sequence
can exist, the sheaf Ṽ is indeed WIT1. Note that since an irreducible spectral cover
never wraps C1, then the existence of this sequence forces both S and S̃ to have
vertical components that contain C1. As a result then, we can choose to consider
a small instanton transition in which the spectral cover of the initial bundle V is
reducible with vertical (i.e fiber-directions) and horizontal components,

S = SV ∪ SH , (2.210)

where SV contains C1. For simplicity, we will illustrate this transition below in the
case that the divisor class SV is simply D, and LV is a line bundle.

Note that although we are choosing the spectral cover to be reducible, it is
not the case that V itself must be a reducible bundle. As a next step, we can consider
what topological constraints must be in place for a stable degree zero vector bundle
such that its Fourier Mukai transform iS∗L is made of a vertical and horizontal piece:

0 iSH∗LV iS∗L iSV ∗LH 0. (2.211)

Following the same procedure as before we can derive the the topological data,

[SH ] = Nσ + η −D, (2.212)

[SH ] ·
(
c1(LH)−

1

2
[SH ]

)
+D ·

(
c1(LV )−

1

2
D

)
= (Nσ + η)

(
−1

2
c1(B)

)
− 1

2
c3(V )f − ζe1. (2.213)
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A solution for this equation can be given as,

c1 (LH) = −
1

2
(c1(B)− [SH ]) + γH , (2.214)

γH = λH (Nσ − η +D +Nc1(B)) + δσ, (2.215)
c1 (LV ) = −ζe+ λVD − δσ, (2.216)
1

2
c3(V ) = λHη (η −Nc1(B))− λV +

1

2
D · (D − c1(B)) . (2.217)

After a tedious algebraic calculation, one can derive a formula for ω, but it is not
necessary here. Finally if we require both V and Ṽ have the same spectral cover,21

then (2.209) implies the following relation between the vertical parts of the spectral
sheaves,

L̃Ṽ = LV ⊗OSV
(−D + E). (2.218)

Therefore we easily get the following relations between the parameters of Ṽ and V ,

λṼ = λV − 1, (2.219)
ζV̂ = ζV − 1. (2.220)

Moreover if we put δV = δV̂ = 0, we can see by the above arguments that,

ωV̂ = ωV + 1. (2.221)

Finally, we arrive at a point where we can compare the above conditions on V and
Ṽ with the relations (2.207) derived before and observe that they are exactly the
same. Thus, the transition is unobstructed and we have provided an example of a
complete (i.e. smooth-able) chirality changing transition involving fibral curves.

We should emphasize that the above geometry is by no means general and
many choices were made for simplicity of computation. Nonetheless, it serves to
illustrate that the existence of fibral divisors in the elliptically fibered CY 3-fold will
make new forms of small instantons possible. In particular, the example above is
a chirality changing transition that is unique compared to those classified in [135]
for Weierstrass form (in which “vertical” transitions changed only the gauge group
and “horizontal” curves led to chirality change). In this example we find chirality
change from new vertical curves for the 5-brane to wrap and the gauge group remains
unchanged even though C1 is a vertical curve.

21Note for simplicity we assumed LH is independent of the (−2)-curves on the horizontal com-
ponents SH .
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2.7 Reducible spectral covers and obstructions to
smoothing

As illustrated by the examples in Section 2.5, there are many limitations to the
analysis that we completed in Sections 2.1 to 2.3. First, the Picard number of the
spectral cover maybe larger 1 + h1,1(B2) generically. This corresponds to spectral
surfaces in which there exist more divisors than those inherited from the ambient
Calabi-Yau threefold. Moreover, it is known that at higher co-dimensional loci in
moduli space, this Picard group can in fact jump [2]. Second, as seen in the examples
in previous sections, the spectral cover can be singular, and therefore one cannot
predict the general form of ch(iS∗L).

In these cases it may be possible to choose special sheaves L that “ob-
struct” the deformation of the spectral cover to a smooth one. In other words, the
corresponding vector bundles lands on a different component22 than the one that is
analyzed in [89, 90]. In this section we briefly outline how such a situation might be
realized in the case that spectral cover is reducible but reduced. This analysis has
some similarity to examples analyzed in [71].

We begin with the spectral data (L, S) of a bundle V defined over a Weier-
strass CY threefold π : X → B, where

S := S1 ∪Σ S2, (2.222)
0 −→ L1 −→ L −→ L2 −→ 0. (2.223)

As usual

ch(V ) = N − (ση + ω) +
1

2
c3(V ), (2.224)

−ch(Φ(V )) = ch(L) = (Nσ + η) + (Nσ + η)

(
−c1(B)

2

)
+

(
1

6
nc1(B)2 − ω

)
. (2.225)

22Note that this cannot happen for a vector bundle over an elliptically fibered K3 surface. This
phenomenon only appears for CY manifolds of complex dimension 3 or higher.
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Now we assume that

[S1] = n1σ + η1, (2.226)
[S2] = n2σ + η2, (2.227)
N = N1 +N2, (2.228)
η = η1 + η2. (2.229)

With these assumptions, the general for for c1(L1) and c1(L2) are given below,

c1(L1) =
1

2
(−c1(B) + [S1]) + γ1 + α1[S2], (2.230)

c1(L2) =
1

2
(−c1(B) + [S2]) + γ2 + α2[S1], (2.231)

γi = λi (Niσ − ηi +Nic1(B)) , (2.232)
1

2
c3(V ) =

∑
i

Niλiηi (ηi −Nic1(B)) . (2.233)

The main difference of the equations above with the standard one is the existence of
the terms α1[S2] and α2[S1]. For consistency we demand,

α1 + α2 = 0. (2.234)

Note the existence of such terms implies (Li, Si) are spectral data of vector bundles
Vi with first Chern class,

c1(Vi) = αi (N1η2 +N2η1 −N1N2c1(B)) . (2.235)

It is next possible to compute ω as before,

1

6
Nc1(B)2 − ω =

Nc1(B)2

8

+
c1(B)2

24
(N3

1 +N3
2 ) +

1

8
(N1η1 (η1 −N1c1(B)) +N2η2 (η2 −N2c1(B)))

+
1

2
π1∗γ

2
1 +

1

2
π2∗γ

2
2

+
1

2
Σ ·
(
α2
1[S2] + α2

2[S1] + 2α1γ1 + 2α2γ2
)
. (2.236)

After some algebra it can be shown that only for α1 = −α2 = ±1
2

can the
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above equation be simplified to,

1

6
Nc1(B)2 − ω =

Nc1(B)2

8

+
c1(B)2

24
N3 +

1

8
Nη (η −Nc1(B))

+
1

2
π1∗γ

2
1 +

1

2
π2∗γ

2
2

+ Σ · (α1γ1 + α2γ2) . (2.237)

This is almost the same as the standard formula expected from Section 2.1 if there
exists a λ such that

1

2
π∗γ

2 =
1

2
π1∗γ

2
1 +

1

2
π2∗γ

2
2 + Σ · (α1γ1 + α2γ2) . (2.238)

We come now to our central claim in this section:
If the restriction of L to Σ is a trivial line bundle, then it is always possible to deform
the “singular” spectral data to a “smooth” spectral data, such that it satisfies the
generic formulae expected in (2.37) – (2.39). Otherwise it is impossible (generically).
In particular if the restriction is a non-trivial degree zero line bundle, the deformation
is obstructed.

First note that if L is defined as

0 −→ L1 −→ L −→ L2 −→ 0, (2.239)

the restriction of L on S1 and S2 are

L1 ⊗KS2|S1 ,

L2, (2.240)

respectively. Therefore the line bundle induced over Σ lives in

HomΣ (L2,L1 ⊗KS2|S1) ≃ Ext1X (iS2∗L2, iS1∗L1) , (2.241)

corresponding to extensions. Conversely, if we define L as,

0 −→ L2 −→ L −→ L1 −→ 0, (2.242)

the restriction of L on S1 and S2 are

L2 ⊗KS1|S2 ,

L1, (2.243)
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respectively. Therefore the line bundle induced over Σ lives in

HomΣ (L1,L2 ⊗KS1|S2) ≃ Ext1X (iS1∗L1, iS2∗L2) , (2.244)

corresponding to the opposite extensions. If we rewrite the left hand side of (2.241)
as,

H0(Σ,F),
F := L1 ⊗ L∗

2 ⊗KS2|S1 , (2.245)

then (2.244) can be written as,

H0 (Σ,F∗ ⊗KΣ) . (2.246)

Therefore we see23 if F ≃ OΣ ,then both extensions are possible, and we can deform
the spectral data to generic “smooth” one described in [89].

We can indeed check that in this case there is a λ that satisfy (2.238). To
show that we choose,

α1 = −α2 = −
1

2
(2.247)

(the other choice corresponds to F ⊗KΣ ≃ OΣ). Notice in this case if γ1 = γ2 as a
divisor in X then F ≃ OΣ. This constraint is equivalent to,

N1λ1 = N2λ2, (2.248)
η1λ1 = η2λ2. (2.249)

Let us look at (2.238) more closely,
1

2
λ2Nη(η −Nc1(B)) =

1

2
λ21N1η1 (η1 −N1c1(B))

− 1

2
λ1N2η1 (η1 −N1c1(B)) +

1

2
λ22N2η2 (η2 −N2c1(B))

+
1

2
λ2N1η2 (η2 −N2c1(B)) . (2.250)

The second terms in the 2nd and 3rd line cancel. To find λ we choose an ansatz
λ = αλ1λ2, and use the constraints above, we can see the solution is ,

λ =
λ1λ2
λ1 + λ2

. (2.251)

23We could also choose F∗⊗KΣ ≃ OΣ. But since the analysis would run along very similar lines,
we choose to just focus on the first case.
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On the other hand if we request γ1 = γ2 only over Σ, i.e.

S1 · S2 · γ1 = γ1|Σ = γ2|Σ = S1 · S2 · γ2, (2.252)

then it means F is an element of J(Σ) but it is not necessarily a trivial line bundle
(as g(Σ) ≥ 1 generally). In this case there is no solution for Λ generally.

In summary then, we have seen in this section that the properties of re-
ducible spectral covers may indeed be quite distinct from their smooth cousins.



Chapter 3

Heterotic/Heterotic and
Heterotic/F-theory Duality

This chapter is based on the paper [20] written in collaboration with L.B. Anderson,
H. Feng and X. Gao. Compactifications of the Heterotic string and F-theory can
lead to identical effective theories in the situation that the background geometries
of the two theories both exhibit fibration structures [131]. Namely, Heterotic string
theory compactified on a Calabi-Yau n-fold with an elliptic fibration

πh : Xn
E−→ Bn−1 (3.1)

over a base manifold Bn−1, leads to the same effective physics as F-theory compact-
ified on a Calabi-Yau (n+ 1)-fold with a K3 fibration over the same base manifold,
Bn−1:

πf : Yn+1
K3−→ Bn−1 (3.2)

In order to have a well-defined F-theory background, the (n+1)-fold Yn+1 must also
be elliptically fibered, with compatible elliptic/K3 fibrations [131, 151].

In the context of (potential) Heterotic/Heterotic dualities and Heterotic/F-
theory duality then, there are a number of natural questions that arise. Suppose that
(X3, π : V → X3) and (X̃3, π : Ṽ → X̃3) are the requisite background geometries
(i.e. (manifolds, vector bundles)) defining two TSD Heterotic theories, then these
questions include:

• Can Target Space Dual pairs be found in which both X and X̃ are elliptically
fibered as in (3.1)? In principle, these two fibrations need not be related in any
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obvious way, for example: two topologically distinct CY 3-folds π : X3 → B2

and π̃ : X̃3 → B̃2, with distinct 2 (complex) dimensional base manifolds B2,
B̃2 to their fibrations.

• If such elliptically fibered CY 3-fold geometries can be found within a TSD pair,
this will in principle lead to two CY 4-folds, Y4 and Ỹ4, as dual backgrounds for
F-theory. It should follow by construction that these two geometries lead to the
same 4-dimensional effective theory (or at least the same massless spectrum).
How can this apparent duality be understood in the context of F-theory? How
are Y4 and Ỹ4 related?

For the first point, to our knowledge no explicit pairs of elliptically fibered TSD
Heterotic geometries have yet appeared in the literature. However, at least one
proposal for the latter point has been posited. In [42] it was proposed that if fibered
Heterotic TSD pairs could be found, one possibility for the induced duality in F-
theory would be the existence a CY 4-fold with a single elliptic fibration, but more
than one K3 fibration:

Y4
K3

πf��~~
~~
~~
~~ K̃3

π̃f ��@
@@

@@
@@

B2 B̃2

,

where each fibration can be seen as the F-theory dual of one of the Heterotic vacua
(associated to (X,V ) or (X̃, Ṽ ) respectively). Since by its very definition, F-theory
requires that Y4 is also elliptically fibered, this would imply that each K3-fiber ap-
pearing above is itself also elliptically fibered. Moreover, since the elliptic fibration
of F-theory that determines the effective physics (i.e. gauge symmetry, matter spec-
trum, etc), in order for the two K3 fibrations to lead to identical effective theories, it
would be expected that in fact in this scenario, Y4 has only one elliptic fibration, but
that it is compatible with two distinct K3 fibrations. If these compatible fibration
structures were to exist it must be that the base of the elliptic fibration, ρ : Y4 → B3,
must have two different P1-fibrations:

Y4

Eρf
��
B3

P1

σf~~~~
~~
~~
~~ P1

σ̃f   @
@@

@@
@@

@

B2 B̃2



86 Chapter 3. Heterotic/Heterotic and Heterotic/F-theory Duality

The scenario above is one obvious way in which a “duality” of sorts could arise in F-
theory. Of course, in this case the essential F-theory geometry is not changing, only
the K3 fibrations which determine the Heterotic dual. This is clearly not the only
possibility. As one alternative, it could prove that the F-theory duals of Heterotic
TSD pairs are in fact two distinct CY 4-folds, Y4 and Ỹ4 whose gauge symmetries,
massless spectra and effective N = 1 potentials are ultimately the same through
non-trivial G-flux in the background geometry. We can summarize these two options
for the induced duality in F-theory as follows

1. (Possibility 1) Heterotic TSD ⇔ Multiple K3 fibrations in a single F-theory
geometry (and hence manifestly leading to the same effective physics).

2. (Possibility 2) Heterotic TSD ⇔ Two distinct pairs of manifolds and G-flux,
(Y4, G4) and (Ỹ4, G̃4) which lead to the same effective physics in F-theory.

In this work we investigate the two questions listed above and provide explicit ex-
amples of Heterotic target space dual pairs with the requisite fibration structures to
lead to F-theory dual theories. As we will outline in the following sections, substan-
tial technical difficulties arise in explicitly computing the full F-theory duals of these
Heterotic theories. In the present work we do not attempt to fully determine these
dual F-theories and instead provide evidence for our primary conclusion: multiple
fibrations in F-theory cannot in general explain the dual physics of (0, 2) TSD.

To overcome some of the technical obstacles of Heterotic/F-theory dual-
ity, we begin our analysis by actually considering Heterotic/F-theory dual pairs in
6-dimensional effective theories rather than in 4-dimensions. In this context, the
Heterotic duality is a trivial one – TSD pairs simply generate two bundles over K3
with the same second Chern class, and are thus trivially guaranteed to give rise to
the same massless spectrum (see e.g. [35]). However, this very simple framework
for Heterotic TSD pairs allows us to explicitly perform Fourier-Mukai transforms to
render the data of a holomorphic, stable vector bundle over K3 into its spectral cover
[89]. With this data, we are able to explicitly construct examples of F-theory duals
and verify that in fact they cannot arise as multiple K3 fibrations of a CY 3-fold,
Y3, determining an F-theory background. The results of this study are presented in
Section 3.3.3.

Turning once more to our primary area of interest in N = 1 and Heterotic
compactifications on CY 3-folds, we outline the essential ingredients determining the
dual F-theory geometry. We find that in general a number of technical tools are
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missing for fully determining the F-theory physics. Some of these we have developed
and will appear separately [21, 22] while others we leave to future work. However, we
are able to indicate that in general the intermediate Jacobians of the dual F-theory
geometries must play some role in the new “F-theory duality” whatever it may prove
to be. This leads to the presence of essential data not associated to the complex
structure of the CY 4-fold alone, but G-flux as well. In the singular limit such fluxes
are well known to have the potential to dramatically change the effective physics
through so-called T-brane solutions [14, 18, 51] and other possibilities.

In the following sections we will explore these ideas in detail. In particular,
this chapter is organized in the following way. In Section 3.1 we review briefly the
essential aspects of (0, 2) Target Space Duality. In Section 3.2, we provide the first
non-trivial examples to appear in the literature of Heterotic TSD pairs in which both
CY 3-folds, X and X̃ are elliptically fibered. In these cases, the Heterotic geometries
are smooth (consisting of smooth so-called CICY threefolds [49] and stable, holomor-
phic vector bundles defined via the monad construction [114] over them) and lead to
well controlled, perturbative Heterotic theories. However we will demonstrate in this
and subsequent sections that existing techniques in the literature to determine dual
F-theory geometries, as outlined in Section 3.3.6 are insufficient to determine the
geometry of Y4 and Ỹ4 in these cases. However, we none-the-less still find some evi-
dence indicating that multiple fibrations of Y4 cannot be the F-theory manifestation
of (0, 2) TSD.

To make concrete the dual F-theory geometry we move to 6-dimensional
examples in Section 3.3.3. More precisely, we consider Heterotic TSD theories con-
sisting of pairs of bundles over K3 in which the second Chern class of both V and
Ṽ is taken to be 12. In this case, it is possible that the F-theory geometry, Y3 is
multiply fibered as described above. However after finding the spectral data (i.e.
Fourier Mukai transform) of these bundles, we can explicitly construct the dual F-
theory geometry and find that it does not in general agree with what can be obtained
by multiple fibrations. We will argue further that the F-theory “image” of target
space duality under the Heterotic/F-theory map shouldn’t be purely geometric even
in 6-dimensions, but rather it can be related to the intermediate Jacobian of the CY
3-fold. With these tools and observations in hand we return to the F-theory duals
of four dimensional, N = 1 Heterotic theories in Section 3.3.6.

Finally, in the Appendices we consider a handful of examples illustrating
both the range of possibilities arising in Heterotic TSD dual geometries, as well as
potential pitfalls that can arise in constructing dual pairs.
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3.1 A brief review of (0,2) target space duality

Heterotic target space duality is best understood in the context of Heterotic string
compactifications associated to (0, 2) gauged linear sigma models (GLSMs). It was
first observed by Distler and Kachru in 1995 [65], and further studied by Blumen-
hagen [40, 41] with later a landscape study [42]. The GLSM provides a description
of the complexified compact stringy Kähler moduli space which is divided into var-
ious phases [156]. The freedom to vary a Fayet-Illiopolos parameter links variety of
distinct phases including the geometric phases (associated to target space geome-
tries like Calabi-Yau threefolds X and holomorphic vector bundle V ), non-geometric
phase (commonly a Landau-Ginzburg phase), and a rich variety of hybrid phase. De-
scribed in the (0,2) GLSM language, target space duality is realized by exchanging
two certain types of charges in theory, which is defined by (X,V ) in the geometric
phase, to give a different configuration (X̃, Ṽ ) from the original one while leaving
the superpotential invariant and sharing a common Landau-Ginzburg phase. Mean-
while, in the geometric phases, this pair of theories (X,V ) and (X̃, Ṽ ) preserve net
number of moduli, the complete charged and singlet particle spectra.

In an Abelian GLSM, there exists multiple U(1) gauge fields A(α) with α =

1, ..., r, two sets of chiral superfields as {Xi|i = 1, ..., d} with U(1) charges Q(α)
i , and

{Pl|l = 1, ..., γ} with U(1) charges −M (α)
l . Furthermore, there are two sets of Fermi

superfields: {Λa|a = 1, ..., δ} with charges N (α)
a , and {Γj|j = 1, ..., c} with charges

−S(α)
j . These charges are given in order to realize the Calabi-Yau manifolds as

complete intersection hypersurfaces in ambient space (Complete Intersection Calabi-
Yau (CICY)) and stable, holomorphic vector bundles over them in some geometric
phase. As a result, we will require the charges Q(α)

i ≥ 0 and for each i, there exists at
least one r such that Q(α)

i > 0. Similar assumption of (semi-)positivity will also hold
for the charges S(α)

j and M
(α)
l . However, in some cases we will consider solutions in

which charges N (α)
a may be negative. Then the field content and charges of GLSM

can be summarized in the following ”charge matrix,”

xi Γj

Q
(1)
1 Q

(1)
2 . . . Q

(1)
d

Q
(2)
1 Q

(2)
2 . . . Q

(2)
d... ... . . . ...

Q
(r)
1 Q

(r)
2 . . . Q

(r)
d

−S(1)
1 −S(1)

2 . . . S
(1)
c

−S(2)
1 −S(2)

2 . . . S
(2)
c

... ... . . . ...
−S(r)

1 −S(r)
2 . . . S

(r)
c

(3.3)
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Λa pl

N
(1)
1 N

(1)
2 . . . N

(1)
δ

N
(2)
1 N

(2)
2 . . . N

(2)
δ... ... . . . ...

N
(r)
1 N

(r)
2 . . . N

(r)
δ

−M (1)
1 −M (1)

2 . . . −M (1)
γ

−M (2)
1 −M (2)

2 . . . −M (2)
γ

... ... . . . ...
−M (r)

1 −M (r)
2 . . . −M (r)

γ

(3.4)

We can denote such starting point in the geometric phase as:

VN1,...Nδ
[M1, . . . ,Mγ] −→ PQ1,...Qd

[S1, . . . , Sc]. (3.5)

Here anomaly cancellation condition requires the following linear and quadratic con-
straints for all α, β = 1, ..., r:

δ∑
a=1

N (α)
a =

γ∑
l=1

M
(α)
l ,

d∑
i=1

Q
(α)
i =

c∑
j=1

S
(α)
j ,

γ∑
l=1

M
(α)
l M

(β)
l −

δ∑
a=1

N (α)
a N (β)

a =
c∑
j=1

S
(α)
j S

(β)
j −

d∑
i=1

Q
(α)
i Q

(β)
i . (3.6)

The GLSM is further described by a superpotential and a scalar potential, while the
scalar potential has contributions from F-term and D-term:

S =

∫
d2zdθ

[∑
j

ΓjGj(xi) +
∑
l,a

PlΛ
aF l

a(xi)

]
,

VF =
∑
j

∣∣Gj(xi)
∣∣2 +∑

a

∣∣∑
l

plF
l
a(xi)

∣∣2, (3.7)

VD =
r∑

α=1

( d∑
i=1

Q
(α)
i |xi|2 −

γ∑
l=1

M
(α)
l |pl|

2 − ξ(α)
)2

,

where the functions Gj and F l
a are quasi-homogeneous polynomials with degrees

shown in the following matrix:

Gj

S1 S2 . . . Sc

Fa
l

M1 −N1 M1 −N2 . . . M1 −Nδ

M2 −N1 M2 −N2 . . . M2 −Nδ
... ... . . . ...

Mγ −N1 Mγ −N2 . . . Mγ −Nδ

(3.8)
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Furthermore, the function F l
a will be chosen to satisfy a transversality condition such

that F l
a(x) = 0 only when xi = 0 for i = 1, ..., d.

The ξ(α) ∈ R in the D-term potential is the Fayet-Iliopoulos (FI) parameter
which determines the structure of the vacuum. From the original Witten’s paper
[156], consider the simple case with only one U(1) so there is only one ξ: If ξ > 0 then
it’s the geometric phase, described by a vector bundle over a Calabi-Yau manifold:
VN1,...,Nδ

[M1, ...,Mγ] −→ X ≡ PQ1,...,Qd
[S1, ..., Sc], where the Calabi-Yau manifold

is defined by complete intersection hypersurfaces in weighted projective space, i.e.
CICY X = ∩cj=1Gj with Gj(xi) = 0, and the vector bundle is defined by

V =
ker(F l

a)

im(Ea
i )

(3.9)

with rk(V ) = (δ − γ − rV) through the monad on X:

0→ O⊕rV
X

Ea
i−→

δ⊕
a=1

OX(Na)
F l
a−→

γ⊕
l=1

OX(Ml)→ 0, (3.10)

for some integers δ and γ. If ξ < 0 then it’s the Landau-Ginzburg phase described
by a superpotential:

W(xi,Λ
a,Γi) =

∑
j

ΓjGj(xi) +
∑
a

ΛaFa(xi), (3.11)

where it would be a hybrid-type non-geometric phases if there are multiple U(1)′s.

Now let us move to the target space duality. The first observation is an
exchange/relabeling of Gj’s and Fa’s will leave the superpotential (3.11) invariant.
This observation indicates that two distinct GLSMs could “share” a non-geometric
phase in which the original role of Gj and Fa is obscured. So the full procedure of
target space dual would be starting from a geometric phase, go to a Landau-Ginzburg
phase, do a rescaling/relabeling of the fields, and go back to the geometric phase to
get a new Calabi-Yau/vector bundle configuration.

If the Landau-Ginzburg phase exists, then the rescaling procedure is as
follows, for a non-vanishing pl and all i = 1, . . . k:

Λ̃ai :=
Γji

⟨pl⟩
, Γ̃ji = ⟨pl⟩Λai , (3.12)

||Λ̃ai || = ||Γji || − ||Pl||, ||Γ̃ji || = ||Λai ||+ ||Pl||, (3.13)
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with
∑

i ||Gji || =
∑

i ||Fai l|| for anomaly cancellation. One thing to notice is that
exchanging only one F with one G does nothing. So in all examples two or more
Fa’s are exchanged with two or more Gj’s. It is clear that the “relabeling” of fields
at the shared Landau-Ginzburg point can mix the degrees of freedom in h2,1(X) and
h1(X,End0(V )) in the target space dual. In the landscape [42], the dual sides match
in the number of charged matter, and the total number of massless gauge singlets,
where the individual number of complex, Kähler and bundle moduli are interchanged
as:

h∗(X,∧kV ) = h∗(X̃,∧kṼ ), k = 1, 2, · · · , rk(V )

h2,1(X) + h1,1(X) + h1X(End0(V )) = h2,1(X̃) + h1,1(X̃) + h1X(End0(Ṽ )).

(3.14)

Furthermore, more general target space duality are possible such that it can also
change the dimension of h1,1(X̃). For example, if there is only one column in G,
which is not enough to make the exchange, then a blow up of P1 on the manifold
will help. This procedure leads to a dual models with an additional U(1) action. In
this case, it is necessary to re-write the initial GLSM in an equivalent/redundant
way. It is always possible to introduce into the GLSM a new coordinate (i.e. a
new Fermi superfield) y1 with multi-degree B and a new hypersurface (i.e. a Chiral
superfield with opposite charge to the new Fermi superfield) GB corresponding to a
homogeneous polynomial of multi-degree B. Similar to (3.5), the above addition can
be written

VN1,...Nδ
[M1, . . . ,Mγ] −→ PQ1,...Qd,B[S1, . . . , Sc,B], (3.15)

and the matrix form of such intermediate step should be:

x1 … xd y1 y2 Γ1 … Γc ΓB

0 … 0 1 1 0 … 0 −1
Q1 … Qd B 0 −S1 … −Sc −B
Λ1 Λ1 … Λδ p1 p2 … pγ
0 0 … 0 −1 0 … 0
N1 N2 … Nδ −M1 −M2 … −Mγ

(3.16)

Suppose that in an example there are two chosen map elements F 1
1 and F 1

2 that
have been chosen to be interchanged with a defining relation S1. In this case we can
choose the redundant new coordinate, y1, to have charge

||B|| = ||F 1
1 ||+ ||F 1

2 || − S1. (3.17)
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For the initial configuration, ||G1|| + ||G2|| = ||F 1
1 || + ||F 1

2 || where G1, G2 are S1,B.
Under the re-labelings required in (3.12) one can choose,

Ñ1 =M1 − S1 , Ñ2 =M1 − B , S̃1 = ||F 1
1 || , B̃ = ||F 1

2 ||. (3.18)

Applying the field redefinitions in (3.18) we arrive at last to the new configuration

x1 … xd y1 y2 Γ̃1 … Γc Γ̃B

0 … 0 1 1 −1 … 0 −1
Q1 … Qd B 0 −(M1 −N1) … −Sc −(M1 −N2)

Λ̃1 Λ̃1 … Λδ p1 p2 … pγ
1 0 … 0 −1 0 … 0

M1 − S1 M1 − B … Nδ −M1 −M2 … −Mγ

(3.19)

In subsequent sections we will consider primarily examples of this latter kind in which
all three types of singlet moduli - Kähler, complex structure, and bundle moduli –
are interchanged in the target space duality procedure. We turn to such an example
next in which both X and X̃ are elliptically fibered.

3.2 A target space dual pair with elliptically fibered
Calabi-Yau threefolds

Before we can begin to investigate the consequences of (0, 2) target space duality for
F-theory, a non-trivial first step is to establish if examples exist in which both halves
of a TSD pair in turn lead to F-theory dual geometries. In this section we explicitly
provide a first example of such a pair.

In the following example, we will find that the CY manifolds, X and X̃,
consist of two Complete Intersection Calabi-Yau 3-folds (so-called “CICYs” [49, 116]),
each of which is fibered over (a different) complex surface B2. These two CICY 3-
folds are related by a conifold transition [116] and can be constructed via the target
space duality algorithm in which an additional U(1) symmetry is added to the dual
GLSM as in Section 3.1.
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3.2.1 A tangent bundle deformation

To investigate these results, a simple starting point is given below – a dual pair
for which the Calabi-Yau manifolds, X and X̃, are related by a conifold transition.
Consider the following CICY 3-fold, described by a so-called “configuration matrix”
[116]

X =

 P1 1 1
P2 1 2
P2 1 2

 . (3.20)

Here the columns indicate the ambient space (a product of complex projective spaces)
and the degrees of the defining equations in that space. The Hodge numbers are
h1,1(X) = 3 and h2,1(X) = 60. Over this manifold, we choose a simple vector bundle
built as a deformation of the holomorphic tangent bundle to X. In the present case
we will choose this bundle to be a rank 6 smoothing deformation of the reducible
bundle

Vred = O⊕3 ⊕ TX . (3.21)

The smooth, indecomposable bundle will be defined1 as a kernel V ≡ ker(F l
a) via

the short exact sequence

0→ V →
δ⊕

a=1

OM(Na)
F l
a−→

γ⊕
l=1

OM(Ml)→ 0, (3.22)

which is the simple case of (3.10) when Ea
i = 0.

In the language of GLSM charge matrices, the manifold and rank 6 monad
bundle (X,V ) are given by the following charge matrix:

xi Γj Λa pl
1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1

−1 −1
−1 −2
−1 −2

1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1

−1 −1
−1 −2
−1 −2

(3.23)
The reason that this rank 6 bundle makes for a particularly simple choice of gauge
bundle is that in this case the GLSM charges associated to the manifold and the bun-
dle are identical (as can be seen above). As a result, anomaly cancellation conditions
such as the requirement that

c2(TX) = c2(V ) (3.24)
1See [23] for discussions of this deformation problem and local moduli space.
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(realized as (3.6) in the GLSM) are automatically satisfied.

Expanding the second Chern class of the manifold in a basis of (1, 1) forms
Jr, r = 1, . . . h1,1 we have

c2(TX) = 3J1J2 + J2
2 + 3J1J3 + 5J2J3 + J2

3 . (3.25)

Following the standard (0, 2) target space duality procedure, it is easy to produce
the TSD geometry (X̃, Ṽ ). In this case, the duals we consider mix all three types
of Heterotic geometry moduli and induce an additional U(1) gauge symmetry in the
GLSM. As an intermediate step we form the equivalent GLSM charge matrix with
an additional U(1) outlined in Section 3.1 (choosing B = 0) and introduce a repeated
entry in the monad bundle charges which does not change either the geometry of
GLSM field theory.2 This leads us to the following charge matrix with a new P1 row
and a new column ΓB as in (3.16):

xi Γj Λa pl
1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1

0 −1 −1
0 −1 −2
0 −1 −2
−1 0 0

1 1 0 0 0 0 0 0 1
0 0 1 1 1 0 0 0 2
0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0

−1 −1 −1
−1 −2 −2
−1 −2 −1
0 −1 0

(3.26)
Finally, we can perform field redefinitions in this intermediate geometry to obtain
the final TSD. Here we choose two map elements – in this case, F 2

8 and F 2
9 – to be

interchanged with a defining relation G2 with degree ||S2|| = {1, 2, 2}. Such a choice
satisfies the linear anomaly cancelation (3.17) since ||S2|| + 0 = ||F 2

8 || + ||F 2
9 ||. In

the intermediate configuration, applying the field redefinitions (3.18) gives:

Ñ8 =M2 − S2 = 0, Ñ9 =M2, S̃2 := F 2
9 , B̃ := F 2

8 . (3.27)

This leads us at last to the dual charge matrix associated to (X̃, Ṽ ) with h1,1(X̃) = 4
and h2,1(X̃) = 60:

xi Γj Λa pl
1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1

0 −1 −1
0 −1 −2
−1 −1 −1
−1 0 −1

1 1 0 0 0 0 0 0 1
0 0 1 1 1 0 0 0 2
0 0 0 0 0 1 1 0 2
0 0 0 0 0 0 0 1 0

−1 −1 −1
−1 −2 −2
−1 −2 −1
0 −1 0

(3.28)
2See [42] for details of this argument.
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Again, in the new configurations the anomaly cancellation condition are
satisfied (as was proved in general to happen in [42]). To make sure they are true
target space duals, we will show that these two different geometric phases preserve
the net multiplicities of charged matter, and the total number of massless gauge
singlets, while the individual number of complex, Kähler and bundle moduli are
changed. First, it is clear that the low-energy gauge group G in the 4-dimensional
gauge theory is given by the commutant of the structure group, H in E8×E8 of the
bundles defined over the CY manifold. Here there is only one bundle (saturating the
anomaly cancellation condition on c2(V )). We choose to embed this structure group
into one of the two E8 factors and considering the other E8 factor as an unbroken,
hidden sector gauge symmetry.

In order to find the matter field representations, the adjoint 248 of E8

must be decomposed under the subgroup G × H. In the present case, the rank 6
bundles have c1 = 0, so their structure groups are H = SU(6). The charged matter
spectrum can then be determined by the decomposition of E8 into representations
of the maximal subgroup SU(2)× SU(3)× SU(6):

248E8 → (3,1,1) ⊕ (1,8,1)⊕ (1,1,35)⊕ (1,3,15)
⊕ (1,3,15)⊕ (2,3,6)⊕ (2,3,6)⊕ (2,1,20). (3.29)

As a result, the multiplicity of fields in the 4-dimensional theory transforming in
representations of SU(2) × SU(3) is counted by those transforming in an SU(6)
representation over the CY. The latter are counted by the dimension of bundle valued
cohomology groups, H∗(X,∧kV ), for assorted values of k (see [6, 96] for details).

It is helpful to note that for a vector bundle V , on a Calabi-Yau 3-fold,
X, the cohomology groups of the bundle and its dual are related by Serre duality
as H i(X,V ) = H3−i(X,V ∗)∗ and when H = SU(n), H∗(X,∧kV ) ≃ H∗(X,∧n−kV ∗).
Finally, a necessary condition for µ-stability of the vector bundle V is h0(X,V ) = 0
which is satisfied for tangent bundle deformations considered here (by direct com-
putation).

With these observations in hand, the multiplicity of the charged chiral
matter spectrum of these dual pair theories can be determined by computing corre-
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sponding vector bundle valued cohomology classes on the Calabi-Yau 3-fold:

(2,3)′s : h1(V ) = 57 h1(Ṽ ) = 57,

(2,3)′s : h1(V ∗) = 0 h1(Ṽ ∗) = 0,

(1,3)′s : h1(∧2V ) = 115 h1(∧2Ṽ ) = 115, (3.30)
(1,3)′s : h1(∧2V ∗) = 1 h1(∧2Ṽ ∗) = 1,

(2,1)′s : h1(∧3V ) = 2 h1(∧3Ṽ ) = 2.

Furthermore, the low-energy theory has massless gauge singlets, (1,1), which are
counted by h1(V ⊗ V ∗) = h1(End0(V )). There are additional singlets, beyond those
related to the complex structure and Kähler deformations of the Calabi-Yau 3-fold,
which are counted by h2,1(X) and h1,1(X). The total number of singlet moduli are
counted by:

h1,1(X) + h2,1(X) + h1(End0(V )) = 3 + 60 + 292 = 355,

h1,1(X̃) + h2,1(X̃) + h1(End0(Ṽ )) = 4 + 53 + 298 = 355. (3.31)

From the point of view of the massless Heterotic spectrum, it is clear that in the
theories associated to the TSD geometries, (X,V ) and (X̃, Ṽ ), all the degrees of
freedom appear to match.

Moreover, we have chosen this pair of geometries to have a further special
property. Each CY 3-fold appearing in the dual pair exhibits an elliptic fibration
structure. As a result, by the arguments laid out in Section 3.1, we expect each
Heterotic background in the pair to lead to its own F-theory dual.

A closer inspection yields the following elliptic fibration structures:

πh : X
E−→ P2 and π̃h : X̃

E−→ dP1. (3.32)

The fibrations of X and X̃ can be seen very explicitly from the form of the complete
intersection descriptions of the manifolds (so-called “obvious” fibrations [17]). Below
we use dotted lines to separate the “base” and “fiber” of the manifold:

X =

 P1 1 1
P2 1 2
P2 1 2

 , X̃ =


P1 0 1 1
P2 0 1 2
P2 1 1 1
P1 1 0 1

 , (3.33)

where the base for the elliptically fibered X is B2 = P2 (the bottom row of the
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configuration matrix) while the dP1 base for X̃ is given as B̃2 =

[
P2 1
P1 1

]
.

Employing the techniques of [15, 16], we find that the fibrations in both
X and X̃ in fact admit rational sections and as a result are elliptically fibered (as
opposed to genus-one fibered only). Moreover, each fibration contains two rational
sections (i.e. a higher rank Mordell-Weil group). In an abuse of notation, we will use
σi to denote both the two sections to the elliptic fibration of X (respectively X̃) and
the associated Kähler forms dual to the divisors. In terms of the basis of the Kähler
(1, 1)-forms Jr inherited from the ambient space factors Pnr of each CICY 3-fold:

σ1(X) = −J1 + J2 + J3, σ2(X) = 2J1 − J2 + 5J3,

σ1(X̃) = −J1 + J2 + J3, σ2(X̃) = 2J1 − J2 + 4J3 + J4. (3.34)

With a choice of zero section for each manifold from the set above, the CY 3-fold
can in principle be put into Weierstrass form [61, 133]. For explicit techniques to
carry out this process we refer the reader to [16].

In summary then, we have produced an explicit example of a TSD pair in
which both sides are elliptically fibered manifolds, admitting 4-dimensional, N = 1
F-theory duals in principle. This is an important point of principle, since we have
demonstrated that some F-theory correspondence should exist for the dual F-theory
EFTs. In practice however, it should be noted that explicitly determining the F-
theory duals for the geometries given above is difficult. We will begin untangling
this process explicitly in Section 3.3.

For now we close this example by observing an interesting feature of the
TSD pair above: Since we began with a deformation of the tangent bundle, the
associated (0, 2) GLSM admits a (2, 2) locus. However, in the TSD geometry the
bundle we obtain is no longer manifestly a holomorphic deformation of the tangent
bundle on X̃. It remains an open question whether this second theory admits a (2, 2)
locus in some subtle way. For the moment, we will turn to one further TSD pair in
which neither vector bundle is related to the tangent bundle.

3.2.2 More general vector bundles

Here we present a second example in which the same CY manifolds appear, but
with different vector bundles. Once again, we start with the GLSM charge matrix
determining the pair (X,V) as in (3.35) where in this time we have a rank 4 bundle
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with structure group SU(4):

xi Γj Λa pl
1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1

−1 −1
−1 −2
−1 −2

1 0 0 0 0 1
0 1 1 0 0 2
0 0 0 1 1 1

−1 −1
−2 −2
−2 −1

(3.35)

In this case, the second Chern class of (X,V ) is different from (3.25):

c2(V ) = 2J1J2 + J2
2 + 2J1J3 + 4J2J3 + J2

3 . (3.36)

However, in this case, c2(V ) ≤ c2(TX) and thus it is expected that this bundle could
be embedded into one factor of the E8 × E8 Heterotic string, where another bundle
V ′ is embedded into the second factor. By completing the geometry in this way,
with c2(V ) + c2(V

′) = c2(TX), the anomaly cancellation conditions can be satisfied
(alternatively, NS5/M5 branes might be considered).

Following the standard procedure described above, the target space duality
data is given by (X̃, Ṽ ) with the following charge matrix:

xi Γj Λa pl
1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1

0 −1 −1
0 −1 −2
−1 −1 −1
−1 0 −1

1 0 0 0 0 1
0 1 1 0 0 2
0 0 0 1 0 2
0 0 0 0 1 0

−1 −1
−2 −2
−2 −1
−1 0

(3.37)
Here the second chern classes of the tangent bundle and the monad vector bundle
are respectively:

c2(TX) = 3J1J2 + J2
2 + 2J1J3 + 3J2J3 + J1J4 + 2J2J4 + 2J3J4,

c2(V ) = 2J1J2 + J2
2 + J1J3 + 2J2J3 + J1J4 + 2J2J4 + 2J3J4, (3.38)

which could also satisfy the c2 matching condition with the addition of a hidden
sector bundle.

In this background, the bundle structure group of H = SU(4) breaks E8

to SO(10). As above, the charged matter content can be determined by the decom-
position under SO(10)× SU(4):

248E8 → (1,15)⊕ (10,6)⊕ (16,4)⊕ (16,4)⊕ (45,1). (3.39)
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The multiplicity of the spectrum is then determined via bundle-valued cohomology
as:

16′s : h1(V ) = 48, h1(Ṽ ) = 48,

16′
s : h1(V ∗) = 0, h1(Ṽ ∗) = 0,

10′s : h1(∧2V ) = 0, h1(∧2Ṽ ) = 0.

(3.40)

Furthermore, the counting of the gauge singlets appearing in this TSD pair
match as well:

h1,1(X) + h2,1(X) + h1(End0(V )) = 3 + 60 + 159 = 222,

h1,1(X̃) + h2,1(X̃) + h1(End0(Ṽ )) = 4 + 53 + 165 = 222. (3.41)

With these two examples in hand, it is clear that at least the first question outlined in
at the beginning of this chapter can be answered in the positive. Heterotic TSD pairs
can indeed be found in which both halves of the dual pair exhibit elliptic fibrations.
However, it is clear that the manifolds in our examples above are not in simple
Weierstrass form (and exhibit higher rank Mordell-Weil group) as a result, their
F-theory dual geometries may be difficult to determine using standard tools. We
review some of these tools in the subsequent Sections before returning to the two
examples above in Section 3.3.6.

3.3 Inducing a duality in F-theory

3.3.1 Essential tools for Heterotic/F-theory duality

In type IIB superstring theory, the axion-dilaton transforms under SL(2, Z) while
leaving the action invariant. However, it is frequently assumed the string coupling gs
vanishes and the backreaction from 7-branes is ignored. As a result, many important
non-perturbative aspects of the string compactification which are crucial both con-
ceptually and phenomenologically, are missing. This is exactly where F-theory arises
as a proper description of orientifold IIB theory with (p, q) 7-branes and varying fi-
nite string coupling (i.e. axion-dilaton). The classical SL(2, Z) self-dual symmetry
of Type IIB theory acting on the axion-dilaton is identified as the modular group of a
one complex dimensional torus T 2 and as the complex structure of a fictitious elliptic
curve. In this way, we formally attach an elliptic curve at each point of the type IIB
space time and promote the 10-dimensional IIB theory to auxiliary 12-dimensional
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F-theory. This structure defines a genus-one or elliptic fibration. The locus where
the fiber degenerates is where the 7-brane is wrapped in the internal CY. F-theory
realizes a remarkable synthesis of geometry and field theory in that the structure
of the 7-branes/gauge sector, matter content and Yukawa couplings are all encoded
in the geometry of the fibration structure and the back-reaction of these branes is
taken into account.

There is no description of F-theory as a fundamental theory, but rather,
as duals to other theories. A concrete example would be an 8-dimensional duality
[151] i.e. F-theory conpactified on K3 is dual to type IIB on S2 with 24 7-branes
turned on, which is also dual to Heterotic on T 2. The duality between F-theory and
Heterotic is described further as F-theory compactified on K3 fibered Calabi-Yau
(n + 1)-fold is dual to E8 × E8 Heterotic string compactified on Calabi-Yau n-fold
which is elliptically fibered on the same (n− 1)-fold base:

• Heterotic: πh : Xn
E−→ Bn−1 elliptic fibration,

• F-theory: πf : Yn+1
K3−→ Bn−1 where ρf : Yn+1

E−→ Bn, σf : Bn
P1

−→ Bn−1.

The paired Heterotic/F-theory geometries given above involves both elliptic and K3
fibered manifolds. In particular, the F-theory geometry, Yn+1 must be compatibly
K3 and elliptically fibered. The requirement of these two fibration implies that Yn+1

should also be elliptically fibered over a complex n-dimensional base, Bn which is
in turn rationally fibered. The existence of a section in any two of the fibrations
structures is enough to guarantee the existence of a section in the third fibration (i.e.
if ρf and σf both admit sections then so does the fibration πf ).

With different number of n’s, there are theories in different dimensions.
Specifically, n = 1, 2, 3 will lead to 8D, 6D, and 4D respectively. When n = 1, the
(n− 1)-fold base Bn−1 is a point, when n = 2 it is a P1. In 4D case, the duality can
be written as:

Y4
E−−−→ B3

K3
y y P1

B2
=−−−→ B2

(3.42)

By the fibration structure of the CY 4-fold (3.42), the base B3 must be P1-fibered.
As in [89], such a P1 bundle can be defined as the projectivization of two line bundles,

B3 = P(O ⊕ L) , (3.43)
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where O is the trivial bundle and L is a general line bundle on B2. In this case the
topology of B3 is completely fixed by the choice of line bundle L and we can defined
a (1, 1)-form on B2 as T = c1(L). A special case would be R = c1(O(1)) where
O(1) is a bundle that restricts to the usual O(1) on each P1 fiber. They satisfy the
relation R(R+T ) = 0 in cohomology, which indicates the two corresponding sections
don’t intersect to each other. This kind of twist allows us to matching the degrees
of freedom in the 4-dimensional Heterotic/F-theory dual pairs.

In the E8 × E8 Heterotic side, the vector bundle can be decomposed as
V = V1 ⊕ V2, and the curvature splits as

c2(V ) =
1

30
TrF 2

i = ηi ∧ σ + ξi, (3.44)

where ηi, ξi are pullback of 2-forms and 4-forms on B2, σ is the Poincare dual to the
section of the elliptic fibration πh : X3

E−→ B2. For any CY 3-fold in Weierstrass form
as described above, c2(TX3) = 12c1(B2)∧ω0̂+(c2(B2)+11c1(B2)

2) [89]. The Heterotic
Bianchi identity requires η1 + η2 = 12c1(B2), which enable us to parameterize a
solution as

η1,2 = 6c1(B2)± T ′, (3.45)

where T ′ is a (1,1) form on B2. By studying the 4D effective theories of these
dual Heterotic/F-theory compactifications it is straightforward to determine that the
defining (1, 1)-forms T , T ′ are identical to each other T = T ′. Then the (1, 1)-form
T is referred to as the so-called “twist” of the P1-fibration and is the crucial defining
data of the simplest classes of Heterotic/F-theory dual pairs. Moreover, this duality
map dependences on a particular method of constructing Mumford poly-stable vector
bundles, the spectral cover construction.

3.3.2 Spectral cover construction

To find the dual F-theory model of a specific Heterotic model, we need a description
of the moduli space of stable degree zero vector bundles over elliptically fibered
manifolds, (the standard formulation works for Weierstrass fibration, but it can be
generalized to other types of elliptic fibrations, as mentioned in the last chapter) in
terms of two “pieces,” which are called spectral data. This can be done by Fourier-
Mukai transform that we already described.3

3Please note that we restrict ourselves to SU(N) (degree zero, and stable) vector bundles over
a Weierstrass elliptic fibration.
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In principle, it is possible to find the F-theory dual by using the spectral
data. We review this briefly in the following. Assume there are no NS5 branes, and
suppose we have two vector bundles (V1, V2) over a Weierstrass elliptically fibered
manifold X, then Heterotic anomaly cancellation requires,

c2(V1) + c2(V2) = c2(X).

Then second Chern classes (which can be computed by Grothendieck-Riemann-Roch,
if we have the spectral data [89]), can be written generally as,

c2(Vi) = σηi + ωi,

ηi = 6C1(BH)± T, (3.46)

where ηi is a divisor in the base (BH), and ωi is the intersection of two divisor in
BH . Also by using the same method it is not too hard to show that the divisor class
of the spectral cover of Vi is given by

[S] = niσ + ηi. (3.47)

Now, the first statement about the Heterotic and F-theory duality is that the topol-
ogy of the base manifold of the F-theory Calabi-Yau is fixed by the “twist” T in
(3.46) as,

BF = P (OBH
⊕OBH

(T )) . (3.48)

The second statement is that the complex structure of S, (partially) fix the complex
structure of the Calabi-Yau in the F-theory side. It’s easier to describe this with
an example. Suppose we have a SU(2) bundle V , and it’s spectral cover is non-
degenerate,

S = a0z
2 + a2x. (3.49)

Since one of the E8 factors breaks to E7, we should have an E7 singularity in the
F-theory geometry, which is described by the following Weierstrass equation,

Y 2 = X3 + F (u, z)x+G(u, z),

F = Σ8
i=1Fi(z)u

i,

G = Σ12
i=1Gi(z)u

i, (3.50)

where u is the affine coordinate of the P1 fiber of (3.48), and z is the “collective” coor-
dinate for BH . Now, the conjectured duality tells us the corresponding E7 singularity
should be located near u = 0, therefore F0 = F1 = F2 = 0, and G0 = · · · = G4 = 0.
Also a0 is identified with G5, and a2 with F3.
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The other vector bundle (which is embedded in the other E8 factor) deter-
mines the singularity near u → ∞, and higher polynomials (F5, . . . and G7 . . . ) are
determined by the spectral cover of that vector bundle (which we didn’t write here).
The middle polynomials F4 and G6 are determined by the Heterotic Weierstrass
equation.

The last piece of data which is remained is the spectral sheaf L, which is
an element of the Picard group Pic(S) (if one assumes S is smooth). The “space
of line bundles” itself is made by two pieces, the “discrete” part H1,1(S), and the
“continuous” part which is J(S) (space of degree zero (flat) line bundles),

0→ J(S)→ Pic(S)→ H1,1
Z (S)→ 0. (3.51)

In 6D theories, the discrete part can be fixed uniquely by using Fourier-Mukai trans-
form, and the Jacobian of the curve is mapped to the intermediate Jacobian of the
Calabi-Yau threefold in F-theory. In type IIA or M-theory language, the “space of
three forms,” H3(X,R)/H3(X,Z), is described by intermediate Jacobian [28, 59, 89].

The situation in 4D theories are even more complicated. In such cases,
it is possible to have non-trivial 4-form fluxes which can be introduced in various
(equivalent) ways. One way is to define is as 4-form induced by the field strength of
the 3-form in M-theory limit. Another way is to define as a (1,1)-form flux over the
7-branes wrapping the divisors in the base times another (1,1)-form localized around
the 7-brane locus [62, 70]. In general, the 4-flux data is parameterized by the Deligne
cohomology. 4

0→ J2(X̂4)→ H4
D(X̂4,Z(2))→ H2,2

Z (X̂4)→ 0, (3.52)

where X̂4 is the resolved geometry in M-theory limit, J2 is the intermediate Jacobian,

J2(X̂4) = H3(X̂4,C)/(H3,0(X̂)⊕H2,1(X̂4)), (3.53)

which corresponds to the space of flat 3-forms in M theory. The third, and most
difficult part of the Heterotic/F-theory duality, is that the continuous part of the
spectral sheaf data, J(S), maps to J2(X4), and discrete part, H1,1(S) (which is
determined by the divisor class (first Chern class) of the spectral line bundle), maps
to the discrete part of the 4-flux data H2,2(X̂4).

4See the lectures [154], and references there.
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3.3.3 Warm up: Heterotic/F-theory duality in 6-dimensions

In this section, we’ll begin in earnest the process of attempting to determine the
induced duality in F-theory given by TSD and whether the multiple fibrations con-
jecture outlined in previous sections could be a viable realization. In this simpler
context both the geometry of the F-theory compactification as well as the process of
reparameterizing (i.e. performing a FM-transform) of the Heterotic data are more
readily accomplished.

To begin, it should be noted that in the context of Heterotic target space
duals we will consider smooth geometries (i.e. smooth bundles over K3 manifolds)
in the large volume, perturbative limit of the theory. We will consider solutions
without NS 5-branes so that the 6-dimensional theory exhibits a single tensor multiple
(associated to the Heterotic dilaton) (see [148] for a review). Within the context of
6-dimensional F-theory EFTs with a single tensor and a Heterotic dual it is clear that
we must restrict ourselves to CY 3-folds that are elliptically fibered over Hirzebruch
surfaces:

πf : Y3 → Fn (3.54)
with n ≤ 12 [131, 132].

It is our goal in this section to test the multiple fibrations conjecture in the
context of target space duality. At the level of GLSMs TSD in Heterotic compactifi-
cations on K3 works mechanically exactly as in the case of CY 3-folds. However, the
associated geometry is dramatically simpler. It is clear that the two TSD GLSMS
will parameterize at best two different descriptions of a K3 surface and that the
process must by construction preserve the second chern class of the vector bundle V
over K3 (see [42] for a proof valid for either CY 2- or 3-folds). Since the massless
spectrum of the 6-dimensional Heterotic theory compactified on a smooth K3 is en-
tirely determined by the rank and second Chern class of V ,5(see e.g. [35]) it is clear
that TSD is only a simple re-writing of the same geometry and 6-dimensional EFT.

However, there remains something interesting to compare to in that it can
still be asked: Does the concrete process of Heterotic TSD duality in 6-dimensions
correspond to exchanging K3 fibrations in the dual F-theory geometry? In the context
of F-theory 3-folds that are elliptically fibered over a Hirzebruch surface as described
above, there is in fact only one geometry where multiple K3 fibrations can arise. It
was established in the very first papers on F-theory [131, 132], that in order to have

5And the moduli space of stable sheaves over K3 with fixed Chern character has only one
component.
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different K3 fibrations within a CY threefold with a perturbative Heterotic dual,
the base twofold must be F0. Indeed, the remarkable observation of Morrison and
Vafa was that the existence of two K3 fibrations in πf : Y3 → F0 (only a simple
relabeling in F-theory) was dual to a highly non-perturbative Heterotic/Heterotic
duality discovered by Duff, Minasian and Witten [86].

With these observations in mind, we can immediately make several obser-
vations. To begin, we must recall that a base manifold for the F-theory fibration of
Fn in this context is correlated to bundles with c2 = 12±n in the E8×E8 Heterotic
dual. Thus

• For any purely perturbative Heterotic TSD pair in 6-dimensions with c2(V ) =
c2(Ṽ ) ̸= 12, (0, 2) TSD cannot correspond to multiple fibrations in F-theory
(since as described above, such multiple K3 fibrations arise only for n = 0).

• With the point above, we have established that in general the multiple fibra-
tions conjecture outlined in introduction the must be false in general at least
in the 6-dimensional Heterotic theories.

• This demonstrates that not all TSD pairs can be described by F-theory multiple
fibrations, but the converse question, namely – can multiple fibrations in F-
theory give rise to dual Heterotic TSD pairs? – in principle remains open.

Thus, in this section we chose to look at this last point in closer detail by considering
an example TSD pair over K3 in which c2(V ) = c2(Ṽ ) = 12 (the so-called symmetric
embedding), corresponding to an Fn = P1 × P1 base in F-theory. This will at least
make it possible in principle for the two duals to consider.

3.3.4 Spectral cover of monads

To begin, we observe that since the vector bundles defined by GLSMs (in their
geometric phases) are usually presented as monads [114], we must deal with how
to convert this description of a bundle into one compatible with Heterotic/F-theory
duality. As discussed in Section 3.3, it is necessary to perform an FM transform
to compute the spectral cover is this case. As a result, here we briefly review the
method first introduced in [36].
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Suppose we are given a general monad such as,

0→ V → H F→ N → 0, (3.55)

where H and F are direct sum of line bundles of appropriate degrees. If we assume
V is stable and degree zero, then from the previous subsection we know that its
restriction over a generic elliptic fiber will look like ⊕iO(pi − σ). So if we twist the
whole monad by O(σ),

Ṽ := V ⊗O(σ)|E =
⊕
i

O(pi). (3.56)

Each factor has only one global section over the fiber, and it becomes zero exactly at
the point pi which is the intersection of the spectral cover with the fiber. So the idea
is try to find the global section of the twisted vector bundle over elliptic fibers, then
check at what points the dimension of the vector space generated by global sections
drop. To illustrate how this can be done explicitly, first consider twisting the full
monad sequence by O(σ),

0→ Ṽ → H̃ F→ Ñ → 0 (3.57)

and follow this by next taking the action of the left exact functor π∗ on the above
sequence (F̄ is the induced map, corresponding to F ):

0→ π∗Ṽ → π∗H̃
F̄→ π∗Ñ → R1π∗Ṽ → . . . (3.58)

If we assume the vector bundle is semistable over every elliptic fiber,6 then R1π∗Ṽ
is identically zero, because its presheaf is locally of the form H1(E,O(pi)). Now
consider the action of the right exact functor π∗ over the last sequence, since the
elliptic fibration map π is a flat morphism, it doesn’t have higher left derived functors
(we have Tor1S(M,R) = 0 due to the flatness, where S is the ring that corresponds
to OB, R corresponds to OX , and M is the free module corresponding to V (see e.g.
[153], Chapter 3) ). So we get,

0→ π∗π∗Ṽ → π∗π∗H̃
F̄→ π∗π∗Ñ → 0. (3.59)

Note, π∗π∗Ṽ is vector bundle that its fibers over a point p are generated by the
global sections of Ṽ over elliptic curve Eb, where b = π(p). So (3.59) tells us that

6this need not be true always, as we’ll see. It is only necessary that vector bundle be semistable
over generic elliptic fibers.
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if we find the global sections of H̃ and Ñ , then the kernel of the induced map F is
isomorphic to π∗π∗Ṽ . So the locus where the rank of the kernel drop, coincides with
the spectral cover. To clarify these rather abstract ideas, in the following subsection,
we explicitly compute the spectral cover of two examples which will be used in the
final subsection.

Examples

To begin we assume that the K3 can be written in the following simple toric form,

xi Γj

3 2 1 0 0
6 4 0 1 1

−6
−12

(3.60)

• Example 1 The first example is the following SU(2) monad,

Λ p

1 1 2 3
1 5 3 7

−3 −4
−9 −7

(3.61)

The second Chern class of this monad is 12. The map F of the monad is given by
the following generic matrix,

F ∼
[

xf4 + z2f8 ax+ z2g4 zf6 f2
by + xzg2 + z3g6 z3h2 cx+ z2h4 dz

]
(3.62)

where subscripts indicate the degree of homogeneous polynomials over P1. With this
choice, it can be verified that the kernel of F̄ in (3.59) takes the following generic
form,

x− z2−f2h4+df6
cf2

0

0 x cf2
f2h4−df6 + z2

− b
c
y − xz f2g2−bf4

cf2
− z3 f2g6−df8

cf2
−z3 f2h2−dg4

f2h4−df6 +−xz ad
df6−f2h4

−x2 f4
f2

+ yz bf6
cf2
− xz2 cf8+f4h4−g2f6

cf2
− z4 f8h4−f6g6

cf2
x2 ac

df6−f2h4 − xz
2 cg4+ah4
f2h4−df6 − z

4−f6h2+g4h4
f2h4−df6

 (3.63)

where fi, gi, hi are polynomials in terms of base coordinates with degree i, and a, b, c, d
are constant. The common factor of the minors of (3.63) is,

cf2x+ (f2h4 − df6) z2. (3.64)
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From the previous discussion naively we might conclude that (3.64) must be the
spectral cover. However, in the Fourier-Mukai discussion it was noted that the
divisor class of the spectral cover should be 2σ + 12D. So, in the expression above
we are clearly missing a degree 6 polynomial in (3.64). The correct spectral cover
should be

S = F6

(
cf2x+ (f2h4 − df6) z2

)
. (3.65)

But why then is F6 is missing? The reason is that in the previous subsection we
assumed the vector bundles are semistable over every fiber. This not necessarily
true. It is possible to start from a stable bundle, and modify it in a way that it
becomes semistable over every fiber [90].

To see clearly what happens, let us first find the elliptic fibers such that
vector bundle over them is unstable. Note that from (3.64) it can be seen that the
spectral cover is a non-degenerate two sheeted surface, and over generic E, V |E =
O(p − σ) ⊕ O(q − σ), where p + q = 2σ. So V |E does not have global section over
almost every fiber except when p = q = σ. These points are on the intersection
of z = 0 and the spectral cover, which are the zeros of f2F6. The idea then is to
see if we can find the elliptic fibers which over the vector bundle (not its twisted
descendant) can have global section. So all we need to do to find F6 is to study the
kernel of the induced map in the following sequence:

0→ π∗V → π∗H
Find→ π∗N → R1π∗V → . . . (3.66)

where the induced map, Find, in the above case is a 7×7 matrix in terms of the base
coordinates. Generically it’s rank is 7, excepts over the zeros of f2F6, so we can read
the missing polynomial from this form. Please note that the above computations
are local, globally π∗V = 0. Because V is locally free, and π is a flat morphism, the
pushforward of V should also be torsion-free (see [104], Ch. III.9.2).

Interestingly, when we repeat the same analysis after twisting with O(σ)
and O(2σ), the rank of the corresponding induced map drops over F6, and nowhere
respectively. This means that the bundle over those fibers takes the following form,

V|Emissing = O(p)⊕O(−p), (3.67)

therefore h0(E,V⊗O(σ)) ≥ 2, and the rank of the kernel in (3.59) (which generically
is the same as the rank of the bundle, in this case, 2) doesn’t drop over the points
of these fibers. So the algorithm suggested in [36] doesn’t find them. But it can be
seen from the definition of the Fourier-Mukai transform that these (whole) elliptic
fibers are in the support of the spectral sheaf. In summary, a detailed analysis along
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the lines sketched above shows that the missing component is given by,

F6 = h2cf
2
2 − cdf2g4 + adf2h4 − ad2f6, (3.68)

where each in the expression polynomial above is defined from the monad map in
(3.62).

• Example 2 The second example is interesting because its spectral cover
is degenerate (in this case, a non-reduced scheme):

Λ p

0 1 2 3
2 1 3 7

−2 −4
−6 −7

(3.69)

The second Chern class of this monad is c2(V ) = 6, so from the previous discussion,
it is clear that the divisor class of its spectral cover must be 2σ + 6D. The number
of global sections of H and N is seven and six respectively, which tells us that the
kernel of Find is at least one dimensional over almost every elliptic fiber. Since V
is a stable, rank two bundle with c1(V) = 0, we conclude either V|E = O ⊕ O or
V|E = ε2.7 In both cases the spectral cover must have the following general form,

S = F6z
2. (3.70)

In fact, by computing the Find directly, we can see the rank of the kernel is always
one, so V|E = ε2. As before we can compute the kernel of (3.59), to generate the
spectral cover, 

z 0
0 z2

−xz
f3
− z3 f4

f3
z3 f5

f3

ax
2

f3
+ xz2 f4

f3
+ z4 f8

f3
byz + xz2 g5

f3
+ z4 f9

f3

 . (3.71)

Then we look at the minors, and common factor should be spectral cover. However,
as in the previous examples, the algorithm in [36] miss the polynomial F6. The
reason is similar to the previous example, the bundle is unstable over the zeros of
F6. It can be shown that the correct spectral cover is indeed,

S = (F3)
2z2, (3.72)

where F3 is the entry (1, 3) of the monad’s map (i.e. the map between the line
7By V|E = ε2 we mean the unique non-trivial extension of the trivial bundles over the elliptic

curve.
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bundles OX(2, 3) and OX(2, 6)).8

3.3.5 Counterexamples of the conjecture

Here we return to the main goal of this section. Suppose we have two target space
dual GLSMs that describe different stable bundles over elliptic K3 surfaces. The
goal is to check whether their F-theory dual geometries can be related via a change
in K3- fibrations (i.e. a change in P1 fibrations in the two-fold base of the CY 3-
fold). Generally the base of the F-theory threefold will be a Hirzebruch surface Fn,
where n is given by the twist in (3.46). The only situation that can accommodate
such multiple fibration structures is when n = 0. So here we focus on this case and
demand that the second Chern class of both Heterotic vector bundles be 12.

We assume that one of the target space dual geometries is given by monads
on the toric K3 (3.60). We also write the elliptically fibered K3 in Weierstrass form,

y2 = x3 + f8(x1, x2)xz
4 + f12(x1, x2)z

6, (3.73)

where x1 and x2 are the coordinates of the base P1. To find explicit examples for
target space duality, recall there are several constraints that must be met. First, it
is necessary to have a well defined GLSM. This means the first Chern class of both
bundles should be zero, and the second Chern class of both bundles (or sheaves)
should be 12.

In addition we must make sure that the hybrid phase in which we do the
TSD “exchange” of G and F actually exists. In the process of generating the TSD
pairs, it may happen that singularities arise the in bundle or manifold (we expect
that crepant resolutions should exist for the manifold and that the singularities in the
“bundle” should be codimension 2 in the base, so that the sheaf is torsion free). In
addition to these constraints for the GLSM, there is another practical requirement
for finding the F-theory geometry: we prefer to work with SU(N) bundles which
have a non-degenerate spectral cover. If this is not satisfied it is still possible to find
the F-theory dual, but we should remember that the form of the spectral sheaves can

8After a thorough computation we can show that,

0 −→ J −→ FM1(V ) −→ Oσ −→ 0,

where J is a torsion sheaf supported over {z = 0} ∪ {F3 = 0}, and its rank over {F3 = 0} is 2. J
can be computed explicitly, but it is outside of the scope of this chapter.
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be vastly more rich/complex in these cases. This enhanced data in the Picard group
will not be manifest in the spectral cover, or in the complex structure moduli of the
dual F-theory geometry. Instead it will be related in the dual F-theory to nilpotent
Higgs bundles over singular curves [14, 29, 67, 71].

It is straightforward to find many GLSMs where at least one of the bundles
(say V1) has SU(N) structure, and spectral cover is non-degenerate. For example,
consider (3.61) once again,

Λ p

1 1 2 3
1 5 3 7

−3 −4
−9 −7

with Chern class
C2(V1) = 5σ2 + 22σD + 23D2 = 12 . (3.74)

It should be noted that the algorithm for determining the spectral cover, using the
methods of [36], was sketched above, but when the spectral cover becomes reducible
(which can still be reduced), it is not guaranteed that those methods will find the
full spectral cover (i.e. usually some (vertical) components will be missed). One
can find these components by closer examination of the morphisms that define the
bundle and elliptic fibration, as we saw in the last subsection. The spectral cover
(schematically) is then given by (3.65)

S = F6

(
f2x+ f6z

2
)
.

Note that (3.61) by itself is not a well defined linear sigma model, therefore we need
another bundle such that it’s structure group embedded in the other E8 factor. This
second bundle must also have GLSM description over the same K3, and it’s second
Chern class should be,

C2(V2) = 6σ2 + 24σD + 21D2 = 12. (3.75)

Since the existence of this bundle with above properties may not be quite obvious,
we turn now to constructing appropriate examples explicitly.

Example 1

We can construct an example V2 (though not the most general such bundle) as a
direct sum of two bundles, each defined by the monad in (3.69) (which we denote it
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here by V0), with c2(V0) = 6:

V2 = V0 ⊕ V0. (3.76)

For this monad bundle, the spectral cover was found to be of the form given in (3.72).
In addition, the rank 1 sheaf on the spectral cover can be readily constrained. Here
FM0(V0) is zero by results in [104] (see Section III.12, the final theorem). So we
actually have the following short exact sequence:

FM1(V2) = FM1(V0)⊕ FM1(V0) (3.77)

where the support of FM1(V2), which is the spectral cover of V2, is the union of the
spectral covers associated to the two copies of V0. The resulting spectral cover is a
non-reduced scheme, which can be realized by the following polynomial9

S(V2) = (F3)
2 (G3)

2z4. (3.78)

Before turning to the F-theory dual of this geometry, let us first construct a target
space dual model for the above GLSM. To do that we add new chiral fields, in a way
that after integrating them out, we return to the initial model. This can done by
adding “repeated entries” to the charge matrix of the K3, and can lead to multiple
TSD geometries (all still of the same topological type of manifold and bundle, of
course). One possibility is

x Γ Λ1 p1 Λ2 p2
3 2 1 0 0 0
3 2 0 1 1 1

−6 0
−6 −2

1 1 2 3 2
0 4 1 5 6

−3 −4 −2
−6 −3 −7

0 1 2 3
2 0 1 4

−2 −4
−4 −3

(3.79)

This Heterotic geometry (K3 manifold and bundle) has point-like singularities in the
would-be bundle – that is, it is a rank 2 torsion free sheaf rather that a vector bundle
[66].

With this pair of TSD bundles over K3 in hand, we are now in a position
to consider the dual F-theory geometry. In this case we will ask the key question:
are the two GLSMs/geometries (i.e. that defined by V1 and V2, and its TSD dual in
(3.79), realized as different fibrations of a single F-theory geometry?

By the results of the previous subsection, the complex structure of the

9Generally the two V0 in the above construction can be related by a continuous deformation, so
we consider F3 and G3 as different generic degree 3 polynomials.
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Calabi-Yau threefold can be readily determined:

Y 2 = X3 + F (u1, u2, x1, x2)XZ
4 +G (u1, u2, x1, x2) z

6,

F (u1, u2, x1, x2) = u41u
4
2f8(x1, x2) + u31u

5
2F6(x1, x2)f2(x1, x2),

G(u1, u2, x1, x2) = u71u
5
2 (F3(x1, x2))

2 (G3(x1, x2))
2

+u61u
6
2f12(x1, x2) + u51u

7
2F6(x1, x2)f6(x1, x2). (3.80)

As frequently happens with degenerate spectral data, we find that the apparent
F-theory gauge symmetry seems in contradiction with what is expected from the
Heterotic theory we have engineered. By inspection of the discriminant of (3.80), it
is straightforward to see that there appears to be an E7 symmetry on u1 → 0, and an
apparent E8 singularity above the curve u1 →∞. This might seem in contradiction
with the expected gauge symmetry of SO(12) in the hidden sector (determined as the
commutant of the SU(2) × SU(2) structure group defined by the reducible bundle
in (3.76)). However, in the case of degenerate spectral covers, we naturally expect
that T-brane type solutions [14, 29] may well arise in the dual F-theory geometry.
That is, we expect a nilpotent SU(2)× SU(2) Higgs bundle over the 7-brane which
wraps around this curve (u2 = 0) and breaks the space time gauge group to SO(12)
as expected (see [18] for a similar construction).

Next, as demonstrated in [132], changing the K3-(resp. P1-)fibration in the
F-theory geometry simply amounts to exchanging the vertical P1 (whose coordinates
are u1 and u2) with the horizontal P1 which is the base in the initial Heterotic
K3 surface in (3.60). This means that the vertical P1 becomes the base of a dual
Heterotic K3-surface. To determine gauge groups in the dual Heterotic theory, the
discriminant curve must be considered. This is shown in Figure 3.1. The figure on the
right hand side, shows the discriminant of the F-theory Calabi-Yau 3-fold. The line
at the top is the locus of the E7 singularity and the one at the bottom corresponds
to E8. The curve is the locus of the I1 singularities. It intersects eight times with
the III∗ curve, where on six of them it has triple point singularities. These six
points are exactly the zeros of F6 in Figure 3.1, which naively correspond to point-
like instantons that are responsible for the vertical components in spectral cover of
V1 (not taking into account the spectral sheaf/T-brane data). Similarly the I1 curve
intersects with II∗ at two sets of three points, which are the zeros of F3 and G3 in
(3.78), and over all of them the curve has double point singularities. We can expand
the polynomials in (3.80) in terms of x1 and x2, and read the dual Heterotic complex
structure from there. Clearly we see that the elliptic K3 in the new Heterotic dual
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Figure 3.1: The vertical dotted line on the right hand side is the “vertical P1.” After
change of fibration on the left hand side the same P1 will be the base of the dual
Heterotic K3.

must be singular. In particular, it exhibits singular E8 and E7 located at u1 = 0
and u1 → ∞ respectively (with expected instanton number of 12 on each locus).
This is a highly non-perturbative limit of the string theory. This exchange of gauge
symmetry with singularities in the base K3 surface arising in the Heterotic theory
seems to be a generic feature of exchanging F-theory fibrations [15]. As a result, it
seems is impossible to get something which is purely smooth/perturbative on both
sides like (3.79) from such a change of fibrations. This shows that at least some
of the TSD dual pairs cannot be seen simply as different fibrations of the F-theory
geometry. We explore these possibilities a little more in one further example.

Example 2

In this example, the starting geometry/bundles, are the same as before, but here we
present another TSD geometry that can also be described easily by spectral cover.



3.3. Inducing a duality in F-theory 115

So once again we take as our starting point the manifold/bundle:

xi Γj Λa pl
3 2 1 0 0
6 4 0 1 1

−6
−12

1 1 2 3
1 5 3 7

−3 −4
−9 −7

(3.81)

and embed it into a larger GLSM by adding a new gauge field, and fermionic and
chiral fields:

xi Γj Λa pl
3 2 1 0 0 0 0 0
6 4 0 1 1 0 0 1
0 0 0 0 0 1 1 0

−6 0 0
−12 0 −1
0 −1 0

1 1 2 3 3 3
1 5 3 7 8 9
0 0 0 0 0 0

−3 −4 −3 −3
−9 −7 −8 −9
−1 0 0 0

(3.82)
After performing the combinatoric “exchange” (i.e. the usual TSD procedure), this
yields the new TSD geometry

xi Γj Λa pl
3 2 1 0 0 0 0 0
6 4 0 1 1 0 0 1
0 0 0 0 0 1 1 0

−6 0 0
−12 −1 0
0 −1 −1

1 1 2 3 3
1 5 3 7 8
0 0 0 0 1

−3 −4 −3
−9 −7 −8
−1 0 0

(3.83)

The advantage of this new example is that, it is possible to compute the
spectral cover of both sides easily10 and they are both reducible but still reduced

S1 = F6(f2X + f6Z
2), (3.84)

S2 = F7(f1X + f5Z
2). (3.85)

As in the previous example, we can readily construct the F-theory geometry of both
sides, and check whether they are related by exchanging the fibration or not. The

10In the previous example the base, P1, was defined as a conic inside P2. However, the spectral
cover equations would be in terms of the ambient space coordinates and imposing the non-linear
relations between the coordinates to define the P1 makes the situation somewhat obscure.
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Weierstrass polynomials, F and G, of the dual F-theories is given by,

F1 = O(u51) + u41u
4
2f

8
1 (v1, v2) + u31u

5
2F6(v1, v2)f2(v1, v2), (3.86)

G1 = O(u71) + u61u
6
2g

12
1 (v1, v2) + u51u

7
2F6(v1, v2)f6(v1, v2), (3.87)

(3.88)
F2 = O(v51) + v41v

4
2f

8
2 (u1, u2) + v31v

5
2F7(u1, u2)f1(u1, u2), (3.89)

G2 = O(v71) + v61v
6
2g

12
2 (u1, u2) + v51v

7
2F7(u1, u2)f5(u1, u2). (3.90)

As in the previous example, the change in fibration can be realized in F1 and G1 by
re-expanding these polynomials in terms of v1 and v2. Then if the dual (F-theory)
geometries are related through changing the fibration, after this rearrangement, F1

and G1 must be equal to F2 and G2.

But since F2 and G2 have an order three zero at v1 = 0, it means that
f 8
1 (v1, v2) and g121 (v1, v2) must have an order three zero at v1 = 0. Recall that these

two polynomials are the f and g of the dual Heterotic K3 surface, so the above
argument tells us if the TSD geometries are related to the different fibrations of the
same geometry in F-theory, both TSD Calabi-Yau 2-folds must have an E7 singularity
at some point on the base. Thus once again, we see that exchange of fibration leads
to a perturbative/non-perturbative duality in Heterotic [132] and not the apparent
correspondence arising from TSD.

In summary, if we start with two perfectly smooth TSD geometries, they
cannot be related through different K3-fibrations of a single F-theory 3-fold. But if
we allow both K3 surfaces to be singular, and at the same time put bundles/small
instantons over them, they might be dual to a single geometry in F-theory.11

Having determined that the multiple fibrations are not describing the TSD
exchange in 6-dimensions, we can take a step back and ask what F-theory correspon-
dence is induced by TSD in 6-dimensions? Since the spectral covers in (3.84) and
(3.85) are relatively simple, we can try to roughly figure out some generalities about
the F-theory duals of each of them. Let us start with the first one. The topology of
the vector bundle fixes the dimension of the moduli space of the bundle,

h1(V1 ⊗ V ∗
1 ) = 42. (3.91)

11But we should recall that the GLSM is only a perturbative formulation and clearly lacks infor-
mation about the full string theory in such a context.
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We can describe them in terms of the spectral data as follows,

dim(MV ) = dim(cplx(C)) + dim(Jac(C)) + 6pts+ 6× dim(Jac(E)) + gluing,(3.92)

where C is the irreducible smooth curve defined by f2X + f6Z
2, by 6pts we mean

the degrees of freedom in choosing the location of the six points defined by the zero
set of F6 = 0, and over them we have 6 elliptic curves (whose Jacobians must also be
taken into account), and finally “gluing” denotes the degrees of freedom associated
with the choice of spectral sheaf at the intersection of the 6 vertical fiber with C.
The genus of C can be computed easily,

g(C) = 9. (3.93)

Therefore, the dimension of the Jacobian and the complex structure of C must be 9.
On the other hand, obviously, Jacobian of E is 1-dimensional, and the contribution of
the “gluing” is 12-dimensional (each vertical fiber intersects C at 2 points). Therefore
the total dimension of the Moduli space is,

dim(MV ) = 9 + 9 + 6 + 6 + 12 = 42. (3.94)

Now, to obtain the F-theory EFT we must use the spectral data as explained before,
and infer the form of the complex structure of the CY 3-fold. From this procedure
it can be seen that there are 6 (4,6,12) points in the F-theory geometry. Since the
Heterotic dual is a perturbative model, we should consider these singularities as the
singular limit of the following deformations,

F1 = O(u51) + u41u
4
2f

8
1 (v1, v2) + u31u

5
2(F6(v1, v2)f2(v1, v2) + εF8(v1, v2)), (3.95)

G1 = O(u71) + u61u
6
2g

12
1 (v1, v2) + u51u

7
2(F6(v1, v2)f6(v1, v2) + λF12(v1, v2)),

(3.96)

where ε and λ correspond to deforming the Higgs field over the 7-branes [14, 33].
Therefore we can deform these two theories into each other by continuously deforming
the Higgs bundle. This reflects the fact the moduli space of the vector bundles on K3
is connected. Phrased differently, the existence of apparent (4, 6, 12) points in the
putative dual F-theory indicates that such solutions can only be dual to the expected
perturbative Heterotic theories in the case that T-brane solutions arise. This has been
seen before in [29] and is a substantial hint that G-flux must play an important role in
the non-trivial F-theory correspondence expected in 4-dimensional compactifications.

It is worth commenting briefly also on another branch of the theory visible
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from this singular limit. We can increase the number of tensor multiplets in the
6-dimensional YM theory by performing small instanton transitions (i.e. moving
NS5/M5 branes off the E8 fixed plane in the language of Heterotic M-theory). For
bundles described as spectral covers, this small instanton limit is visible by the
spectral cover becoming reducible and vertical components (corresponding to small
instantons) appearing (note that this limit must also set all gluing data to zero).
Naively it seems that this limit appears different for the TSD pair of bundles defined
by (3.84) and (3.85) since they exhibit different degree polynomials defining their
vertical components (i.e. F6 vs. F7). However, this is simply a statement that the
mapping of moduli in this case may exchange what are spectral cover deformations in
one description with data associated to the Jacobian of the spectral cover (i.e. gluing
data in this singular case). To really obtain the same point in moduli space, we must
consider a scenario in which both halves of the TSD gain the same number of tensor
multiplets (i.e. we pull either 6 or 7 5-branes into the bulk). In this case it would
be intriguing to analyze the dual F-theory geometry – which would correspond to
blowing up the base of the elliptic fibration. We expect in this case that the F-theory
3-fold will still be K3 fibered but no longer of such a simple form. In particular,
the elliptic fibration over a Hirzebruch surface would be modified to become a more
general conic bundle [15]. We will return to questions of a similar geometric nature
in the following section.

Let us briefly summarize the results of our 6-dimensional investigation.
We have seen that after exchanging K3-fibrations within the F-theory geometry,
the dual Heterotic K3 surface must become singular, and therefore perturbative
smooth Heterotic geometries arising in TSD pairs cannot in general be realized as
different fibrations within F-theory. On the other hand we saw that the dual F-
theory EFTS arising from the chosen TSD pairs must crucially rely on data from the
intermediate Jacobian of the CY 3-fold – so-called T-brane solutions – in order to give
rise to the same physical theories. Starting from such points we can deform back to
smooth points in the CY 3-fold moduli space and identify the theories. Any possible
correspondences within the tensor branch of the 6-dimensional theories must involve
more complicated K3-fibrations (i.e. conic bundles) and we leave this exploration to
future work.

3.3.6 F-theory duals of 4-dimensional Heterotic TSD pairs

In Section 3.2 we provided a non-trivial example of a Heterotic TSD pair in which
both X and X̃ were elliptically fibered. It is now natural to ask – what are the
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F-theory duals of these Heterotic theories? As we will explain below, this example
(and others like it that we have found) seem to force beyond the arena of “standard”
Heterotic/F-theory duality (as in the canonical reference [89]) by including several
important features in the dual geometries. In this section, we will not try to solve
all the obstacles that arise at once. Instead, we will outline what can be determined
about the dual F-theory geometries and where new tools will be needed to fully probe
this correspondence. Many of these we are currently developing [21, 22] and we hope
to definitively answer these questions in future work.

As a first step towards determining the dual F-theory geometry, the data
of the Heterotic bundle must be taken through a Fourier-Mukai transform to be
presented as spectral data (see the discussion in Section 3.3.3). However in this we
immediately encounter several problems. The first of these is that unlike in the case
of Heterotic/F-theory dual pairs studied in the literature to date, neither of these
Heterotic CY elliptic 3-folds is in Weierstrass form.

To be specific we focus on the examples in Section 3.2 (though similar
obstacles will arise in general in this context). Recall that each of the CY 3-folds
listed in (3.33) admitted two rational sections. Those for X in (3.33) lie in the
following classes

[σ1(X)] = −D1 +D2 +D3, [σ2(X)] = 2D1 −D2 + 5D3,

where Di are a basis of divisors on X (inherited from the ambient space hyperplanes
by restriction). By “rational” it is meant that these divisors are isomorphic to blow
ups of the base manifold (in this case P 2). The first difficulty with this example is
that the standard Fourier-Mukai transformation with Poincare bundle is not appli-
cable here. The reason is we need the zero section to intersect exactly one point on
every fiber, but both of the sections described above wrap around a finite number
of rational curves (which are components of reducible fibers). We have shown [21]
that in specific situations one can use flop transitions to make one of the sections
holomorphic, and since derived categories are invariant under the flop transitions
(i.e. there is a specific Fourier-Mukai functor for flops), it is still possible to define
the spectral data in the “flopped” geometry. However the example given in (3.33)
proves to be too complicated to be analyzed in this manner since σ1 and σ2 wrap
around 27 and 127 rational curves respectively, rendering the necessary birational
transformations (i.e. flops) impractical.

In principle, one might hope to bypass this difficulty by transitioning X
directly to its Weierstrass form (by blowing down the reducible components of fibers),
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following the Deligne procedure outlined in [15, 16]. However, this poses difficulties
in a Heterotic theory in that it is unclear how the Heterotic bundle data should be
appropriately mapped to this singular limit of X.

Nonetheless, if we choose σ1 as the zero section, it can be demonstrated
that the spectral cover in the singular Weierstrass limit, has the same divisor class as
before (this is seen by taking the FM transform before blowing down the reducible
fiber components). In other words, if we write the second Chern class as

c2(V ) = 36σ1H + 14SshH + 156f, (3.97)

where H is the (pull-back of the) hyperplane divisor in the base, Ssh is the divisor
corresponding to the Shioda map [145, 146, 152] for non-trivial Mordell-Weil group,

Ssh = σ2 − σ1 − 18H (3.98)

and f is the fiber class. In terms of these divisors, the class of the spectral cover, S,
in the singular limit will be,

[S] = 6σ1 + 36H. (3.99)

We might hope to get some information about the F-theory geometry just from the
spectral cover alone. Naively, we may write the algebraic formula for the spectral
cover whose class is given in (3.99) as

S = f36z
3 + f30xz + f27y, (3.100)

where fi are generic polynomials of degree i over P2. A generic deformation of
the spectral cover of the form (3.100) can be obtained by counting the degrees of
freedom in the polynomials f36, f30, f27 which contain 703, 496 and 406 parameters,
respectively. Immediately we see that these numbers much higher than the dimension
of the vector bundle moduli space in our example, which is 292-dimensional. Thus,
we can see that the FM-transform of the monad in (3.23) is certainly not a generic
spectral cover. This is not too surprising. We have seen examples of the spectral
cover of monads in Section 3.3.3 and there it was clear that the polynomials are not
generic, rather they are dictated by the monad’s map (see also [36, 67]). In principle,
a similar story happens in the current case. We expect that the spectral cover may
also be non-reduced/reducible [36]. However, regardless of its explicit form, the
question arises, why is the spectral cover forbidden from assuming a generic form?
That is, given an explicit starting point (in which the polynomials are determined
by the monad map as in (3.23)) why is the deformation space restricted?



3.3. Inducing a duality in F-theory 121

We expect that the answer to this lies with the other half of the spectral
data of this monad, that is, the rank 1 sheaf [89] supported over the spectral cover in
(3.99) and (3.100). It has been observed previously [72] that the Picard group of S
may “jump” at higher co-dimensional loci in moduli space – i.e. so-called Noether-
Lefschetz loci. This phenomenon could “freeze” the moduli of the spectral cover to a
sub-space compatible with the form of the monad map (see also [4]). In terms of the
4-dimensional, N = 1 EFT, the reduction in the apparent number of singlets (i.e.
the non-generic form of the spectral cover) is a symptom of existence of a specific
superpotential – arising from the Gukov-Vafa-Witen form [102]:

W ∼
∫
X

H ∧ Ω (3.101)

where H ∼ dB+ωYM3 −ωLorentz3 , and ω3 = F ∧A− 1
3
A∧A∧A is the Chern Simons 3-

form (and the associated Lorentz quantity built from the spin connection in ωLorentz3

and Ω is the holomorphic (0, 3) form on X. The existence of this superpotential
arises from the presence of the gauge bundle (rather than from quantized flux) (see
[8, 10, 72] for related discussions) but none-the-less stabilizes vector bundle moduli.

As a result, in the dual F-theory EFT, we also expect the existence of
a superpotential. Geometrically, since the spectral cover determines part of the
complex structure moduli of the Calabi-Yau fourfold, it is clear that the dual of
the bundle data given in (3.23) should include a specific G-flux that stabilizes the
moduli through the GVW superpotential. It should be noted that there is another
way to see the requirement for this flux: since there are no D3 branes in the F-theory
dual (since we have chosen c2(X) = c2(V ) in the Heterotic theory), G-flux is also
necessary for anomaly cancellation.

Although we have not yet explicitly calculated the FM transform of the
Heterotic bundle or determined the dual F-theory geometry, the arguments above
show that whatever the F-theory geometry, G-flux must play a prominent role and
therefore it cannot be ignored. A similar set of arguments can also be made about the
F-theory dual of the Heterotic TSD geometry (X̃, Ṽ ). In this case as well, the naive
deformations of the spectral cover are much larger than the dimension of the vector
bundle moduli space, and therefore we conclude that Noether-Lefschetz loci/G-flux
should be in play.

Despite the fact that flux must be involved in the putative F-theory duality,
it still remains to be asked whether the dual F-theory 4-folds might still exhibit
multiple fibration structure? That is could the geometric scenario described in the
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introduction with these compatible elliptic/P1 (and hence K3) fibrations exist?
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On this front, once again we see that we must quickly leave behind the “standard”
geometry of Heterotic/F-theory duality. As reviewed in Section 3.3, if the Heterotic
CY 3-fold is in Weierstrass form, the construction of [89] generates a threefold base,
B3 (see (3.43)) for the CY 4-fold that is a P1-bundle over the base B2 (which is the
base of the dual elliptically fibered CY 3-fold and K3-fibered 4-fold). The topology
of this bundle (i.e. B3 itself) is determined by the second Chern class of the Heterotic
bundle c2(V ). In this context then, we can ask whether or not such a base could
admit two different descriptions as a P1 bundle? While multiply fibered P1 bundles
certainly exist (for example the “generalized Hirzebruch” toric 3-fold defined as the
zero twist over Fn or the n-twist over F0 [15, 34]), it is easy to demonstrate that

h1,1(B3) = 1 + h1,1(B2) (3.102)

for any P1 bundle. As a result, it is clear that there exists no multiply fibered P1-
bundles compatible with the B2 and B̃2 arising in Section 3.2 since for those manifolds
B2 = P2 and B̃2 = dP1. Hence h1,1(B2) < h1,1(B̃2 and h1,1(B3) ̸= h1,1(B̃3) for 3-fold
bases constructed as P1-bundles.

From the results above we would be tempted to conclude that the hypoth-
esis we set out to test in the literature (i.e. is Heterotic TSD dual to multiply fibered
geometries in F-theory?) is manifestly false. However, we must first recall that the
construction of K3 fibrations in terms of P1-bundle bases B3 as commonly used in
the literature is not the only possible structure. More general 3-fold bases, B3 are
possible which are P1 fibrations but not P1 bundles. These fibrations degenerate (as
multiple P1s) over higher co-dimensional loci in the base B2 and are known as “conic
bundles” in the literature (see e.g. [143]).

If we consider this more general class of bases for CY 4-folds it seems that
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some possibilities remain. For example, the following threefold

B3 =

 P2 0 1
P1 1 0
P2 1 1

 (3.103)

is manifestly fibered over both P2 and dP1 as required. However, it is unclear that
the generic “twist” of such a fibration is compatible with the topology of the bundles
defined in Section 3.2. It is possible to generalize simple constructions like the one
above to accommodate more general twists by choosing more general toric ambient
spaces. However, in each case we hit a new problem in that the stable degeneration
limits of P1 bundles such as that in (3.103) are not yet understood in the literature
(though we are considering such geometries in separate work [22]). As a result, it is
a non-trivial task to determine whether such a geometry might arise in the F-theory
duals of the examples outlined in Section 3.2. To check this we need precise spectral
data. But as explained before, finding the Fourier-Mukai transforms of the Heterotic
bundles, while possible in principle, is beyond our current computational limits for
the bundles in Section 3.2.

For now though, we can conclude that whatever the F-theory correspon-
dence induced from (0, 2) target space duality may be, it must expand the current
understanding of Heterotic/F-theory duality both via the crucial inclusion of G-fluxes
(including possibly limits and T-brane solutions) and via more general geometry –
in particular K3/P1-fibrations – than has previously been considered.



Chapter 4

F-theory on General Conic Bundle
Bases

This chapter is based on an upcoming paper written in collaboration with L.B. Ander-
son, J. Gray, P.K. Oehlmann and N. Raghuram. As mentioned in the introduction,
it is the goal of the present chapter to extend the P1 fibration geometries Bn (which
is the base of a Calabi-Yau (n+ 1)-fold),

Bn →P1

Bn−1, (4.1)

in two important ways in the context of 6- and 4-dimensional effective theories arising
from Heterotic string theory and F-theory:

• In 4-dimensional compatifcations of F-theory, we consider new classes of P1-
bundles, defined as the projectivization of a general rank 2 vector bundle over
B2. The Hartshorne/Serre construction [88] guarantees that any rank 2 vector
bundle over a complex surface can be described via an extension sequence

0→ L1 → V2 → L2 ⊗ Iz → 0 (4.2)

where L1 and L2 are line bundles over B2 and Iz is an ideal sheaf associated
to a set of points {z} on B2.
We will build more general base manifolds B3 for F-theory as the projectiviza-
tion, P(π : V2 → B2), of the rank 2 bundles shown in (4.2). We will see in this
case that rational sections can appear in the P1-bundle which have important
consequences in Heterotic/F-theory duality.
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• We will further analyze P1 fibrations which degenerate over some sublocus1

∆b ⊂ Bn−1. In the mathematics literature, the Sarkisov program (see e.g.
[142, 143]) has led to a systematic classification of such objects in terms of their
birational geometry. The simplest example of a fiber which could degenerate
consists of a P1 fiber which is described as a conic in P2: P2[2]. Over higher-
codimensional loci in the base manifold, the defining equation of such a fiber
can clearly factor into a product of two linear functions in P2, leading to a
degeneration of the P1 fiber into two distinct P1s over ∆b.

In each of these cases above we will review the geometry of P1-fibrations in as general
a context as possible and comment on the effective physics of both F-theory and
Heterotic string theory defined over the relevant dual geometries (as in (3.42)).

We find that moving away from the standard set of P1-fibered bases Bn (and
hence K3-fibered CY manifolds), the effective physics in Heterotic/F-theory duality
can become very different from that seen in the standard situation [89]. In particular,
we demonstrate that they behave differently under weak-coupling Heterotic limits
(i.e. under stable degeneration [83]) and can lead to previously unexplored structure
in the dual Heterotic geometry.

The structure of this chapter is as follows. In Section 4.1 we provide the
basic geometric ingredients for the present study – namely the known properties and
categorizations of P1-bundles and fibrations. In Section 4.2 we apply these insights to
the study of 6-dimensional F-theory compactifications on elliptically fibered surfaces.
We reframe the standard perturbative and non-perturbative Heterotic/F-theory du-
ality in terms of properties of the P1-fibration. Most of this section is review, however,
even in the well-understood arena we find new phenomena possible with the so-called
“jumping effect” of P1-bundles in Section 4.2.3. By analyzing the structure of P1-
bundles over P1 we consider the possibility that for special values of the complex
structure of the Calabi-Yau threefold the base complex surface can “jump” between
distinct complex manifolds– for example between the Hirzebruch surfaces F0 and F2

(two geometries which are diffeomorphic as real manifolds, but distinct as complex
manifolds). Next in Section 4.3 we consider simple 4-dimensional compactifications
of F-theory arising from more general P1-fibered 3-dimensional base manifolds, B3.
Finally, in Sections 4.4 and 4.5 we consider monodromy in the P1-fibrations and its
consequences for dual physical theories.

1Note we will refer to the discriminant of the P1-fibration as ∆b ⊂ Bn−1 to distinguish it from
the discriminant of the CY elliptic fibration, ∆f ⊂ Bn.
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4.1 P1-fibrations in a nutshell

4.1.1 P1-bundles

In the case that the base, Bn−1, to the F-theory K3-fibration has a trivial Brauer
group, it is known that P1-bundles over Bn−1 are in 1 − 1 correspondence with the
projectivization of rank 2 vector bundles over Bn−1 [104]. Intuitively, projectivization
of the fiber space of a rank m vector bundle, π : V → Bn−1, is simply the transition
from a non-compact Cm-dimensional fiber to its compactification,2 Pm−1, where the
fiber coordinates are identified up to a scale that is chosen by ∧mV , point by point
over the base [104]. The resulting Pm−1-fibered manifold is denoted P(V ). As an ex-
ample relevant to the present work, the projectivization of any rank 2 vector bundle,
P(V2) is a smooth, n-dimensional manifold with a nowhere degenerate P1-fibration.

The simplest example of this is to consider a sum of two line bundles

V2 = L1 ⊕ L2 (4.3)

over Bn−1. In the case that Bn−1 is a toric manifold and V2 is abelian as in (4.3),
the P1-fibered manifold Bn obtained by projectiviation is also manifestly toric by
construction. It is this class of geometries that initiated the first systematic studies
of Heterotic/F-theory duality. Examples include:

• In 6-dimensional dual compactifications of Heterotic/F-theory, the dimension
of the base of the elliptic fibration is n = 2 in (3.42) and the “shared” base
to the Heterotic elliptic fibration and F-theory K3 fibration is simply P1. In
this case the projectivization of a sum of line bundles yields the well-known
Hirzebruch surfaces [88]

P
(
π : O ⊕O(n)→ P1

)
= Fn (4.4)

which provided the context for the first 6-dimensional studies of Heterotic/F-theory
duality (see e.g. [35]).

Likewise, over any complex surface, the projectiviation of a sum of line
bundles provides a simple P1 bundle threefold, B3. This geometry was first outlined

2Note that since we consider complex manifolds only, throughout this work Pm refers to complex
projective space.
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by Friedman, Morgan and Witten [89] and crucially used in their explicit matching
of degrees of freedom, anomaly cancellation, etc in Heterotic/F-theory duality. The
projectivization of a sum of line bundles over a toric complex surface was later
employed in the literature to systematically generate large classes of 3-fold bases for
elliptically fibered Calabi-Yau 4-folds [7, 103]. A simple example is given below for
a toric P1 bundle defined over P2 (i.e. a threefold analog of a Hirzebruch surface).
The GLSM charge data is

x0 x1 y0 y1 y2
1 1 0 0 0
0 n 1 1 1

(4.5)

This manifold is the projectiviation P(OP2⊕OP2(−n)). Although the projectivization
of a sum of line bundles has led to a well-understood Heterotic/F-theory dual pair,
it is far from the only possibility. At this point we move beyond the simple cases
considered in the F-theory literature to date.

As already described, vector bundles over complex surfaces can be simply
classified thanks to the Serre construction [88]. A general rank 2 vector bundle over
B2 takes the form:

0→ L1 → V2 → L2 ⊗ Iz → 0 (4.6)
where L1 and L2 are line bundles over B2 and Iz is an ideal sheaf associated to a
(possibly empty) co-dimension 2 subscheme – i.e. a set of points {z} on B2. Since
the projectivization of a bundle is invariant under twists by a line bundle – i.e.
P(V ) ≃ P(L ⊗ V ) for any line bundle L [104] – we can without loss of generality
write this sequence as

0→ O → V2 → O(D)⊗ Iz → 0. (4.7)

In the case that the ideal sheaf is non-trivial, the resulting P1 bundle,
B3 = P(V2), can have very different properties to those described for Abelian bundles
above (i.e. the case of trivial extension class and vanishing {z}). One important
feature that we will explore further in subsequent sections is that the P1 bundle need
not have two holomorphic sections. Instead, it may admit only rational sections
(which are birational but not diffeomorphic to the base, B2).

We begin our exploration of these geometries by considering when the ex-
tension class in (4.7) is non-trivial. The extension class is determined by

Ext1(O(D)⊗ Iz,O) = Ext1(O, I∨z ⊗O(−D)), (4.8)
I∨z = OBn ⊕ det(NzB2)|z[−1]. (4.9)
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and NzB2 is the normal bundle to z. Using the Leray sequence, it follows that

0 → Ext1B2
(OB2 ,OBn(−D))→ Ext1B2

(O(D)⊗ Iz,O)→ Ext0z(Oz, det(NzB2))

→ Ext2B2
(OB2 ,OB2(−D))→ . . . (4.10)

As a result, it is clear that even for divisors D such that hi(O(−D)) = 0, it is still
possible for a non-zero extension class to exist. Note in the case that hi(O(−D)) = 0,
this must in fact be the case, since if the extension were zero, V2 would not be locally
free (i.e. a vector bundle).

The projectivization P(V2) = B3 comes equipped with a canonical section
to the P1 fibration (dual to the so-called “tautological” line bundle [104]). That is,
there exists a divisor, S, on π : B3 → B2 and associated line bundle O(S) such that

π∗(O(S)) = V (4.11)

and the intersection of S with the generic fiber of the P1 fibration is the hyperplane
within that fiber (i.e. a single point). Thus, S is a section to the P1-fibration (i.e.
it induces a map σ : B2 → B3 such that π ◦ σ = idB2). The intersection structure of
the manifold guarantees that

S2 = c1(V ) · S. (4.12)

The addition of this divisor completes the Picard group of B3 and the
Kähler structure of B3 is simply induced from that of the fiber and the base with

h1,1(B3) = 1 + h1,1(B2). (4.13)

Moreover, the Chern classes are readily computed to be

c1(B3) = c1(B2)−D + 2S, (4.14)
c2(B3) = −c1(B2) ·D + 2c1(B2) · S + c2(B2)−D · S + S2 + π∗[z], (4.15)
c3(B3) = −c1(B2) ·D · S + c1(B2) · S2 + 2c2(B2) · S. (4.16)

It is worth noting that while the first Chern class remains unchanged from the case
of P(O ⊕ O(D)), the second Chern class of B3 has picked up a contribution from
the ideal sheaf. We will return to the physical significance of this term for anomaly
cancellation in Heterotic/F-theory duality in Section 4.3.

Before concluding this section, we return now to the issue of whether or not
there exist other sections to the P1-fibration, besides S described in (4.11)? It was
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also be crucial to determine whether or not these sections are rational or holomorphic
– that is whether the zero-locus of the section is strictly birational to the base, B2,
or exactly diffeomorphic to it.

To this end it is useful to recall a simple result from Hartshorne [104]:

Theorem 4.1. Let P(V ) be defined as above and let g : S → B2 be any morphism.
Then defining a morphism f : S → P(V ) is equivalent to specifying a surjective
morphism of sheaves on S, g ∗ V → L → 0 where L is an invertible sheaf on S.

In our case we will apply this theorem to the case that S is in fact a holo-
morphic section (i.e. a true section for every fiber) and hence g is a diffeomorphism.
In this setting then, there is a 1−1 correspondence between such sections and surjec-
tive morphisms of the form V → L→ 0 with L a line bundle on B2. If there are two
such holomorphic sections that are homologically inequivalent then it is clear that
there are two surjections V → L → 0 and V → L′ → 0 which implies that V splits
as V = L⊕L′. Thus, the existence of two distinct holomorphic sections reduces the
P1 bundle to the projectivization of the familiar form P(L1 ⊕ L2).

In this case, we can without loss of generality write P(O ⊕O(D)) and the
two defining sections of the P1 fibration are the well known S0, S∞ introduced in
[89]. Here S0 is the canonical section defined in (4.11) above and S∞ = S0 + π∗D is
defined so that S0 · S∞ = 0.

For the case that the additional sections are rational, we must tread more
carefully. Here as we will see in examples in Section 4.2.3, multiple sections can exist
for the projectivization of non-trivial extensions of the form (4.7). We will return
to the geometry above in more detail, as well as its physical consequences in later
Sections.

4.1.2 Conic bundles

In this section we consider the geometry of more general P1-fibrations in the base
manifolds, Bn of F-theory. As has been done elsewhere in the literature, we will
simply refer to such geometries as “conic bundles” after the simplest prototype of
such a fibration in which the fiber is a degree two hypersurface inside P2. For example
the following threefold

B3 =
[
P2 2
P2 2

]
(4.17)
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is a P1 fibration over P2 whose fiber is described as a conic in P2. As mentioned
before, this fiber can degenerate over higher-codimensional loci in the base P2. On
this locus ∆b ∈ B2, the conic in P2 can factor into two linear equations and hence,
lead to a fiber consisting of not one, but two P1s.

More formally, we define a conic bundle as [139, 142]

Definition: A conic bundle is a proper flat morphism π : Bn → Bn−1 of smooth
varieties such that it is of relative dimension one (i.e. the fiber is 1-(complex) di-
mensional) and the anti-canonical divisor −KBn is relatively ample.

Roughly, the term “relatively ample” above refers to the property that −KBn re-
stricted to the fiber is ample.

In general, a conic bundle as defined above may have a variety of algebraic
descriptions. However, the Sarkisov program [142] has characterized these manifolds
in terms of birational minimal models whose fibers are conics in P2. In general, a
“standard form” for a conic is characterized by

1. A discriminant locus, ∆b ⊂ Bn−1 (over which the fiber degenerates).

2. A generic twist to the P1 fibration (playing the role of O(D) in the usual case
of the projectivization of two line bundles: P(O ⊕O(D))).

3. A two-sheeted cover of Bn−1 defined as the multisection defined by the hyper-
plane in the P2[2] fiber in the standard form.

We will return to a number of these characterizing features as we study examples in
later sections.

It is worth noting here that since our primary motivation in this work is the
study of Heterotic/F-theory duality, we will be interested in conic bundles that admit
sections. This in turn is equivalent to the statement that the F-theory elliptically
fibered Calabi-Yau manifold, Yn+1, possesses a K3-fibration with section. It is in
this context that we are sure that the 8-dimensional Heterotic/F-theory duality [151]
extends to a lower dimensional duality relating the effective theories. However, this
choice causes us to diverge from the birational “standard models” for conic bundles
described above, since in general fibers of the form P2[2] admit multi-sections only,
rather than true sections. We will also see in Section 4.5 that for some corners of
moduli space, rational sections can be tuned even for such “standard” conic bundles.
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It is clear that for general P1-fibrations we can characterize these fibrations
in terms of those that can be simply related (i.e. via small resolutions) to P1-bundles
and those that cannot. Morally, this is a question of whether one of the curves in
the degenerate fibers can be shrunk to zero size, leading to a true P1 bundle.

A key feature that determines this property is whether or not the fibration
exhibits monodromy over some higher-codimensional locus in B2, that is, whether
or not the multiple P1-components of singular fibers are homologically equivalent or
not. We will explore this property in detail in Sections 4.4 and 4.5. For now however,
it should be noted that this is monodromy of the P1-fibration is a phenomenon that
is intrinsic to 4-dimensional compactifications of F-theory. Although conic bundles
can exist for 6-dimensional compactifications of F-theory (i.e. conic bundles defined
over P1), the degenerate fibers occur at most at points in the P1 base and thus,
do not exhibit monodromy. In that setting the total space of the P1 fibration is a
complex surface that is always birational to a P1 bundle over P1 (i.e. a blow up of a
Hirzebruch surface). Examples of this type have been studied in the literature [50]
(see also Section 4.2 below).

Unlike in the case of P1-bundles, more general P1-fibrations can have topol-
ogy that varies more widely from that of the simple case outlined in Section 4.1.1.
Indeed, h1,1(B3) can be much larger than the minimal case of 1 + h1,1(B2) seen in
(4.13). We will provide examples of such geometries in subsequent sections.

4.2 P1-fibered bases in 6-dimensional

F-theory compactifications In this section we undertake a simple “warm-up” and
study 6-dimensional compactifications before moving on to 4-dimensional compact-
ifications of F-theory. In particular, we consider the geometry and effective physics
associated to P1-fibered base manifolds B2 for elliptically fibered Calabi-Yau three-
folds, π : Y3 → B2. We will review several well known possibilities in this context
and show that even in this simple setting, unexpected new phenomena are possible.

4.2.1 P1-bundles and P1-fibrations over P1

Here we consider complex surfaces B2 that are P1-fibered. In this context π : B2 →
P1. As argued above, every non-degenerate P1 fibration can be written as projec-
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tivization of a rank 2 vector bundle defined over the base (in this case P1). Since
every vector bundle splits as a sum of line bundles over P1, it is clear that the most
general P1-bundle takes the form

P(OP1 ⊕OP1(n)). (4.18)

That is, the only P1-bundle surfaces are Hirzebruch surfaces.

In the case that we allow the P1-fibration to degenerate over points in the
P1 base, this class can be extended to a wide range of surfaces, all birational to
Hirzebruch surfaces [130]. For example, B2 = dP2 can be viewed as a blow up of
dP1 = F1 and presented here as a co-dimension 2 complete intersection:

B2 =

 P2 1 1
P1 1 0
P1 0 1

 . (4.19)

Alternatively, many simple toric descriptions for “conic bundles” over P1 exist in this
context, for example

p x0 x1 y0 y1
0 1 1 0 0
0 0 n 1 1
1 0 q 1 0

(4.20)

is a simple toric blow-up of Fn [50].

The chains of possible blow ups can be vast (see [130] for explicit enumera-
tions of them in the toric context). Indeed the vast majority of 2-dimensional bases
for elliptically fibered Calabi-Yau threefolds fall into this latter category [100].

4.2.2 Dual Heterotic/F-theory geometry

Since it will be useful in subsequent sections we briefly review here the well-known
dictionary of Heterotic/F-theory duality in 6-dimensions.

The perturbative E8×E8 Heterotic theory compactified on a K3 surface is
fully specified by two poly-stable vector bundles, Vi, i = 1, 2 satsifying c1(Vi) = 0 and
c2(V1)+c2(V2) = 24. The massless spectrum of the theory is fixed by the topology of
Vi, specifically the second Chern class which we can parameterize as c2(V1/2) = 12±n
where 0 ≤ n ≤ 12.
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In the very first work on F-theory, a precise dictionary was established
between Calabi-Yau threefold backgrounds of F-theory of the form π : Y3 → Fn
and pertubative Heterotic theories with bundles of the form described above. In the
so-called “stable degeneration” limit of F-theory, the elliptically fibered K3 surfaces
degenerates into a fiber product of two rational elliptically fibered surfaces (i.e. dP9s),
glued together along a shared P1-base: K3 → dP9 ∪P1 dP9. This limit consists of a
”cylinderizing” of the P1-base in which the poles of the 2-sphere support E8 gauge
symmetries. The data of the Heterotic gauge bundles is encoded in the complex
structure of the two dP9-fibered “halves” of the degenerate Calabi-Yau threefold via
the spectral cover construction [69].

In the non-perturbative limit of the theory, the addition of NS5 branes to
the Heterotic theory increases the number of tensor multiplets [27, 50, 131, 132]. In
the dual F-theory geometry this process consists of blowing up the base manifold
(here Fn initially to likewise increase the number of tensors. For smooth K3 surfaces
the number of 5-branes is limited by

c2(V1) + c2(V2) +m = 24, (4.21)

where m is the number of 5-branes.

Importantly, in 6-dimensional theories, small instanton transitions, in which
5-branes are emitted/absorbed by the S1/Z2 fixed planes are always possible. That
is for every theory that contains additional tensor multiplets contains a limit in which
the corresponding cycles in Y3 are sent to zero size (i.e. blown-down).

From the point of view of P1 fibrations in the base of the F-theory geometry
we see that the structure is simple. Either a P1 fibration is of the simple form already
studied in the literature (i.e. P(O ⊕ O(n)) = Fn) or it is simply a blow up of this
case. This latter possibility encompasses the conic bundles in this context – that is
those P1 fibrations which degenerate over points in the P1-base. No monodromy is
possible for such degenerates and they can always be limited back to the standard
case.

The basic physical summary then is as follows:

In 6-dimensional Heterotic F-theory duality, base surfaces, B2, that are P1-bundles are
simply Hirzebruch surfaces and lead to perturbative Heterotic string compactifications
over K3. In the case that the P1-fiber degenerates at m points over the base P1, this
leads to an increase in m tensor multiplets in the 6-dimensional theory and a non-
perturbative Heterotic theory compactified over a (possible singular) K3 surface with
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m NS5 branes.

The results above seems complete and it might be tempting to conclude
from them that there is nothing new to observe about P1 fibered geometries in 6-
dimensional string compactifications. However, even in this relatively simple context
intriguing phenomena are possible.

As one example, first studied in [132], a single P1-fibered base manifold,
B2, may admit more than one distinct P1-fibration. In such cases the F-theory
effective physics is invariant under the choice of P1 fibration. However, this simple
observation on the F-theory side can lead to novel structure in the dual Heterotic
theory. The two possible interpretations of fiber and base in F0 = P1 × P1 lead to a
highly non-trivial strong/weak coupling Heterotic duality studied by Duff, Minasian
and Witten [86]. This effect was generalized in [15] to include more general P1

fibrations (i.e. conic bundles) and the corresponding Heterotic duality includes a
rich array of possible interchanges between the Heterotic dilaton and the additional
tensor multiplets arising from 5-branes.

To conclude we consider one last phenomenon that is made visible by con-
sidering P1-bundles in the F-theory geometry. It is possible for one P1-fibered mani-
fold to “jump” between two distinct complex surfaces, with interesting consequences
in the dual Heterotic geometry. We examine this effect below.

4.2.3 Jumping phenomena

In this section we consider a previously unexplored effect which is visible even in
the relatively understood arena of 6-dimensional dual compactifications of Heterotic
string theory/F-theory. We will consider a base, B2, to the F-theory elliptically
fibered threefold, Y3, that is itself defined as the projectivizataion, P(V ) of a rank 2
vector bundle π : V → P1.

To begin, let us consider a vector bundle defined via a non-trivial extension
of two line bundles over P1. For example, since H1(P1,O(−2)) = C, there is a
1-dimensional family of non-trivial extensions of the form

0→ O → V → O(2)→ 0. (4.22)

However, since it is well known that every vector bundle over P1 splits as a sum of
line bundles [53], it is clear that V in (4.22) can also be written as an Abelian sum
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of two line bundles. In this case, it is easy to verify that

V = O(1)⊕O(1) (4.23)

has the same first Chern class (the only topological invariant in this case) as the
extensional bundle defined in (4.22). However, a non-trivial extensional class is not
the only possibility to be considered in (4.22). If the extensional class is chosen to be
trivial then the extension splits as the sum O⊕O(2). Thus in this case, the moduli
space of the simple extension bundle in (4.22) in fact consists of a disjoint point
and a line. As the extension class is smoothly varied to zero the bundle ”jumps”
from one holomorphic type to another. These two sums of line bundles are distinct
as holomorphic objects, but isomorphic as real bundles. This interesting effect is a
well-known phenomena in the moduli space of bundles over P1.

Now, to extend this observation to the geometry of P1-fibrations central to
this work, consider the projectivization of the bundle given in (4.22). For non-zero
values of the extension class, it can be verified that P(V ) = F0 and can be simply
written as a co-dimension 2 complete intersection manifold[

P3 1 1
P1 1 1

]
. (4.24)

Without loss of generality, the defining equations can be written as [116]

z0w0 + z1w1 = 0, (4.25)

z2w0 +

[
2∑
i=0

aizi + εz3

]
w1 = 0, (4.26)

where {z0, z1, z2, z3} are the homogeneous coordinates on the ambient P3 and {w0, w1}
those of the ambient P1. As pointed out in [116], for generic values of the defining
equations with ε ̸= 0 this surface is a smooth description of F0. However, for the
special value of ε = 0, the surface “jumps” to become F2. In each case the surface
described by (4.24) is in fact rigid. However, as expected from the bundles which
defined this surface, the moduli space consists of two infinitesimally close but dis-
tinct points, one for each of F0 and F2. Similarly to the observation above regarding
bundles, these two surfaces are the same as real manifolds, but differ in their complex
structure.

What happens then, when a Calabi-Yau manifold is defined as an elliptic
fibration over such a “jumping” base surface? It is straightforward to show that the



136 Chapter 4. F-theory on General Conic Bundle Bases

Calabi-Yau threefold remains smooth and well behaved for all values of ε in (4.25).
In this case, the topology of the Calabi-Yau threefold cannot vary as the complex
structure is changed and indeed, we find that it does not. The only thing that changes
in the structure of the elliptic threefold is that its cone of effective divisors changes
as this modulus is varied. As the ε-parameter is varied to cause F0 to jump to F2,
a curve of self intersection −2 becomes effective in (4.24) inducing a new effective
divisor in the Calabi-Yau threefold Y3 (which could be used as a locus on which to
support gauge symmetry in the F-theory compactification).

In summary, using the structure of P1 bundles we have demonstrated that
it is possible for the base manifolds of Calabi-Yau elliptic fibrations to non-trivially
“jump” to distinct complex surfaces, while leaving the topological family of Calabi-
Yau threefolds unchanged. From the point of view of F-theory, the changing effective
cone of Y3 allows for new singular limits/gauge enhancements in F-theory.

In the dual Heterotic theory however, the “jump” is even more striking. In
jumping from an F0 to an F2 base we have jumped from an E8 × E8 theory with
gauge bundles whose second chern classes are c2(V1) = c2(V )2 = 12 to one in which
c2(V1) = 14 and c2(V2) = 10. The matter spectrum of the theory depends on the
topology of the Vi and hence can also jump in this process! It is natural to ask –
what geometric/physcial mechanism can cause such a dramatic shift in the Heterotic
theory?

Clearly, the solution to this problem relies on the form of the gauge sym-
metry tuned in F-theory, the sections to the P1 fibration and their roles in the stable
degeneration limit. We will return to this important question of the dual Heterotic
theory to this “jumping phenomena” after first building techniques for handling ra-
tional sections and stable degeneration limits in the subsequent sections.

4.3 General P1-bundle bases for 4-dimensional F-
theory compactifications

In this section, we try to study the general features of a P1 bundle over a complex
surface B2 defined as the projectivization of a rank two vector bundle P(V ). In
particular, since the existence of a Heterotic dual depends on the existence of sections
(that can define two can define two “homogeneous coordinates” over each fiber), we
explore the properties of the sections of such P1 bundles. It turns out unless V is a
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split of two line bundles, the standard Heterotic/F-theory duality doesn’t work.

By section, we mean an effective divisor that intersects almost all fibers at
one point. By using the theorem4.1 (mentioned above) we conclude:

1. If i : S ↪→ P(V ) is a holomorphic section i.e., when the morphism g in 4.1 is an
isomorphism, then there is a surjection g∗V ≃ V → L2 for some line bundle
L2 on S. By Serre’s construction [88], we can “complete” this surjection into
an extension on S ≃ B2,

0→ L1 → V → L2 → 0. (4.27)

Therefore, P(V ) has a holomorphic section if and only if V is an extension of
two line bundles.

2. If S is a rational section, i.e. when g is a birational morphism. Again from
the theorem, we must have a surjection g∗V → L2 on S. Similarly, we can
“complete” this surjection into an extension on S,

0→ L1 → g∗V → L2 → 0. (4.28)

By applying the pushforward functor Rg∗ on the short exact sequence above, we
cannot get (4.29) on B2 because this contradicts the reasoning above (S ̸= B2).
The only possibility that remains (by the Serre construction [88]) is to get the
following short exact sequence on B2,

0→ N1 → V → N2 ⊗ Iz → 0, (4.29)

where N1 and N2 are two line bundles on B2, and Iz is the ideal sheaf of a set
of points on B2. Therefore without loss generality, we assume,

N1 ≃ g∗L1, (4.30)
L2 = (g∗OB2(D))⊗OS(e), (4.31)

for some divisor D ∈ Pic(B2) and some exceptional (−1)-curves in S. There-
fore if B3 = P(V ) where V is given by (4.30) with z ̸= 0, then B3 has a rational
section. In other words, S corresponds with the blow up of B2 on z.

We will study each case in the following. From now on we take S to be a divisor
corresponding to c1(OP(V )(1)).
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• Type I: In this case we assume V is givven by (4.29). We assume L1 ≃ OB2

and L2 ≃ OB2(D),

0→ O → V → O(D)→ 0.

First note that, h0(O(S)) = h0(V ) ≥ 1. So S is an effective divisor. We need
the self-intersection S2. Using,

0→ TS → TB3|S → OS(S)→ 0, (4.32)

then,

c1(S) + S2 = c1(TB3) · S ⇒ c1 + S2 = S · (c1 −D + 2S)

⇒ S2 = DS. (4.33)

Usually, for finding the Heterotic dual, one needs two sections, S0 and S∞ such
that S0 · S∞ = 0. This enables us to define the homogeneous coordinates on
the P1 fibers. From the intersection relation above, we may guess S∞ = S−D.
But, h0(O(S−D)) = h0(V ⊗O(−D)), and it is easy to show that if the defining
S.E.S is non-split, then h0(O(S − D)) = 0 (at least when B2 ≃ P2, Fn and
their blow-ups) i.e., If the defining S.E.S is non-split, then S∞ = S −D is not
an effective divisor, and it cannot be a section.
This means the usual Heterotic/F-theory duality procedure cannot be applied.
However, one might guess it may be possible to “rewrite” as a sum of two line
bundles different from O and O(D) (up to a common twist). If this is possible,
it means there are other sections for P(V ). So we must check whether there
are other sections or not? We use the following procedure to check for other
sections,

1. Find divisors in Pic(B2)D1 andD2 such that: D1+D2 = D, D1·D2 = 0.
2. Check whether H0(B2, V

∗ ⊗O(D2)) ̸= 0.

If both conditions are satisfied, define S0 = S − D1. We can show S0 is a
holomorphic section.
If in addition, H0(B2, V

∗ ⊗ O(D1)) ̸= 0, then there is also another section
S∞ = S −D2, such that S0 · S∞ = 0.
However note if S∞ is a section, then by (4.1) there is a surjection, V → O(D1),
but remember, the existence of S0 also means the morphism O(D1) → V is
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injective. Therefore when both S0 and S∞ sections, then V must be a direct
sum of two line bundles i.e. V = O(D1)⊕O(D2).
Before proceeding further, we should justify the criteria mentioned above. As
already explained, the existence of a holomorphic section is equivalent to the
surjection V → L′. Since V is a vector bundle (rather than being a singular
coherent sheaf), we can complete the sequence as,

0→ L′′ → V → L′ → 0. (4.34)

By comparing the original Chern classes of V , and the Chern classes that can
be derived from the S.E.S above, we get the first condition,

D1 +D2 = D, D1 ·D2 = 0, (4.35)
D2 = c1(L′), D1 = c1(L′′). (4.36)

On the other hand, the surjection V → L′ means Hom(V,L′) = H0(B2, V
∗ ⊗

L′) ̸= 0. Conversely, if the first condition above is satisfied, any non-zero
morphism V → L′ must be surjective. Therefore,

V → L′ surjective⇔ H0(B2, V
∗ ⊗ L′) ̸= 0. (4.37)

Therefore these two conditions mean there is a section. We call it S0, and it
must satisfy,

S2
0 = (D2 −D1)S0. (4.38)

From this we can find, S0 = S −D1. Interestingly one can find,

1. O(1)|S0 = O(D2) = L′. As the theorem predicts.
2. h0(O(S)) = h0(V ⊗ O(−D1)). Note that V ⊗ O(−D1) ≃ V ∗ ⊗ O(D2).

Therefore,

Effectiveness of S0 ⇔ H0(B2, V
∗ ⊗ L′) ̸= 0. (4.39)

Note that this procedure can also be interpreted as a way of finding other
descriptions of the initial V in terms of extension/direct sum of other line
bundles. For vector bundles over a rational curve P1, this is a well-known fact.
But, to our knowledge, for a general surface B2, this has not been explored at
least in string theory literature.
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4.3.1 Examples: Type I

We illustrate the procedure above with two examples.
Example 1: B2 = F1.
In this example, the initial defining V is given by a non-split extension, but it
turns out there is also another description. V is defined as,

0→ O → V → O(3, 1)→ 0, (4.40)
h∗(V ) = (4, 1, 0). (4.41)

We can check,

h1(O(−3,−1)) = 3, So the sequence can be non-split, (4.42)
D1 = (2, 0), D2 = (1, 1), (4.43)
h0(V ⊗O(−2, 0)) = 1, So S0 = S −D1 is a section, (4.44)
h0(V ⊗O(−1,−1)) = 1, So S∞ = S −D2 is a section, (4.45)
h1(F1,O(D1 −D2)) = 1, (4.46)

we may naively conclude that V can be written as a non-split extension of
O(D1) and O(D2) such that P(V ) has two holomorphic sections. But note if
this is true h∗(V ) = (3, 0, 0) and this contradicts with (4.40). In fact V is a
direct sum

V = O(2, 0)⊕O(1, 1). (4.47)

This example confirms our reasoning. We can derive the intersection relations
as before,

S2 = (3t+ f)S, (4.48)
S0S∞ = 0, (4.49)

S2
0 = (t− f)S0, (4.50)

S2
∞ = −(t− f)S∞. (4.51)

Also note that H0(B3, K
−1
B3

) = 18, so this B3 is a good base for a Weierstrass
model, because the anticanonical line bundle is effective. Overall this is a good
model for Heterotic/F-theory duality, and no unusual phenomena happen. In
the next example, however, the next example is not as easy as this one.
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Example 2: B2 = F0.
This time we start with,

0→ O → V → O(3,−1)→ 0. (4.52)

We can check,

h1(O(−3, 1)) = 4, So the sequence can be non-split, (4.53)
D1 = (2,−2), D2 = (1, 1), (4.54)
h0(V ⊗O(−2, 2)) = 1, So S0 = S −D1 is a section, (4.55)
h0(V ⊗O(−1,−1)) = 0, So S∞ = S −D2 is not a section, (4.56)
h1(F0,O(D1 −D2)) = 4. (4.57)

One can show the solutions D1 and D2 are unique. However, even with D1

and D2 the vector bundle cannot be split (otherwise S∞ would be effective).
So there are no ways to rewrite this vector bundle as a direct sum, and in
any event P(V ) has only one section, and hence, we cannot (globally) define
the two homogeneous coordinates we need on every fiber. One can also show
h0(B3, K

−1
B3

) = 21. Therefore, it is possible to define a Weierstrass model over
this base, and therefore we can have a well defined F-theory model. Then the
question is, does this model has a Heterotic dual?! This is one of the main
questions of this work.

• Type II: This time we consider the more general vector bundle over B2,

0→ O → V → O(D)⊗ Iz → 0.

Similar to the previous case, S = c1(OP(V )(1)), is an effective divisor. But it
wraps around a finite number of P 1 fibers. So it is a rational section. One can
also derive the self-intersection as before,

S2 = DS − π∗[z], (4.58)

where π : P(V )→ B2 is the projection map. We can rewrite the relation above
as S2 = (D + e)S, where e is the (−1)-curve in the rational section.
Contrary to the previous case, “non-splitness” of the S.E.S doesn’t require
S −D to be non-effective. In other words, S0 = S, S∞ = S −D could be both
effective.

S0 · S∞ = −[z]. (4.59)
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Question 1: Does P(V ) have any holomorphic sections. In other words, is it
possible to redefine the vector bundle V as a S.E.S of Type I?
The conditions that should be checked in this case are similar to the previous
case,

1. Find divisors in B2 D1 and D2 such that: D1 +D2 = D, D1 ·D2 = [z].
2. Check whether H0(B2, V

∗ ⊗O(D2)) ̸= 0.

If a solution exist, it means we can redefine the vector bundle V as extension of
two line bundles. So the problem reduces to the Type I problem, and if there
are cases with 2 sections, it means V is a direct sum.
Question 2: Suppose there are no solutions to the conditions above. Then
similar to the previous case, one can ask how many sections we can have.
By the same reasoning as Type I, we should solve the following conditions,

1. Find divisors in B2 D1 and D2 such that: D1 +D2 = D, D1 ·D2 = [z′].
2. Check whether H0(B2, V

∗ ⊗O(D2)⊗ Iz′) ̸= 0.

If there is a solution, then it is possible to rewrite the vector bundle as,

0→ O(D1)→ V → O(D2)⊗ Iz′ → 0. (4.60)

Again, S0 = S−D1 is an effective divisor. So there is another rational section.
We may define S∞ = S −D2 as before, and then we get,

S0 · S∞ = −[z′], (4.61)
S2
0 = (D2 −D1) · S0 − [z′], (4.62)

S2
∞ = −(D2 −D1)S∞ − [z′]. (4.63)

The effectiveness of the divisor S∞ doesn’t necessarily put the strong condi-
tions, in contrast to Type I, on the cohomology of O(D2 −D1).

4.3.2 Examples: Type II

Example 1 B2 = P2.

In this example we start with a non-split defining sequence,

0→ OP2 → V → OP2(H)⊗ Ip → 0, (4.64)
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where p is a point. Note that the extension class can be non-zero even though the
base is P2,

RHom(O(H)⊗ Ip,O) = RHom(O,O(−H)⊗ I∨p ), (4.65)

but,

I∨p = O ⊕Op[−1], (4.66)

so,

Ext1(O(H)⊗ Ip,O) = Ext0(O,Op) = C. (4.67)

To find sections we have to repeat the analysis mentioned previously,

D1 +D2 = H, (4.68)
0 ≤ D1 ·D2 ≤ 1. (4.69)

But these equations do not have any non-trivial solutions, thus P(V ) is not a direct
sum of two line bundles, and three rational section with the same divisor class [S].
One can rewrite V as,

0→ OP2(−H)→ O⊕3
P2 → V → 0. (4.70)

This means, P(V ) is simply a hypersurface with divisor class S̄+H in P(O⊕3
P2 ) Where

S̄ is just the (negative) divisor class of the tautological line bundle. In other words,

P(V ) =

[
P2 1
P2 1

]
. (4.71)

It is easy to see S = c1(O(1, 0)), and the sequence (4.70) is simply the pushforward
of the Koszul sequence to the base P2. It is also simple to check that the section is
actually a dP1 surface, confirming the previous claims.

Example 2: B2 = P2. As another example of the same type, consider the
defining non-split sequence as follows,

0→ O → V → Ip → 0. (4.72)

In this case, we have only one rational section with self-intersection, S2 = −[p], and
there are no other ways to find other sections. Similar to the last example, one can
rewrite the sequence as,

0→ OP2(−2H)→ OP2(−H)⊕OP2(−H)⊕OP2 → V → 0. (4.73)
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This means P(V ) is just a hypersurface with divisor class S̄+2H in the toric variety
P(OP2(−H)⊕OP2(−H)⊕OP2),

1 1 1 0 0 0 1
0 −1 −1 1 1 1 2

(4.74)

In both of these examples, we can have well defined F-theory models, but to find the
Heterotic dual in addition to the problems of non-split bundles in Type I, we have
a rational section. In other words, over some specific point in the base, the section
not only doesn’t define homogeneous coordinates; rather, it wraps the whole fiber.
So is there a Heterotic dual?

We finish this section with the following example,

Example 3: B2 = P2. As in type I, it may be possible to rewrite the
defining vector bundle as the direct sum of two line bundles. For example, let us
define V as,

0→ OP2 → V → OP2(2H)⊗ Ip → 0, (4.75)

The only solution for D1 +D2 = 2H and D1 ·D2 = 1 is D1 = D2 = H.

So even though the defining sequence is non-split, we can show,

V = OP2(H)⊕OP2(H). (4.76)

So,

P(V ) = P1 × P2. (4.77)

For this example it is, or course, possible to find a Heterotic dual.

4.4 Conic bundles without monodromy

We now turn to 4D F-theory models where the base of the elliptic fibration is a conic
bundle. As mentioned previously, the fiber at generic points in the conic bundle
base is essentially a P1, but the fiber may degenerate at codimension one or higher
in the base. Section 4.2 discussed the physics associated with conic bundles in 6-
dimensional F-theory models. We now wish to understand the physics associated
with conic bundles in 4-dimensional F-theory models. While the 6D analysis should
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give significant insights into the 4D physics, there are new features in 4D situations
that need to be considered. Chief among these is the possibility of a monodromy
that exchanges the components in degenerate fibers, which we discuss in Section
4.5. However, there may be other differences between the physics in six and four
dimensions, so it is worth analyzing 4D conic bundle models without the added
complication of monodromy. Therefore, this section focuses on 4D F-theory models
where the base of the elliptic fibration is a three-dimensional conic bundle that lacks
monodromy.

We consider a specific example of a conic bundle B3 described by the com-
plete intersection configuration matrix P2

(1) 1 1

P1
(2) 1 0

P2
(3) 0 1

 . (4.78)

Here, P2
(3) serves as the base B2 of the conic bundle. We choose the Pn coordinates

to be

P2
(1) : [x0 : x1 : x2], P1

(2) : [y0 : y1], P2
(3) : [z0 : z1 : z2]. (4.79)

The equations describing the complete intersection can then be written as

P1 ≡l0(y0, y1)x0 + l1(y0, y1)x1 + l2(y0, y1)x2 = 0, (4.80)
P2 ≡m0(z0, z1, z2)x0 +m1(z0, z1, z2)x1 +m2(z0, z1, z2)x2 = 0, (4.81)

where the li and mi are linear expressions in the yi and zi, respectively.

It will be helpful to list some topological data for this complete intersection.
We let J1, J2, and J3 be the harmonic (1,1) forms descending from P2

(1), P1
(2) and

P2
(3), respectively. Triple intersection numbers on B3 can then be calculated as

D1 ·D2 ·D3 =

∫
[D1] ∧ [D2] ∧ [D3] ∧ (J1 + J2) ∧ (J1 + J3) . (4.82)

Since the base of the conic bundle is simply a P2, the Chern classes for B2 are given
by the standard formulas:

c1(B2) =3J3, c2(B2) =3J2
3 . (4.83)

The Chern classes for the conic bundle B3 are

c1(B3) =J1 + J2 + 2J3, c2(B3) =2J1J2 + 3J1J3 + 2J2J3 + J2
3 . (4.84)
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4.4.1 Sections

We are interested in exploring the Heterotic duals to F-theory models constructed
using the conic bundle B3. In the standard Heterotic/F-theory duality, the base of the
F-theory elliptic fibration is a P1 bundle with two sections. Gauge groups supported
on these two sections in the F-theory geometry are dual to the gauge groups coming
from the two E8 factors in the Heterotic model. This suggests that sections play
a similarly important role when the F-theory elliptic fibration is constructed over
a conic bundle. We should therefore determine the possible sections of the conic
bundle described above.

Any section must satisfy certain topological criteria. Let Σ be the divisor
class of a section, D̂b

α with α = 1, . . . h1,1(B2) be the basis divisor classes for the base
B2 conic bundle, and Db

α be the pullbacks of D̂b
α to the full conic bundle B3. Σ must

satisfy the Oguiso condition

Σ ·
n−1∏
k=1

Db
αk

=
n−1∏
k=1

D̂b
αk

(4.85)

for all n − 1 tuples (α1, . . . αn−1), where each αk is an integer from 1 to h1,1(Bn−1).
Additionally, Σ must satisfy a modified version of the condition from [129] that
accounts for the non-CY nature of B3:

Σ · (Σ− c1(Bn)) ·
n−2∏
k=1

Db
αk

= −c1(Bn−1) · Σ ·
n−2∏
k=1

Db
αk
. (4.86)

If we let Σ = aJ1 + bJ2 + cJ3, the equations reduce to

a+ b =1, a (a+ 2b− 1) + 2c (a+ b− 1) = 0. (4.87)

There are two classes of solutions to these equations:

(i) : Σ = J1 + cJ3, (ii) : Σ = J2 + cJ3. (4.88)

We want two sections to the conic bundle, which may have different divisor
classes. Based on the analysis of [89], we let the classes of the two sections be Σ and
Σ + t, subject to the constraint

Σ · (Σ + t) = 0. (4.89)
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The class t, known as the twist, is a divisor class in the base. The condition can be
thought of as asking that the divisors corresponding to the E8 factors do not intersect;
this ensures there is no matter jointly charged under gauge factors contained in
distinct E8 factors, as seen in typical, non-singular Heterotic models.

For the example at hand, we can write the twist as t = t3J3. Then, if we
assume that Σ = J1 + cJ3, Σ · (Σ + t) = 0 leads to the conditions

Σ · (Σ + t) · J1 =t3 + c (2 + c+ t3) = 0, (4.90)
Σ · (Σ + t) · J1 =t3 + c (2 + c+ t3) = 0, (4.91)
Σ · (Σ + t) · J3 =1 + 2c+ t3 = 0. (4.92)

There are no intergral solutions to the conditions, suggesting that one cannot have
Σ · (Σ + t) = 0 with Σ = J1 + cJ3. However, if we let Σ = J2 + cJ3, we obtain the
conditions

Σ · (Σ + t) · J1 =t3 + c (2 + c+ t3) = 0, (4.93)
Σ · (Σ + t) · J1 =c (c+ t3) = 0, (4.94)
Σ · (Σ + t) · J3 =2c+ t3 = 0, (4.95)

which is satisfied when c = t3 = 0.

In summary, we can have Σ · (Σ + t) = 0 if

Σ =J2, t =0. (4.96)

The sections essentially specify a particular point on P1
(2) that does not vary with

the position in the base P2
(3). For instance, one could choose the two sections to be

[y0 : y1] = [1 : 0], (4.97)

and
[y0 : y1] = [0 : 1], (4.98)

with the [x0 : x1 : x2] coordinates determined by plugging the values for y0 and y1
into Equations (4.80) and (4.81).

4.4.2 Degenerations

At generic points in B2 = P2
(3), the fiber is simply a P1. We can think of the

coordinates [y0 : y1] as parametrizing the P1 fiber. Plugging specific values for [y0 : y1]
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and [z0 : z1 : z2] into P1 = P2 = 0 gives us two linear equations for [x0 : x1 : x2];
the solution of these equations is a single point in P2

(1). The defining relations thus
assign a particular point in P2

(1) to each point in P1
(2). In a vague sense, the defining

relations provide an embedding of P1
(2) within P2

(1). The fiber is therefore essentially
the P1 described by [y0 : y1], at least at most points in the base.

This story changes at particular loci in B2, where the fiber consists of two
intersecting P1 curves. These degenerations occur because, for, special values of
[y0 : y1] and [z0 : z1 : z2], P1 = 0 and P2 = 0 are no longer independent lines in P2

(1).
As a result, there are two ways of solving the defining relations. First, one can leave
[y0 : y1] unrestricted and solve for the xi, just as done at generic points in the base.
Second, one can fix [y0 : y1] to take the sepcial value and solve P2 = 0 (or P1 = 0)
for the xi. Each of these solutions gives us a different P1component, and the fiber
consists of two components intersecting at a single point.

To determine the specific locus in B2 where this degeneration occurs, we
need to find the conditions such that the lines P1 = 0 and P2 = 0 in P2

(1) are no longer
independent lines. Recall that P1 and P2 are defined in Equations (4.80) and (4.81),
respectively. Since l0(y), l1(y), and l2(y) are linear expressions in the P1

(2) coordinates,
they cannot be independent, and one of them must be a linear combination of the
others. Let us assume that l2(y) can be written as

αl0(y) + βl1(y)

for some complex numbers α and β. Then, P1 can be rewritten as

P1 = l0(y)x0 + l1(y)x1 + (αl0(y) + βl1(y))x2. (4.99)

In order for P2 to describe the same line in P2
(1), we require that

∆b ≡ m2(z)− αm0(z)− βm1(z) = 0. (4.100)

The degeneration locus ∆b = 0 is therefore a line in the base B2 = P2
(3). We can also

obtain explicit expressions for the fiber components. The first component is specified
by the equations

m0(z)x0 +m1(z)x1 + (αm0(z) + βm1(z))x2 =0, l0(y)x0 + l1(y)x1 + l2(y)x2 =0,
(4.101)

with [y0 : y1] unrestricted. The second component is specified by

m0(z)l1(y)−m1(z)l0(y) =0, m0(z)x0 +m1(z)x1 +m2(z)x2 =0. (4.102)
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(a) codimension one behavior (b) codimension two behavior

Figure 4.1: Illustration of the degenerate fibers for the conic bundle analyzed in
Section 4.4. The red dots mark the points on the fiber hit by the sections. The filled
component for the codimension two behavior indicates that one of the sections wraps
a component.

The degenerate fibers along ∆b = 0 are illustrated in Figure 4.1. The figure also
depicts the behavior of the two sections chosen in the fashion discussed above. At
most points along ∆b = 0, both sections will hit the component described by (4.101)
and will miss the component described by (4.102). But at codimension two loci along
∆b = 0, the [y0 : y1] picked out by the definition of a section may satisfy

m0(z)l1(y)−m1(z)− l0(y) = 0.

When this happens, the section wraps the (4.102) component. There does not seem
to be any monodromy effect that identifies the two components in the degenerate
fiber. Fibering one of the components over ∆b = 0 should therefore give a valid
divisor, and the degenerations should give extra contributions h1,1(B3). We should
also be able to shrink one of these divisors while leaving the volume of the fiber
non-zero. In fact, this particular conic bundle seems similar to a blowup of P1 × P2,
with the component in (4.102) acting as the exceptional divisor. Based on these
observations, one would expect that, for an F-theory model with B3 as the base of
the elliptic fibration, the degenerations should correspond to bulk M5-branes in a
dual Heterotic model.

4.5 Conic bundles with monodromy

Having considered a conic bundle without monodromy, we now analyze a conic bundle
that does exhibit monodromy. For this example, let us take the conic fiber to be a
quadratic curve in P2. We want the F-theory model built from this conic bundle to
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be dual to an E8×E8 Heterotic compactification. The conic bundle should therefore
admit two sections, which act as the F-theory divisors corresponding to the two E8

factors. In light of this requirement, we use a conic bundle specified by the defining
relation

p =
3∑

i,j=1

liCijlj = C11l
2
1 + 2C12l1l2 + 2C13l1l3 + 2C23l2l3 = 0, (4.103)

where [l1 : l2 : l3] are the coordinates of the P2 in which the conic fiber is embed-
ded. The Cij may depend on the position in the conic bundle base. Since we are
interested in F-theory compactifications to 4D, the conic bundle base is complex
two-dimensional, and the conic bundle is complex three-dimensional.

This conic bundle admits two particularly useful sections: l1 = l2 = 0 and
l1 = l3 = 0. These are not the only sections, as there are additional sections such as
C11l1 + C12l2 + C13l3 = l2 = 0 and C11l1 + C12l2 + C13l3 = l3 = 0. But the sections
l1 = l2 = 0 and l1 = l3 = 0 do not intersect, and we therefore choose them to be the
divisors corresponding to the E8 factors.

4.5.1 Degenerations

The discriminant locus of this conic bundle, found from det(C), is

∆b ≡ C23 (C11C23 − 2C12C13) = 0. (4.104)

The fiber therefore degenerates along the codimension one loci C11C23−2C12C13 = 0
and C23 = 0, which intersect at the codimension two loci C12 = C23 = 0 and
C13 = C23 = 0. We analyze the fibers at these loci individually. The degenerate
fibers along the codimension one loci are illustrated in Figure 4.2.

Codimension one behavior First, we consider the locus C11C23 − 2C12C13 = 0.
Note that

C23p+ (2C12C13 − C11C23) l
2
1 = 2 (C13l1 + C23l2) (C12l1 + C23l3) . (4.105)

Therefore, at generic points along 2C12C13 − C11C23 = 0 (away from C23 = 0), the
conic splits into two components given by C13l1+C23l2 = 0 and C12l1+C23l3 = 0. We
will refer to these components as c2 and c3, respectively. These intersect at a point on
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the fiber given by C13l1+C23l2 = C12l1+C23l3 = 0, or [l1 : l2 : l3] = [−C23 : C13 : C12].
The two sections hit different components: the section l1 = l2 = 0 hits c2, while the
section l1 = l3 = 0 hits c3. At least naively, this situation is reminiscent of F-theory
constructions dual to Heterotic/M-theory models with an M5 brane in the bulk. In
particular, one can imagine wrapping D3 branes on either c2 or c3; the dual analogue
of these D3 branes would be M2 branes stretched between the bulk M5 brane and one
of the two E8 walls. Shrinking the codimension one component formed by fibering
c2 over 2C12C13 − C11C23 = 0 would then correspond moving the M5 brane through
the bulk to one of the E8 walls. On the other hand, shrinking the component formed
by fibering c3 would correspond to moving the M5 brane to the other E8 wall. Of
course, the monodromy effects discuss below may complicate this interpretation.

At generic points along C23 = 0,the fiber degenerates to two P1’s as well.
Specifically, when C23 = 0, the defining relation becomes

l1 (C11l1 + 2C12l2 + 2C13l3) = 0. (4.106)

This factorization indicates that the fiber splits into the components l1 = 0, which
we refer to as c̃a, and C11l1 + C12l2 + C13l3 = 0, which we refer to as c̃b. The two
components intersect at points on the fibers given by l1 = C12l2 + C13l3 = 0. Both
the sections hit c̃a and miss c̃b. This section behavior makes a Heterotic/M-theory
interpretation of this degeneration more challenging, even at a naive level. On the
F-theory side, one can still imagine either wrapping D3 branes on one of the c̃’s
component or shrinking the codimension one component found by fibering c̃a or c̃b
over C23 = 0. But suppose we attempted to interpret the of the c̃b component in
Heterotic/M-theory. A D3-brane on a shrunken c̃b curve should correspond to a
light M2 brane in the dual picture. However, since neither of the sections intersects
c̃b, it seems difficult to interpret a D3-brane on c̃b stretched between an M5 brane
and an E8 wall. In particular, on which E8 wall would the M2 brane end? Said
another way, if one shrinks the c̃b component, towards which E8 wall would the dual
M5 brane move? Thus, while the C23 = 0 degeneration may have some M5 brane
interpretation, it does not fit as neatly into the standard bulk M5 brane story. Again,
monodromy would likely further complicate any M5 brane interpretation.

Codimension two behavior At the intersections between C23 = 0 and C11C23−
2C12C13 = 0, the conic bundle described by (4.103) is in fact singular. This fact can
be made apparent by rewriting p as

l1 (C11l1 + 2C12l2 + 2C13l3) + C23l2l3. (4.107)
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c3c2

(a) C11C23 − 2C12C13 = 0

c̃bc̃a

(b) C23 = 0

Figure 4.2: Degenerate fibers at codimension one for the conic bundle with mon-
odromy. The points represent the two sections l1 = l2 = 0 and l1 = l3 = 0.

The defining relation has the structure of a conifold with singularities at

C23 = C13 = l1 = l2 = 0,

and
C23 = C12 = l1 = l3 = 0.

Let us first focus on the behavior at C23 = C13 = 0. Since the base of the conic bundle
is two-dimensional, we can assume that C12 and C11 are non-zero at C23 = C13 = 0,
which will be true if the Cij are sufficiently general. To resolve the singularity, we
introduce a new P1 with coordinates [x1 : x2] constrained by the equations(

l1 l2
C23l3 C11l1 + 2C12l2 + 2C13l3

)(
x1
x2

)
= 0. (4.108)

This resolution does not change the fiber away from C23 = C13 = 0, as the matrix
above is non-zero. At C23 = C13 = 0, however, the fiber has three components γa,
γb, and γc:

γa : [l1 : l2 : l3] =[0 : l2 : l3] [x1 : x2] = [1 : 0], (4.109)

γb : [l1 : l2 : l3] =

[
−2C12

C11

l2 : l2 : l3

]
[x1 : x2] = [C11 : 2C12], (4.110)

γc : [l1 : l2 : l3] =[0 : 0 : 1] [x1 : x2] unrestricted. (4.111)

γc intersects γa and γb at a point, and γa and γb do not intersect. While the section
l1 = l3 = 0 hits γa at a single point and misses γb and γc, the other section, l1 = l2 = 0,
now wraps γc.
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In preparation for the monodromy analysis, it is worth investigating how
the c2, c3, c̃a, and c̃b components split into γa, γb, γc at C23 = C13 = 0. Based on the
expressions for c̃a and c̃b read off from (4.106), one can see that

c̃a →γa + γc, c̃b →γb, (4.112)

as one approaches C13 = 0 along C23 = 0. The components c3, which is given by
C12l1 + C23l3 = 0 away from C13 = C23 = 0, becomes C12l1. Therefore, c3 splits into
the components with l1 = 0, namely γa and γc. The expression C13l1+C23l2 = 0 for c2,
meanwhile, seems ill-defined at C13 = C23 = 0. But at points along C11C23−C12C13 =
0 and not at C23 = 0, one can rewrite the expression for c2 as

c11l1 + 2c12l2 = 0.

This new expression is well-defined as C23 → 0 and in fact corresponds to the ex-
pression for γb. Therefore, c2 should become γ2 as C23 → 0. In summary, we have

c2 →γb, c3 →γa + γc. (4.113)

A similar story holds at C23 = C12 = 0. To resolve the singularity here, we
introduce another P1 with coordinates [y1 : y2] and impose the equations(

l1 l3
C23l2 C11l1 + 2C12l2 + 2C13l3

)(
y1
y2

)
= 0. (4.114)

The fiber is essentially unchanged away from C23 = C12 = 0, but the fiber at C23 =
C12 = 0 has three components γ̃a, γ̃b, γ̃c:

γ̃a : [l1 : l2 : l3] =[0 : l2 : l3] [y1 : y2] = [1 : 0], (4.115)

γ̃b : [l1 : l2 : l3] =

[
−2C13

C11

l3 : l2 : l3

]
[y1 : y2] = [C11 : 2C13], (4.116)

γ̃c : [l1 : l2 : l3] =[0 : 1 : 0] [y1 : y2] unrestricted. (4.117)

As before, γ̃c intersects γ̃a and γ̃b at a point, and γ̃a and γ̃b do not intersect. Now,
the section l1 = l2 = 0 hits γ̃a at a single point, while the section l1 = l3 = 0 wraps
γ̃c. The components c̃a and c̃b along C23 = 0 still split as

c̃a →γ̃a + γ̃c, c̃b →γ̃b. (4.118)

However, an analysis similar to that for C23 = C13 = 0 reveals that the components
c2 and c3 along C11C23 − 2C12C13 = 0 split as

c2 → γ̃a + γ̃c, c3 → γ̃b. (4.119)
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C23=0

C11C23-2C12C13=0

C23=C12=0

C23=C13=0

Figure 4.3: Illustration of the closed path used to demonstrate monodromy.

4.5.2 Monodromy

This conic bundle in fact admits a monodromy that identifies components of the
degenerate conic. To see monodromy, we follow a closed path on the base that starts
along C11C23 − 2C12C13 = 0, goes to C23 = C12 = 0, continues to C23 = C13 = 0
along C23 = 0, and returns to the starting point along C11C23 − 2C12C13 = 0. The
path is illustrated in Figure 4.3. We then choose a component at the starting point,
say c3, and track this components as we follow the path. If, after completing the
path, we find that the tracked component has changed from c3 to c2, then we will
demonstrated monodromy. With this general procedure in mind, let us start at some
point along C11C23− 2C12C13 = 0 and use c3 as the tracked component. As we move
towards C23 = C12 = 0, the component c3 becomes γ̃b, according to the analysis
performed above. We also know that γ̃b is identified c̃b at C23 = C12 = 0, so our
tracked component is now c̃b. We then move along C23 = 0 towards C23 = C13 = 0.
At C23 = C13 = 0, c̃b becomes γb, which is in turn identified with c2. Finally, we turn
to our starting along C11C23 − 2C12C13 = 0. In the end, the tracked component has
changed from c3 and c2, indicating that these two components are exchanged under
monodromy. A similar argument shows that c̃a and c̃b are also exchanged under
monodromy.

Because of this monodromy, the degenerate fibers should not give extra
contributions to the h1,1 of the conic bundle. For instance, if one attempted to con-
sistently shrink the c2 components, monodromy would force the c3 components to
shrink simultaneously as well. This fact represents a fundamental difference from
two-dimensional conic bundles, where the degenerations always give an extra contri-
bution to h1,1.
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The key feature of this conic bundle that allows for this monodromy seems
to be the C23 = C12 = 0 and C23 = C13 = 0 intersections. Both of these intersections
are needed to form the closed path above. So far, we have been too much about
the specific forms of the Cij. But in particular situations, C23 and C12 may never
intersect, C23 and C13 may never intersect. In these cases, the model will not have
monodromy, and there may be extra contributions to h1,1. For example, if [C23]
is trivial, the degenerations along C23 = 0 are absent, and the conic bundle does
not have the monodromy described above. There are therefore independent divisors
corresponding to the c2 and c3 components, and the degeneration along C11C23 −
2C12C13 = 0 gives a contribution to h1,1.

In fact, one can transform (4.103) to remove the C23 = 0 degeneration
locus. If we let l1 = C23l

′
1, we can rewrite p as

C23

(
C23C11l

′
1
2
+ 2C12l

′
1l2 + 2C13l

′
1l3 + 2l2l3

)
. (4.120)

Dividing through by C23 leads to a new conic bundle of the form

p′ = C23C11l
′
1
2
+ 2C12l

′
1l2 + 2C13l

′
1l3 + 2l2l3 = 0, (4.121)

which has a discriminant
∆′
b = C23C11 − 2C12C13. (4.122)

This conic bundle admits sections l′1 = l2 = 0 and l′1 = l3 = 0. Since

p′ −∆′
bl
′
1
2
= 2 (l2 + C12l

′
1) (l3 + C13l

′
1) , (4.123)

the fiber at ∆′
b = 0 splits into two components, each of which is hit by one of the

sections. Additionally, this behavior does not change at codimension two. We would
therefore expect that this new conic bundle does not have monodromy. In turn, the
naive M5 brane interpretation of the C11C23 − 2C12C13 = 0 locus mentioned previ-
ously should be directly applicable hear, unmodified by monodromy considerations.
The fact that we can convert the conic bundle of (4.103) to a new conic bundle
monodromy may lead to new insights into the origin of the monodromy.

4.6 Heterotic dual

One of the main questions of this chapter is the existence and the properties of the
possible Heterotic dual for F-theory set-ups that are studied in the previous sections.
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The standard statement in the literature is that there is a heterotic dual
once the P1 bundle has a section. However, as we mentioned in the first chapter
and will review in a little more details in the following subsections, in the standard
Heterotic/F-theory duality one actually needs two holomorphic section. One for each
E8 plane in Heterotic M-theory. But we saw in this chapter that we may have P1-
fibrations with only one rational or holomorphic section, or conic bundles with an
irreducible 2-section. It is also possible to have a “combination” of such situations.
So one naturally asks whether there is a Heterotic dual for such F-theory set-ups,
and if they exist, what are the properties of them.

In the following subsections we first review the standard Heterotic/F-theory
duality via stable degeneration. Then we will repeat this process in more general
P1-fibrations. It turns out when there is only one (possibly rational) section there is
not any Heterotic dual but such set-ups are in the same complex structure moduli
with F-theory set-ups which are dual to very special Heterotic models. Especially
when the section is rational the dual Heterotic model Calabi-Yau is an elliptically
fibered three-fold over the rational section.3

When there is a 2-section only, we don’t have a clear solution. The stable
degeneration looks like to give a Spin(32)/Z2 bundle in Heterotic side rather than a
E8 × E8 bundle. However the problem is still open.

4.6.1 Review

We already mentioned the specific stable degeneration process that one can use to
identify the complex structure moduli of a K3 with the Wilson lines of an E8 ×E8.
Let us review the standard stable degeneration again for a Calab–Yau threefold.
Consider the following Calabi-Yau threefold WSF X3 over a base B2,

y2 = x3 + fx+ g, (4.124)

one fiber this threefold over a disc (or an affine line) ∆ parameterized by a complex
variable t,

Π : χ→ ∆, fibers X3(t) are WSF threefold parametrized by t. (4.125)

To be able to use the Clemens-Schmid sequence (we are not going to do it here, but
in principle this is necessary), we need to transform χ into a stable degeneration i.e.

3More clearly, the base of the Heterotic Calabi-Yau three-fold is not the base of the P1-bundle
in F-theory rather, it is surface defined by the section of the P1-bundle.
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the central fiber is reducible with normal crossing singularity (semi-stable), and it
doesn’t have infinitesimal automorphisms (stable).

Suppose Bn+1 = P(OBn ⊕ OBn(D)), and let’s assume the P1 fiber coordi-
nates are z0 and z1. To make the fibration χ into a (semi-) stable degeneration, we
blow up t = 0, z0 = 0,

z0 → ez0, (4.126)
t → et. (4.127)

Since χ is Calabi-Yau, f and g must transform as,
f → e4f, (4.128)
g → e6g. (4.129)

Consider the general form of f for example,
f = z80f0 + z70z1f1 + · · ·+ z40z

4
1f4 + · · ·+ z81f8, (4.130)

to satisfy 4.128 we require,
fi = ti−4f ′

i , for i ≥ 4, (4.131)
fi generic in t for i ≤ 4. (4.132)

After the transformation 4.126, we get
f = z80e

4f0 + z70z1e
3f1 + · · ·+ z40z

4
1f4 + · · ·+ z71z0t

3f ′
7 + z81t

4f ′
8. (4.133)

So at the the original t = 0, we get two new directions e = 0 and t = 0, we describe
each one of these cases separately,

1. t = 0, z0 = 1. On this locus z1 and e cannot be zero at the same time, so it
defines a P1,

f = e4f0 + z1e
3f1 + · · ·+ z41f4. (4.134)

Similar things happens to g. These new f and g are WSF of a dP9, with base
is (e, z1).

2. e = 0, z1 = 1. On this locus t and z0 cannot be zero at the same time, so it
defines a P1,

f = z40f4 + · · ·+ z0t
3f ′

7 + t4f ′
8. (4.135)

So again we get another dP9 over e = 0.

3. Over the intersection t = e = 0, we get the central fiber given by f4 and g6.
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4.6.2 General P1-fibrations

Now we start analyzing the other possibilities.

What is the problem with one section?

The problem in this case is that there is no section at infinity relative to S. In
other words, imagine f is given by (4.133) but there is no z1, and we only have the
zero section z0. The consequence is that in the first dP9 (4.135) is behaving quite
normal, but the second dP9 (4.134) doesn’t have z1. So if we tune f and g such
that we would get a certain singularity over in z1 in the standard case, the second
dP9 remains smooth. Since there is no z1. Therefore a heterotic one would wonder
whether there is a heterotic dual in this case.

In this subsection we give a concrete algebraic description of the P1-bundle.
In particular, both split and non-split case can be described in a more “unified” way.
This is compatible with the fact that the topology of the P1 bundle doesn’t depend
on the extension.

6D theory

As a toy model, we start with the following example,

B2 = P(V2), (4.136)
0→ OP 1 → V2 → OP 1(2)→ 0. (4.137)

When the extension is zero, we have two holomorphic section S2 and S−2 with self
intersection 2 and −2 respectively. When the extension is non-zero the section S−2

disappears.

We can rewrite V2 as,

0→ OP 1(−2)→ OP 1 ⊕OP 1(−1)⊕OP 1(1)→ V2 → 0. (4.138)

Note that the first map OP 1(−2) → OP 1 can be identified with an element of the
extension group Ext1(OP 1(2),OP 1). This short exact sequence we can rewrite P(V2)
as a hypersurface,
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1 1 1 0 0 1
0 1 -1 1 1 2 (4.139)

with the following defining equation,
F = f2x0 + f1x1 + f3x2 = 0. (4.140)

One can show S2 ≃ x0 = 0. In case the extension is zero i.e., f2 → 0 we can see the
other section can be identified with S−2 ≃ x1 = x2 = 0. However, when f2 ̸= 0, we
don’t have S−2.

Before continuing, let us see what happens to S−2 when f2 ̸= 0. Note
locally S2 correspond to the following point in the P2,

(0,−f3, f1). (4.141)
Relative to this the point at infinity would be,

(1,−f3 − ε
f2
f1
, f1 + (−1 + ε)

f2
f3
), (4.142)

for some constant ε. So we can see when f2 = 0 this point at infinity can define a
section globally, but when f2 ̸= 0 this section will be ill-defined over f3 = 0 or f1 = 0.
Therefore the fiberwise Heterotic/F-theory duality wouldn’t work over f3 = 0 or
f1 = 0. This means the adiabatic argument for extending the 8D Heterotic/F-theory
duality to lower dimensions cannot work in this case. We can repeat the process of
stable degeneration as before,

f ∈ H0(−4KB) = H0(O(8, 4)), (4.143)

f = x80f0,0,4 + x70

1∑
i=0

xi1x
1−i
2 f1,i,5−2i + x60

2∑
i=0

xi1x
2−i
2 f2,i,6−2i + x50

3∑
i=0

xi1x
3−i
2 f3,i,7−2i

+x40

4∑
i=0

xi1x
4−i
2 f4,i,8−2i

+x30

5∑
i=0

xi1x
5−i
2 f5,i,9−2i + x20

6∑
i=0

xi1x
6−i
2 f6,i,10−2i + x0

7∑
i=0

xi1x
7−i
2 f7,i,11−2i

+
8∑
i=0

xi1x
8−i
2 f8,i,12−2i,

g ∈ H0(−6KB) = H0(O(12, 6)). (4.144)



160 Chapter 4. F-theory on General Conic Bundle Bases

The stable degeneration can be achieved by parameterizing f and g over a disk with
parameter t, such that over t = x0 = 0 f vanishes with order 4 and g vanishes with
order 6. So,

fi,j,k → ti−4fi,j,k, for i ≥ 4, (4.145)
gi,j,k → ti−6gi,j,k, for i ≥ 6. (4.146)

We blow up the central fiber as before,

t → et, (4.147)
x0 → ex0, (4.148)
x → e2x, (4.149)
y → e3y. (4.150)

At the locus where previously was the central fiber t = 0, now we have two branches
et = 0 (4.147). Each one (e = 0 and t = 0) now becomes a dP9, and the intersection
e = t = 0 is just the central fiber.

• The dP9 over e = 0: On this locus, (t, x0) are homogeneous coordinate of the
base of dP9, and the base of the dP9 fibration is given by,

F ′ = f1x1 + f3x2 = 0, (4.151)

where (x1, x2) are now homogeneous coordinates of a P1. Note that this is
isomorphic to P1. The defining f and g for this dP9 is,

f ′ = x40

4∑
i=0

xi1x
4−i
2 f4,i,8−2i + x30t

5∑
i=0

xi1x
5−i
2 f5,i,9−2i

+x20t
2

6∑
i=0

xi1x
6−i
2 f6,i,10−2i + x0t

3

7∑
i=0

xi1x
7−i
2 f7,i,11−2i + t4

8∑
i=0

xi1x
8−i
2 f8,i,12−2i,

(4.152)

g′ = x60

6∑
i=0

xi1x
6−i
2 g6,i,12−2i + x50t

7∑
i=0

xi1x
7−i
2 g7,i,13−2i + · · ·+ t6

1∑
i=0

2xi1x
12−i
2 g12,i,18−2i.

(4.153)

So in this case everything is normal. One can tune a singularity over x0, and
this dP9 (e = 0) describe the moduli space of an E8 bundle over the central
fiber.
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• The dP9 over t = 0: On this locus x0 → 1, and the coordinate e replaces the
old x0 in the defining equations. In other words (e, x1, x2) are homogeneous
coordinates of a P2, and the base of the elliptic fibration on this locus (i.e.,t = 0)
is given by the “old” defining equation,

F ′′ = f2e+ f1x1 + f3x2 = 0. (4.154)

In this case e = 0 is a holomorphic section with self intersection 2. The defining
f and g in this branch are,

f ′′ = e4f0,0,4 + e3
1∑
i=0

xi1x
1−i
2 f1,i,5−2i + e2

2∑
i=0

xi1x
2−i
2 f2,i,6−2i + · · ·+

4∑
i=0

xi1x
4−i
2 f4,i,8−2i,

(4.155)

g′′ = e6g0,0,6 + e5
1∑
i=0

xi1x
1−i
2 g1,i,7−2i + e4

2∑
i=0

xi1x
2−i
2 g2,i,8−2i + · · ·+

6∑
i=0

xi1x
6−i
2 g6,i,12−2i.

(4.156)

Where f ∈ H0(−2KB) and g ∈ H0(−3KB). So this branch (t = 0) is also
another dP9 fibration. But this branch doesn’t behave normally. Note that
we cannot put singularity over e = 0 in (4.155),(4.156). Because e = 0 is the
central fiber in this branch, and (at least for the standard Het/F duality) we
are supposed to keep the central fiber fixed and smooth.
In the standard situations, we put singularity in the section at infinity relative
to e = 0 i.e., if e = 0 is the zero section, we need a section at infinity say e∞
such that e · s∞ = 0. But in this branch t = 0, there is not a well defined e∞
(even though there is still a local one (4.142)). So there is a problem, since we
cannot make the second dP9 singular while keeping the central fiber smooth.
However, we saw when f2 = 0 in (4.140),(4.142), there is a globally defined
section at infinity corresponding to x1 = x2 = 0. So one can perform a crepant
birational transformation,4

x1 → wx1,

x2 → wx2. (4.157)

So after this transformation (x1, x2) are homogeneous coordinate of a P1 and
(e, w) are another P1 coordinates,

4In this particular example, this birational transformation is simply an isomorphism, but this is
not a generic behavior.
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e w x1 x2 u1 u2 F ′′′

1 1 0 0 0 0 0
0 1 1 1 0 0 1
0 0 1 -1 1 1 2

(4.158)

F ′′′ = x1f1 + x2f3 = 0. (4.159)

Now the defining WSF (4.155) and (4.156) in this dP9 becomes,

f ′′′ = e4f0,0,4 + e3w

1∑
i=0

xi1x
1−i
2 f1,i,5−2i + e2w2

2∑
i=0

xi1x
2−i
2 f2,i,6−2i

+ew3

3∑
i=0

xi1x
3−i
2 f3,i,7−2i + w4

4∑
i=0

xi1x
4−i
2 f4,i,8−2i, (4.160)

g′′′ = e6g0,0,6 + e5w
1∑
i=0

xi1x
1−i
2 g1,i,7−2i + e4w2

2∑
i=0

xi1x
2−i
2 g2,i,8−2i + . . .

+w6

6∑
i=0

xi1x
6−i
2 g6,i,12−2i.

(4.161)

So now we have a “normal dP9” over t = 0 when f2 = 0, and we can have a
standard Heterotic dual.

Conclusion: Since the two situations (i.e., when V2 is split or non-split) are related
by continuous deformation we may conclude, even when there is only one holomorphic
section, there is a Heterotic dual which corresponds to the standard Heterotic dual
when f2 = 0. However this is somewhat too fast. When the extension is zero (i.e.,
f2 = 0) there is a (-2)-cutve in the F-theory base. But after the turning the extension
on (i.e., f2 ̸= 0) this curve becomes non-holomorphic. So the corresponding 7-brane,
that wraps around this (-2)-curve, becomes non-BPS. So the correct conclusion is
that when the extension is zero we have a standard Heterotic dual, and the F-theory
complex moduli is frozen at f2 = 0 (due to a D-term potential in the N = 2 type
IIB language). But in 6D theories it is always possible to Higgs the effective gauge
theory over the (-2)-curve completely (in geometric terms it means deform the 7-
brane completely so there will be no singularity over the (-2)-curve). After this
Higgsing there will be no obstruction in turning on the deformation f2 ̸= 0. This
situation is schemetically illustrated in the Figure 4.5.
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Figure 4.4: The left figure shows the generic case that there is only one section (the
intersection of x0 = 0 with the red line). This correspond to the projectivization of
a non-split rank two bundle. The right hand side, corresponds to the case where the
extension is zero, and there is another section at x1 = x2 = 0. In this case there is a
standard Heterotic dual.

Figure 4.5: The expected form of the potential energy in terms of the complex
structure parameters.
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4D theory

In 4D theories, in addition to the standard story, there are three other possibilities.
i) A P1 bundle with only one holomorphic section. ii) A P1 bundle with only one
rational section. iii) Conic bundles and it’s birational cousins. We try to figure out
the Heterotic dual in each one of these cases.

Case i) A P1 bundle with only one holomorphic section

The stable degeneration process in this case is similar to the 6D theory. So
we will not repeat it again. Consider the following example,

0→ OF0 → V2 → OF0(3,−1)→ 0. (4.162)

It is possible to rewrite V2 as,

0→ O(−2,−1)→ O⊕O(1,−1)⊕O(0,−1)→ V2 → 0, (4.163)

where the first map O(−2,−1)→ O can be identified with an element of the exten-
sion group. Similar to the 6D case this suggests that it is possible to realize P(V2)
as hypersurface,

x0 x1 x2 u1 u2 v1 v2 F
1 1 1 0 0 0 0 1
0 -1 0 1 1 0 0 2
0 1 1 0 0 1 1 1

(4.164)

F = x0f2,1 + x1f3,0 + x2f0,0 = 0. (4.165)

Similar to the 6D example, when f2,1 ̸= 0 there is only one section. After the stable
degeneration, one of the dP9’s cannot become singular while keeping the central fiber
fixed. However, when f2,1 = 0, there is another section at x1 = x2 = 0 and one can
repeat the same birational transformation as (4.157) (which is again isomorphism
for this example) to derive the full, standard Heterotic dual model in this complex
structure locus. The infinitesimal deformation f2,1 ̸= 0 makes the 7-brane over this
second becomes non-BPS. Therefore this complex structure deformation is stabilized.
As in the 6D example one may expect to be able to turn on the deformation f2,1 ̸= 0
after Higgsing the effective gauge fields over this 7-brane. However we should be
cautious about this. Because it is possible to turn on specific fluxes over the 7-brane
to stabilize the 7-brane deformation (corresponding to GVW superpotential). The
reader can refer to the discussions in Chapter 2 about this.



4.6. Heterotic dual 165

Case ii) A P1 bundle with only one rational section

The calculations in this situation is also almost similar to the previous
cases, with minor, but important differences. Take our well known example again,

0→ OP 2 → V2 → OP 2(H)⊗ Ip → 0. (4.166)

As already mentioned, one can rewrite this bundle as,

0→ O(−1)→ O⊕3 → V2 → 0. (4.167)

This suggest a realization P(V2) as hypersurface as before,

P(V2) =
[

P2 1
P2 1

]
,

F = u1x0 + u2x1 + εu3x2 = 0, (4.168)

where (u1, u2, u3) are the coordinates of the base. The maps O(−1) → O⊕3 are
given by the coefficients of x0, x1 and x2 in F . So we can identify the term εu3 with
an element in the extension group. For completeness we can rewrite the defining
polynomials for WSF,

f = x82f0,8 + x72

1∑
j

xj0x
1−j
1 fj,7 + · · ·+ x42

4∑
j

xj0x
4−j
1 fj,4 + . . . x2

7∑
j

xj0x
7−j
1 fj,1 +

8∑
j

xj0x
8−j
1 fj,0,

(4.169)

g = x122 g0,12 + x112

1∑
j

xj0x
1−j
1 gj,11 + · · ·+ x62

6∑
j

xj0x
6−j
1 gj,6 + . . . x2

11∑
j

xj0x
11−j
1 gj,1 +

12∑
j

xj0x
12−j
1 gj,0,

(4.170)

Similar as before we can choose x2 as the (rational) zero section, and try to do the
stable degeneration by fibering the WSF over t as,

fi,j → t4−jfi,j, for j ≤ 4, (4.171)
gi,j → t6−jgi,j, for j ≤ 6. (4.172)

Then we make the following birational transformation to make the degeneration
(semi)stable,

t → et, (4.173)
x2 → ex2, (4.174)
x → e2x, (4.175)
y → e3y. (4.176)



166 Chapter 4. F-theory on General Conic Bundle Bases

Again over t = 0 and e = 0, we will get two dP9’s. The one over e = 0 is “normal”,
but the one over t = 0 cannot become singular while keeping the central fiber fixed.
The first novelty with this case is that the central fiber, e = t = 0, which is dual to
the purported Heterotic geometry, is now a WSF Calabi-Yau over dP1 rather than
B2 = P2.5 We are not going to repeat the stable degeneration since the calculation
are similar to the one done in 6D.

Note when ε = 0 in (4.168) P(V2) becomes singular and non-flat. This
can be explained again from the extension point of view. First remember,

ε→ 0, ⇒ V2 → O⊕O(H)⊗ Ip. (4.177)

However, the second term above i.e., O(H)⊗Ip is the cokernel of the map O(−1)→
O⊕2 where the two maps are given by u1 and u2. Therefore when ε = 0 and u1 =
u2 = 0 rank of V2 jumps to three. B3 will be singular in this case.

Anyways, similar to the 6D and Case i), we can go to the limit ε→ 0. The
we will find another section at x0 = x1 = 0. One blows up this locus as before,

x0 → wx0, (4.178)
x1 → wx1. (4.179)

After this birational transform we get a smooth, flat P1-bundle over dP1. We will
have two holomorphic sections w = 0 and x2 = 0 which don’t intersect with each
other, and therefore we find a standard Heterotic dual over dP1 rather than B2 = P2

which is defined as,

B2 − simeqdP1 =

[
P1 1
P2 1

]
, (4.180)

F |ϵ=0 = u1x0 + u2x1 = 0. (4.181)

The second novelty is that, this birational transformation is not isomorphism any-
more. It increases the h1,1(B3) by one. Also in terms of the Calabi-Yau WSF this
birational transformation increases h1,1(X4) by one, and reduces the h3,1(X4) by one.
In other words, we are doing a conifold transition to reach to a geometry in F-theory
that can have a Heterotic dual!

Case iii) Conic bundles and it’s birational cousins
5In general the base of the “claimed” Calabi-Yau three-fold in the F-theory have to be isomorphic

to the rational section in the P1-bundle.



4.6. Heterotic dual 167

This is the most exotic case. Let’s start with the minimal conic bundle
given as the following simple defining relation,6

B3 =

[
P2 2
P2 d

]
, (4.182)

F =
∑

i+j+k=2

xi1x
j
2x

k
3li,j,k. (4.183)

We can repeat the same procedure for stable degeneration. First we fix our
choice for the 2-section,

S = x1. (4.184)

The defining equation for WSF is given by

f = S4f0,0,4(3−d) + S3

1∑
j

xj2x
1−j
3 f1,j,4(3−d)

+S2

2∑
j

xj2x
2−j
3 f2,j,4(3−d) + S

3∑
j

xj2x
3−j
3 f3,j,4(3−d) +

4∑
j

xj2x
4−j
3 f4,j,4(3−d), (4.185)

g = S6g0,0,6(3−d) + S5

1∑
j

xj2x
1−j
3 g1,j,6(3−d) + S4

2∑
j

xj2x
2−j
3 g2,j,6(3−d) + S3

3∑
j

xj2x
3−j
3 g3,j,6(3−d)

+S2

4∑
j

xj2x
4−j
3 g4,j,6(3−d) + S

5∑
j

xj2x
5−j
3 g5,j,6(3−d) +

6∑
j

xj2x
6−j
3 g6,j,6(3−d), (4.186)

One can try to repeat the stable degeneration for this case. However in this case the
central fiber in the family of the Calabi-Yaus, even though the fibration is still a Ku-
likov model, has only one component. In other words, after the stable degeneration
we get only one dP9 fibration. To do this we fiber WSF over t in the same way as
before,

fi,j,k → tifi,j,k, (4.187)
gi,j,k → tigi,j,k, (4.188)

t → et, (4.189)
S → eS. (4.190)

6It is possible to find more complicated examples. But the as long as their behavior under stable
degeneration is concerned, this example is good enough.
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After repeating a procedure similar to the 6D case, one can see over t = 0, instead
of a dP9 we only have the central fiber (the purported Heterotic WSF) given by
f0,0,4(3−d) and g0,0,6(3−d). Over e = 0 we find a dP9 where the base of the dP9 is given
by (t, S), and the base of the this dP9 fibration is given by

B2 =

[
P1 2
P2 d

]
, (4.191)

F2 := F |x1=0 =
∑
j+k=2

xj2x
k
3l0,j,k, (4.192)

where the homogeneous coordinates in the fiber P1 is (x2, x3). The base of the
purported Heterotic dual is then B2, with the WSF equation is given by f0,0,4(3−d)
and g0,0,6(3−d).

Question: What is the Heterotic dual in this case? The dP9 above clearly
corresponds to a single E8 bundle over a Calabi-Yau WSF given by f0,0,4(3−d) and
g0,0,6(3−d) over B2. But this Calabi-Yau is singular. Note B2 is a double cover of P2

with a branch locus of degree 2d. Then one can push forward the singular Calabi-Yau
to a non-Calabi-Yau WSF over P2, but then the spectral cover will be SO(32). Is
this non-Calabi-Yau SO(32) set-up corresponds to the Heterotic dual?!

Similar to the cases with a 1-section, we can tune the complex structure of
B3 is specific ways, and then do some birational transformation. We don’t have a
complete physical interpretation as in the previous case yet, but the outcome seems
to be nice.

Suppose we tune all of the terms proportional to x21 to zero. Over this
locus in the moduli space we still have a smooth 2-section S = x1, but the locus
x2 = x3 = 0 is a new 1-section. Note that the conic now has double point singularities
over x2 = x3 = l1,j,k = 0. We can blow up the locus x2 = x3 = 0,

x2 → wx2, (4.193)
x3 → wx3. (4.194)

After this B3 becomes,

B′
3 =

w x1 = S x2 x3 u1 u2 u3 F
0 1 1 1 0 0 0 2
0 0 0 0 1 1 1 d
1 1 0 0 0 0 0 1

, (4.195)

F =
∑

i+j+k=2,i≤1

Siw1−ixj2x
k
3li,j,k. (4.196)
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Figure 4.6: In the left hand side there is only one section, but in the right hand side
after tuning the complex structure we get a singular conic which has a 1-section.

Interestingly, in this equation w = 0 is rational 1-section which wraps around d2

(-1)-curves. Note that S · w = 0. We can rewrite (4.185) and (4.186) in this new
geometry,

f = S4f0,0,4(3−d) + S3w
1∑
j

xj2x
1−j
3 f1,j,4(3−d)

+S2w2

2∑
j

xj2x
2−j
3 f2,j,4(3−d) + Sw3

3∑
j

xj2x
3−j
3 f3,j,4(3−d) + w4

4∑
j

xj2x
4−j
3 f4,j,4(3−d),

(4.197)

g = S6g0,0,6(3−d) + S5w
1∑
j

xj2x
1−j
3 g1,j,6(3−d) + S4w2

2∑
j

xj2x
2−j
3 g2,j,6(3−d)

+S3w3

3∑
j

xj2x
3−j
3 g3,j,6(3−d)

+S2w4

4∑
j

xj2x
4−j
3 g4,j,6(3−d) + Sw5

5∑
j

xj2x
5−j
3 g5,j,6(3−d) + w6

6∑
j

xj2x
6−j
3 g6,j,6(3−d).

(4.198)

We can now perform stable degeneration relative to w = 0. Even though w = 0 is
a rational 1-section, similar to the Case ii), we still get only one dP9. This is quite
interesting because it means this F-theor model is completely determined by only
one E8 stable vector bundle over an elliptically fibered Calabi-Yau three-fold with
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Figure 4.7: When we perform the stable degeneration procedure in this geometry
(after the birational transformation) relative to S (2-section) and w (1-section), we
get a single dP9 fiber in both cases, the only difference is that the central fiber will
be different in each case.

base identified with w = 0 locus in B3. We are still not quite sure what should be the
corresponding Heterotic model. It certainly cannot be the usual Heterotic M-theory
set-up. My be it corresponds to CHL string or something similar to that where the
two E8 planes are identified.

Anyways, For generic points of the moduli space this dP9 is isomorphic to
the dP9 we find when we do the stable degeneration relative to the 2-section S. Of
course in this second case the dP9 corresponds to the an E8 bundle over a WSF
Calabi-Yau which is an elliptic fibration over dPd2 . So we can end up with the
following conjecture.

Conjecture: The moduli space of an E8 bundles over an elliptic WSF CY3
with B2 → P2 a double cover with branch locus of degree 2d is dual to the moduli
space of an E8 bundles over an elliptic WSF CY3 with B2 = dPd2 .



Chapter 5

Conclusions and Future directions

5.1 Research summary

The main goal in this dissertation was to generalize the constraints of the standard
heterotic/F-theory duality procedure and/or the standard way of defining the mod-
uli space of stable vector bundles over elliptically fibered Calabi-Yau’s. Then we
investigated the consequences both in Heterotic string and F-theory.

In the first part of this we have generalized the famous spectral cover con-
struction of Friedman, Morgan and Witten [57, 89, 90] to the case of elliptic Calabi-
Yau threefolds with higher rank Picard group (i.e. containing either fibral divisors
or multiple sections to the elliptic fibration). In particular, the well-established work
of [57, 89] provided a simple formula for the Chern classes of bundles associated to
smooth (i.e. reduced and irreducible) spectral covers in Weierstrass CY 3-folds:

c1(V ) = 0, (5.1)

c2(V ) = ησ − N3 −N
24

c1(B2)
2 +

N

2

(
λ2 − 1

4

)
η · (η −Nc1(B2)) , (5.2)

c3(V ) = 2λση · (η −Nc1(B2)) . (5.3)

We have utilized the techniques of Fourier-Mukai functors to generalize these formula
to bundles defined over geometries with fibral divisors and higher rank Mordell-Weil.
In the case of In type singular fibers we find that c1(V ) and c3(V ) are unchanged
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and in the case of I2 fibers we find a correction to the second Chern class of the form

c2(V ) = σ · η + ωstd +

(
ζ1 · S +

k∑
i=2

βi

)2

+
k∑
i=2

β2
i + ζ1 ·D1, (5.4)

where D1 is the new fibral divisor, ζ1 is an effective class pulled back from the base,
B2, βi are integers and the divisor S is a component of the discriminant locus of the
fibration (supporting the I2 fibers) in the base. Here

ωstd = −
N3 −N

24
c1(B2)

2 +
N

2

(
λ2 − 1

4

)
η · (η −Nc1(B2)) . (5.5)

Similarly, in the case of an additional, holomorphic zero section we find

c2(V ) = σ · η − β1(η +ND11) · S1 +

(
ωstd −

1

2
β2
1(η +ND11)S

2
1

)
f, (5.6)

where β1 is integer, S1 is the Shioda map of the new section and D11 is a divisor in
B2 determined by the triple intersection numbers involving the sections.

In the case that the additional sections are rational rather than holomorphic
(and hence can wrap reducible components of fibers over higher-codimensional loci
in the base), there remain open questions about how best to define a Fourier-Mukai
functor that can accommodate the singular fibers (and a section which wraps some
of them). As a result, we cannot yet determine how these topological formulae will
change. However, we can see in this case that interesting new results are possible
since we expect not only the second Chern class but the chiral index to change as
well. We have outlined in this work several ways forward on this important problem,
and we hope to return to it in future work.

Within heterotic/F-theory duality, the constrained geometric arena –i..e
Weierstrass from for both the heterotic strings and F-theory Calabi-Yau backgrounds
– has long been a frustrating obstacle to studying new phenomena. Within effective
heterotic theories, for example, there are several interesting effects that are believed
to have interesting F-theory duals, including perhaps novel mechanisms for moduli
stabilization such as the linking of the bundle and complex structure moduli in the
heterotic theory through the condition of holomorphy [9, 10, 11, 13] and potentially
new 4-dimensional N = 1 dualities including heterotic threefolds admitting multiple
elliptic fibrations (and hence leading to multiple, related dual F-theory fourfolds)
[8, 15, 16], the F-theory duals of heterotic target space duality [20] or F-theory
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duals [43, 54] of known “standard model like” heterotic compactifications (includ-
ing [12]). However, in all cases, these theories have crucially involved decidedly
non-Weierstrass geometry on the heterotic side. These questions have formed the
motivation for the present work. We believe that here we have taken important first
steps towards extending the geometries for which explicit heterotic/F-theory duals
can be constructed.

Next, in the TSD project, we have taken a first step towards exploring
the consequences of (0, 2) target space duality for heterotic/F-theory duality. In an
important proof of principle, we have illustrated that heterotic TSD pairs exist in
which both halves of the geometry exhibit Calabi-Yau threefolds with elliptic fibra-
tions. As a result, it is clear that some F-theory correspondence should be induced in
these cases. We take several steps to explore the properties of this putative duality.
First, we consider the conjecture made previously in the literature that the F-theory
realization of TSD could be multiple K3 fibrations of the same elliptically fibered
Calabi-Yau 4-fold background of F-theory. To explore this possibility in earnest,
we begin in 6-dimensional compactifications of heterotic string theory/F-theory and
demonstrate that in general multiple fibrations within F-theory CY backgrounds
cannot correspond to the (topologically trivial) TSD realizable for bundles on K3
surfaces. Finally, we provide a sketch of the open questions that arise when at-
tempting to directly compute the F-theory duals of 4-dimensional heterotic TSD
geometries. In particular, we demonstrate that multiple K3 fibrations in F-theory
cannot account for (0, 2) TSD in the case that the threefold base, B3 of the F-theory
elliptic fibration takes the form normally assumed – that of a P1 bundle over a two
(complex) dimensional surface, B2.

Finally, we have taken a deeper look at P1-fibrations within F-theory with
a goal of formulating more general possibilities than have been considered thus far
in the literature. The majority of work in heterotic/F-theory duality has restricted
consideration to n-fold bases Bn to the Calabi-Yau elliptic fibration that are of the
form Bn = P(π : O ⊕O(D)→ Bn−1).

Here we demonstrate that even in the context of bases Bn, which are P1-
bundles more general choices of a vector bundle over Bn−1 are possible in both 6-
and 4-dimensional compactifications of F-theory and they can come equipped with
rational rather than holomorphic sections in 4-dimensions. This new base geometry
is of interest in enhancing the range of Calabi-Yau backgrounds in F-theory and
hence the possible effective fields that can be obtained. Since F-theory has proven
to sweep out vast swathes of the string landscape, it has played a key role in recent
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investigations into the string Swampland.

In addition, the novel geometry we have built in this dissertation demon-
strates that there are many new “weakly coupled” limits of F-theory that should –
in principle – be related to heterotic string theory. We hope these results have shed
some light on this familiar duality may be extended.

5.2 Future works

In the first project, there remain, however, important open questions. First, as
mentioned above, we require new and more robust tools to address the general case
of a higher rank Mordell-Weil group with rational generators studied in Section
2.4. In addition, as illustrated in the explicit examples constructed in Section 2.5
all the formulas we have derived in this work have been limited by the restriction of
smoothness of the spectral cover. In general, many examples in the literature (see e.g.,
[29]) have demonstrated that smooth vector bundles do not necessarily correspond
to smooth spectral covers. Indeed, this observation has been a powerful tool in
determining the effective physics of T-brane solutions in F-theory [14, 18, 19, 51].
By placing the constraint of smoothness on the spectral data, we are clearly losing
information about general components of the bundle moduli space (as illustrated in
Section 2.7). Finally, there remain interesting open questions about how to determine
the full Picard groups of spectral covers (since these are surfaces of general type, this
is a notoriously hard problem in algebraic geometry, see e.g., [4]) and a number
of interesting possibilities remaining to be explored related to higher co-dimensional
behavior in moduli spaces (i.e. so-called “jumping” phenomena or Noether-Lefschetz
problems [72]).

One approach to the problem of singular covers above might arise through
a recursive approach. As noted above, the only general topological formulas derived
(here and in the literature overall) are for vector bundles realized (modulo the Picard
number problem) by smooth spectral covers. In the case that the spectral cover is a
union of several components that can be smooth or non-reduced or vertical, the main
obstacle is providing a general form for the Chern character of the spectral sheaf
(which is clearly a hard problem in the algebraic geometry of singular surfaces).
However, we might hope to avoid this difficult question by deriving a “recursive”
algorithm to resolve the singularities of the spectral cover that could work in general.
For example, if the spectral cover is degenerate, it is still possible to find a locally
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free resolution (with length one) of the spectral sheaf. We might hope to use Fourier-
Mukai transforms to study the vector bundles associated with this resolution. If one
can argue that the “degree of the degeneracy” drops in each step, then this process
will terminate at some point.

All of these problems deserve further attention and are necessary for a
general study fo heterotic/F-theory duality. We hope to continue to explore them in
future work.

Also, there are some future directions that naturally lead on from our TSD,
most importantly to explicitly determine the F-theory mechanism that generates dual
theories from potentially disparate 4-fold geometries. We hope to understand this
correspondence in future work. The present study has shed light on these questions,
however, and highlighted areas where the current state-of-the-art in the literature is
insufficient to determine the dual heterotic/F-theory geometries.

As noted in Section 3.3.6, it is clear that new tools will be needed to fully
determine this duality. The new geometric features that must be understood in
heterotic/F-theory duality in this context clearly extend beyond the canonical as-
sumptions made in [89], and new tools must be developed. These include the follow-
ing open problems in heterotic/F-theory duality

• Heterotic compactifications on elliptic threefolds with higher rank Mordell-Weil
group (as in the examples in Section 3.2).

• F-theory compactifications on threefold bases that are P1 fibered, but not P1

bundles. In other words, F-theory on elliptic fibrations with conic bundle (see
e.g. [143]) bases.

• F-theory duals of degenerate (i.e., non-reduced and reducible) heterotic spec-
tral covers. These seem to be a ubiquitous feature in the context of (0, 2) target
space duality since the spectral data of monad bundles appear to be generically
singular [36].

• 4-dimensional T-brane solutions of F-theory (expected to arise in the context
of degenerate spectral covers above [14, 18, 19]).

This last point seems to be an essential part of the story for 4-dimensional heterotic/F-
theory pairs since degenerate spectral data naturally arise for monad bundles (and
hence geometries arising from (0, 2) GLSMs). Moreover, the arguments of Section
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3.3.6 make it clear that the degrees of freedom of an expected dual F-theory 4-fold
must be constrained by the flux to match the moduli count of the heterotic the-
ory. Several of these “missing ingredients” are currently being studied (see [20] for
generalizations of heterotic geometries in heterotic/F-theory duality and [22] for a
study of F-theory on conic bundles). We hope that the present work illustrates the
need for these new tools and demonstrates that there remain many interesting open
questions within the context of 4-dimensional heterotic/F-theory duality. We will
return to these open questions in future work.

.
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Appendix A

Basic Definitions

In order to be self contained, we briefly review some of the main mathematical
objects that are frequently used in string theory compactification, for more detailed
information refer to [96, 116, 117, 123].

• Complex manifold
Intuitively, complex manifolds are topological spaces that locally look like flat
complex space Cn for some n. More precisely,
Definition: Consider a real 2n dimensional manifoldM . Then there is an atlas
{Ui, ψi} of open sets (which cover the manifold), and local coordinates. If we
can “complexify” the local coordinates, which means finding homomorphisms
ψi : Ui → Cn, such that for any (non-empty) Ui ∩ Uj, ψioψ−1

j : ψj(Ui ∩ Uj) →
ψi(Ui∩Uj) is a holomorphic map from Cn to itself, then M is called a complex
manifold of dimension n.
In order to give a necessary and sufficient condition for when a real manifold is
complex, one first defines an almost complex structure J which is a (n, n)- ten-
sor on M (consider M as a real manifold) such that J2 = −1. This means it’s
possible to define local complex coordinates. More concretely, choose a patch
U we have 2n real coordinates {x1, . . . xn, y1 . . . yn}, then J acts on coordinate
basis as

J(∂xi) = ∂yi , J (∂yi) = −∂xi . (A.1)

So by defining local complex coordinates,
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zj = xj + iyj, z̄j = xj − iyj (A.2)
we get J∂zi = i∂zi , J∂z̄i = −i∂z̄i . Then M being a complex manifold is
equivalent to being able define complex coordinates in each patch such that
under coordinate transformations the almost complex structure stays diagonal
(integrability). In this situation J is called a complex structure tensor.
The necessary and sufficient condition for J to be complex structure is that
the following tensor becomes zero (see [123] Theorem 8.12 for a proof),

N(v, w) = [v, w] + J [v, Jw] + J [jv, w]− [Jv, Jw], (A.3)
where v,w are arbitrary vector fields. This is called Nijenhuis tensor.

• Intersection numbers:
As it is clear from the name it is the number of intersection points between
cycles in M , so by Poincare duality we may be able to express the intersection
number of divisors as the integration of the corresponding dual (1, 1)-forms.
For example, consider Pn. All of the divisors in this space can be written as
mH, where H is the hyperplane divisor corresponding to the vanishing locus
of any linear polynomial. Then the intersection number of n different divisors,

[m1H] · [m2H] · · · [mnH] (A.4)

can be written as the integral∫
Pn

(m1ω) ∧ (m2ω) ∧ · · · ∧ (mnω) = m1m2 · · ·mnV ol(Pn) (A.5)

where ω is the Kahler form of the projective space. So if we normalize the
integral so that

∫
Jn = 1, then we can use the integral above to say the

intersection number is m1m2 · · ·mn. As another example, consider the product
of two projective spaces Pn1 × Pn2 . Similar to previous case we normalize the
integral

∫
ωn1
1 ω

n2
2 = 1 where ω1 and ω2 are Kahler forms of the two projective

spaces. Then the intersection numbers can be computed as

[m1H1] · [m2H1] · · · [mn1H1] · [l1H2] · · · [ln2H2]

= m1 · · ·mn1 · l1 · · · ln2

∫
Pn1×Pn2

ωn1
1 ∧ ωn2

2 (A.6)
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where H1, and H2 are the hyperplane divisors. For a general toric variety it’s
possible to figure out the intersection numbers from the toric data. The reader
can refer to [55] for more information.

• Blow up
In this subsection we try illustrate the blow up process by a simple example
(see [104] I.4 , also II.7 for more abstract definitions). Consider P2 with ho-
mogeneous coordinates (x, y, z). We choose the patch z = 1, and consider the
following hyperserface inside P2 × P1,

xu1 − yu2 = 0, (A.7)

where u1 and u2 are the homogeneous coordinates of P1. We see from this
equation whenever (x, y) ̸= (0, 0), a single point in P1 is fixed, however when
(x, y) = (0, 0), there is no constraint on u1 and u2. So we see that (A.7)
correspond to surface which generically seems to be the same as the original
P2 plane, but the origin is replaced by a whole P1.
This P1 is called an exceptional divisor E, and it can be shown since we’ve
blown up a generic smooth point in P2, it’s self intersection is −1,

E.E = −1. (A.8)

This exceptional divisor can also be seen as the projectivization of the normal
bundle to the point (0, 0, 1) i.e. the origin.
To see how blow up can be used to “smooth out” singularities consider a curve
with double point singularity (node, or cusp) at the origin, as an example (in
patch z = 1),

y2 = −x2(x− 1). (A.9)

In this case we have a node (see Fig (A.1)). Now we rewrite x = ex′, and
y = ey′, then it’s clear from (A.7) that e = 0 is the locus of the exceptional
divisor. Then the above equation becomes,

e2
(
y′2 + x′2(ex′ − 1)

)
= 0. (A.10)

The order 2 zero at e = 0 indicates the order of singularity. so if we remove
this factor from the equation the rest of that will be a smooth curve.
More formally we can describe what we did as a morphism,
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Figure A.1: The curve on the left correspond to the curve y2 + x2(x − 1) = 0 in
P2 inside the patch z = 1, after adding a exceptional divisor in the origin, we get a
reducible curve, one component correspond to the exceptional divisor (the e2 factor
above) shown as a orange line, and the other irreducible component is called the
strict transform of the original curve on right curve. Note if we look at the curve
on the right from top (or shrink the exceptional divisor to zero), its image over the
horizontal plane will be the same as the curve on the left.

ρ : P̃2 → P2, (A.11)

where P̃2 is the blown up projective plane (A.7) (this is just the first Hirzebruch
surface F1). Then the strict transformation of the curve will be,

C̃ = ρ∗C − 2E, (A.12)

where C is just the divisor class of the curve in the projective plane. The factor
2 represents the double point singularity.

• Vector bundles

– Definition Consider a compact manifold M (real or complex), we can
cover it with open sets and local coordinates {Ui, ψi}. Intuitively, a vector
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bundle locally looks like a product Ui×W where W is a vector space with
fixed dimension. To get a non-trivial vector bundle over M , we need to
glue these local structures.
Again we need to define this more precisely. A vector bundle is given by
a projection,

π : V →M, (A.13)
where V is the total space of the bundle, M is the base manifold, and
π−1(x) ∼ W for any point x in the base manifold. Similar to the definition
of manifolds, there are homomorphisms (called local trivializations) φi :
V → Ui×W = π−1(Ui), and similar to coordinate transformation between
patches, we need to define ”transition functions” on Ui ∩ Uj as tij =
φi ◦ φ−1

j : Uj ×W → Ui ×W . Over any point x ∈ Ui ∩ Uj, tij(x) is just
a homomorphism inside the vector space W . In principle the transition
functions can be elements of Lie groups G in various representations. G
is called the structure group of the bundle, and the rank of the bundle
rk(V ) is the dimension of W .

– Section Sections are defined as maps S : M → V . Locally this means
over each open patch in the base manifold there is a map Si : Ui → W
such that for any x ∈ Ui, Si(x) is a unique vector in W . These local maps
then glue together by the transition functions as Si = tijSj to make a
global section.

– Connection and Curvature Similar to the tangent vectors of a mani-
fold, we can define the parallel transport of elements in the vector bundle.
To do this consider a local frame over Ui (a basis of the vector space in
Ui×W ) {e1 . . . ep}, then parallel transport of ei in direction µ in the base
manifold is given defined by the connections:

∇µei = Ajµiej. (A.14)

Note that Aµ is a one form with values in (adjoint representation of) the
structure group. Also it’s clear that under the “local” transformations
e′i = g(x)jiej, the connections transform in the following non-covariant
way,

A′ = g−1Ag + g−1dg. (A.15)

The corresponding curvature, which is covariant under these transforma-
tions, is defined similar to curvature of manifolds,
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Fµν = [∇µ,∇ν ], Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (A.16)

– Gauge theory There is a clear correspondence between physical gauge
theories and vector bundles. Structure groups, vector bundles, connec-
tions, curvature, and the transformations g, correspond to the gauge
group, matter field, gauge fields, field strength and gauge transforma-
tions respectively.

– Holomorphic bundles Suppose π : V →M is a complex vector bundle
(which means the fibers are isomorphic to a C-linear space) over a com-
plex manifold. Then V is called holomorphic if the transition functions
are holomorphic relative to the complex coordinates. It can be shown for
every holomorphic bundles, we can choose a gauge such that Aā compo-
nents of the connection becomes zero. In other words ∇ā = ∂ā. Also (if
we can define a hermitian inner product on the fibers of V ) the (2, 0) and
(0, 2) components of the field strength are zero for holomorphic bundles
(see [117] section 4.3 and appendix 4.B, also [96] 15.6 for more intuitive/-
physical discussion),

Fab = Fāb̄ = 0. (A.17)

If V1 and V2 are two bundles with structure groups G1 and G2, we can define
the direct sum and direct product of bundles as G1⊕G2 and G1⊗G2 structure
groups respectively.

• Cohomology There are various ways to define cohomology groups. We only
briefly discuss the de Rham and Dolbeault cohomology here (see [104] III.4 for
Cech cohomology).
Generally when there is a complex as,

0→ A0 d0−→ A1 d1−→ A2 d2−→ . . . (A.18)

such that di+1 ◦ di = 0, then cohomology groups are defined as,

H i =
Ker (di : Ai → Ai+1)

Im (di−1 : Ai−1 → Ai)
(A.19)

– de Rham cohmology
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One example of cohomology is the de Rham cohomology over a real man-
ifold M defined by the differential operator d on a complex of differential
forms,

0→ Ω0 d−→ Ω1 d−→ Ω2 d−→ . . . (A.20)

where Ωn is the space of n-forms, and the corresponding cohomology
groups Hn(X,R) are the space of closed n-forms modulo the exact ones.
The dimensions of these groups are called Betti numbers bn

– Dolbeault cohomology
On a complex manifold we can decompose the differential operators into
holomorphic and anti-holomorphic parts d = ∂ + ∂̄, where ∂2 = ∂̄2 = 0,
and correspondingly, the decompose into the direct sum of mixed (p, q)-
forms,

Ωn =
⊕
p+q=n

Ω(p,q), (A.21)

where elements of Ω(p,q) can be written as

ωa1...apā1...āqdz
a1 . . . dzapdz̄ā1 . . . dz̄āq . (A.22)

Since ∂̄2 = 0, we can define the Dolbeault cohomology relative to ∂̄,

0→ Ω(p,0) ∂̄−→ Ω(p,1) ∂̄−→ Ω(p,2) ∂̄−→ . . . . (A.23)

Hp,q

∂̄
(X) := Hq

∂̄
(X,Ω(p,0)) =

Ker
(
∂̄ : Ω(p,q) → Ω(p,q+1)

)
Im
(
∂̄ : Ω(p,q−1) → Ω(p,q)

) . (A.24)

The dimension of the cohomology group Hp,q

∂̄
(X) is called the Hodge

number hp,q. If the manifold M is also compact, we get the following
relations,

bn =
∑
p+q=n

hp,q. (A.25)

Similarly on a holomorphic vector bundle V , the connection also decom-
poses (by complexity of the bundle) ∇ = ∇(1,0) + ∇(0,1), and by holo-
morphicity condition, (∇(1,0))2 = (∇(0,1))2 = 0. So we may define the
cohomology groups Hn(X,V ) with respect to the differential operator
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∇̄ = ∇(0,1). The elements ψxā1...ān of this group are (0, n)-forms with val-
ues in V . The upper index x is the vector bundle index which correspond
to a representation of the structure (gauge) group. Also these elements
are ∇(0,1) closed but not exact.
To get a little physical intuition consider n-forms living in the internal
compact manifold with an index transforming in some representation of
the gauge group. One way to see how these fields arise in string theory
is from the fact that the space of zero modes of gauginos decompose into
subspaces isomorphic to the space of differential n-forms. Since they are
zero modes, they must be ∇̄-closed. However ∇̄2 = 0, so we always have
a gauge freedom,

ψx → ψx +
(
∇̄Λ
)x
, (A.26)

where Λ is an arbitrary n − 1-form. Since the theory is invariant under
this “gauge transformation,” it justifies to consider only the elements of
the cohomology groups as the space of physical solution of the massless
Dirac equation (discussed in detail in [96] chapters 13 to 16).

• Chern classes

Characteristic classes (including Chern classes) are elements of the cohomology
groups that are invariant under smooth deformations, and measure the “non-
triviality” of the bundles. There are various ways to define the Chern classes,
here we use the differential geometric definition. Here we restrict ourselves to
the complex vector bundles π : V →M with curvature 2-form F , and rank n.

– Chern class
The total Chern class is defined as

c(V ) = det

(
1 + i

F

2π

)
(A.27)

We can expand this order by order to get,
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c(V ) = 1 + c1(V ) + c2(V ) + . . . , (A.28)

c1(V ) =
i

2π
(trF ) , (A.29)

c2(V ) =
1

2

(
i

2π

)2

(tr (F ∧ F )− tr(F ) ∧ tr(F )) , (A.30)

...

cn(V ) =

(
i

2π

)n
det (F ) (A.31)

– Chern character

ch(V ) = tr
(
ei

F
2π

)
, (A.32)

ch0(V ) = n, (A.33)

ch1(V ) = i
F

2π
= c1(V ), (A.34)

ch2(V ) = − 1

4π2
tr (F ∧ F ) = 1

2

(
c1(V )2 − 2c2(V )

)
, (A.35)

. . . (A.36)

– Properties
There are important identities for Chern classes/characters of direct sum
and direct product of vector bundles. One can figure out these identities
by trying to understand what is the corresponding curvature 2-form,

V = V1 ⊕ V2,

FV =

(
F1 0
0 F2

)
, (A.37)

W = V1 ⊗ V2,
Fw = F1 ⊗ 1 + 1⊗ F2 (A.38)

Then by the definition, the following identities hold,

c(V ) = c (V1) ∧ c(V2), (A.39)
ch(V ) = ch(V1) + ch(V2), (A.40)
ch(W ) = ch(V1) ∧ ch(V2). (A.41)
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The first two relations will be true even for non-trivial extensions,

0→ V1 → V → V2 → 0. (A.42)

– Atiyah-Singer index theorem Suppose V is a holomorphic vector bun-
dle over a compact complex manifold M of complex dimension m, then
the Euler Characteristic of V is defined as

χ (M,V ) =
m∑
i=1

(−1)mhm(M,V ). (A.43)

The following theorem connects the Euler characteristic and Chern classes,

χ(M,V ) =

∫
M

ch(V )td(M) (A.44)

where td(M) is the total Todd class, and it’s relation with Chern classes
of the tangent bundle TM is given as,

td0(M) = 1, (A.45)

td1(M) =
1

2
c1(M),

td2(M) =
1

12

(
c1(M)2 + c2(M)

)
,

. . .

This theorem is important because it gives the chirality of the effective
field theories in terms of the topological quantities of the extra dimen-
sional manifold and the gauge bundles over it.

– Stability of V
Another important quantity that is defined for complex vector bundles
over compact Kahler manifolds of complex dimension m is the slope of
bundle,

µ(V ) =
1

rank(V )

∫
c1(V ) ∧ ωm−1 (A.46)

where ω is the Kahler class of the complex manifold.
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Definition A holomorphic vector bundle V over a compact Kahler man-
ifold is called slope (Mumford) stable is for every sub-sheaf F ⊂ V ,
µ(F) < µ(V ).
We have seen that in string theory compactification 4-dimensional super-
symmetry puts the following constraint on the holomorphic bundles,

gab̄Fab̄ = 0. (A.47)

A theorem by Donaldson-Uhlenbeck-Yau [85, 149], states that for any
holomorphic vector bundle over a compact Kahler manifold, the above
condition is satisfied if and only if the bundle is poly-stable.1 A poly-
stable bundle is simply a direct sum of stable bundles, all with the same
slope: V =

⊕
i Vi with µ(Vi) = µ(V ) ∀i.

1To be more precise, the connection of the vector bundle must satisfy gab̄Fab̄ =
−i

V ol(M)µ(V )1 if
and only is it’s stable. However in Heterotic compactifications we are restricted to the case of zero
first Chern class, and therefore zero slope (see e.g. [117] Ch. 4.B).



Appendix B

Basics of Derived Categories

Since the Fourier-Mukai functor, which we use a lot in this dissertation, is a special
integral transform, we devote this appendix on reviewing some key points about
them. For more details, see [32, 117].

• HomA First of all note that any functor between two categories F : A →
B induces a map between the space of morphisms

HomA (A,B)→ HomB (F (A), F (B)) , (B.1)

where A, B are arbitrary objects of the category A (i.e. the map is ”functorial”).
In case the categories are additive the set of morphisms form an abelian group, and
in the cases we are concerned in this dissertation they are actually C−vector spaces.
Abelian categories are particular additive categories that for any functor one can
define kernel and cokernel. The specific category we need in this dissertation is
Coh(X), i.e. the category of coherent sheaves over a variety X, and the categories
derived from that.

• Fully faithful functor A functor F : A → B is called full if the map
(B.1) is surjective and it is called faithful if it is injective. So a fully faithful functor
induces an isomorphism in (B.1).

• Morphism of functors Consider any two objects A,B ∈ A, and a
morphism f : A → B between them, then a morphism of functors θ : F → G
between the two functors F,G : A → B is defined with the following commutative
diagram,

204
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F (A) F (B)

G(A) G(B)

θA

F (f)

θB

G(f)

(B.2)

• Left and right adjoint A functor G : B → A is a right adjoint of
F : A → B, written as F ⊣ G if

HomB(F (A), B) ∼ HomA(A,G(B)), (B.3)

where A ∈ A and B ∈ B are any arbitrary objects. In particular one can see

HomB(F (A), F (B)) ∼ HomA(A,G ◦ F (B)).

Since this isomorphism is functorial (i.e. it’s true for any A and B), we get a functor
morphism,

g : idA −→ G ◦ F. (B.4)
Then it is not too hard to prove the existence of the following commutative diagram
(for any two objects A1 and A2 in A),

HomA(A1, A2) HomA(A1, G ◦ F (A2))

HomB(F (A1), F (A2))

F

gA2

≀ . (B.5)

A similar diagram can be drawn for the left adjoint functor.

• Equivalence of categories A functor F : A → B is called an equivalence
if there are functors G,H : B → A such that G ◦ F ∼ idA and F ◦H ∼ idB.

It is now easy to see from (B.5) that if a functor is fully faithful and has
both a left and right adjoint then it is an equivalence.

• Serre functor In case theHom group of some abelian category is actually
a vector space, we can define a Serre factor S : A → A as follows,

HomA(A,B)
∼−→ HomA(B, S(A))

∗, (B.6)
where A, B are arbitrary objects (so the isomorphism is functorial).
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• Triangulated category

An additive category A is called triangulated if there is a “shift functor,”

T : A → A, (B.7)
and a set of “distinguished triangles,”

A→ B → C → A[1]. (B.8)

These distinguished triangles are constrained to satisfy four axioms. Since
we will not use them extensively in this dissertation we will not mention them here
[105].Here it is probably enough to mention that the composition of any two consec-
utive morphisms is zero, a fact that can be proven directly from the axioms. Later
when we introduce derived categories of complexes, the shift functor corresponds to
shifting the complex to right or left, and the distinguished triangles correspond to
exact triangle of complexes.

• Category of complexes Suppose A is an abelian category. Then one
defines the category of complex C(A), which it’s objects are complexes of objects in
A,

A• := · · · −→ Ai−1 di−1

−→ Ai
di−→ Ai+1 −→ . . . (B.9)

such that di ◦di−1 = 0. Note that we defined the complex in cohomological way. The
morphisms in C(A) between two objects h : A• → B• are defined by a collection of
morphisms {hi} in A as,

. . . Ai−1 Ai . . .

. . . Bi−1 Bi . . .

hi−1

di−1
A

hi

di−1
B

(B.10)

which must be commutative. There are several remarks that must be mentioned,

i) One can define the shift functor T : C(A) → C(A) naturally in this
category as,

A•[1] := T (A•),

(A•[1])i = Ai+1, diA•[1] = −d
i+1
A• . (B.11)
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ii) As usual we can define cohomology for complexes,

Hi(A•) =
Ker(di)

Im(di−1)
. (B.12)

Two complexes A•, B• are said to be Quasi-Isomorphic if all of their cohomologies
are isomorphic.

iii) It is easy to show that because A is abelian then C(A) is also abelian.
Therefore in particular one can have a short exact sequence, 0 −→ A• −→ B• −→
C• −→ 0. It is also possible to consider this S.E.S as a triangle,

A• B•

C•
[1]

(B.13)

with trivial morphism C• → A•[1]. But it doesn’t mean C(A) is a triangulated
category, because the triangles mentioned above don’t satisfy the axioms of the
distinguished triangles.

iv) One can define a ”homomorphism complex” in the following way,

Hom• (A•, B•) :=
⊕
i

HomC(A)(A
•, B•[i]),

f i ∈ Homn(A•, B•)⇒ df i := di+nB• ◦ f i + (−1)n+1 ◦ diA• . (B.14)

• Homotopy category A morphism f : C•(A)→ C•(A) is called homo-
topic to zero f ∼ 0, if there is a collection of morphisms {hi} in A such that,

. . . Ai−1 Ai Ai+1 . . .

. . . Bi−1 Bi Bi+1 . . .

f i−1

di−1
A

hi
f i

diA

hi+1
f i+1

di−1
B

diB

(B.15)

such that,

f i = di−1
B ◦ hi + hi+1 ◦ diA. (B.16)

Two morphisms f, gC•(A)→ C•(A) are called homotopically equivalent if f −g ∼ 0
(one can easily check that this actually an equivalence relation). Then one defines
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the homotopy category K(A) as a category whose objects is the same as C(A),
Ob(C(A)) = Ob(K(A)), and

HomK(A)(A
•, B•) := HomC(A)(A

•, B•)/ ∼ . (B.17)

The most important point about the homotopy category for us is that we can com-
plete a square as follows,

A•

C• B•Qis

=⇒
D• A•

C• B•

Qis

Qis

(B.18)

This is will be essential for defining the morphisms in the derived category.

•Derived category It is derived from the homotopy category by localizing
with the “ideal of quasi-isomorphisms.” More clearly Ob(D(A)) := Ob(K(A)), and
morphisms in D(A) between two objects A•, B• are of the form,

C•

A• B•

qis f (B.19)

In general f descends to a morphism in the homotopy category. As a result if f is
also a quasi-isomorphism, then the corresponding morphism in the derived category
is isomorphism. So in A, if cohomology of two complex is isomorphic, then the com-
plexes themselves are isomorphic. We should also emphasize that the representation
(B.19) is not unique, i.e. C• is not unique, and two such “roofs” (one with C• at the
top and one with C ′• at the top) are equivalent if,

D•

C• C ′•

A• B•

ψ ϕ

qis fqis g

(B.20)

where by (B.18) D• exists, and both ψ and φ are quasi-isomorphisms. In the same
way one can define the combination of morphisms in a derived category. Suppose
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f ∈ HomD(A)(A
•, B•), g ∈ HomD(A)(B

•, C•) be two different morphisms,

f :=

 D•

A• B•

ψ f0

 , g :=

 D′•

B• C•

ϕ g0

 , (B.21)

then using (B.18) we can define the combination g ◦ f as

g ◦ f =



D′′•

D• D′•

A• C• B•

ϕ′ f ′0

ϕ f0 ϕ g0


. (B.22)

Since both φ and φ are quasi-isomorphism, then φ ◦ φ′ is also quasi-isomorphism,
hence the above diagram is a legitimate morphism in the derived category.

Note, From now on we restrict ourselves to bounded derived categories,
Db(A), which it’s objects are isomorphic to complexes with bounded cohomology
complexes.

• Derived functor ([32, 117]) If a functor F : K(A) → K(B) between
homotopy categories is compatible with quasi-isomorphisms, i.e. it sends quasi-
isomorphisms to quasi-isomorphisms (or equivalently it sends acyclic complexes to
acyclic complexes), then it naturally induces a functor on derived categories. But
generally it may not happen, so we need to ‘derive’ a functor from F such that it is
compatible with ‘localization’ of morphisms with quasi-isomorphisms. This functor
is called derived functor RF , and here we briefly describe the most general way to
define such functors, and then we clarify what that means by constructing some of
the most common derived functors one encounters in geometric contexts and hence
in this dissertation.

Definition B.1. Let F : Kb(A)→ Kb(B) be a functor between homotopy categories
with the following properties:

a) F is exact.

b) There is a triangulated subcategory KF ⊂ Kb(A) such that,
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i) There is functor I : Kb(A) −→ KF which for any M• ∈ Kb(A) there is
functorial quasi-isomorphism M• −→ I(M•).

ii) For any acyclic complex J• ∈ KF , I(J•) is also acyclic.

In this situation the derived functor of F is defined as,

RF (M•) := F (I(M•)). (B.23)

Conditions (i), (ii) guarantee thatRF maps quasi-isomorphisms to quasi-isomorphisms,
so it naturally induces a functor in derived categories,

RF : Db(A) −→ Db(B), RiF (M•) := Hi(F (I(M•))). (B.24)

In summary, one starts with homotopy categories, and derives another type
of category and functor from that, namely the “derived category” and “derived func-
tor.”

From now on, we restrict ourselves with categories of coherent sheaves
Coh(X) and quasi-coherent sheaves Qcoh(X) over a variety X.

Derived direct image Here we want to find the derived functor of f∗ : Coh(X) −→
Coh(Y ) induced from a projective (or at least proper) morphism of varieties
f : X −→ Y . First we should mention several facts without proof,
i) f∗ is a left exact functor, i.e. if we have a short exact sequence,

0 −→ A −→ B −→ C −→ 0,

then 0 −→ f∗(A) −→ f∗(B) −→ f∗(C) −→ . . . is only exact on the left two
elements.
ii) Qcoh(X) has enough injectives, i.e. any quasi-coherent sheaf A ∈ Qcoh(X)
can be imbeded in an injective quasi-coherent sheaf 0 −→ A −→ I.
iii) The last point means if we consider A as a complex in K(Qcoh(X)) concen-
trated in the 0th element, then there is a quasi-isomorphism A −→ I•, where
I• is a complex of injectives. One can prove (using the Cartan-Eilenberg res-
olution) there is a functorial quasi-isomorphism A• I−→ I(A•), where A• is an
arbitrary object in Kb(Qcoh(X)).
iv) Let Db

Coh(X)(Qcoh(X)) be the derived category of complexes of quasi-
coherent sheaves with coherent cohomology, then there is an isomorphism
Db(X) := Db(Coh(X)) ≃ Db

Coh(X)(Qcoh(X)).
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v) As mentioned above, Qcoh(X) has enough injectives, so one can prove
Db
Coh(X)(Qcoh(X)) ≃ Kb

Coh(X)(I).
Based on the above properties, we get the following conclusions,
a) From i) and iii) we get that f∗ maps distinguished triangles to distinguished
triangles, i.e. it is an exact functor.
b) From comparing the last two points with the definition of right derived
functors above, we can identify K(I) with Kf∗ .
So down to earth, if we have proper morphism of varieties f : X −→ Y , then
we defined (right) direct image Rf∗ : Db(X) −→ Db(Y ) in the following way,
1) For any complex of coherent sheaves A• with bounded cohomology, we have
an injective resolution A• −→ I(A•).
2) We define

Rf∗(A
•) := f∗(I(A

•)),

Rif∗(A
•) := Hi(f∗(I(A

•))). (B.25)

Derived Hom functor and Ext groups Again we start by reviewing some facts
about the Hom functor first,
i) From (B.14) and the definition of Homotopy category, it is easy to prove the
following identity for any abelian category A,

Hi(Hom•
C(A)(A

•, B•)) = HomK(A)(A
•, B•[i]). (B.26)

ii) One can prove a bounded bellow complex of injective sheaves is actually an
injective complex. For the definition of an injective complex see the following:

Definition B.2. A complex in I• ∈ C(Mod(X)) is called injective complex if
the right exact functor Hom•

C(Mod(X))(. . . , I•) : C(Mod(X)) −→ Ab maps any
acyclic complex to another acyclic complex (or equivalently map any quasi-
isomorphism to another quasi-isomorphism).

iii) If I• is both injective and acyclic, then Hom•
C(Mod(X))(A

•, I•) is also acyclic
for any A•.
From these facts and the points about Db(X) which mentioned previously, one
can find the derived functor for the left exact functor FA• := Hom•

C(Mod(X))(A
•, . . . )”

with KF in the definition as K(I) as before,
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RHom•
C(Mod(X))(A

•, . . . ) : Db(X) −→ Db(Ab). (B.27)

On the other hand, From the definition and the points mentioned above, and
the following fact,

HomD(Coh(X))(A
•, I•) ≃ HomK(Coh(X))(A

•, I•), (B.28)

one can show if A•
qis

B
•
, then then there is a functor isomorphism FA• ∼ FB• .

So if we consider RHom as a functor on the first variable, it naturally induces
a well defied functor in the derived category. Therefore,

RHom : D0(X)×Db(X) −→ D(Ab), (B.29)

where D0(X) is the opposite category of D(X).

Definition B.3. ExtiD(X)(A
•, B•) := RiHom(A•, B•).

So far we only considered the global Hom functor, but in the case of sheaves
one can define a local version [104] Hom,

RHomOX
: D0(X)×Db(X) −→ Db(X), (B.30)

and similar to the global version one has local “ext” sheaves,

ExtiOX
(A•, B•) := RiHomOX

(A•, B•). (B.31)

Derived tensor product again we start by recalling some standard facts,
i) For any sheaf A, the functor A ⊗ . . . is right exact, and we say A is flat if
A⊗ . . . is exact.
ii) For any coherent sheaf A, there is a flat resolution of finite length

· · · −→ F1 −→ F0 −→ A −→ 0, (B.32)

where Fi’s are flat sheaves.
iii) One can define the tensor product of two complexes A• ⊗ B• as a double
complex.
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iv) A flat complex is defined as complex P•, which the functor P•⊗ . . . , maps
acyclic complexes to acyclic complexes (or equivalently quasi-isomorphism to
quasi-isomorphism).
v) A bounded above (in particular bounded) complex of flat sheaves is a flat
complex. If we have bounded complex of coherent sheaves, A•, then (using
point (ii) ) one can find a quasi-isomorphism P• −→ A•. If P• is both flat and
acyclic, then A• ⊗ P• is again acyclic for any complex A•.
From the facts given above, and comparison with the general definition, for
the functor FA• := A• ⊗ . . . we can define the derived tensor product with
KF = K(P•),

RFA• := A• ⊗L · · · : Db(X) −→ Db(X). (B.33)

Note that the process of defining derived tensor product is symmetric, and we
could define it using the first variable. Also please note that by the definition
of flat complexes, and the way we defined derived tensor product, if there
is a quasi-isomorphism Abullet

qis−→ B•, then we have a functor isomorphism
FA• ∼ FB• . So naturally the derived tensor product descends to a well defined
functor in derived category relative to the first variable,

· · · ⊗L · · · : Db(X)×Db(X) −→ Db(X). (B.34)

Definition B.4.
T ori(A•, B•) := H−i(A• ⊗L B•). (B.35)

Derived pullback Finally we are at the position to define the left derived functor
for the pullback of a morphism f : (X,OX) −→ (Y,OY ). As before, we recall
some basic facts and then compare with the general definition.
i) Recall that the pull back of a sheaf under f is defined as,

f ∗(F) := OX ⊗f−1OY
f−1F . (B.36)

ii) We have projective resolution for every coherent sheaf,

· · · −→ P1 −→ P0 −→ F −→ 0. (B.37)

This induces a quasi-isomorphism for any bounded complex of coherent sheaves
(at least bounded above) we get a quasi-isomorphism P• qis−→ F•.
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So by combining these facts and what we learned for derived tensor product
we can write,

Lf ∗(F•) := OX ⊗Lf−1OY
f−1F•,

Lif ∗(F•) := Hi(Lf ∗(F•)). (B.38)

• Important identities Here we collect the identities that are going to be useful in
the calculations throughout this dissertation.

Lets start with the following general theorem,

Theorem B.5. Suppose F : A −→ B and G : B −→ C be functors between abelian
categories such that G(KF ) ⊂ KG (look at the definition of derived functors). Then
we get the following identity,

R(G ◦ F ) = RG ◦RF. (B.39)

This theorem looks pretty simple, but it allows us to combine derived func-
tors. Basically it says there is a spectral sequence,

Ep,q
2 := RpG(Rq(F )) =⇒ Ep+q

∞ := Rp+qG ◦ F. (B.40)

Here we write some of the applications. First lets consider the direct image of a
bounded complex,

Rif∗(Hj(F•))⇒ Ri+jf∗F•. (B.41)
Obviously we can write a similar spectral sequence formula to compute the derived
functor of complexes. Another example is the global section functor over a variety
X, Γ : Coh(X) −→ Ab. The direct images of this functor are just the cohomology of
sheaves [104], i.e. RiΓ(F) = H i(X,F). Now let combine this with the direct image
functor induced by a proper morphism f : X −→ Y ,

ΓY : Coh(Y ) :−→ point, ΓX = ΓY ◦ f∗ : Coh(X) −→ point,

RΓX(F) = RΓY ◦Rf∗(F),
Ep,q

2 = Hp(Y,Rqf∗F)⇒ Ep+q
∞ = Hp+q(X,F). (B.42)

The last line is precisely the Leray spectral sequence. As the final example consider
the relation between local extension Ext, and the global extension Ext,

RΓ ◦RHomOX
(F•,G•) = RHomDb(X)(F•,G•). (B.43)
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In particular if we apply this to concentrated complexes at zero position (i.e. a single
coherent sheaf), we get the following famous “local to global” identity,

H i(X, ExtjOX
(F ,G))⇒ Exti+jX (F ,G). (B.44)

.

Theorem B.6 (Base change formula). Consider the following commutative diagram
of proper morphisms,

X X ′

Y Y ′

f

g

f ′

g′

Then, in general, there is a morphism of functors ,

Lf ′∗Rg′∗ −→ Rf∗Lg
∗. (B.45)

In particular if f (g) is flat, then f ′ (g′) is flat, and the above morphism is actually
an isomorphism of functors.

One of the main properties of the Fourier-Mukai functor is its compatibility
with base change, and therefore the theorem above will be very useful.

Definition B.7 (Dualizing Complex). Consider a proper morphism fX −→ Y , it’s
dualizing complex is defined as,

HomDb(Y )(Rf∗F•,G•) = HomDb(X)(F•, f !G•). (B.46)

In particular it satisfies the identities,

f !G• = Lf ∗G ⊗L f !OY , (B.47)

X Y

Z
h

f

g s.t. h = g ◦ f =⇒ h! = f ! ◦ g!. (B.48)

So by the first identity we only need to know the dualizing complex of
morphism relative to the structure sheaf.

Definition B.8. A morphism is called Gorenstein if the dualizing complex is a
concentrated complex, i.e. f 1OY = Ω[k] for some k ∈ Z.
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There two specific cases that will be useful for us in this dissertation,

Flat Fibration In this case f !OY = ωX/Y [n], where n is the relative dimension (i.e.
the dimension of the fibers), and ωX/Y = ωX ⊗ f ∗ωY .

Complete intersection By this we mean an inclusion morphism f : X ↪→ Y where
X is a complete intersection of varieties in Y . In this case f !OY = det(N )[−d],
where N is the normal bundle, and d is the codimension of X is Y .

The definition above is called Grothendieck-Verdier duality, and it is a general form
of Serre duality. There is also a local version of this duality,1

RHomOY
(Rf∗F•,G•) = Rf∗RHomOX

(F•, Lf ∗G• ⊗L f !OY ). (B.49)

Definition B.9. One can define derived dual of a complex F• ∈ Db(X) as,

F•∨ := RHomOX
(F•,OX). (B.50)

Theorem B.10.

RHom(F•,G•) ≃ RHom(OX ,F•∨ ⊗L G•) ≃ F•∨ ⊗L G•. (B.51)

Theorem B.11. Rf∗ ⊣ Lf ∗,

RHomDb(Y )(F•, Rf∗G•) ≃ RHomDb(X)(Lf
∗F•,G•), (B.52)

RHomOY
(F•, Rf∗G•) ≃ Rf∗RHomOX

(Lf ∗F•,G•). (B.53)

Theorem B.12 (Projection Formula).

Rf∗(Lf
∗F• ⊗L G•) = F• ⊗L Rf∗G•. (B.54)

Theorem B.13. From theorem B.6 and the commutative diagram below for a pro-
jective morphism f ,

f−1(p) X

p Y

fp

if

f

i

(B.55)

1The reader can find the proof of the following identities in [32] Appendix A and Appendix C.
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we get the following results when F ∈ Coh(X). They will be very useful in many
cases, and also give a rather clear intuitive picture about the direct images,

Li∗Rf∗F −→ Rfp∗(Li
∗
fF),

φj : (Li∗Rf∗F)j = Tori
−1OY
−j (Rf∗F ,Op) = Rjf∗F ⊗Op −→ Hj(f−1

p (p), i∗fF).
(B.56)

It is proved in [104] theorem III.12.10, that φj is isomorphism if and only if it is
surjective, and Rjf∗F is locally free if and only if φj−1 is surjective.
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Integral Functors

In this section we briefly review the main features of integral functors, specially the
Fourier Mukai functors which are the important special cases. (For more details, the
interested reader can look at [32] and [117]).

Definition C.1. Let Db(X) and Db(Y ) be the derived categories of the varieties X
and Y . Consider the following morphisms,

X × Y

X Y

πX πY (C.1)

Then the integral functor ΦP•
X→Y is defined in the following way,

ΦP•
X→Y : Db(X) −→ Db(Y ),

ΦP•
X→Y (. . . ) := RπY ∗

(
π∗
X(. . . )⊗L P•) , (C.2)

where πX and πY are projections to the corresponding factors, and P• is the kernel of
the transform. Note that πX is a flat morphism, so Lπ∗

X = π∗
X .1 In particular if the

1Such functors are quite similar to the familiar integral transform of functions. Remember that
to find the integral transform of f(x) with x ∈ R1 we first consider it as a function in a product
space space R1 × R1. This is similar to the pull back π∗

X above. Then we multiply f(x) with a
kernel K(x, y) which is the function in R1 × R1, this part is similar to the tensor product in the
formula above, finally we integrate over x, g(y) =

∫
dxf(x)K(x, y), which is analogues to the push

forward RπY ∗.

218
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integral transform of a sheaf E (consider it as complex which is only non-zero at the
zero entry, i.e. concentrated on the zero position) is concentrated the ith position,
it is called a WITi sheaf.

Note that any integral functor is a composition of three exact functors in
derived categories, derived inverse image, derived tensor product and derived direct
image. So ΦP•

X→Y is also an exact functor. In particular, to any short exact sequence
there is an associated long exact sequence induced by that integral functor.

We are particularly interested in “relative” integral transforms. Suppose
ΦK
X→Y : Db(X) −→ Db(Y ) is an integral transform, then for any variety T , the

corresponding relative integral functor (relative to T ) Φ
K•

T
X×T→Y×T is defined as

X × Y × T

X × T X × Y Y × T

πX×T πY ×T
πX×Y

Φ
K•

T
T (. . . ) := RπY×T∗

(
π∗
X×T (. . . )⊗L K•

T

)
,

K•
T := π∗

X×YK•. (C.3)

Now consider a morphism of varieties f : S −→ T , and the induced relative
morphisms: fX : S ×X −→ T ×X and fY : S × Y −→ T × Y , then one can prove
the following functorial isomorphism ([32]),

Lf ∗
YΦT (E•) ≃ ΦS (Lf

∗
XE•) , (C.4)

with E• ∈ Db(X × T ). In particular if jt : t −→ T is the inclusion of a point t, then
the identity above gives,

Lj∗tΦT (E•) = Φt(Lj
∗
t E•). (C.5)

This has important consequences: first of all if E is a sheaf, one can prove (by
checking the spectral sequences of the combined functors),

Φnm
t (j∗t E) ≃ j∗tΦ

nm
T (E), (C.6)

where nm is the maximal integer that either Φnm
t or Φnm

T is non-zero. Moreover, if
both E and Φi

T (E) are flat over T , then Et is WITi relative to Φt if and only if E
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is WITi relative to ΦT ([32] Corollary 1.9 part 3). This is an important point, and
when we want to describe the Fourier-Mukai transform of vector bundles which are
unstable over some non-generic elliptic fibers, or when we need to deal with general
coherent sheaves, it is going to help us.

Finally we mention that there are similar result for non-trivial fibration
([32] Chapter 6), which we discuss briefly later. For now, let’s move on to review
Fourier-Mukai functors briefly.

Definition C.2. A Fourier Mukai functor is an integral functor which is also an
exact equivalence.

Probably the first important point about Fourier-Mukai functors is that
any equivalence can be written as Fourier-Mukai.

Theorem C.3 (Orlov’s representability theorem). Let X and Y be two smooth
projective varieties, and let

F : Db(X) −→ Db(Y )

be a fully faithful exact functor. If F admits right and left adjoint functors, then
there exists an object P• ∈ Db(X × Y ) unique up to isomorphism such that F is
isomorphic to a Fourier Mukai functor ΦP

X→Y .

There is a partial inverse to this theorem, due to Bondal and Orlov, which
states when an integral functor is indeed fully faithful, i.e. it puts constraints over
the kernel of the transform ([32] Theorem 2.56).

Theorem C.4. Let X and Y be smooth projective varieties. Consider ΦP•
X→Y :

Db(X) −→ Db(Y ) with P• in Db(X × Y ). Then ΦP•
X→Y is a fully faithful functor if

and only if P• is a strongly simple object over X, i.e.

Homi
Db(Y )

(
Lj∗x1P

•, Lj∗x2P
•) = 0 unless x1 = x2 and 0 ≤ i ≤ dimX;

Hom0
Db(Y ) (Lj

∗
xP•, Lj∗xP•) = C. (C.7)

In addition, if Lj∗xP• is a special object of Db(Y ), i.e. Lj∗xP• ⊗KY ≃ Lj∗xP•, then
ΦP•
X→Y is an equivalence.

In particular if both X and Y are smooth Calabi-Yau varieties, and the
kernel is a strongly simple object, then the corresponding integral functor is a Fourier-
Mukai functor.
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It is worth to mention another very important property of Fourier-Mukai
functors, and that is these kind of integral functors are sensitive to smoothness and
“Calabi-Yau’ness,” and dimension. In other words, if two varieties X and Y are
Fourier-Mukai partners (their derived category are equivalent), then X is smooth if
and only if Y is smooth (proven by Serre’s criterion on regular local rings of finite
homological dimension), and X is Calabi-Yau if and only if Y is Calabi-Yau (this
is proven by using Grothendieck-Verdier duality), and both of them must have the
same dimension. There are also other geometrical constraints which are induced by
the equivalence condition, but we ignore them here ([32] Theorem 2.37).

We finish this section by quickly deriving the inverse transform of a Fourier-
Mukai functor ΦP•

X→Y . Since for an equivalence of categories, the adjoint functor is
actually the inverse functor, we can find it easily for the Fourier Mukai functor as
follows,

RHomDb(Y )(Φ
P•

X→Y (F•),G•) = RHomDb(X×Y )

(
π∗
XF•, π∗

Y G• ⊗L P•∨ ⊗ π∗
XωX [n]

)
= RHomDb(X)

(
F•, RπX∗

(
π∗
YF• ⊗L P•∨ ⊗ π∗

XωX [n]
))

= RHomDb(X)

(
F•,Φ

P•∨⊗π∗
XωX [n]

Y→X (G•)
)
, (C.8)

where F• and G• are generic objects of derived category of varieties X and Y , n is
the dimension of both X and Y ,2 and ωX is the canonical sheaf of X. Therefore the
“inverse transform” is itself a Fourier Mukai functor,

Φ
P•∨⊗π∗

XωX [n]

Y→X . (C.9)

2Actually uniqueness of the inverse implies the dimension of X and Y must be the same.
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Exotic Examples in TSD

There are many exotic examples that we ecountered when we were trying to find
“good” TSD pairs where both sides are elliptically fibered and the vector bundles
are stable. These examples include cases with apparently perfect TSD pairs but with
with different effective theory (Type A), or cases with naively different geometries,
but in fact we ended up with the initial set up but in different algebraic description
(Type B).

D.1 Type A

In this section we present some of the exotic cases we encountered during the search
for finding “good examples” of stable, smooth vector bundles over bases that are
Weierstrass elliptic fibrations. All of these examples pass the usual necessary con-
ditions for stability such as h0(V ) = 0 and Bogomolov topological constraint, but
either the spectrum charged hypermultiplets of the 4d effective are different or the
total moduli is not conserved. By using careful Fourier-Mukai analysis we can show
that the first example is indeed unstable, so it explains the discrepancy, but the other
two are perfectly stable vector bundles,1 and we are unable to explain the reason.
In the third example that spectrum match on both sides one may suggest that the
existence of the flux (which must exist due to the generically non-reduced spectral
cover) may stabilize the moduli space.

1At least up to the point that we could actually check everything.

222



D.1. Type A 223

For example, consider the following GLSM,

xi Γj Λa pl
3 2 1 0 0 0 0
0 0 −2 1 1 0 0
0 0 −2 0 0 1 1

−6
0
0

1 0 1 1 1
1 3 −2 2 1
0 3 −2 3 0

−1 −3
−1 −4
−1 −3

(D.1)

with the second Chern classes of the Calabi-Yau (X) and the vector bundle (V ) as:

c2(X) = 11σ2 + 2σD1 + 2σD2 − 3D2
1 − 4D1D2 − 3D2

2 = 24σD1 + 24σD2 − 4D1D2,

c2(V ) = 3σ2 + 11σD1 + 9σD2 −D2
1 − 6D1D2 − 6D2

2 = 17σD1 + 15σD2 − 6D1D2,

where σ, D1, and D2 are the section and base divisors correspondingly, with D2
1 =

D2
2 = 0, and D1D2 = f the class of the generic fiber f . Anomaly cancellation is not

satisfied in the strong sense, but we can still make sense of it at least as a Heterotic
string theory (may be not GLSM, but well defined as Heterotic string theory). Again
we embed this GLSM into a larger one:

xi Γj Λa pl
3 2 1 0 0 0 0 1 0
0 0 −2 1 1 0 0 −3 1
0 0 −2 0 0 1 1 −2 1

−6 −1 0
0 3 −1
0 2 −1

1 0 1 1 1
1 3 −2 2 1
0 3 −2 3 0

−1 −3
−1 −4
−1 −3

(D.2)
with the degrees of the monad maps is as follows:

F 1 F 2

0 1 0 0 0
0 −2 3 −1 0
1 −2 3 −2 1

2 3 2 2 2
3 1 6 2 3
3 0 5 0 3

(D.3)

After exchanging Γ2, Γ3 (degree ||G2||, ||G3||respectively) with F 1
1 , F 1

2 respectively,
and integrating out the repeated entries, the dual (X̃, Ṽ ) can be written as follows:

xi Γj Λa pl
3 2 1 0 0 0 0
0 0 −3 1 1 1 0
0 0 −2 0 0 1 1

−6
0
0

1 0 1 1 1
0 4 −2 2 1
0 3 −2 3 0

−1 −3
−1 −4
−1 −3

(D.4)

The dual geometry is perfectly smooth and anomaly cancellation condition
can also be make sense as before. However, the spectrum of charged scalars are not
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the same (i.e, h1(V ) = 121 while h1(Ṽ ) = 101. So there should be a problem. We
can argue that it is related to stability.

After a detailed calculation of Fourier-Mukai transform of V, it becomes
clear that FM1(V ) is of relative rank 1 and degree 2. On the other hand FM0(V ) is
also non-zero with relative rank and degree 1 and -1. It is well known that Fourier-
Mukai transformation of a sheaf of relative rank and degree (n, d) is complex of
relative rank and degree (d,−n). So it is clear from the above data that the restriction
of V on a generic elliptic fiber E is roughly of the form OE(σ)⊕V2, where V2 is a rank
2 irreducible bundle of degree -1 on E. Obviously it tells us that the bundle must be
unstable because it is unstable on generic fibers (even though it seems h0(V ) = 0).
As a sanity check we can compute the rank of π∗V and π∗(V ⊗OX(σ)), and they are
1 and 3 respectively. This is consistent because h∗(V2) = (0, 1).2 A similar statement
can be made about the TSD set up.

D.2 Type B

In this section, we present an example of a TSD pair in which the geometries (X,V )
and (X̃, Ṽ ) are actually equivalent geometries, even though they are described by dif-
ferent algebraic descriptions (of manifolds and monad bundles). Another interesting
feature in this case is that both sides of this “trivial” correspondence are elliptically
fibered, however the base manifolds are two different Hirzebruch surfaces, F0 and
F2. These base surfaces are distinct as complex manifolds but identical as real man-
ifolds (and the elliptic CY 3-fold over these different surfaces is the same complex
manifold). This demonstrates that even “trivial” TSD correspondences may involve
interesting geometric structure.

In the following example the bundle Ṽ on X̃ as a non-trivial rewriting of
bundle V on X. Both of the CY 3-folds are weighted projective space P123 fibered
Calabi-Yau 3-folds. For X the base is Hirzebruch surface F0, i.e, B2 = P3[2] while

for X̃ the base is B̃2 =

[
P3 1 1
P1 1 1

]
, which is generically F0 but at special complex

structure moduli it “jumps” to become F2 [116]. A (0, 2) target space map can be
found that takes X to X̃ (this can be achieved by adding a P1 to the configuration
as usual for a U(1)-changing TSD pair). On this manifold, both the tangent bundle

2One can also get the same numbers from semi stable bundles with rank 3 and degree zero, so
they are just necessary conditions.
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as well as non-tangent bundles will be studied.

D.2.1 Non-trivial rewriting with tangent bundle

Let us first consider the case of a deformation of the tangent bundle. The GLSM
charge matrix is a general deformation of (X,V = TX + O⊕2) and can be written
as follows:

xi Γj Λa pl
3 2 1 0 0 0 0
0 0 −2 1 1 1 1

−6 0
0 −2

3 2 1 0 0 0 0
0 0 −2 1 1 1 1

−6 0
0 −2

(D.5)
Following the procedure described in previous section, we will end up with the new
charge matrix of the target space dual (X̃, Ṽ ) as:

xi Γj Λa pl
3 2 1 0 0 0 0 0 0
0 0 −2 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1

−6 0 0
0 −1 −1
0 −1 −1

3 2 1 0 0 0 0
0 0 −2 1 1 0 2
0 0 0 0 0 1 0

−6 0
0 −2
0 −1
(D.6)

The number of both charged and uncharged geometric moduli of the theories on
these two manifolds are the same, which suggests that they are indeed target space
dual to each other. The number of degrees of freedom is given by:

h∗(V ) = (0, 241, 1, 0) h1,1(X) + h2,1(X) + h1(End0(V )) = 3 + 243 + 1074 = 1320,

h∗(Ṽ ) = (0, 241, 1, 0) h1,1(X̃) + h2,1(X̃) + h1(End0(Ṽ )) = 3 + 243 + 1074 = 1320.

(D.7)

Calculate twist of V and Ṽ

Starting with the Heterotic theory, without loss of generality, the second Chern class
can splits as (3.44) and the Heterotic Bianchi identity will implies further that η can
be parameterized as (3.45) with the twist of the theory T ′ = T . In order to get the
twist in our example, one can first calculate the second Chern class of V and Ṽ as

c2(V ) = c2 (TX) = 11J2
1 + 2J1J2 − 2J2

2 ,

c2

(
Ṽ
)
= c2

(
T̃X

)
= 11J2

1 + 2J1J2 − 3J2
2 + 2J2J3.

(D.8)
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For both X and X̃, the section can be parameterized as σ = J1−2J2, and it satisfies
the condition σ2 = −c1(B)σ. Then by applying (3.44), (3.45) we get:

η = 24J2, T = 12J2 = 6c1(B) (D.9)

for both V and Ṽ . This indicates that if we start from a deformation of the tangent
bundle, after target space dual we will at least end up with a TSD bundle over the
same manifold that is topologically equivalent.

Complex deformation of bundle moduli

We can further compare V and Ṽ by analyzing the deformation of these vector
bundles. Consider the difference of V and Ṽ defined on B2 and B̃2 in the sequence
separately, they are:

0→ V → O(0, 1)⊕2 → O(0, 2)→ 0,

0→ Ṽ → O(0, 0, 1)⊕O(0, 2, 0)→ O(0, 2, 1)→ 0, (D.10)

where V is the kernel of the map with two degree ||1|| polynomial on B2 =
[
P3 2

]
,

and Ṽ is the kernel of the map F with degree ||0, 1|| and ||2, 0|| on B̃2 =

[
P3 1 1
P1 1 1

]
.

However for (B̃2, Ṽ ), if we first solve the polynomial of degree ||0, 1|| and put the
constraint on the second map with degree ||2, 0||, the second map will exactly reduce
to a degree ||2|| polynomial on the manifold

[
P3 1 1

]
. So it seems that the

bundle moduli in (B̃2, Ṽ ) are transformed to the complex moduli in (B2, V ). Then
one would be interesting to ask whether it is possible that the complex structure and
bundle moduli exchange in (X,V ) and (X̃, Ṽ ).

Before answering this question, there is an important observation as B̃2

is generically F0, but at a special point it “jumps” to become F2. Write down the
defining equations for B̃2 =

[
P3 1 1
P1 1 1

]
as:

z0w0 + z1w1 = 0,

z2w0 +

(
2∑
i=0

aizi + εz3

)
w1 = 0, (D.11)

with [z0, z1, z2, z3] ∈ P3 and [w0, w1] ∈ P1. If ε ̸= 0, this system defines F0. When ε =
0, a P1 blows up at (0, 0, 0, 1) ∈ P3, which makes it becomes F2. So the question about
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whether the complex structure and bundle moduli exchange in (B2, V ) and (B̃2, Ṽ )

changes to what happens for the geometric moduli of (B̃2, Ṽ ) when B̃2 becomes F2,
and the same for tuning the map of bundle in the (B2, V ) system.

So in calculating the line bundle cohomology in the new system (B̃2, Ṽ ), we
will not only count the dimension of the cohomology group appearing in the sequence
but also their polynomial representations and the explicit map. More specifically,
we will set z3 ∈ P3 in our calculation to be zero to deform the B̃2 to be F2 and
see what happens. In this case, the line bundle cohomologies are h∗(O(0, 1)) =
{2, 0, 0}, h∗(O(2, 0)) = {9, 0, 0}, h∗(O(1, 1)) = {12, 0, 0} with and without turning
the base manifold. Furthermore, we can check that the cohomology of the bundle
h∗(B̃2, Ṽ ) = {4, 5, 0} will not be effected by the tuning. On the other hand, we can
also tune the complex structure of the map (x7 = 0 in F ) in defining the map of V
in the (B2, V ) system. Again the deformation of map does not change the bundle
valued cohomology h∗(B2, V ) = {1, 2, 0}.

D.2.2 Non-trivial rewriting with general vector bundle

Similarly, we can consider another example with the same manifolds but different
bundles. Again, we start from the following manifold with charge matrix fo the form
(X,V):

xi Γj Λa pl
3 2 1 0 0 0 0
0 0 −2 1 1 1 1

−6 0
0 −2

4 2 0 0 0
0 −2 2 2 1

−6 0
0 −3

(D.12)

The second Chern classes of (X,TX) and (X,V ) are given by
c2(TX) = 11J2

1 + 2J1J2 − 2J2
2 ,

c2(V ) = 8J2
1 + 4J1J2 − 2J2

2 , (D.13)
which satisfy the c2 condition c2(V ) ≤ c2(TX). The target space dual of this theory
is given by the form of (X̃, Ṽ ):

xi Γj Λa pl
3 2 1 0 0 0 0 0 0
0 0 −2 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1

−6 0 0
0 −1 −1
0 −1 −1

4 2 0 0 0
0 −2 1 3 1
0 0 1 0 0

−6 0
0 −3
0 −1

(D.14)
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with second Chern class as:

c2

(
T̃X

)
= 11J2

1 + 2J1J2 − 3J2
2 + 2J2J3,

c2

(
Ṽ
)

= 8J2
1 + 4J1J2 − 3J2

2 + 2J2J3. (D.15)

Once again we get their twists of the base to be the same:

η = 20J2, T = 8J2

for both V and Ṽ . These result indicates that this target space dual is just a kind
of rewriting of the origin (X,V ).
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