Micromechanics of Strength-Related Phenomena
in Composite Materials

by

Scott Wayne Case

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science

in

Engineering Mechanics

ot L Nevetnid

Scott L. Hendricks Demetri P. Telionis

May, 1993

Blacksburg, Virginia



LD
£65%
VEss
1993
C37¢
€.z



ABSTRACT

Micromechanical models are presented which can be used to evaluate: stress concentrations in
the vicinity of single and multiple fiber fractures in unidirectional composites under axial loading;
the tensile strength of unidirectional composites; fiber coatings that can be used to maximize the
transverse strain-to-failure and longitudinal shear strain-to-failure of composites; and the
compression strength of composite materials containing embedded cylindrically shaped sensors
or actuators. In each case, with the exception of the longitudinal shear model, the
micromechanical predictions are compared with the experimental results. In the cases of the fiber
fracture model and the transverse strain-to-failure model, these experimental results are obtained
by employing a macro-model composite. It is demonstrated that the constituents of the macro-
model composite can be systematically altered in order to study physical parameters such as fiber

volume fraction and fiber coatings.
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1.0 INTRODUCTION

The failure of composite materials in the presence of general loadings involves a complex
interaction between the fiber and the matrix. In addition, the nature of the interface between these
two constituents plays an important role in determining the resulting composite strength.
Traditional composite failure theories on the lamina level are generally extensions of the isotropic
yield criteria (such as von Vises) which include the effects of anisotropy. An example of such
an extension is the Tsai and Wu [1] theory. However, these failure theories often require material
properties obtained from biaxial tests which in practice are difficult to perform. In addition, recent
experimental results presented by Madhukar and Drzal [2 - 4] have shown that the strength of
composites are tied directly to micro-level composite properties such as the presence of fiber
surface treatments and fiber coatings. As a result, accurate strength predictions require models
which address the stress states in fiber and the matrix (as well as any fiber coating which may be
present). These micromechanical models can then be used in conjunction with macromechanical

models to predict laminae and laminate performance.

One such micromechanical model has been presented by Pagano and Tandon [5]. Their
fundamental representative volume element consists of three concentric circular cylinders with
displacements prescribed on the boundary. These cylinders represent the fiber, any coating which
may be present on the fiber surface, and the matrix. By assuming perfect bonding and linear
elastic behavior, they are able to determine the stress distribution in the fiber, the coating and the
matrix. Although their results consider only a three-phase model, the analysis itself may include
any number of phases. The model does not, however, consider the presence of damage in the

composite or the effects of fiber-fiber interaction.



Aboudi [6] has presented a micromechanical analysis of the strength of unidirectional fiber
composites. The analysis makes use of "artificial” fibers of square cross section arranged in a
double periodic array in the matrix. This model is used to determine the transversely isotropic
behavior of the composite. Results are presented for predicted failure stresses for different
material systems and different fiber orientations with respect to the loading direction. These
predictions are made by assuming a maximum stress theory in conjunction with material strengths
in the principal directions. The agreement between the predicted failure stresses and the
experimentally determined values was shown to be good. However, no basis was given for

predicting the failure stresses in these principal directions.

Other researchers have attempted to use concentric cylinder analyses similar to that proposed by
Pagano and Tandon to reduce the residual stresses resulting from mismatches in coefficient of
thermal expansion (CTE) between the fiber and the matrix. Ghosn and Lerch [7] used a three-
phase concentric cylinder model in an attempt to minimize the average distortional energy in the
matrix and interphase due to residual stresses in metal matrix composites. Their analysis
considered only these residual stresses and did not address the effects of mechanical loading.
These results showed that the number of coating possibilitics whose modulus and CTE fit the
optimized values from the minimization procedure were limited. In order to increase the number
of possible coating materials, candidate materials with less than the optimum modulus and CTE
were examined. The residual stress state in the matrix and coating were calculated for these
materials. However, the benefits of this analysis are questionable. If the goal is solely to
minimize residual thermal stresses, this may be accomplished by allowing the fiber coating to be
as compliant as possible. However, such a compliant coating may be detrimental to composite

performance under mechanical loadings.



Arnold and Wilt [8] used a concentric cylinder model and a three-dimensional finite element
model with period boundary conditions representing a hexagonally packed composite to study the
effect of a compliant interphase material on the residual stresses in and mechanical response of
metal matrix composites. Their analysis included temperature dependent material properties. In
addition, they considered the effect of plasticity in the matrix and the interphase material using
a Von Mises yield criterion. Their results showed that the compliant interphase had only a minor
influence on longitudinal tensile response. Further, the application of this compliant coating
produced a slight decrease in the transverse stiffness of the composite systems compared to those

systems with no coating.

Carman et al. [9] used a three-phase concentric cylinder model to analyze the stress state in a
continuously reinforced coated fiber composite subjected to transverse loading. This analysis did
not include the effects of residual thermal stresses in the fiber, interphase, and matrix. By
applying a constant strain boundary condition, Carman et al. suggest a criterion by which the
modulus of the interphase material may be selected to minimize the principal stresses in the
matrix. This suggests that the composite strain to failure may be correspondingly increased.
Numerical studies are conducted on a graphite-epoxy composite which shows that the strain to
failure may be increased as much as six times by coating the structural fibers with the optimum

coating.

In a related study, Carman and Reifsnider [10] use a similar analysis to reduce the stress
concentrations in a composite material containing an embedded sensor or actuator (so called smart
materials). Their analysis uses a three-phase concentric cylinder model consisting of a fiber (the

sensor or actuator), a coating, and a surrounding host material. The properties of the host material



are assumed to be those of the bulk composite. Numerical studies are conducted on a graphite-
€poxy composite containing a cylindrically-shaped glass sensor. These results suggest that the
onset of damage due to the embedded sensor in the composite subjected to transverse loading may
be delayed, and may suggest a material system whose transverse strength is nearly that of the host

material without an embedded sensor.

In each of the above models, it was assumed that no defects were present in the material.
However, in reality there are always defects present in a composite, either due to processing or
in-service damage. One of the most common types of damage to be present in a composite
material is a fiber fracture. Rosen [11] was one of the first individuals to consider the stress state
surrounding a fiber fracture. By assuming that the matrix supports no normal stresses and that
the fiber supports no shearing stresses, he was able to formulate what is often referred to as the
shear lag analysis. This analysis suggests that the stress terms increase exponentially as axial
distance increases along the fractured fiber. In addition, by making use of an efficiency parameter
which relates the stresses in the vicinity of the fiber fracture to those far removed, it is possible

to predict an ineffective length--the axial distance over which the stress field is perturbed.

Whitney and Drzal [12] considered the case of a single fractured fiber embedded in an infinite
matrix. Their analysis extended the shear lag concepts to include axial loading in the matrix and
shearing stresses the fractured fiber. By using the equilibrium equations in conjunction with
constitutive relations, and assumed functional dependence of the stresses on the radial and axial
coordinates, they were able to formulate an approximate solution to the ineffective length problem.
This solution does not satisfy the compatibility conditions. The ineffective lengths calculated

using this analysis were compared with experimentally determined values using a single fiber



fracture test for on composite systems to validate the micromechanical model.

Hedgepeth and Van Dyke [13] considered the stress concentrations on neighboring fibers due to
single and multiple adjacent fiber fractures. Their analysis used an influence function approach
along with shear lag concepts. Results were presented for both three-dimensional square and
hexagonal arrays where specified fibers were broken and for the stress concentration factor in a
fiber adjacent to a broken fiber in a two-dimensional array where the shear stress in the matrix
is restricted by a limiting stress value. Due to the inherent shear lag assumptions, however, the
model does not include the effects of the fiber and matrix stiffness values and fiber volume
fraction. Therefore, it is applicable to high fiber modulus, low matrix modulus, high fiber volume

fraction systems.

Carman et al. [14] attempted to include the effect of fiber volume fraction, material properties,
crack size, and fiber eccentricity on the resulting stress concentrations in the vicinity of a fiber
fracture. Their analysis represents the fibers adjacent to a fractured fiber by a ring of material.
Using an assumed functional dependence of strains in the vicinity of the fractured fiber in
conjunction with a mechanics of materials approach and elasticity concepts, an approximate stress
field is developed in each of the constituent materials. They present numerical results for stress
concentrations with variables such as fiber volume fraction, stiffness values, crack size, and fiber
eccentricity. In addition, the analytical predictions are compared with direct experimental
measurements obtained from a macro-model composite system. The results are shown to be in

good agreement with the analytical predictions.

Fajardo [15] performed an experimental study of fiber fracture in a glass/epoxy composite using



a macro-model composite. In particular, the effects of fiber volume fraction and crack size on
stress concentration and ineffective length due to a single fiber fracture were studied. The
experimental results were compared with theoretical predictions made using the annular ring
model proposed by Carman et al. [14] and the shear lag model [11]. It was shown that the
annular ring model provided closer agreement with the experimental results, although both models

still overpredicted the ineffective length.

The ultimate goal in modelling the stress concentrations and ineffective length surrounding a fiber
fracture is to obtain accurate lamina level tensile strength predictions. Harlow and Phoenix [16]
used a statistical analysis in conjunction with an assumed load sharing rule for a single ply tape
to predict composite strength for this idealized problem. They considered both the case of the
usual Weibull distribution and what they considered to be a more realistic double version which
has the effect of putting an upper bound on fiber strength. They found that for typical cases the
use of the double Weibull distribution for fiber strength does not affect the behavior of the
probability distribution for the strength of composite materials and therefore its use may not be
justified. The difficulty in calculating the probability distribution for the two-dimensional case
suggests that it would be extremely difficult to extend the analysis to include three-dimensional

effects.

Batdorf [17] has presented a somewhat simpler approach to the tensile strength of composite
materials. The analysis is based on that proposed by Harlow and Phoenix [16], but through many
simplifications the analysis may be used to predict the tensile strength of three-dimensional
composite materials. The analysis uses theoretically determined stress concentrations and

ineffective lengths due to multiple fiber fractures to estimate the fiber load level at which an



instability occurs. This load level corresponds to the load at which the composite itself
experiences catastrophic failure. To study the effects of the simplifications on the predicted
strength, a comparison is made to the results published by Harlow and Phoenix [16]. It was
shown that the failure stresses predicted by both methods differ by only a few percent, suggesting

~ that the simplifying assumptions did not significantly affect the predictions made by the model.

Gao et al. [18] conducted a study of strength prediction and optimization of composites. Their
analysis used a modified shear lag approach in conjunction with the statistical analysis of Batdorf
[17] to achieve tensile strength predictions. As part of their shear lag analysis, they showed that
there was a direct relationship between stress concentrations due to fractured fibers and ineffective
length. In addition, they considered the effects of irregular fiber spacing and the ratio of fiber to
matrix stiffness values on the predictions for composite tensile strength. Their analysis suggests

that there may be an optimum ineffective length which maximizes the tensile strength.

One advantage that composite materials have is that it is easily possible to embed a sensor or
actuator in a laminate. Such embedded sensors have been shown to have the greatest effect on
the transverse tensile (see Roberts and Davidson [19] and Carman et al. [20]) and compression
(Roberts and Davidson [19]) strengths of the host material. Accurate strength predictions for these
materials requires that we understand the factors influencing the geometry in the vicinity of an
embedded sensor or actuator. Dasgupta et al. [21] have conducted a linear elastic study of an
embedded fiber optic sensor embedded in a composite laminate. By using a Ritz approximation
method, they have been able to mathematically represent the undulated region surrounding the
embedded sensor. Comparisons are presented between the predicted and actual geometries for

various laminae stacking sequences. The results show good agreement for each of the laminate



configurations. No attempt was made to study the effect of these embedded sensors on the

composite performance.

The goal of the present study is to expand upon the previous micromechanical models which
relate to composite tensile strength. In this thesis, micromechanical models are presented which
can be used to evaluate:

* Stress concentrations and ineffective lengths in the vicinity of single and multiple fiber
fractures

« Tensile strength of unidirectional fiber composites

» Fiber coatings which can be used to maximize the transverse strain to failure and
longitudinal shear strain to failure of composites

» Compression strength of composite materials containing embedded cylindrically shaped
Sensors or actuators.

In each case, with the exception of the longitudinal shear model, the theoretical predictions are
compared with experimental results. In this way we are able to validate the predictions and to
gain a greater insight into the prdcesses which control the strength of composite materials. It is
hoped that with this insight we can begin to tailor the performance of composite materials to meet
specific design criteria without resorting to a "make-it-and-break-it" method of determining the

performance.



2.0 CONCENTRIC CYLINDERS FORMULATION

The general assumptions made in the present analysis are as follows. First, we assume that the
fiber, interphase, and matrix can be adequately represented by a set of N concentric cylinder
elements (see Hashin and Rosen [22]). Second, the fiber, interphase, and matrix are assumed to
be linearly elastic with transversely isotropic properties. At the interphase between each of the
constituents, we assume that "perfect" bonding exists. This assumption requires that displacements
and tractions be continuous at each interface. Finally, we assume that the effective strains
experienced by the representative volume element are equivalent to those experienced by the bulk
composite. For our analysis, we allow the composite to be subjected to displacements on the

boundary of the form

1
u; (S) = ejsx; ()

where § and x; are the cartesian coordinates of the boundary, s,-jo are constants, and u; are the
components of the boundary displacement. For boundary conditions specified in the form given

by Equation 1, it can be shown that

(2)

— o0 _
eij = eij = constant

where an overbar denotes the average value over the representative volume element (RVE). Based
on these statements, the displacements at the boundary of the RVE can be written as (see Pagano

and Tandon [5])



ul = ez + -%yf,zr,,,sinﬁ + %yizr,,,cose

uy = %sier(l + cos20) + -%ef,yr,v(l - cos20)

+ %yiercoszﬂ + —Zl-ygzzsine + %yf{zzcosﬂ (3)

ueN = _%eg{ersinze + -]ZLef,ersinZB

1.0

* VT * —]Z:Y;’,zzcose - —;-yf(zr,vsine

where ry is the outer radius of the N-th cylinder element and the u; in Equation 3 are evaluated
at ry. These boundary conditions dictate the functional dependence of each displacement field on
6 and z. To determine the functional dependence of the displacements on r, we utilize the
equilibrium equations, the constitutive relations, and the strain-displacement relations. The

equilibrium equations in the absence of body forces are given by

n

+ i ao?ﬁ " 80?2 + a?r — Ogg =0
or r oo or r
306 , 1 O0ge ., 999, , 208r _ 0 (4)
or r o0 0z r
Lo L1 dol, . do’, . s gl -0
or r 00 oz r

Letting the indices 1, 2, 3, 4, S, and 6 refer to z, r, 8, r0, z0, and rz, respectively, we obtain the

stress-strain relations for the n-th transversely isotropic cylinder

07, = Ci1(e2, - e7;) + Ci3(e7r - er) + Cfh(ego — epq)

= C5(e7, - ) + Cin(err — ef) + Gz (egs - €gp)

Ogo = Cra (€7, - €5z) + Ci(err — e7) + Gy (ege - €gg) (5)
078 = CaeYro
6o, = CssYe:
07, = CssYrs

Q
N
N

I
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where C;; are the elastic stiffness constants of the individual materials and e, ¢, and e, are the
expansional (non-mechanical) strain components along the longitudinal (z) and transverse (r - 6)

directions, respectively. Further, for a transversely isotropic material,

= ©o (6)

n _ ..n
€2z Uz, 2
n _ ..n
€rr < ur,r
1. n 1. n
Egg = —Up, 8 t —Ur
1 1 (7)
n n
= Ty + _ 4
Yro = JUr e T U, r ~ Us

Pagano and Tandon [5] have shown that the generalized displacement fields for each constituent

corresponding to the boundary conditions prescribed in Equation 1 can be written as

uf(r, 0, z) = U"(r)cos20 + U, (r)sin20 + U (1)
U (r) zcos® + U7 (r) zsin® ®

+

ug' = Vi (r)sin20 + v;’(r)cos26 + Vv, (r) zsin® + V.'(r) zcosO

ul = zWy (r) + Wy (r)cos® + W' (r)sin®

where n = 1, 2, ... N, and U,"(r)}, U,(r), ... Wi'(r) are defined as

11



n n

A A
U (r) = A°r? + —23 + As'r + _44
I r
n n n n n
rr) = 302 *CB) anrs A e, (G5 - Ca) .
2G5 r? 2CAT
By BR
UP(r) = Bfr3 + “2 + BPr + ~4
r3 r
a + n n n _ n
vil(r) = (3G CZ3)Blnr3 - i + Br + MB{I
2G5 r? 2CAT
D}’ (9)
Uy’ (r) = Dr + 72
Wy (r) = Dy
U4n(r) = F4n
Vilr) = Ff
Fn
de(r) = "ri + F5nr
USH(I) = H4n
V& (r) = HY

W (r) = Ho + H'r

and A", A", ... H{" are constants.

By using these displacements in the strain-displacement relations of Eguation 7 and the

constitutive relations of Equation 5 and Equation 6, Pagano and Tandon formulate the stresses as

n
OZZ

o7 (r)cos20 + a;(r)sin20 + af(r)
oge = P7(r)cos20 + B5(r)sin20 + B5(r)
62, = (¥(r)cos20 + {5(r)sin20 + {Z(r) (10)
07, = 8;(r)cosB + 8:(r)sind
0% = E¢(r)sinb® + EZ(r)cosH
0% = y2(r)sin20 + yZ(r)cos20

where the following definitions are made:
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r )

We evaluate the constants in Equation 9 and Equation 11 by:

1. imposing the boundary conditions stated in Equation 1.

(1)



2. requiring the tractions and displacements to be continuous at the constituent interfaces

n n+1 n+1 (12)

_ . _
u; = ujz r Oir = 047

3. demanding that the displacements and stresses be bounded as r approaches zero, so

that

Al =A; =0, B =Bl =0 (13)

The composite element stress can be determined by volume averaging the stress field over the

constituents. The stress-strain relation for the composite element now takes the form

o (14)
O;; = Cijir (€x; = €4p)

To calculate the effective stiffness properties for the composite element, we first set the

expansional strain components identically equal to zero, i.e.

15
e’=0,ef=0, (forn=1,2, ...N) (13)
The stress-strain relation for the composite reduces to (in contracted notation)
_— = (16)
i~ Cl] e]’ (ll J - ll 2r . 6)

By setting the j-th strain component equal to unity, while all others are zero, we obtain the j-th
column of the stiffness matrix. The composite engineering constants may then be defined in terms

of the elastic compliances, S;;.

14



To evaluate the effective expansional properties of the composite element, we set the mechanical
strain components identically equal to zero. If the ¢,," (the local material expansional strains) are
given their actual values according to some external stimulus (such as a temperature change),

Equation 14 yields

(17)

€;5 = = Sijki %x1

where the compliances have already been determined and the average stresses may be determined

by volume averaging the stresses in the composite element.
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3.0 FIBER FRACTURE IN UNIDIRECTIONAL
COMPOSITES

The importance of micro-parameters (such as the interphase) on the performance of composite
materials is only now beginning to be fully appreciated in the scientific community. Experimental
work such as that of Madhukar and Drzal [2-4] and Schwartz and Hartness [24] have led
researchers to seck to develop accurate micromechanical representations of the stress state in
composite materials subjected to various loading configurations. Until recently, validation of these
models has been accomplished only by volume-averaging techniques. Verification of the models

with such methods leads to a "smearing out" of important details and in questionable validation.

In this chapter, an analytical model is developed which provides an approximate stress state in the
region surrounding a fiber fracture in a unidirectional composite material. Using a linear
superposition technique in conjunction with a fiber discount analysis, it is possible to determine
the stress state in the neighborhood of multiple fiber fractures. This stress state may then be used
in strength prediction models such as that described by Batdorf [17] to arrive at the desired macro-
level strength predictions. In addition, the theoretical predictions for the stress field in the vicinity
of fiber fractures are compared with direct experimental results. Not only can this experimental

technique be used to validate the present model, it may be used to validate future models.

3.1 Single Fiber Fracture

To analyze a single fiber fracture in a unidirectional composite, we separate the problem into a

near-field analysis and a far-field analysis. The total solution is then just the superposition of the
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far-field solution and the near-field solution. For example, the stresses in a constituent material

may be given by

(18)

Ir - n o~ Il
Gij = 85 * 8y

where the near-field stresses are denoted by hats and the far-field stresses by tildes, and n = 1,
2, ... N, where N is the number of constituent materials. The far-field solution for the case of
uniform loading on the boundary may be obtained by the method detailed in the previous chapter.

To determine the near-field solution, we use the method developed by Carman et al. [14].

In posing the near-field problem, we assume a fiber fracture has occurred in a composite with a
hexagonal array of fibers, as shown in Figure 2. The size of the crack is denoted by r,, the size
of the fiber by r, and the distance to the nearest adjacent fiber by r,. Prior to the formation of
the crack, load was carried by this region. Following crack formation, however, the crack surface
is traction-free. To impose this condition on the crack face, we apply a compressive force P,

which is given by

P, = fzn frfaﬁzrdrda + fzw frc'dzzrdraﬁ (19)
0 0 0 Ig

Note that the far-field stresses are used in this calculation.

If the assumption is made that the transverse strains do not significantly affect the axial stresses,

P, may be closely approximately by
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£ 2 - 2 2 (20)
Py, = CiE  mriz + Ci€,,n(rs - rf)

If the crack does not extend into the matrix, then the second term in Equation 20 is identically
equal to zero. If an interphase region is present, it may be accounted for by the inclusion of the

appropriate integral expression in Equation 19.

Following Carman et al. [14], we make the assumption that the fibers immediately adjacent to the
fractured fiber may be represented by an annular ring of material (see Figure 2). This assumption
reduces the near-field problem to an axisymmetric one. While the point-wise stresses determined
in such a manner are not the exact solution to the near-field problem they do accurately depict the
trends in the stress variations of interest. The inner radius of the fiber annular ring, r,, is given
by the distance to the adjacent fibers. The outer radius of the fiber annular ring is chosen such
that the area of the ring is equal to the area of the adjacent fibers. The outer radius of the matrix
annular ring, r,, is determined from the global fiber volume fraction. For hexagonal packing

r, = \6rf + r2 (21)

7r?

r4 =

£

At this point, we construct a free-body diagram of the composite in the plane of the fractured fiber

(see Figure 3). Since the forces generated by the near-field solution must sum to zero
= (22)
P,-F, -F,-F, =0

where the F, are given by

18
























































































































































































































