#### Wind Energy: Retrospective, Prospective and the Role of Universities

J. F. Manwell University of Massachusetts Amhert NAWEA 2015 Symposium June 10, 2015

# Over the last hundred years...

- More people
- More fossil fuel use, more CO<sub>2</sub>
- Higher temperatures
- More need for renewable energy
  - Solar
  - Wind
  - Marine
  - Hydro
  - Biomass

#### Where Are We Now?

- Compared to 40 years ago (the beginning of modern wind energy)
  - Wind turbines are far more reliable
  - Wind turbines are larger
  - Cost to produce electricity from wind is much lower
  - Wind supplies ~3% of world's electricity
  - Climate change recognized as major concern
  - There is still a long way to go!

#### **Evolution of Modern Wind Turbines**

- US, Denmark, Germany
- Initially characterized by range of concepts, small size, low availability, high cost of energy
- Now: highly engineered and improved devices

First wind farm: US Windpower 50 kW turbines, New Hampshire, 1980



#### **Contemporary Large Turbine**





REpower 5M, model for NREL 5MW

# Growth in Wind Energy Capacity

- World capacity as of 2014: 270,000 MW
- Rapid growth since 1990



# How Did This Happen?

- Experience
- Data
- Analysis
- Modeling
- Design standards

Universities played a major role→ •Vision •Direct research

•Educating the participants

# Challenges for the Future

- Wind could produce much more of the world's electricity
- But:
  - We will need many more turbines
    - Lower cost
    - More reliable
    - Easier to service
  - We must integrate them with the energy supply
    - Public acceptance
    - Electrical load management
    - Energy storage
    - Fuel production

More vision and research and more educated people will be needed!

#### DOE's A2E Research Framework

- Change the research paradigm from individual wind turbines to entire wind plant cost and performance optimization
- Engage the national labs, **universities**, and industry in a collaborative consortia...

#### **Resource Characterization**

- Forecasting
- Complex terrain (hills and mountains)
- Weather fronts and turbulence
- Long term measurements
- Wind + waves (for offshore)

Excellent topics for universities, research institutes and industrial collaborations!

# Wind Plant Technology

- Wind plant and array aerodynamics
- Fluid structure interaction
- Advanced controls
- Component R&D
- Wind plant reliability
- Design & systems engineering tools

Excellent topics for universities, research institutes and industrial collaborations!

# Wind Integration

- Issues are related to the desired penetration level (average wind power/average load)
- At low levels (<20%), issues are minimal
- At moderate levels (<40%), coordinated dispatch of other generators is usually sufficient
- At high levels (>50%), more sophisticated load management, energy storage, fuel production may be useful

Excellent topics for universities, research institutes and industrial collaborations!

#### Some Examples

#### Flow in Wind Farms is Complex!



#### **Two-Bladed Rotors Again?**



#### Challenge of Fabricating Large Blades



http://www.technologyreview.com/sites/default/files/images/blade.innovationsx519.jpg

#### Floating Offshore Turbines



#### Multiple Rotors?

#### • A new life for an old idea?





Thomas, 1940

#### Heronemus, 1972

#### Hybrid Power Systems

• Models for the future?



Diesel plant and wind turbines in Alaska





#### Wind + Water

- Using wind avoids use of water for cooling thermal power plants
- Wind can supply energy for sea water desalination by reverse osmosis
- Variability of wind provides an interesting opportunity and impetus for innovation
- Storage of water simpler and cheaper than storing electricity

# Envision the Future: Wind for Fuel





Precedent: H<sub>2</sub> powered buses in Iceland; "Prof. Hydrogen" at Univ. Reykjavik

#### **Deniers and Skeptics**

- Climate change deniers and wind power skeptics often have a vested industry in delaying the transition
- Cogent rebuttals often required

# Conclusion

- Great progress in wind technology so far
- Wind at very high penetration is possible and desirable but also challenging
- Many opportunities for innovation
- Concerted, multidisciplinary action will be needed
- Need for scientists, engineers and educated people of all types!